Supplement of

Acylperoxy radicals during ozonolysis of α -pinene: composition, formation mechanism, and contribution to the production of highly oxygenated organic molecules

 $Han\ Zang^1,\ Dandan\ Huang^2,\ Jiali\ Zhong^3,\ Chenxi\ Li^1,\ Ziyue\ Li^1,\ Huayun\ Xiao^1,\ Yue\ Zhao^{1,*}$

¹School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

²Shanghai Academy of Environmental Sciences, Shanghai 200233, China

³Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong SAR, 999077, China

*Correspondence: Yue Zhao (yuezhao20@sjtu.edu.cn)

This file contains

14 pages

4 tables

13 figures

S1 Changes in measured RO₂ and closed-shell products as a function of the reacted α-pinene.

The changes of selected RO_2 and the corresponding closed-shell monomers and dimers as a function of the reacted α -pinene are consistent with previous studies (Figure S7) (Zhao et al., 2018). The RO_2 concentration increases rapidly when the reacted α -pinene is relatively low, and the increasing rate slows down due to the elevated removal rate of RO_2 via cross-reactions at higher reacted α -pinene (> 20 ppb). The dimers exhibit opposite trends with RO_2 . As the reacted α -pinene increases, the increasing rates of the dimers become slightly higher due to the promoted RO_2 cross-reactions. As for the HOM monomers, their concentrations basically show linear correlations with increasing reacted α -pinene.

Table S1 Summary of experimental conditions of α -pinene ozonolysis with the addition of NO₂.

Exp#	α-pinene conc	O ₃ conc	NO ₂ conc	Reacted α-pinene	
1	500	45	0	2.4	
2	500	45	3	2.4	
3	500	45	7	2.4	
4	500	45	10	2.4	
5	500	45	15	2.4	
6	500	45	20	2.4	
7	500	45	30	2.4	
8	1000	45	0	4.8	
9	1000	45	3	4.8	
10	1000	45	7	4.8	
11	1000	45	10	4.8	
12	1000	45	15	4.8	
13	1000	45	20	4.8	
14	1000	45	30	4.8	
15	2000	45	0	9.3	
16	2000	45	3	9.3	
17	2000	45	7	9.3	
18	2000	45	10	9.3	
19	2000	45	15	9.3	
20	2000	45	20	9.3	
21	2000	45	30	9.3	
22	500	180	0	9.6	
23	500	180	3	9.6	
24	500	180	7	9.6	
25	500	180	10	9.6	
26	500	180	15	9.6	
27	500	180	20	9.6	
28	500	180	30	9.6	
29	3000	45	0	13.5	
30	1000	180	0	18.9	
31	2000	180	0	36.8	
32*	2000	45	0	5.0	

^{* 500} ppm cyclohexane was added as an OH scavenger in this experiment.

Table S2 Summary of experimental conditions of α -pinene ozonolysis with the addition of NO.

Exp#	α-pinene conc	O ₃ conc	NO conc	Reacted α-pinene	
33	500	45	3	2.8	
34	500	45	7	3.6	
35	500	45	10	4.2	
36	500	45	15	4.8	
37	500	45	20	5.1	
38	500	45	30	5.3	
39	1000	45	3	5.2	
40	1000	45	7	6.0	
41	1000	45	10	6.7	
42	1000	45	15	7.8	
43	1000	45	20	8.6	
44	1000	45	30	9.6	
45	2000	45	3	9.6	
46	2000	45	7	10.4	
47	2000	45	10	11.1	
48	2000	45	15	12.3	
49	2000	45	20	13.4	
50	2000	45	30	15.5	
51	500	180	3	9.8	
52	500	180	7	10.4	
53	500	180	10	10.8	
54	500	180	15	11.5	
55	500	180	20	12.2	
56	500	180	30	13.3	

Table S3 Major modifications in MCM mechanisms.

#	Reactions	k (s ⁻¹ or cm ³ molecule ⁻¹ s ⁻¹)
1	$APINENE + O3 = 0.5 \times APINOOA + 0.5 \times APINOOB$	8.05E-16.*exp(-640./T)
2	APINOOA = Z-APINAOO	KDEC*0.09
3	APINOOA = E-APINAOO	KDEC*0.09
4	APINOOA = C107O2 + OH	KDEC*0.45
5	APINOOA = C109O2 + OH	KDEC*0.37
6	APINOOB = Z-APINBOO	KDEC*0.10
7	APINOOB = E-APINBOO	KDEC*0.10
8	APINOOB = PINONIC	KDEC*0.16
9	APINOOB = C10H15O4KBRO2 + OH	KDEC*0.49
10	APINOOB = C10H15O4RBRO2 + OH	KDEC*0.5*0.3
11	C107O2 = C10H15O6R1RO2	0.14
12	C109O2 = C10H15O6R1RO2	0.02
13	C10H15O4KBRO2 = C10H15O6KBRO2	0.29
14	C10H15O4RBRO2 = C10H15O6RBRO2	1
15	RO2 + NO2 = ROONO2	7.5E-12
16	ROONO2 = RO2 + NO2	5

Table S4 Wall loss fractions of OH, HO₂, and RO₂ radicals, as well as HOM monomers and dimers under different reaction conditions

	D			Wall loss fractions (%)		
Species	D_{gas} (cm ² s ⁻¹)	k_{wall} (s ⁻¹)	500 ppb αp +45 ppb O ₃	1ppm αp+45 ppb	2ppm αp+45 ppb	500 ppb αp+45 ppb
				O_3	O_3	O ₃
ОН	0.23	0.0537	0.14	0.11	0.08	0.08
HO_2	0.15	0.0354	9.08	6.71	4.89	4.74
C_7 - RO_2	0.07	0.0171	13.9	11.9	9.8	9.6
C_8 - RO_2	0.07	0.0171	25.5	21.5	18.0	17.7
C ₉ -RO ₂	0.07	0.0171	16.4	16.2	14.5	14.3
C_{10} - RO_2	0.05	0.0125	11.5	9.3	7.4	7.3
C ₇ -HOM	0.07	0.0171	24.3	23.3	22.5	22.3
C ₈ -HOM	0.07	0.0171	34.7	31.0	28.1	27.8
C ₉ -HOM	0.07	0.0171	29.0	27.5	26.1	25.9
C_{10} -HOM	0.05	0.0125	22.3	20.3	18.6	18.4
C_{14-15} -dimers	0.05	0.0125	33.1	30.5	27.8	27.6
C_{16-19} -dimers	0.03	0.0079	25.4	22.6	20.0	19.7
C ₂₀ -dimers	0.03	0.0079	17.5	15.8	14.4	14.2

Figure S1 Mass-dependent transmission efficiency of nitrate-CIMS.

Figure S2 Sensitive analysis of the dimer formation rate to acyl RO_2 -involved HOM formation, k_1 and k_2 are the dimer formation rates for alkyl and acyl RO_2 , respectively, the unit is cm³ molecule⁻¹ s⁻¹.

Figure S3 Normalized concentration of typical RO₂, HOM monomers and dimers as a function of the added NO₂ concentration with/without considering wall losses (Taking Exps 8-14 as an example).

Figure S4 Normalized concentration of the measured acyl RO_2 as a function of the added NO_2 concentration (Exps 1-21). The data are categorized according to the effects of reacted α -pinene on the decreasing extents of acyl RO_2 concentration, which are indicated by different background colors (blue: no obvious effects, pink: the decreasing extent becomes lower when reacted α -pinene increases).

Figure S5 Averaged normalized concentration of the measured alkyl RO_2 as a function of the added NO_2 concentration (Exps 1-28).

Figure S6 Ratio of simulated concentration of $ROONO_2$ after leaving the CI inlet to the concentration before into the CI inlet (the experimental conditions are same as Exp 14), the acyl RO_2 $C_{10}H_{15}O_8$ reported by Iyer et al. (2021) is included in the model, therefore the decomposition of the whole $ROONO_2$ is relatively lower.

Figure S7 Normalized concentration of selected RO_2 as well as closed-shell monomers and dimers as a function of the reacted α -pinene (Exps 1, 8, 15, 22, and 29-31).

Figure S8 Changes of typical alkyl RO_2 concentration with different NO_2 concentration measured by two nitrate-CIMS under the same experimental conditions (Exps15-21). Instrument 1 is the nitrate-CIMS we used in this study.

Figure S9 Formation mechanisms of the acyl RO₂ measured in this study.

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Figure S10 Formation pathways of the acyl RO_2 with oxygen atoms less than 6 in default MCM v3.3.1.

Figure S11 Relative changes in concentration of typical C_{10} RO₂ and HOM monomers due to the addition of 500 ppm cyclohexane (Exp 32), the yellow species are RO₂ radicals.

Figure S12 Normalized concentration of the HO_2 radicals as a function of NO_2 concentration under low (2.4 ppb, a) and high (9.6 ppb, b) reacted α -pinene conditions.

Figure S13 Sensitive analysis of C_9 RO₂ yield from one of the CI to the contribution of C_9 acyl RO₂ related HOMs.

References

Iyer, S., Rissanen, M. P., Valiev, R., Barua, S., Krechmer, J. E., Thornton, J., Ehn, M., and Kurten,
T.: Molecular mechanism for rapid autoxidation in alpha-pinene ozonolysis, *Nat. Commun.*,
12, 878, https://doi.org/10.1038/s41467-021-21172-w, 2021.

Zhao, Y., Thornton, J. A., and Pye, H. O. T.: Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry, *Proc. Natl. Acad. Sci. U. S. A.*, 115, 12142-12147, https://doi.org/10.1073/pnas.1812147115, 2018.