- 1 Direct probing of acylperoxy radicals during ozonolysis of α-pinene: constraints on
- 2 radical chemistry and production of highly oxygenated organic molecules
- 3 Han Zang¹, Dandan Huang², Jiali Zhong³, Ziyue Li¹, Chenxi Li¹, Huayun Xiao¹, Yue Zhao^{1,*}

- 5 ¹School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai,
- 6 200240, China
- ²Shanghai Academy of Environmental Sciences, Shanghai 200233, China
- 8 ³Division of Environment and Sustainability, Hong Kong University of Science and Technology,
- 9 Hong Kong SAR, 999077, China

10

*Correspondence: Yue Zhao (yuezhao20@sjtu.edu.cn)

Abstract

13

14

15

16 17

18

19

20

21

22 23

2425

26

27

28

2930

31

32

33

Acylperoxy radicals (RO₂) are key intermediates in atmospheric oxidation of organic compounds and different from the general alkyl RO2 radicals in reactivity. However, direct probing of the molecular identities and chemistry of acyl RO2 remains quite limited. Here, we report a combined experimental and kinetic modelling study of the composition and formation mechanisms of acyl RO₂, as well as their contributions to the formation of highly oxygenated organic molecules (HOMs) during ozonolysis of α-pinene. We find that acyl RO₂ radicals account for 67%, 94%, and 32% of the highly oxygenated C₇, C₈, and C₉ RO₂, respectively, but only a few percent of C₁₀ RO₂. The formation pathway of acyl RO₂ species depends on their oxygenation level. The highly oxygenated acyl RO₂ (oxygen atom number ≥ 6) are mainly formed by the intramolecular aldehydic H-shift (i.e., autoxidation) of RO₂, while the less oxygenated acyl RO₂ (oxygen atom number < 6) are basically derived from the C-C bond cleavage of alkoxy (RO) radicals containing an α-ketone group or the intramolecular H-shift of RO containing an aldehyde group. The acyl RO2-involved reactions explain 50-90% of C₇ and C₈ closed-shell HOMs and 14% of C₁₀ HOMs, respectively. For C₉ HOMs, this contribution can be up to 30%-60%. In addition, acyl RO₂ contribute to 50%-95% of C₁₄-C₁₈ HOM dimer formation. Because of the generally fast reaction kinetics of acyl RO₂, the acyl RO₂ + alkyl RO₂ reactions seem to outcompete the alkyl RO₂ + alkyl RO₂ pathways, thereby affecting the fate of alkyl RO2 and HOM formation. Our study sheds lights on the detailed formation pathways of the monoterpene-derived acyl RO2 and their contributions to HOM formation, which will help to understand the oxidation chemistry of monoterpenes and sources of low-volatility organic compounds capable of driving particle formation and growth in the atmosphere.

1. Introduction

34

35

36

37 38

39

40

41 42

43

44

45

46 47

48

49

50 51

52

53

54

55

56

57 58

59

60

61

62

63

64

65

66

Monoterpenes (C₁₀H₁₆) comprise an important fraction of nonmethane hydrocarbons in the global atmosphere (Guenther et al., 2012; Sindelarova et al., 2014) and make a significant contribution to the secondary organic aerosol (SOA) budget (Pye et al., 2010; Iyer et al., 2021). The presence of double bond and large molecular size of monoterpenes favor their oxidation reactivity towards O₃, hydroxyl (OH), and nitrate (NO₃) radicals (Atkinson et al., 1990; Roger et al., 2004; Kurten et al., 2015; Kristensen et al., 2016; Bianchi et al., 2019; Berndt, 2022), as well as the formation of lowvolatility products and SOA (Fry et al., 2009; Fry et al., 2014; Zhang et al., 2018; Bianchi et al., 2019; Molteni et al., 2019; Shen et al., 2022). The organic peroxy radicals (RO₂) in the gas-phase oxidation of monoterpenes can undergo autoxidation and form a class of highly oxygenated organic compounds (HOM) (Jokinen et al., 2014; Mentel et al., 2015; Berndt et al., 2016; Zhao et al., 2018; Bianchi et al., 2019; Bell et al., 2021; Berndt, 2022), which are primarily low- or extremely lowvolatility organic compounds (LVOCs and ELVOCs) (Ehn et al., 2014; Bianchi et al., 2019) and thus play a crucial role in SOA formation and growth. Significant advances have been made in recent years concerning the monoterpene RO2 autoxidation and its contribution to HOM formation (Ehn et al., 2014; Berndt et al., 2016; Zhao et al., 2018; Xu et al., 2019; Lin et al., 2021; Berndt, 2022; Shen et al., 2022). It is recognized that a part of monoterpene RO₂ radicals derived from the traditional ozonolysis channel (i.e., isomerization of Criegee intermediates, CI) and OH addition channel can autoxidize at a rate larger than 1 s⁻¹ and could be an important contributor to HOM formation (Zhao et al., 2018; Xu et al., 2019; Berndt, 2021). Recently, new reaction channels leading to the RO2 radicals that can undergo fast autoxidation have been proposed. A quantum chemical calculation study indicated that an excited CI arising from α-pinene ozonolysis could undergo ring-breaking reactions and directly lead to a ring-opened RO₂ due to the excess energy, which can autoxidize at a rate of ~1 s⁻¹ and rapidly form highly oxidized RO₂ with up to 8 oxygen atoms (Iyer et al., 2021). In addition, the minor hydrogen abstraction channel by OH radicals has been proposed as a predominant pathway to HOM formation from OH oxidation of α-pinene under atmospheric conditions (Shen et al., 2022). RO₂ species can be simply divided into alkyl RO₂ and acyl RO₂ (RC(O)OO) according to whether R is an acyl radical. There are significant differences in the reactivity of these two kinds of RO₂. Firstly, the rate constant of acyl RO₂ with NO is in general slightly higher than that of alkyl RO₂ (Atkinson et al., 2007; Calvert et al., 2008; Orlando and Tyndall, 2012). For example, the reaction rate constants of acyl RO₂, CH₃C(O)O₂, and alkyl RO₂, CH₃CH₂O₂, with NO have been reported to be 20×10^{-12} cm³ molecule⁻¹ s⁻¹ and 9.2×10^{-12} cm³ molecule⁻¹ s⁻¹, respectively (Atkinson et al., 2007;

Calvert et al., 2008; Orlando and Tyndall, 2012). Besides, acyl RO₂ can react rapidly with NO₂ and form thermally unstable peroxyacyl nitrates (RC(O)OONO₂), which have a lifetime of tens of minutes at room temperature and of days and even months in winter or in the upper atmosphere with lower temperatures (Atkinson et al., 2007; Orlando and Tyndall, 2012). Although alkyl RO₂ radicals can also react with NO₂ and form the alkyl peroxynitrates (ROONO₂), they are extremely unstable and will decompose into RO2 radicals and NO2 in less than 1s (Kirchner et al., 1997; Orlando and Tyndall, 2012). Lastly, the rate constant of cross-reaction of acyl RO₂ ($1.5 \pm 0.3 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹) is significantly higher than that of alkyl RO₂ (2×10^{-17} - 1×10^{-11} cm³ molecule⁻¹ s⁻¹) (Villenave and Lesclaux, 1996; Tyndall et al., 2001; Atkinson et al., 2007; Zhao et al., 2018). As a result, these two kinds of RO2 may play different roles in the autoxidation as well as HOM and dimer formation. The quantum calculations revealed that different functional groups in RO2 would lead to significantly different intramolecular H-shift rates (Otkjær et al., 2018). The C=O and C=C substituents lead to resonance stabilized carbon radicals and could enhance the H-shift rate constants by more than a factor of 400. The fast aldehydic H-shift rate contributes to a series of acyl radicals (RC(O)) with the radical site at the terminal carbonyl carbon, which further produce the acyl RO₂ with O2 addition. Many RO2 formed in the oxidation of monoterpenes have the aldehyde functionality, especially for α-pinene ozonolysis, in which all the primary and many later-generation RO₂ contain at least one aldehyde group (Noziere et al., 2015; Berndt et al., 2018; Li et al., 2019; Berndt, 2022; Zhao et al., 2022). As a result, acyl RO₂ may comprise a considerable fraction of total RO₂ species and contribute significantly to the formation of low-volatility products and SOA in the monoterpene oxidation system. A recent study by Zhao et al. (2022) found that the acyl RO₂involved reactions contribute to 50%-80% of oxygenated C_{15} - C_{20} dimers (O:C \geq 0.4) and 70% of C₁₅-C₁₉ dimer esters in SOA from α-pinene ozonolysis. However, currently the direct probing of the molecular identities and chemistry of monoterpene-derived acyl RO₂ radicals is rather limited. The role of acyl RO₂ in HOM formation remains to be quantified. In this study, the molecular identities and formation mechanisms of acyl RO₂ radicals, as well as their contributions to HOM formation in the α -pinene ozonolysis are investigated. The experiments were conducted in a flow reactor with different concentrations of NO₂, which acted as an efficient scavenger for the acyl RO₂. The molecular composition and abundance of the gas-phase HOMs were measured by a chemical ionization-atmospheric pressure interface-time-of-flight mass spectrometer (CI-APi-TOF) using nitrate as the reagent ions. In addition, kinetic modelling using the Framework for 0-D Atmospheric Modeling (F0AM v4.1) employing Master Chemical

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90 91

92

93

94

95

96

97

98

Mechanisms (MCM v3.3.1) updated with the latest advances of the RO₂ chemistry was performed to gain insights into the reaction kinetics and mechanisms of acyl RO₂ species. We find that acyl RO₂ account for a major fraction of highly oxygenated C₇ and C₈ RO₂ and play a significant role in the formation of HOM monomers and dimers with small molecular size. This study will help to understand the role of acyl RO₂ in the formation of low-volatility species from monoterpene oxidation and reduce the uncertainties in the future atmospheric modelling of the formation and impacts of aerosols.

2. Method and Materials

107

108

109

110

111

112

113

114

115116

117

118

119120

121

122

123

124

125

126

127

128

129

130

131

132

2.1 Flow Reactor Experiments.

The α-pinene ozonolysis experiments were carried out under room temperature (298 K) and dry conditions (relative humidity < 5%) in a custom-built flow reactor, which has been described in detail previously (Yao et al., 2019). The α-pinene vapor was generated by evaporating its pure liquid (99%, Sigma-Aldrich) into a flow of zero air (10.65 L min⁻¹) added to the reactor using an automated syringe pump (TYD01-01-CE, Baoding Leifu Fluid Technology Co., Ltd.). The initial concentrations of α-pinene ranged from 500 ppb to 3 ppm in different experiments. Ozone was generated by passing a flow of ultra-high-purity (UHP) O₂ (150 mL min⁻¹, Shanghai Maytor Special Gas Co., Ltd.) through a quartz tube housing a pen-ray mercury lamp (UV-S2, UVP Inc.) and its concentration (45 ppb and 180 ppb under low and high O₃ conditions, respectively) was measured by an ozone analyzer (Model 49i, Thermo Fisher Scientific, USA). The NO₂, acting as an acyl RO₂ scavenger, was derived from its standard cylinder gas (15.6 ppm, Shanghai Weichuang Standard Gas Co., Ltd.) and its initial concentration ranged from 0 to 30 ppb. To validate the formation mechanisms of acyl RO₂, selected experiments with the addition of NO or cyclohexane were also conducted. NO was derived by its standard cylinder gas (9.8 ppm, Shanghai Weichuang Standard Gas Co., Ltd.) and its initial concentration also ranged from 0 to 30 ppb. The gas-phase cyclohexane (~ 500 ppm), acting as an OH scavenger, was generated by bubbling a gentle flow of UHP N₂ through liquid cyclohexane (LC-MS grade, CNW). The total air flow in the flow reactor was 10.8 L min⁻¹ and the residence time was 25 seconds. The relatively low O₃ concentration and short reaction time in the flow reactor avoid significant production of NO₃ radicals from NO₂ and O₃ and make the NO₃ oxidation contribute only 0.3%-1.2% of the total α -pinene oxidation in our experiments. Therefore, the NO₃ chemistry could be neglected in this study. A summary of the experimental conditions is given in Tables S1 and S2 in the Supplement.

The gas-phase RO2 radicals and closed-shell products were measured by a nitrate-based CI-API-

of-flight mass spectrometer with a mass resolution of ~ 10000 Th/Th was used here. The mass calibration error is below 1.8 ppm. The sheath flow, including a 2 mL min⁻¹ UHP N₂ flow containing nitric acid (HNO₃) and 22.4 L min⁻¹ zero air was guided through a PhotoIonizer X-ray (Model L9491, Hamamatsu, Japan) to generate nitrate reagent ions. The total sample flow rate was 9 L min⁻¹ during the experiments. The mass spectra within the m/z range of 50 to 700 were analyzed using the tofTools package developed by Junninen et al. (2010) based on Matlab.

To clarify whether there is SOA formation in the experiments, a scanning mobility particle sizer (SMPS, TSI), which consists of an electrostatic classifier (model 3080), a long or nano differential mobility analyzer (model 3081 and 3085 for different particle sizes), and a condensation particle counter (model 3087), was used to monitor the formation of SOA particles. Except in Exp 31 where the reacted α-pinene reached 36.8 ppb and there was low SOA formation with particle mass concentrations of 5.0×10⁻⁴-5.7×10⁻³ μg m⁻³ and number concentrations of 63-395 cm⁻³, no particle formation was observed by SMPS. Therefore, the RO₂ radicals and closed-shell products would be primarily distributed in the gas phase, with their fates negligibly influenced by the low SOA formation under these experimental conditions.

2.2 Kinetic Model Simulations.

Model simulations of RO₂ and HOM formation in selected experiments were performed to constrain the reaction kinetics and mechanisms of acyl RO₂ using F0AM v4.1 (Wolfe et al., 2016), which employs MCM v3.3.1 (Jenkin et al., 2015) updated with the chemistry of RO₂ autoxidation and cross-reactions forming HOM monomers and dimers. Newly added species and reactions to MCM v3.3.1 followed the work by Zhao et al. (2018) and Wang et al. (2021). Considering that the default MCM v3.3.1 does not include highly oxygenated acyl RO₂, we added the possible formation pathways of the potential acyl RO₂ measured in this study to the model based on the mechanisms proposed by Zhao et al. (2022).

The formation and reaction branching ratios of the two α -pinene-derived CIs are updated in the model according to the recent studies (Table S3) (Claflin et al., 2018; Iyer et al., 2021; Zhao et al., 2021; Berndt, 2022). The formation of a ring-opened $C_{10}H_{15}O_4$ -RO₂ species (C10H15O4RBRO2 in Table S3) from α -pinene ozonolysis proposed by a recent study (Iyer et al., 2021), as well as its subsequent autoxidation and bimolecular reactions, is included in the model. The autoxidation rate constant of the ring-opened $C_{10}H_{15}O_4$ -RO₂ is 1 s⁻¹, and a lower limit of its molar yield (30%) was used according to the recent studies (Zhao et al., 2021; Meder et al., 2023) and our results (see details in Section 3.3). We also added the hydrogen abstraction channel of α -pinene oxidation by OH radicals according to a recent study (Shen et al., 2022). The branching ratio of this channel was

set to 9%, with the rest 91% being the traditional OH addition pathways. The detailed reaction 166 pathways and rate constants of RO₂ species in this channel followed the work by Shen et al. (2022), 167 except for RO₂ cross-reactions, the rates of which were not reported in that study. As the primary 168 169 RO₂ radicals (C₁₀H₁₅O₂-RO₂) formed via the hydrogen abstraction by OH radical are least-oxidized with only 2 oxygen atoms, their cross-reaction rate could be relatively low (Atkinson et al., 2007; 170 Orlando and Tyndall, 2012). In the model, this rate constant was set to 1×10^{-13} cm³ molecule⁻¹ s⁻¹. 171 For other alkyl RO₂ radicals (including HOM-RO₂), their cross-reaction rate constant is assumed to 172 be 1×10^{-12} cm³ molecule⁻¹ s⁻¹ according to Zhao et al. (2018). The dimer formation rates for these 173 174 alkyl RO₂ are same as their cross-reaction rates. In flow reactor experiments, the equilibrium formation of ROONO2 would lead to the consumption 175 176 of alkyl RO₂ radicals. To account for the influence of this process on the RO₂ budget and HOM formation, we included the reaction of RO₂ + NO₂ = ROONO₂ in the model, with forward and 177 reverse reaction rate constants of 7.5 × 10⁻¹² cm³ molecule⁻¹ s⁻¹ and 5 s⁻¹, respectively (Orlando and 178 179 Tyndall, 2012). To simply the parameterization, the forward and reverse reaction rate constants of newly added highly oxygenated acyl RO₂ with NO₂ are the same as default values in MCM v3.3.1. 180 Besides, the cross-reaction rate constants of acyl RO₂ (including acyl RO₂ + acyl RO₂ and acyl RO₂ 181 + alkyl RO₂) forming monomers or dimers were both set to 1 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ (Orlando 182 183 and Tyndall, 2012). Considering that there are large uncertainties in the dimer formation rate of RO₂, a sensitivity analysis was conducted to evaluate its influence on acyl RO2-involved HOM formation 184 by varying the rate constant from 1×10^{-13} cm³ molecule⁻¹ s⁻¹ to 1×10^{-12} cm³ molecule⁻¹ s⁻¹ for alkyl 185 RO_2 and 1×10^{-12} cm³ molecule⁻¹ s⁻¹ to 1×10^{-11} cm³ molecule⁻¹ s⁻¹ for acyl RO_2 . The results show 186 that changes in dimer formation rate constants within the above ranges have no significant influence 187 188 on the contribution of acyl RO₂ to HOM formation (Figure S1). 189 The wall losses of OH, HO2, and RO2 radicals, as well as closed-shell HOM monomers and dimers 190 in the flow reactor were considered using the KPS method proposed by Knopf et al. (2015) in the 191 model (Table S4), with an assumption of irreversible uptake of these species on the reactor wall. It 192 is found that the wall loss of OH, HO₂, and RO₂ radicals accounts for 0.08-0.14%, 4.7-9.1%, and 7.3-193 25.5% of their total production, respectively, with lower values under higher reacted α-pinene 194 concentration conditions. Therefore, the wall loss process would not significantly influence α-195 pinene oxidation and RO2 chemistry. The wall losses of closed-shell HOM monomers and dimers 196 account for 18.4-34.7% and 14.2-33.1% of their total production, respectively. It should be noted 197 that the wall losses of typical RO2 and HOMs have negligible impact on their responses to the 198 addition of NO₂ (Figure S2). In addition, with the consideration of the wall loss effects, the effect

and contribution of acyl RO_2 to the HOM formation only changed a little (0.02-0.5%). Therefore, the wall losses of RO_2 and HOMs in the flow reactor would not affect the interpretation of the results in this study.

3. Results and Discussion

3.1 Molecular composition of acyl RO₂ from α-pinene ozonolysis

The overall formation characteristics of gas-phase RO_2 , closed-shell monomers, and dimers with the addition of NO_2 (30 ppb) is shown in Figure 1 (Exps 8 and 14, Table S1). Since nitrate-CIMS is only highly sensitive to the highly oxygenated species, we only discuss the production of HOMs with oxygen atoms above 6 here. As for RO_2 and closed-shell monomers (Figure 1a), the signals of C_7 and C_8 species decrease by more than 50% with the addition of NO_2 , while for C_9 and C_{10} species, their decreases are relatively small (within 40%). In addition, we note that there is an unexpected increase in some C_9 and C_{10} RO_2 , and the possible reason will be discussed in detail in Section 3.3.

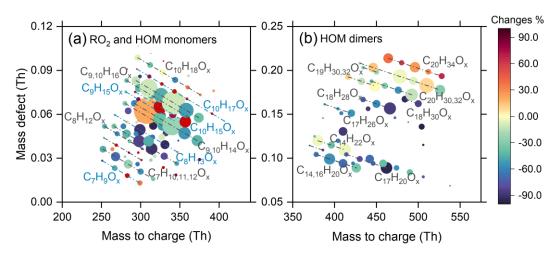


Figure 1 Mass defect plots of (a) RO_2 , HOM monomers, and (b) HOM dimers formed from ozonolysis of α -pinene in the presence of NO_2 measured using nitrate-CIMS (Exps 8, 14). The circles are colored by the relative changes in signal of RO_2 , monomers and dimers due to the addition of NO_2 (30 ppb). The area of circles is linearly scaled with the cube root of the signal of HOMs formed in the absence of NO_2 . The blue lines represent RO_2 radicals.

 NO_2 could react rapidly with acyl RO_2 radicals to form $RC(O)OONO_2$, which has a higher thermal-stability compared to $ROONO_2$ and can serve as a sink for acyl RO_2 on our experimental timescales. Therefore, a significant decrease in C_7 and C_8 RO_2 and HOMs upon the addition of NO_2 indicates that a major fraction of C_7 and C_8 RO_2 are acyl RO_2 . In contrast, the slight decrease in C_9 and C_{10} HOM monomers shows that the contribution of acyl RO_2 to C_9 and C_{10} RO_2 is relatively small. However, some of the C_{10} monomers showed a slight increase with the addition of NO_2 , especially

for C₁₀H₁₈O_x-HOMs. The addition of NO₂ plays a twofold role in dimer formation from α-pinene ozonolysis (Figure 1b). There is a significant inhibiting effect on C_{14} - C_{18} dimers, which is due to the large contribution of acyl RO₂ to the total C₇ and C₈ RO₂ that generate such dimers. However, C₁₉ and C₂₀ dimers only show a slight decrease with the addition of NO₂, and some of them are even enhanced. In particular, the enhancement in $C_{20}H_{34}O_x$ is most significant, reaching 30%. Kinetic model simulations show that the concentration of alkyl RO₂ decreases by 1-20% with the addition of 30 ppb NO₂ under different reacted α-pinene conditions (Exps 1-28). Considering that the acyl RO₂ could be rapidly consumed by NO₂, if the signal reduction of a RO₂ specie significantly exceeds 20% with 30 ppb NO₂ addition, we presume it has significant contribution from acyl RO₂. As a result, a total of 10 acyl RO2 were identified according to the changes of RO2 signal as a function of initial NO₂ concentration, which include C₇H₉O₆, C₇H₉O₇, C₈H₁₃O₆, C₈H₁₃O₈, C₈H₁₃O₉, $C_8H_{13}O_{10}$, $C_9H_{13}O_9$, $C_9H_{17}O_7$, $C_9H_{17}O_9$, and $C_{10}H_{15}O_7$. Figure 2 shows the averaged normalized acyl RO₂ signals measured as a function of the added NO₂ concentration under different experimental conditions (Exps 1-28). Similarly, since nitrate-CIMS is only highly sensitive to products with high oxygen content, we only observed acyl RO2 with oxygen atoms above 6. Consistent with the significant decrease in C₇ and C₈ species with the addition of NO₂ in Figure 1a, C₇ and C₈ acyl RO₂ decrease by more than 50% with the increase of NO₂ concentration (Figures 2a, b). For C₉ acyl RO₂, the C₉H₁₇O₇-RO₂ and C₉H₁₇O₉-RO₂ also decrease dramatically with increasing NO₂, and the decrease in C₉H₁₃O₉-RO₂ is relatively smaller (Figure 2c). In addition, C₁₀H₁₅O₇-RO₂ also shows a small decrease (Figure 2d), with a reduction of only 30% at 30 ppb NO₂. The relatively small reduction in the abundance of some of these RO2 radicals indicates the presence of alkyl RO2 radicals with the same chemical formulas. Along with the marked reduction in acyl RO₂ signals, the production of highly oxygenated RC(O)OONO₂ species such as C₉H₁₃O₉NO₂, C₉H₁₇O₇NO₂, and C₁₀H₁₅O₇NO₂ with the addition of NO₂ were observed (see the spectra in Figure S3). However, we note that although some RC(O)OONO₂ such as $C_8H_{13}O_6NO_2$ and $C_8H_{13}O_8NO_2$ are expected to be formed with NO₂ addition, they could not be unambiguously detected by nitrate-CIMS due to the overlapping of their peaks with strong alkyl RO₂ peaks (C₉H₁₅O₈-RO₂ and C₉H₁₅O₁₀-RO₂) in this

223

224

225

226

227

228

229

230

231232

233

234

235

236

237

238239

240

241

242

243

244245

246

247

248

249

250

study.

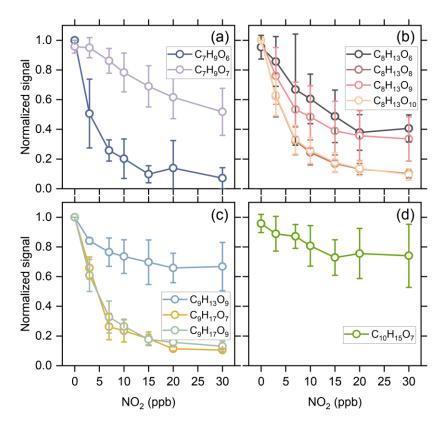


Figure 2 Averaged normalized signal of the measured acyl RO₂ as a function of the added NO₂ concentration under different experimental conditions (Exps 1-28).

Figure 3 shows the contribution of acyl and alkyl RO_2 to the highly oxidized C_7 - C_{10} RO_2 . Acyl RO_2 contribute 66.9%, 94.3% and 31.7% to the total C_7 , C_8 , and C_9 RO_2 signals, respectively. By contrast, the only C_{10} acyl RO_2 measured in this study is $C_{10}H_{15}O_7$, which contributes to only 0.4% of the total C_{10} RO_2 . It should be note that there might be other C_{10} acyl RO_2 that were not observed due to the interferences from the alkyl RO_2 with the same chemical formulas, which respond differently to the addition of NO_2 than acyl RO_2 do (see details in the following discussion). Considering that some RO_2 formulas such as $C_{10}H_{15}O_7$ may have contributions from both acyl RO_2 and alkyl RO_2 , we assumed the decrease of RO_2 signal with the addition of RO_2 as the signal of acyl RO_2 . Besides, it is obvious that the normalized signal basically decreases to the lowest value when the initial RO_2 concentration reaches 10 ppb (Figure 2), indicating that most of the acyl RO_2 are depleted at this RO_2 concentration. In addition, the decreasing extents of some acyl RO_2 are different for different reacted α -pinene concentrations, with lower decreasing extent for higher reacted α -pinene concentrations (Figure S4). This difference might be due to the promoted cross-reactions of acyl RO_2 as well as their precursor RO_2 at higher α -pinene concentrations, which are competitive with the reactions leading to acyl RO_2 formation as well as the acyl RO_2 + RO_2 reactions.

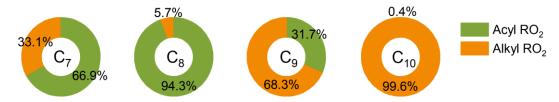


Figure 3 Contributions of acyl and alkyl RO₂ to the highly oxygenated C₇-C₁₀ RO₂ measured by nitrate-CIMS.

In addition to the changes of acyl RO₂ signal, we also show the changes of normalized alkyl RO₂ signal with the increasing initial NO₂ concentration in Figure S5. Although ROONO₂ formed by the reaction of alkyl RO₂ with NO₂ is thermally unstable and would decompose quickly to release RO₂, it would still reach a formation/decomposition equilibrium in the system, thus consuming a small amount of alkyl RO₂. However, it can be seen from Figure S5 that during 25 s of reaction in the flow reactor, a large part of alkyl RO₂ has an increasing trend with the increase of NO₂ concentration. We speculate that a portion of ROONO₂ could decompose back to RO₂ and NO₂ in the nitrate-CI inlet where the sample gases were diluted instantly and the equilibrium of ROONO₂ was disturbed, resulting in the release of a large amount of RO₂.

To verify our speculation, the decomposition of ROONO2 in the CI inlet was simulated based on the dilution ratio (1:3.5) and residence time (200 ms) in the inlet. As shown in Figure S6, more than 40% of ROONO2 decompose back to RO2 and NO2 in the CI inlet, which would inevitably lead to an increase in RO2 concentration. As the $C_{10}H_{15}O_8NO_2$ has a significant contribution from the relative stable RC(O)OONO2 arising from the ring-opened acyl $C_{10}H_{15}O_8$ -RO2 reported by Iyer et al. (2021), its decomposition is relatively small (\sim 21%). It should be noted that the RO2 measured here is only a part of total RO2 and that a large amount of RO2 has already reacted to form closed-shell products as well as ROONO2 in the flow reactor. Taking Exp 14 as an example (30 ppb NO2), the simulated concentrations of RO2 and ROONO2 are 1.3 ppb and 1.9 ppb, which approximately accounts for 27.1% and 39.6% of the total production of RO2, respectively. Therefore, the decomposition of ROONO2 could indeed result in an increase in the RO2 signal. It should also be pointed out that because of the very short residence time in the CI inlet, such an increase in the RO2 concentration would not significantly impact HOM formation.

To confirm the reliability of our results, we examined the changes in the signals of RO₂ and closed-shell products as a function of reacted α-pinene in the absence of NO₂ (Section S1 and Figure S7), and the results are consistent with previous studies (Zhao et al., 2018). In addition, we repeated Exps 15-21 on another nitrate-CIMS and a similar increase in alkyl RO₂ signals with the addition of NO₂ was observed on that instrument (Figure S8).

3.2 Formation mechanisms of acyl RO₂ during α-pinene ozonolysis

It has been recently suggested that there are three main pathways that directly lead to the formation of monoterpene-derived acyl RO₂ (Zhao et al., 2022): (i) the autoxidation of RO₂ containing aldehyde groups (Reaction R1), (ii) the cleavage of C-C bond of RO containing an α -ketone group (Reaction R2), and (iii) the intramolecular H-shift of RO containing an aldehyde group (Reaction R3). In addition, the secondary OH oxidation of aldehyde products can also produce acyl RO₂ radicals. However, in the present study, the secondary OH oxidation is expected to be insignificant due to an excess of α -pinene compared to O₃. Indeed, kinetic model simulations incorporating the secondary OH chemistry show that the contribution of secondary OH oxidation to acyl RO₂ formation is negligible even under high O₃ conditions (see details in Section S2 and Figure S9).

Here, we further investigated the formation mechanisms of acyl RO₂. Figure 4 shows the reaction schemes leading to the formation of example acyl RO₂ radicals. The detailed formation mechanisms of acyl RO₂ measured in this study are shown in Figure S10. The formation of acyl RO₂, especially those having the small molecular size (C_7 - C_9), requires the production and subsequent decomposition (or ring-opening process) of RO radicals. Take $C_8H_{13}O_6$ -RO₂ as an example (Figure 4), two steps of RO formation and decomposition following the primary $C_{10}H_{15}O_4$ -RO₂ lead to the ring-opened $C_8H_{13}O_4$ -RO₂ that can undergo rapid aldehydic H-shift to form the acyl RO₂. While for $C_8H_{13}O_9$ -RO₂, it directly comes from the aldehydic H-shift of $C_8H_{13}O_7$ -RO followed by the O₂ addition (Figure S10).

319
$$RO_2 \xrightarrow{autox} acyl RO_2$$
 (R1)

320
$$RO_2 \xrightarrow{+RO_2} RO \xrightarrow{C-C \ cleavage} acyl \ RO_2$$
 (R2)

321
$$RO_2 \xrightarrow{+RO_2} RO \xrightarrow{H \ shift} acyl \ RO_2$$
 (R3)

Pathway 1

$$O \longrightarrow Primary C_{10}H_{15}O_{4}$$

Primary C₁₀H₁₅O₄

$$O \longrightarrow Primary C_{10}H_{15}O_{4}$$

Ring opening ope

Pathway 2

Primary
$$C_{10}H_{15}O_4$$

$$C_0H_{13}O_4$$

$$Dec, +O_2$$

$$O - O - O$$

$$C_0H_{13}O_4$$

Pathway 3

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339340

341342

343

Primary
$$C_{10}H_{15}O_4$$

$$\begin{array}{c} +RO_2 \\ -O \end{array}$$

$$\begin{array}{c} H \text{ shift} \\ -O \end{array}$$

$$C_{10}H_{15}O_5$$

Figure 4 Three different formation pathways of acyl RO₂ during ozonolysis of α -pinene. The acyl RO₂, C₉H₁₃O₄ and C₁₀H₁₅O₅, formed via pathways 2 and 3, respectively, were not detected by nitrate-CIMS in this study due to their relatively low oxygenation level.

To verify the formation mechanisms of acyl RO₂, we added NO in some experiments (Exps 33-56) to see how acyl RO₂ respond to the increasing NO concentration. As shown in Figure 5, the changes of C₇ and C₈ acyl RO₂ show opposite trend with the increasing NO and NO₂ concentration, except for C₈H₁₃O₈-RO₂. NO can react with RO₂ to form RO radicals and promote the formation of RO₂ that requires the involvement of RO radicals in their formation. In addition to C₈H₁₃O₆-RO₂ discussed above, the formation of C₇H₉O₇-RO₂ and C₈H₁₃O₉-RO₂ needs 2 and 4 steps of the RO formation following C₁₀H₁₅O₄-RO₂ (Figure S10), respectively. Therefore, the increase of RO concentration due to the addition of NO would promote the production of these acyl RO2. These results prove that the RO radicals indeed play an important role in the acyl RO₂ formation. While for C₈H₁₃O₈-RO₂, its signal decreases substantially with the addition of NO up to 3 ppb, similar to the trend observed with the addition of NO₂. After reaching the minimum at 7 ppb NO, the signal of C₈H₁₃O₈-RO₂ tends to increase with the further increase of NO concentration. Given that C₈H₁₃O₈-RO₂ is likely to directly come from the autoxidation of C₈H₁₃O₆ acyl RO₂ (see Figure S10), the rapid consumption of C₈H₁₃O₆-RO₂ by NO and NO₂ (formed by O₃ oxidation of NO) may outcompete its autoxidation process, thus leading to a decrease in C₈H₁₃O₈-RO₂ signal. Besides, it can be seen that the increasing extent in C₈H₁₃O₆-RO₂ is also relatively small before the NO concentration reaches 3 ppb (Figure 5c), indicating that the promotion effect of NO on C₈H₁₃O₆-

346 347

348

349

350 351

352

353

354

355

356

357

358

359

360

361

362

363

364

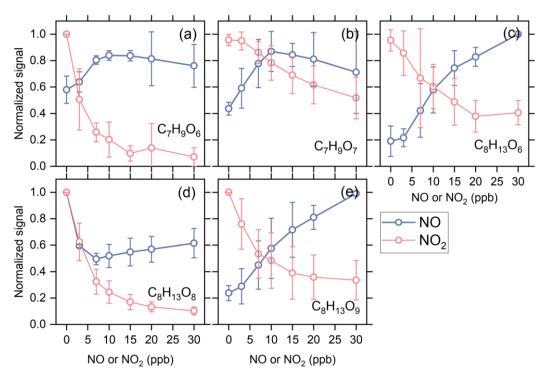


Figure 5 Averaged normalized signal of typical acyl RO₂ as a function of initial NO or NO₂ addition (Exps 1-28 and 33-56).

It is interesting to note that most of the measured highly oxygenated acyl RO₂ are formed by the autoxidation of aldehydic RO₂, and only the C₈H₁₃O₉-RO₂ is formed by the H-shift of the RO radical (Figure S10). The measured signal of acyl RO₂ from the autoxidation pathway accounts for 96% of all highly oxygenated acyl RO2 signals. Considering that the acyl RO2 with small molecular size are generally the ring-opened RO₂, the autoxidation rate constant of their precursor RO₂ is expected to be relatively high (e.g., 1 s^{-1}) (Iyer et al., 2021). Taking a RO₂ cross-reaction rate constant of 1×10^{-1} ¹² cm³ molecule⁻¹ s⁻¹ (Zhao et al., 2018) and a model-predicted total RO₂ concentration of 1.7 ppb (Exp 8), the simulated contributions of autoxidation and cross-reactions to the total RO₂ reaction are 96.0% and 4.0%, respectively. Considering a 10 times larger RO₂ cross-reaction rate constant (i.e., 1 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹), the simulated contributions of RO₂ autoxidation and crossreactions would be 70.4% and 29.6%, respectively. These simulations suggest that the autoxidation of aldehydic RO₂ plays a dominant role in the formation of the highly oxygenated acyl RO₂. Although the acyl RO2 with low oxygen content were not measured in this study, all acyl RO2 containing oxygen atoms less than 6 seem to be derived from the cleavage of C-C bond or H-shift of RO containing an α-ketone or aldehyde in the currently known reaction mechanisms (Figures 4 and S11).

Recently, Shen et al. (2022) found that the hydrogen abstraction by OH radicals during α-pinene

oxidation plays an important role in HOM formation. In such mechanisms, the primary RO_2 reacts with NO and forms RO radicals, which could undergo rapid ring-breaking reactions to form a series of ring-opened $C_{10}H_{15}O_x$ -RO₂, which contains aldehyde functionality and can easily autoxidize to C_{10} acyl RO₂. In the absence of NO, the cross-reactions of RO₂ can also produce RO radicals. However, only a few C_{10} acyl RO₂ were detected in this study and they contribute less than 1% of the total C_{10} RO₂ concentration. This phenomenon could be due to the fact that the primary RO₂ ($C_{10}H_{15}O_2$) formed by the hydrogen abstraction by OH radical are least-oxidized with only 2 oxygen atoms, which are expected to have a relatively low cross-reaction rate constant (Orlando and Tyndall, 2012; Berndt et al., 2018). As a result, the formation of ring-opened $C_{10}H_{15}O_x$ -RO₂ via cross-reactions of the primary $C_{10}H_{15}O_2$ -RO₂ may not be important. As shown in Figure 6, when the cross-reaction rate constants of $C_{10}H_{15}O_z$ -RO₂ is considered to be 1×10^{-13} cm³ molecule⁻¹ s⁻¹, the simulated contribution of the H-abstraction pathway to the HOM formation is less than 3% under both low (2.4 ppb) and high (9.6 ppb) reacted α -pinene conditions. It should be note that the cross-reaction rate constants of the less-oxygenated RO₂ could be even lower (Orlando and Tyndall, 2012), therefore the contribution of this pathway to HOM formation could be ignored when NO is absent.

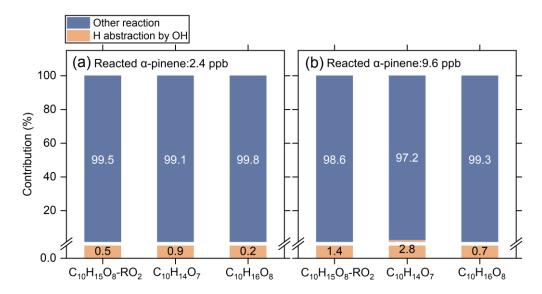


Figure 6 Contributions of the H-abstraction pathways by OH radicals (yellow) and OH addition and ozonolysis pathways (blue) to the formation of typical HOMs under low (a) and high (b) reacted α -pinene conditions simulated by the kinetic model. The cross-reaction rate constant was set to 1 \times 10⁻¹³ cm³ molecule⁻¹ s⁻¹ for the primary $C_{10}H_{15}O_2$ -RO₂ and 1 \times 10⁻¹² cm³ molecule⁻¹ s⁻¹ for the more oxygenated RO₂.

In the presence of cyclohexane as an OH scavenger (Figure S12, Exp 32), the measured signals of $C_{10}H_{17}O_x$ -RO₂ formed via OH addition channel and the corresponding $C_{10}H_{18}O_x$ -HOMs decrease by more than 70%, while the $C_{10}H_{15}O_x$ -RO₂ and its related closed-shell products decrease by less

than 15%, in good agreement with the measurements in previous studies (Zhao et al., 2018). As the $C_{10}H_{16}O_8$ -HOM could come from both $C_{10}H_{15}O_x$ -RO₂ and $C_{10}H_{17}O_x$ -RO₂, its reduction is at a medium level. The significantly smaller decrease in the signals of $C_{10}H_{15}O_x$ -RO₂ and its corresponding closed-shell products as compared to those of $C_{10}H_{17}O_x$ -RO₂ and the related closed-shell products further illustrates that the H-abstraction by OH has a minor contribution to HOM formation in the absence of NO.

389

390

391

392

393 394

395

396

397

398 399

400

401

402

403 404

405

406

407

408

409

410

411 412

413

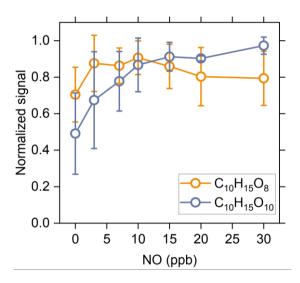


Figure 7 Averaged normalized signal of the measured $C_{10}H_{15}O_{8}$ - and $C_{10}H_{15}O_{10}$ -RO₂ as a function of the added NO concentration (Exps 33-56).

Figure 7 shows the changes in measured signal of C₁₀H₁₅O₈-RO₂ and C₁₀H₁₅O₁₀-RO₂ as a function of initial NO concentration (Exps 33-56). It should be noted that due to the existence of O₃ in our experiments, these two RO₂ could come from both O₃ and OH reactions with α-pinene and NO could be rapidly oxidized to NO₂ by O₃. The normalized signals of C₁₀H₁₅O₈-RO₂ and C₁₀H₁₅O₁₀-RO₂ increase firstly under low NO conditions, which is similar to the change of acyl RO₂ as shown in Figure 5. This increase could be due to two reasons: (1) the promoted formation of $C_{10}H_{15}O_8$ and C₁₀H₁₅O₁₀ acyl RO₂ from the H-abstraction channel by NO addition and (2) the equilibrium decomposition of ROONO₂ formed by the two alkyl RO₂ from ozonolysis of α-pinene in the CI inlet (see Section 3.1). As mentioned above, the ring-opened C₁₀H₁₅O_x-RO₂ formed from the Habstraction channel contain aldehyde functionality and can autoxidize rapidly. The F0AM model simulations show that the C₁₀H₁₅O₈ and C₁₀H₁₅O₁₀ acyl RO₂ formed from the H-abstraction channel contribute to 68% and 56% of the total $C_{10}H_{15}O_8$ -RO₂ and $C_{10}H_{15}O_{10}$ -RO₂ with the addition of 10 ppb NO, respectively. Therefore, the initial increases of these two RO₂ with increasing NO concentration are likely mainly due to the enhanced formation of C₁₀H₁₅O₈ and C₁₀H₁₅O₁₀ acyl RO₂. When the NO concentration increases to a high level, there are more NO and NO₂ in the system, which promotes the consumption of acyl RO₂. As a result, C₁₀H₁₅O₈-RO₂ exhibits a decreasing trend and the increasing extend of $C_{10}H_{15}O_{10}$ -RO₂ becomes much smaller.

3.3 Contributions of acyl RO₂ to the formation of gas-phase HOMs

With the addition of NO_2 , the distribution of gas-phase products in the α -pinene ozonolysis changes significantly (see Figure 1), and the consumption of acyl RO_2 by NO_2 plays an important role. NO_2 influences the formation of HOM monomers mainly in three ways. Firstly, NO_2 could react rapidly with acyl RO_2 and form $RC(O)OONO_2$, thus inhibiting the formation of HOMs with the involvement of acyl RO_2 . Secondly, as mentioned above, although $ROONO_2$ is thermally unstable, their formation/decomposition equilibrium still consumes a small amount of alkyl RO_2 , resulting in a decrease in HOM formation. Thirdly, NO_2 can consume a part of HO_2 radicals (Figure S13), thus inhibiting the $RO_2 + HO_2$ reaction pathway.

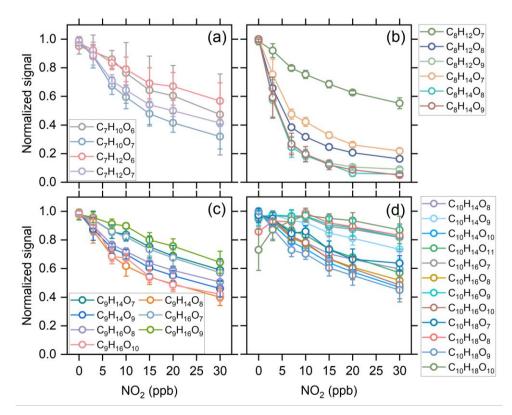


Figure 8 Averaged normalized signal of the measured C_7 - C_{10} HOMs as a function of the added NO_2 concentration (Exps 1-28).

Figure 8 shows the normalized signal of C₇-C₁₀ HOM monomers as a function of initial NO₂ concentration. The C₇, C₈, and some of C₉ HOMs decrease significantly with increasing NO₂ concentration due to the relatively large contribution of acyl RO₂ to the total C₇-C₉ RO₂. The C₇ HOMs decrease by more than 50% when the NO₂ concentration reaches 30 ppb, while C₈ HOMs decrease by more than 70% and some of them even decrease by 90%. The C₉ HOMs decrease by 30%-60% and the species with relatively large decrease are mostly acyl RO₂-related HOMs. For

 C_{10} HOMs, although there is also an obvious decrease in their formation with the addition of NO_2 , most of them have a smaller decreasing extent compared to the C_7 - C_9 HOMs due to the low contribution of acyl RO_2 to the C_{10} RO_2 . It is worth noting that a few C_{10} HOMs increase initially with the addition of NO_2 up to 10 ppb, suggesting that there might be some processes that promote the formation of their precursor RO_2 radicals and thus offset the inhibiting effect of NO_2 .

As mentioned above, the addition of NO_2 has the most significant influence on the formation of small HOM monomers. Combined with the large contribution (67-94%) of acyl RO_2 to the total C_7 and C_8 RO_2 (Figure 3), it can be considered that the reduction in the formation of C_7 and C_8 HOM monomers with NO_2 addition is overwhelmingly due to the consumption of acyl RO_2 by NO_2 . As a result, acyl RO_2 was found to have a contribution of 50-90% to C_7 and C_8 HOM monomer formation during α -pinene ozonolysis. Since acyl RO_2 also have a considerable contribution (32%) to the total C_9 RO_2 , an upper limit (30%-60%) of its contribution to C_9 HOMs could be derived with the assumption that the decrease of C_9 HOMs with the addition of NO_2 is also mainly due to the consumption of C_9 -acyl RO_2 by NO_2 . By contrast, acyl RO_2 account for a very small fraction (0.4%) of the total C_{10} RO_2 , and their contribution to C_{10} HOMs cannot be quantified based solely on the experimental measurements given that the equilibrium reaction between alkyl RO_2 and RO_2 and also affect the formation of HOMs. Therefore, we used the F0AM model to simulate the contribution of acyl RO_2 to C_{10} HOM formation according to the acyl RO_2 measured in this study and displayed the results in Figure 9. It should be noted that the HOMs from the acyl RO_2 and its subsequent RO_2 (formed from acyl RO_2 reactions) are all considered as acyl RO_2 -related HOMs in the model.

As mentioned above, the formation of ring-opened $C_{10}H_{15}O_4$ -RO₂ reported by Iyer et al. (2021) is included in the model, and its autoxidation produces a ring-opened acyl $C_{10}H_{15}O_8$ -RO₂. When we consider the upper limit of the yield of ring-opened $C_{10}H_{15}O_4$ -RO₂ (89%) in the model and assume that the other primary RO₂ with the cyclobutyl ring autoxidize at a very slow rate (0.01 s⁻¹), the simulated acyl $C_{10}H_{15}O_8$ -RO₂ would contribute to ~80% of the total C_{10} RO₂. However, we could not see a large decrease in the measured signal of $C_{10}H_{15}O_8$ -RO₂ and its related HOM monomers with the addition of NO₂. Similarly, a recent study by Zhao et al. (2022) found that the $C_{10}H_{15}O_8$ -related monomers and dimers in α -pinene SOA did not significantly decrease with NO₂ addition. There might be three reasons for the discrepancy between the simulations and measurements. Firstly, the yield of the ring-opened $C_{10}H_{15}O_4$ -RO₂ might be significantly smaller than 89% (Zhao et al., 2021; Meder et al., 2023). Secondly, the autoxidation rate of other primary $C_{10}H_{15}O_4$ -RO₂ with the cyclobutyl ring could be significantly larger than 0.01 s⁻¹. Thirdly, the ring-opened $C_{10}H_{15}O_8$ -RO₂, a highly functionalized acyl RO₂ radical with an –OOH group, may be able to undergo very fast

intramolecular H-scrambling reactions to form a peroxy acid as suggested by Knap and Jørgensen, (2017), which would compete with the NO₂ reaction and result in a lower reduction in its signal upon NO₂ addition (see details in Section S3).

466

467

468

469 470

471

472473

474

475 476

477

478

479

480

481 482

483

484

485

486

487 488

489 490

491

492 493

To examine the contributions of acyl RO₂ to C₁₀ HOM production, we updated the branching ratios and autoxidation rates of the primary RO₂ during α-pinene ozonolysis in the model according to the recent studies (Kurten et al., 2015; Claflin et al., 2018; Zhao et al., 2021; Berndt, 2022) (Table S3), and used a lower limit (30%) of the ring-opened C₁₀H₁₅O₄-RO₂ yield reported by Iyer et al. (2021). The simulated acyl RO₂-related HOMs contribute to 14% of the total C₁₀ HOMs, which is slightly smaller than the measured decrease in C₁₀ HOMs with the addition of NO₂. This discrepancy could be due to two reasons. Firstly, the decrease in HOMs can partly result from the consumption of alkyl RO₂ and HO₂ radicals by the addition of NO₂. Secondly, as mentioned above, there might be other C₁₀ acyl RO₂ that were not observed in this study due to the decomposition of the ROONO₂ from the alkyl RO₂ with the same formulas. The contributions of acyl RO₂ to the formation of C₇-C₉ HOMs were also simulated (Figure 9). For C₇ and C₈ HOMs, the model predicts a contribution of 52%-98% from acyl RO₂, which is consistent with the measurements (50%-90%). However, the simulated contribution of acyl RO₂ to C₉ HOMs is over 99%, which is not consistent with the measurements (Figure 8c). Recent studies indicated that the CI radicals from α-pinene ozonolysis could not form the alkyl C₉H₁₅O₃-RO₂ (C96O2 in default MCM v3.3.1) (Kurten et al., 2015; Zhao et al., 2021; Berndt, 2022). As a result, this primary C₉ alkyl RO₂ was not considered in the model, and most of C₉ RO₂ considered are acyl RO₂ or from acyl RO₂ reactions. In view of the significantly lower measured (less than 30-60%) than simulated (over 99%) contribution of acyl RO₂ to C₉ HOMs, we speculate that a small part of CI radicals might be able to form the C₉H₁₅O₃-RO₂, which could further react to form highly oxygenated alkyl C₉ RO₂.

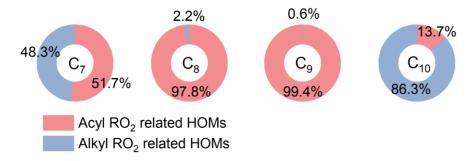


Figure 9 Simulated average contribution of acyl and alkyl RO₂ to C_7 - C_{10} HOM formation from ozonolysis of α -pinene under typical experimental conditions (Exps 1, 8, 15, and 22).

A sensitivity analysis of the alkyl $C_9H_{15}O_3$ -RO₂ yield was conducted to see its influence on the contribution of acyl RO₂ to the total C_9 HOMs. The model simulations show that when the yield of

this C₉ RO₂ from one of the CIs ranges between 0.5% to 2%, the contribution of acyl RO₂ to the total C₉ HOMs ranges from 27.5% to 59.8% (Figure S15), which is almost consistent with the measurements. This result indicates that a small part of CIs could generate the C₉ alkyl RO₂. We note that the small production of C₉H₁₅O₃-RO₂ from CIs has no significant influence on the yield of C₁₀H₁₅O₄-RO₂ and the subsequent acyl RO₂. As shown in Figure S16, as the C₉H₁₅O₃-RO₂ yield increases from 0% to 3%, the simulated concentrations of C₁₀H₁₅O₄-RO₂ exhibit negligible to small (5%) changes. As the C₉H₁₅O₃-RO₂ is considered to only produce highly oxygenated alkyl RO₂ in the model, it results in a decrease in the contribution of acyl RO2 to the total C9 HOMs. However, the contributions of acyl RO₂ to total C₇, C₈, and C₁₀ HOMs are almost unchanged. The cross-reaction rate constant of acyl RO2 is generally larger than that of alkyl RO2 (Atkinson et al., 2007; Orlando and Tyndall, 2012), and the fast cross-reaction may lead to an important contribution to the HOM dimer production. The responses of dimer formation to increasing concentration of initial NO₂ during α-pinene ozonolysis are given in Figure 10. The C₁₄-C₁₈ dimers decrease by up to 50%-95% with the increase of NO₂ concentration up to 30 ppb (Figures 10a-e). The rapid cross-reaction rate of acyl RO₂, as well as their dominant contribution to the small RO₂ species makes acyl RO₂ an important contributor to the formation of these dimers. The consumption of acyl RO₂ by NO₂ greatly inhibits the bimolecular reactions involving acyl RO₂, resulting in a rapid decrease in the signal of the corresponding dimers. Considering the predominance of acyl RO₂ in small RO₂ and their high reaction rate with NO₂ compared to the alkyl RO₂, it can be concluded that the cross-reactions involving acyl RO₂ contribute to roughly 50%-95% of the C₁₄-C₁₈ dimer formation. For C₁₉ dimers, due to the relatively smaller contribution of acyl RO₂ to C₉ and C₁₀ RO₂, their signal decreases only by 10%-40%, and this reduction have contributions from both acyl and alkyl RO₂. For C₂₀ dimers, their signal changes with the addition of NO₂ can be discussed according to the number of hydrogen atoms in the molecules. Firstly, the signal of C₂₀H₃₀O₇ and C₂₀H₃₀O₉ decreases by 40-60% with the addition of 30 ppb NO₂, indicating a significant contribution of acyl RO₂ such as $C_{10}H_{15}O_5$ -RO₂ (acyl RO₂ in default MCM v3.3.1) and $C_{10}H_{15}O_7$ -RO₂ in their formation, while other $C_{20}H_{30}O_x$ dimers decrease by ~30%. The $C_{20}H_{32}O_x$ dimer series also exhibits a small reduction (less than 20%) with the addition of NO₂. However, the C₂₀H₃₄O_x series shows an unexpected increase with the addition of NO₂ up to 10 ppb and almost remains unchanged with the further increase of NO₂ concentration. Given that the cross-reaction rate constant of acyl RO₂ can be orders of magnitude higher than that of counterpart alkyl RO₂ (Atkinson et al., 2007; Orlando and Tyndall, 2012), the rapid consumption of acyl RO2 by NO2 would preserve the alkyl RO2 that tend to react

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516 517

518

519

520

521

522

523

524

525

with acyl RO_2 at a fast rate in the absence of NO_2 , which to some extent would elevate the concentration of alkyl RO_2 in the system and thus promote the less competitive alkyl RO_2 + alkyl RO_2 reactions to form $C_{20}H_{34}O_x$ dimers. The slight increase of some $C_{10}H_{18}O_x$ -HOMs with the addition of NO_2 up to 10 ppb could also be due to this reason.

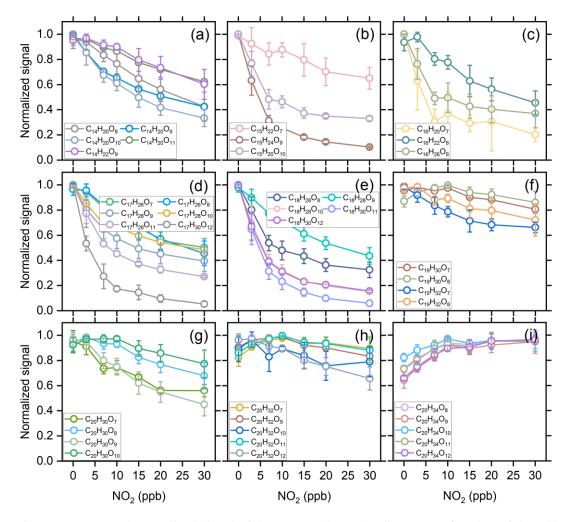


Figure 10 Averaged normalized signal of the measured C_{14} - C_{20} dimers as a function of the added NO_2 concentration (Exps 1-28).

According to the noticeable increasing trend in $C_{20}H_{34}O_x$ as compared to other C_{20} dimers, we speculate that acyl RO_2 react faster with $C_{10}H_{17}O_x$ alkyl RO_2 than with $C_{10}H_{15}O_x$ alkyl RO_2 . Therefore, when the acyl RO_2 is depleted, the preservation of $C_{10}H_{17}O_x$ - RO_2 is more significant and the promotion of their cross-reactions to form $C_{20}H_{34}O_x$ is more evident. It is also possible that the reaction of NO_2 with $C_{10}H_{17}O_x$ alkyl RO_2 is less efficient compared to the reaction with $C_{10}H_{15}O_x$ alkyl RO_2 , so more $C_{10}H_{17}O_x$ than $C_{10}H_{15}O_x$ are available for dimer formation in the presence of NO_2 .

To further prove the above two speculations, we performed sensitivity analyses for the reaction rates

of $C_{10}H_{17}O_x$ -RO₂ using the F0AM model. Figures 11a show the changes in $C_{20}H_{34}O_x$ dimers with NO₂ addition at different $C_{10}H_{17}O_x$ -RO₂ + NO₂ reaction rates under the conditions of Exps 8-14. As the reaction rate varies from 1×10^{-13} to 1×10^{-12} cm³ molecule⁻¹ s⁻¹, the increasing trend of $C_{20}H_{34}O_x$ dimers versus the added NO₂ concentration is weakened and the simulation is more deviated from the measurements. When the reaction rate increases to 7.5×10^{-12} cm³ molecule⁻¹ s⁻¹, the $C_{20}H_{34}O_x$ dimers decrease significantly with increasing NO₂, which is in striking contrast to the measurements. Figure 11b presents the sensitivity analysis results for the cross-reaction rate constants of acyl RO₂ + $C_{10}H_{17}O_x$ -RO₂. As this rate constant varies from 1×10^{-12} to 1×10^{-10} cm³ molecule⁻¹ s⁻¹, the increasing trend of $C_{20}H_{34}O_x$ versus the NO₂ concentration is more pronounced and more consistent with the measurements. These sensitivity analyses support our speculation that the $C_{10}H_{17}O_x$ alkyl RO₂ may be different from other alkyl RO₂ radicals in terms of the reaction efficiency with NO₂ and acyl RO₂ species, which leads to different responses of $C_{20}H_{34}O_x$ dimers to NO₂ addition compared to other C_{20} dimers. These results also suggest that the presence of acyl RO₂ could affect the fate and contribution of alkyl RO₂ to HOM formation in atmospheric oxidation systems given the different reactivity of acyl RO₂ from alkyl RO₂.

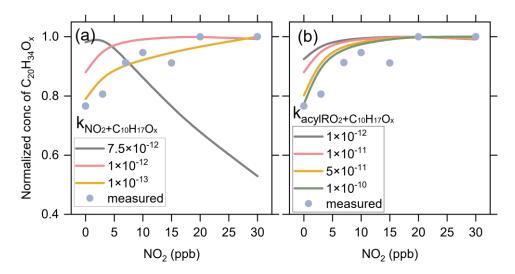


Figure 11 Sensitivity of $C_{20}H_{34}O_x$ dimer production to (a) the reaction rates of NO_2 with $C_{10}H_{17}O_x$ - RO_2 and (b) the cross-reaction rate of acyl RO_2 with $C_{10}H_{17}O_x$ - RO_2 considering a $C_{10}H_{17}O_x$ - RO_2 + NO_2 reaction rate of 1×10^{-12} cm³ molecule⁻¹ s⁻¹.

4. Conclusions

In this study, the molecular identities, formation mechanisms, and contributions of acyl RO_2 to the formation of HOMs during ozonolysis of α -pinene are investigated using a combination of flow reactor experiments and detailed kinetic model simulations. Based on the marked decrease in RO_2 signal as a function of initial NO_2 concentration, a total of 10 acyl RO_2 are identified during α -

pinene ozonolysis. The acyl RO₂ contributes to 67%, 94% and 32% of C₇, C₈ and C₉ highly oxygenated RO₂ but only 0.4% of C₁₀ highly oxygenated RO₂, respectively. Three main pathways are identified for the formation of monoterpene-derived acyl RO₂: (i) the autoxidation of RO₂ containing aldehyde groups, (ii) the cleavage of C-C bond of RO containing an α-ketone group, and (iii) the intramolecular H-shift of RO containing an aldehyde group. The autoxidation of aldehydic RO₂ formed involving multiple RO decomposition or ring-opening steps plays a dominant role in the formation of the highly oxygenated acyl RO₂ radicals (oxygen atom number \geq 6), while the lessoxygenated acyl RO₂ (oxygen atom number < 6) are mainly derived from the other two pathways. The acyl RO₂-involved reactions explain 50-90% of C₇ and C₈ HOM monomers and 14% of C₁₀ HOMs, respectively. For C₉ HOMs, this contribution can be up to 30%-60%. For the HOM dimers, acyl RO₂-involved reactions contribute 50%-95% to the formation of C₁₄-C₁₈ dimers. Owing to the higher cross-reaction rate constant of acyl RO₂ compared to alkyl RO₂, the acyl RO₂ + alkyl RO₂ reaction would outcompete the alkyl RO₂ + alkyl RO₂ reaction. Therefore, the rapid consumption of acyl RO₂ by NO₂ in the experiments (as well as in polluted atmospheres) would make the alkyl RO₂ that are supposed to react with acyl RO₂ retained, which to some extent elevates the concentration of alkyl RO2 in the system and thus promotes the reaction of alkyl RO2 + alkyl RO2 to form dimers such as C₂₀H₃₄O_x. The contribution of H-abstraction of α-pinene by OH radical to the formation of acyl RO₂ and HOMs is found to be negligible in the absence of NO. This is because the primary C₁₀H₁₅O₂-RO₂ radicals formed in such pathways are least-oxidized and thus have relatively low cross-reaction efficiency to produce RO radicals, which are the key intermediates for the formation of acyl RO₂ and HOMs in that channel. However, in the presence of NO, the formation of highly oxygenated acyl RO2 via the H-abstraction pathway is demonstrated, consistent with previous studies (Shen et al., 2022). In this study, acyl RO₂ species are identified according to a dramatic decrease in their signal with the addition of NO₂. It should be noted that the presence of NO₂ could also inhibit the formation of alkyl RO2 species involving acyl RO2 reactions. If there are any contributions of alkyl RO2 to acyl RO₂ identified in this study, the influence of such alkyl RO₂ species on HOM formation would reflect an indirect effect of acyl RO₂. However, given that the formation of most of the acyl RO₂ identified in this study can be reasonably explained by the proposed mechanisms and verified by their responses to the addition of NO, the acyl RO2 identified here are expected to have no significant contributions from alkyl RO₂. Currently, the reaction kinetics of monoterpene-derived acyl RO₂ are still poorly understood. Considering the important contribution of acyl RO2 to HOM formation, further kinetic studies are needed to get more specific rate constants for their autoxidation and cross-

566

567

568

569

570

571

572

573

574575

576

577

578

579

580 581

582

583

584

585

586

587 588

589

590

591

592

593

594

595

596

597

- reactions, thereby deepening our understanding of the role of acyl RO₂ in HOM and SOA formation
- under atmospheric conditions.

- Data availability. The data presented in this work are available upon request from the corresponding
- 603 author.

604

- 605 Author contributions. YZ and HZ designed the study, HZ, DH and JZ performed the experiments.
- YZ and HZ analyzed the data, conducted model simulations, and wrote the paper. All other authors
- 607 contributed to discussion and writing.

608

609 Competing interests. The authors declare no conflict of interest.

610

- 611 Acknowledgments. Yue Zhao acknowledges the Program for Professor of Special
- Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

613

- 614 Financial support. This work was supported by the National Natural Science Foundation
- of China (grants 22022607, 21806104, and 42005090) and the Program for Professor of
- Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

617

618

References

- 619 Atkinson, R., Hasegawa, D., and Aschmann, S. M.: Rate constants for the gas-phase reactions of O₃ with
- a series of monoterpenes and related compounds at 296 ± 2 K, Int. J. Chem. Kinet., 1221,
- 621 https://doi.org/10.1002/kin.550220807, 1990.
- Atkinson, R., Baulch, D., Cox, R., Crowley, J., Hampson, R., Hynes, R., Jenkin, M., Rossi, M., and Troe,
- 623 J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III-gas phase
- reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981-1191, https://doi.org/10.5194/acp-7-
- 625 981-2007, 2007.
- Bell, D. M., Wu, C., Bertrand, A., Graham, E., Schoonbaert, J., Giannoukos, S., Baltensperger, U., Prevot,
- A., Riipinen, I., and Haddad, I. E.: Particle-phase processing of α-pinene NO₃ secondary organic
- aerosol in the dark, Atmos. Chem. Phys., 13167–13182, https://doi.org/10.5194/acp-22-13167-
- 629 2022, 2021.
- Berndt, T.: Peroxy radical processes and product formation in the OH radical-initiated oxidation of alpha-
- pinene for near-atmospheric conditions, J. Phys. Chem. A, 125, 9151-9160,
- https://doi.org/10.1021/acs.jpca.1c05576, 2021.
- 633 Berndt, T.: Peroxy radical and product formation in the gas-phase ozonolysis of alpha-pinene under near-
- atmospheric conditions: occurrence of an additional series of peroxy radicals O,O-
- 635 C10H15O(O2)yO2 with y = 1-3, J. Phys. Chem. A, 126, 6526-6537,
- https://doi.org/10.1021/acs.jpca.2c05094, 2022.
- 637 Berndt, T., Mentler, B., Scholz, W., Fischer, L., Herrmann, H., Kulmala, M., and Hansel, A.: Accretion
- product formation from ozonolysis and OH radical reaction of alpha-pinene: mechanistic insight
- and the influence of isoprene and ethylene, Environ. Sci. Technol., 52, 11069-11077,

- https://doi.org/10.1021/acs.est.8b02210, 2018.
- Berndt, T., Richters, S., Jokinen, T., Hyttinen, N., Kurtén, T., Otkjær, R. V., Kjaergaard, H. G., Stratmann,
- F., Herrmann, H., and Sipilä, M.: Hydroxyl radical-induced formation of highly oxidized organic
- 643 compounds, Nat. Commun., 7, 1-8, https://doi.org/10.1038/ncomms13677, 2016.
- 644 Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D.,
- Wennberg, P. O., and Mentel, T. F.: Highly oxygenated organic molecules (HOM) from gas-phase
- autoxidation involving peroxy radicals: A key contributor to atmospheric aerosol, Chem. Rev., 119,
 3472-3509, 2019.
- 648 Calvert, J. G., Derwent, R. G., Orlando, J. J., Wallington, T. J., and Tyndall, G. S.: Mechanisms of atmospheric oxidation of the alkanes, 2008.
- 650 Claflin, M. S., Krechmer, J. E., Hu, W., Jimenez, J. L., and Ziemann, P. J.: Functional group composition
- of secondary organic aerosol formed from ozonolysis of α-pinene under high VOC and autoxidation
- 652 conditions, ACS Earth Space Chem., 2, 1196-1210,
- https://doi.org/10.1021/acsearthspacechem.8b00117, 2018.
- Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F.,
- Tillmann, R., and Lee, B.: A large source of low-volatility secondary organic aerosol, Nature, 506,
- 476-479, https://doi.org/10.1038/nature13032, 2014.
- 657 Fry, J., Kiendler-Scharr, A., Rollins, A., Wooldridge, P., Brown, S., Fuchs, H., Dubé, W., Mensah, A., Dal
- Maso, M., and Tillmann, R.: Organic nitrate and secondary organic aerosol yield from NO₃
- oxidation of β-pinene evaluated using a gas-phase kinetics/aerosol partitioning model, Atmos.
- 660 Chem. Phys., 9, 1431-1449, https://doi.org/10.5194/acp-9-1431-2009, 2009.
- Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J., Winkler, P. M., Lawler, M. J., Brown,
- S. S., Edwards, P. M., and Cohen, R. C.: Secondary organic aerosol formation and organic nitrate
- yield from NO₃ oxidation of biogenic hydrocarbons, Environ. Sci. Technol., 48, 11944-11953,
- https://doi.org/10.1021/es502204x, 2014.
- Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T. a., Emmons, L., and Wang, X.:
- The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2. 1): an extended
- and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492,
- https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- Iyer, S., Rissanen, M. P., Valiev, R., Barua, S., Krechmer, J. E., Thornton, J., Ehn, M., and Kurten, T.:
- Molecular mechanism for rapid autoxidation in alpha-pinene ozonolysis, Nat. Commun., 12, 878,
- https://doi.org/10.1038/s41467-021-21172-w, 2021.
- 472 Jenkin, M., Young, J., and Rickard, A.: The MCM v3.3.1 degradation scheme for isoprene, Atmos. Chem.
- Phys., 15, 11433-11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
- Jokinen, T., Sipilä, M., Richters, S., Kerminen, V. M., Paasonen, P., Stratmann, F., Worsnop, D., Kulmala,
- 675 M., Ehn, M., and Herrmann, H.: Rapid autoxidation forms highly oxidized RO₂ radicals in the
- atmosphere, Angew. Chem. Int. Ed., 53, 14596-14600, https://doi.org/10.1002/anie.201408566,
- 677 2014.
- Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M.,
- Fuhrer, K., and Kulmala, M.: A high-resolution mass spectrometer to measure atmospheric ion
- 680 composition, Atmos. Meas. Tech., 3, 599-636, https://doi.org/10.5194/amt-3-1039-2010, 2010.
- 681 Kirchner, F., Thuener, L., Barnes, I., Becker, K., Donner, B., and Zabel, F.: Thermal lifetimes of
- peroxynitrates occurring in the atmospheric degradation of oxygenated fuel additives, Environ. Sci.
- Technol., 31, 1801-1804, https://doi.org/10.1021/es9609415, 1997.

- Knap, H. C. and Jørgensen, S.: Rapid Hydrogen Shift Reactions in Acyl Peroxy Radicals, J. Phys. Chem.
- 685 A, 121, 1470-1479, 10.1021/acs.jpca.6b12787, 2017.
- Knopf, D. A., Pöschl, U., and Shiraiwa, M.: Radial diffusion and penetration of gas molecules and aerosol
- particles through laminar flow reactors, denuders, and sampling tubes, Anal. Chem., 87, 3746-3754,
- https://doi.org/10.1021/ac5042395, 2015.
- Kristensen, K., Watne, Å. K., Hammes, J., Lutz, A., Petäjä, T., Hallquist, M., Bilde, M., and Glasius, M.:
- High-molecular weight dimer esters are major products in aerosols from α -pinene ozonolysis and
- the boreal forest, Environ. Sci. Technol. Lett., 3, 280-285, 2016.
- Kurten, T., Rissanen, M. P., Mackeprang, K., Thornton, J. A., Hyttinen, N., Jorgensen, S., Ehn, M., and
- Kjaergaard, H. G.: Computational study of hydrogen shifts and ring-opening mechanisms in alpha-
- pinene ozonolysis products, J. Phys. Chem. A, 119, 11366-11375,
- 695 https://doi.org/10.1021/acs.jpca.5b08948, 2015.
- Li, X., Chee, S., Hao, J., Abbatt, J. P. D., Jiang, J., and Smith, J. N.: Relative humidity effect on the
- formation of highly oxidized molecules and new particles during monoterpene oxidation, Atmos.
- 698 Chem. Phys., 19, 1555-1570, https://doi.org/10.5194/acp-19-1555-2019, 2019.
- 699 Lin, C., Huang, R.-J., Duan, J., Zhong, H., and Xu, W.: Primary and secondary organic nitrate in
- 700 northwest China: a case study, Environ. Sci. Technol. Lett., 8, 947-953,
- 701 https://doi.org/10.1021/acs.estlett.1c00692, 2021.
- Meder, M., Peräkylä, O., Varelas, J. G., Luo, J., Cai, R., Zhang, Y., Kurtén, T., Riva, M., Rissanen, M.,
- Geiger, F. M., Thomson, R. J., and Ehn, M.: Selective deuteration as a tool for resolving
- 704 autoxidation mechanisms in α-pinene ozonolysis, Atmos. Chem. Phys., 23, 4373-4390,
- 705 https://doi.org/10.5194/egusphere-2022-1131, 2023.
- Mentel, T., Springer, M., Ehn, M., Kleist, E., Pullinen, I., Kurtén, T., Rissanen, M., Wahner, A., and Wildt,
- J.: Formation of highly oxidized multifunctional compounds: autoxidation of peroxy radicals
- 708 formed in the ozonolysis of alkenes–deduced from structure–product relationships, Atmos. Chem.
- 709 Phys., 15, 6745-6765, https://doi.org/10.5194/acp-15-6745-2015, 2015.
- Molteni, U., Simon, M., Heinritzi, M., Hoyle, C. R., Bernhammer, A.-K., Bianchi, F., Breitenlechner, M.,
- 711 Brilke, S., Dias, A., Duplissy, J., Frege, C., Gordon, H., Heyn, C., Jokinen, T., Kürten, A., Lehtipalo,
- 712 K., Makhmutov, V., Petäjä, T., Pieber, S. M., Praplan, A. P., Schobesberger, S., Steiner, G., Stozhkov,
- 713 Y., Tomé, A., Tröstl, J., Wagner, A. C., Wagner, R., Williamson, C., Yan, C., Baltensperger, U.,
- Curtius, J., Donahue, N. M., Hansel, A., Kirkby, J., Kulmala, M., Worsnop, D. R., and Dommen, J.:
- 715 Formation of highly oxygenated organic molecules from α-pinene ozonolysis: chemical
- 716 characteristics, mechanism, and kinetic model development, ACS Earth Space Chem., 3, 873-883,
- 717 https://doi.org/10.1021/acsearthspacechem.9b00035, 2019.
- 718 Noziere, B., Kalberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., Glasius, M., Grgic,
- 719 I., and Hamilton, J. F.: The molecular identification of organic compounds in the atmosphere: state
- 720 of the art and challenges, Chem. Rev., 115, 3919-3983, 2015.
- 721 Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an overview
- with emphasis on recent issues of atmospheric significance, Chem. Soc. Rev., 41, 6294-6317,
- 723 https://doi.org/10.1039/C2CS35166H, 2012.
- 724 Otkjær, R. V., Jakobsen, H. H., Tram, C. M., and Kjaergaard, H. G.: Calculated hydrogen shift rate
- 725 constants in substituted alkyl peroxy radicals, J. Phys. Chem. A, 122, 8665-8673,
- 726 https://doi.org/10.1021/acs.jpca.8b06223, 2018.
- 727 Pye, H., Chan, A., Barkley, M., and Seinfeld, J.: Global modeling of organic aerosol: the importance of

- 728 reactive nitrogen (NO_x and NO₃), Atmos. Chem. Phys., 10, 11261-11276, https://doi.org/10.5194/acp-10-11261-2010, 2010.
- Roger, Atkinson, Sara, M., Aschmann, James, N., Pitts, and Jr.: Rate constants for the gas-phase reactions
 of the OH radical with a series of monoterpenes at 294 ± 1 K, Int. J. Chem. Kinet., 2004.
- Shen, H., Vereecken, L., Kang, S., Pullinen, I., Fuchs, H., Zhao, D., and Mentel, T. F.: Unexpected significance of a minor reaction pathway in daytime formation of biogenic highly oxygenated
- 734 organic compounds, Sci. Adv., 8, eabp8702, https://doi.org/10.1126/sciadv.abp8702, 2022.
- Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Kuhn, U.,
 Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN
- 737 model over the last 30 years, Atmos. Chem. Phys., 14, 9317-9341, https://doi.org/10.5194/acp-14-738 9317-2014, 2014.
- Tyndall, G., Cox, R., Granier, C., Lesclaux, R., Moortgat, G., Pilling, M., Ravishankara, A., and
 Wallington, T.: Atmospheric chemistry of small organic peroxy radicals, J. Geophys. Res.-Atmos.,
 106, 12157-12182, 2001.
- Villenave, E. and Lesclaux, R.: Kinetics of the cross reactions of CH₃O₂ and C₂H₅O₂ radicals with
 selected peroxy radicals, J. Phys. Chem. C, 100, 14372-14382, https://doi.org/10.1021/jp960765m,
 1996.
- Wang, Y., Zhao, Y., Li, Z., Li, C., Yan, N., and Xiao, H.: Importance of hydroxyl radical chemistry in
 isoprene suppression of particle formation from α-pinene ozonolysis, ACS Earth Space Chem., 5,
 487-499, https://doi.org/10.1021/acsearthspacechem.0c00294, 2021.
- Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The framework for 0-D
 atmospheric modeling (F0AM) v3. 1, Geosci. Model Dev., 9, 3309-3319,
 https://doi.org/10.5194/gmd-9-3309-2016, 2016.
- Xu, L., Møller, K. H., Crounse, J. D., Otkjær, R. V., Kjaergaard, H. G., and Wennberg, P. O.:
 Unimolecular reactions of peroxy radicals formed in the oxidation of α-pinene and β-pinene by
 hydroxyl radicals, J. Phys. Chem. A, 123, 1661-1674, https://doi.org/10.1021/acs.jpca.8b11726,
 2019.
- Yao, M., Zhao, Y., Hu, M., Huang, D., and Yan, N.: Multiphase reactions between secondary organic aerosol and sulfur dioxide: kinetics and contributions to sulfate formation and aerosol aging, Environ. Sci. Technol. Lett., https://doi.org/10.1021/acs.estlett.9b00657, 2019.
- Zhang, H., Yee, L. D., Lee, B. H., Curtis, M. P., Worton, D. R., Isaacman-VanWertz, G., Offenberg, J. H.,
 Lewandowski, M., Kleindienst, T. E., and Beaver, M. R.: Monoterpenes are the largest source of
 summertime organic aerosol in the southeastern United States, Proc. Natl. Acad. Sci. U. S. A., 115,
 2038-2043, https://doi.org/10.1073/pnas.1717513115, 2018.
- Zhao, Y., Thornton, J. A., and Pye, H. O. T.: Quantitative constraints on autoxidation and dimer formation
 from direct probing of monoterpene-derived peroxy radical chemistry, Proc. Natl. Acad. Sci. U. S.
 A., 115, 12142-12147, https://doi.org/10.1073/pnas.1812147115, 2018.
- Zhao, Y., Yao, M., Wang, Y. Q., Li, Z. Y., Wang, S. Y., Li, C. X., and Xiao, H. Y.: Acylperoxy Radicals
 as Key Intermediates in the Formation of Dimeric Compounds in alpha-Pinene Secondary Organic
 Aerosol, Environ. Sci. Technol., 56, 14249-14261, 10.1021/acs.est.2c02090, 2022.
- Zhao, Z. X., Zhang, W., Alexander, T., Zhang, X., Martin, D. B. C., and Zhang, H. F.: Isolating a-Pinene
 Ozonolysis Pathways Reveals New Insights into Peroxy Radical Chemistry and Secondary Organic
 Aerosol Formation, Environ. Sci. Technol., 55, 6700-6709, 10.1021/acs.est.1c02107, 2021.