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Abstract.

Snow significantly impacts the seasonal growth of Arctic sea ice due to its thermally insulating properties. Various mea-

surements and parameterizations of thermal properties exist, but an assessment of the entire seasonal evolution of thermal

conductivity and snow resistance is hitherto lacking. Using the comprehensive snow data set from the MOSAiC expedition,

we have evaluated for the first time the seasonal evolution of the snow’s and the denser snow-ice interface layers’ thermal con-5

ductivity above different ice ages (refrozen leads, first and second-year ice) and topographic features (ridges). Our dataset has

a density range of snow and ice between 50 kg m−3 and 900 kg m−3, and corresponding anisotropy measurements, meaning

we can test the current parameterizations of thermal conductivity for this snow density range. Combining different measure-

ment parameterizations and assessing the robustness against spatial heterogeneity, we found the average thermal conductivity

of snow (< 550 kg m−3) on sea ice remains approximately constant (0.26 ± 0.05 W K−1 m−1) over time irrespective of10

underlying ice type, with substantial spatial and vertical variability. Due to this consistency, we can state that the thermal re-

sistance is mainly influenced by snow height, resulting in 2.7 times higher average thermal resistance on ridges (1411 m2 K

W−1) compared to first-year level ice (515 m2 K W−1). Our findings explain how the scatter of thermal conductivity values

directly results from structural properties. Now, the only step is to find a quick method to measure snow anisotropy in the field.

Suggestions to do this are listed in the discussion.15
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1 Introduction

Snow’s thermal conductivity and insulating properties directly impact heat transfer from the underlying sea ice to the atmo-

sphere and directly inhibit ice growth in the winter season (Sturm and Massom, 2017). Due to this, snow accumulation and

snow stratigraphy in winter directly influence the mass balance and, consequentially, the energy balance of sea ice (Eicken

et al., 1995; Fichefet and Maqueda, 1997; Sturm et al., 2002a). Snow’s thermal conductivity variation stems from the texture,20

e.g., specific surface area, anisotropy, connectivity, and density (Mellor, 1977; Sturm et al., 1997, 2002a). Understanding this

relationship and heterogeneity requires detailed and numerous microstructural snow measurements. The lack of these on Arctic

sea ice, due to the inaccessibility of this area in the winter season and shortfalls in the methods (Riche and Schneebeli, 2013),

has limited research on the spatial and temporal variability of heat transfer through the snow. Calonne et al. (2019) highlights

that the thermal conductivity of snow has previously been widely investigated, whereas studies on firn and porous ice are very25

scarce. Consequentially, accurately calculating the energy balance variability of sea ice in the high Arctic has considerable

shortcomings (West et al., 2020), as we now know the snow stratigraphy in this region is a complex piece of the puzzle (King

et al., 2020; Kaltenborn et al., 2022).

Snow depth and microstructural properties on sea ice are spatially heterogeneous on the meter scale, meaning heat transfer

through the snow cover is highly variable. There are three potential processes of heat transfer through the snow: 1 ) conduction30

through the ice, 2) conduction, convection, and radiation across air spaces, and 3) phase change and vapor diffusion between

the snow grains (Yen et al., 1991). Conduction and radiation heat transfer through the air spaces is negligible (Sturm et al.,

2002a) compared to the conduction of heat through the ice due to the high thermal conductivity of ice. Convection and vapor

diffusion depend on the permeability and hence the ice volume fraction of the snow. Due to this, the high ice volume fraction

of snow wind slabs on sea ice reduces convection and vapor diffusion. As a result, conduction through the ice is the foremost35

process influencing heat transfer through the snow cover.

Measuring heat transfer currently has numerous approaches. In the field, the needle probe and heat plate are two destructive

but inexpensive methods. Sturm et al. (2002b) was the first and only existing study to measure the thermal conductivity of

snow on sea ice directly in the field using a needle probe. The obtained values ranged from 0.078 W m−1 K−1 for new snow to

0.290 W m−1 K−1 for an ubiquitous wind slab. This study found a large underestimation when it comes to the average thermal40

conductivity of snow in comparison to the values inferred from ice growth and temperature gradients (0.33 W m−1 K−1). The

explanation given for this underestimation was that there was lateral heat transfer within the snowpack, which is not in the

z-axis. In addition, Riche and Schneebeli (2010) and Fourteau et al. (2022) showed that there were microstructural changes

around a needle probe and measurements don’t always reach the required logarithmic regime, these could all be additional

reasons for Sturm’s underestimation. Lecomte et al. (2013b) worked on a density function of sea ice age and thickness whilst45

referencing Nicolaus et al. (2009) who showed a difference in thermal conductivities on different ice types. Lecomte et al.

(2013b) concluded that an average thermal conductivity of 0.31 W m−1 K−1 (Abels, 1892) was too high for snow with an

average density of 330 kg m−3. Thermistor strings are in situ measurements that install temperature sensors vertically in the

snow and ice (Huwald et al., 2005; Pringle et al., 2007; Marchenko et al., 2019). Thermistor strings measure a continuous time
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series of temperature gradients within the snow and ice and, in combination with snow thickness data, can be used to compute50

heat flux through the snow (Sturm et al., 2002b). Unless using an array set-up (Pringle et al., 2007), this instrument does not

measure spatial variability.

Density is used to parametrize thermal conductivity because of the first-order dependency between thermal conductivity

and density. Lecomte et al. (2013b) has tested existing parameterizations on their density datasets. It is also a simple, low

cost and quick measurement in the field (Orvig, 1970; Yen, 1981; Fukusako, 1990; Radionov et al., 1997; Sturm et al., 1997;55

Warren et al., 1999; Sturm et al., 2002a; Domine et al., 2011; King et al., 2020; Arndt, 2022). However, we are now aware of

shortcomings when excluding other necessary textural properties from thermal conductivity parameterizations. Developments

in X-ray micro-computed tomography (µ-CT) techniques have enabled snow research to advance by measuring the exact ice

structure without damaging it (Coleou et al., 2001; Riche and Schneebeli, 2010), which allows calculations of the snow density

in parallel to the microstructure’s textural properties. Microstructure-based finite element method (FEM) of heat conduction60

through the ice and the air (Arns et al., 2001; Kaempfer et al., 2005; Petrasch et al., 2008; Calonne et al., 2011; Gouttevin et al.,

2018) is currently the most reliable method to calculate the thermal conductivity of snow (Riche and Schneebeli, 2013). This

opens new opportunities to investigate the relationship between textural properties and heat transport. This method has never

been used to measure the thermal conductivity of snow on sea ice.

Löwe et al. (2013) highlights that the samples’ anisotropy plays a significant role in the heat transfer through the snowpack65

and presents a parameterization for thermal conductivity using density and anisotropy for snow, specifically for densities

below 500 kg m−3. However, this parameterization is not adapted to high snow densities. Pitman and Zuckerman (1967);

Fukusako (1990); Singh (1999); Smith and Jamieson (2014); Calonne et al. (2019) realized the influence of temperature on

the thermal conductivity. Calonne et al. (2019) created upper bounds to ensure that the thermal conductivity is in agreement

with the thermal conductivity of ice at specific temperatures in the higher density ranges. However, their parameterization70

does not include anisotropy. In summary, no current thermal conductivity parameterization includes anisotropy, is precise for

high-density snow, and has been tested on snow in the high Arctic.

Given the importance of snow in the sea ice system, we work towards advancing our understanding of both spatial and

temporal heterogeneity of the thermal conductivity of snow on sea ice in the high Arctic. We present two new parameterizations,

with and without anisotropy, for the complete range of possible snow, firn, and ice densities, developed using microstructure-75

based FEM using snow samples collected during the MOSAiC expedition (Section 2.1). The study of spatial heterogeneity of

the snow on sea ice requires a very high number of measurements, which can not only be realized by µ-CT. A faster method is

needed (the µ-CT on MOSAiC took 7 hours to measure 10 cm of snow). For this reason, we used high-resolution penetrometry

using a snow micro penetrometer (SMP) to improve spatial coverage (related individual point measurements to a larger area

by increasing the sample size) individual µ-CT profiles (Section 2.2) by using SMP density profiles (Section 2.3) to identify80

both spatial and temporal trends in the data set (Section 3.3). Our measurement concept considered the spatial heterogeneity of

sea ice (Macfarlane et al., 2023b). As a result, we can draw new conclusions about the thermal conductivity and resistance of

the snow cover on different ice types over the entire winter. This is relevant for calculating the Arctic sea ice’s energy budget

(Arduini et al., 2022) and allows us to better understand sea ice growth in the winter. Typically sea ice models use a single
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layer for the snow cover and a single thermal conductivity and density value (Merkouriadi et al., 2017; Hunke et al., 2017).85

We compare our data set to the average snow thermal conductivity value of 0.31 to 0.33 W K−1 m−1, used in the modeling

community (Sturm et al., 2002a; Lecomte et al., 2013a; Holland et al., 2021).

2 Data and methods

2.1 MOSAiC expedition

Field measurements used in this study were conducted during the MOSAiC expedition in the winter months from November90

2019 to April 2020 (Nicolaus et al., 2022). The field measurements were located on drifting Arctic sea ice, with the first

measurement at 86.3 degrees North, 123.0 degrees East reaching a maximum latitude of 88.9 degrees North, and then drifting

South until 83.7 degrees North, 13.0 degrees East. A single ice floe was studied in this period. We set up snowpit sites on the sea

ice to understand the snow conditions, where we took weekly measurements. These were marked with flags so we could relocate

the same snowpit site on the next visit and create time series of measurements at that location. The snowpit sites were randomly95

distributed across the ice floe to sample different ice types (e.g., first-year ice (FYI), second-year ice (SYI), and refrozen leads)

and topographic features (e.g., ridges). However, the exact location cannot be sampled twice due to the destructive nature of

most measurements within the snowpit. The snowpit operator measured consecutive snowpits approximately 1 meter apart to

continue a time series at one snowpit site. Locations of each snowpit site are indicated alongside the data set (Macfarlane et al.,

2021b). A snowpit is a collection of measurements measuring the physical properties of the snowpack at the same snowpit site100

at one point in time. The snowpit analysis used in this study focused on the physical properties of the snowpack, including

depth, density, anisotropy, and thermal conductivity. In this study, we analyze the MOSAiC snowpit data set (Macfarlane et al.,

2021b), of which three key instruments were the focus of this study. The three instruments included in this study were i) µ-CT,

ii) SMP, and iii) density cutter. Details of these instruments are given below, and an example of the snowpit site set-up can be

seen in Fig. 1.105
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Figure 1. Overview schematic of the snowpit set-up. a) A snow micro penetrometer (SMP) force signal showing stratigraphy of the

snowpack during Event PS122-3_35-56. b) Three-dimensional reconstructions of two µ-CT samples showing a typical surface (top) and

snow-sea ice interface (bottom) sample. The yellow background indicates a region classified as snow (density < 550 kg m−3) and a pink

background indicates a sample including ice (with densities > 550 kg −3) c) The overview photo of the snowpit during Event PS122-3_35-56.

2.2 µ-CT Samples

The data set evaluated for this manuscript includes 138 µ-CT samples (approximately 10 cm high and 6.6 to 7.8 cm diameter)

collected during 69 individual visits to the sea ice, known as "Events". More than one µ-CT sample was often collected during

an event to sample the complete snow profile.The EventID (a unique labeling system representing one trip to the ice) can

identify co-located µ-CT samples. A three-dimensional reconstruction of two µ-CT samples is given in Fig. 1b. A schematic110

of the location of three µ-CT samples taken from the event with EventID PS122-3_35-56 can be seen in Fig. 1c. The snow

samples were extracted using an electric cylindrical drill, carefully placed in a sample holder, and transported back to the

laboratory on Polarstern (Knust, 2017). By installing a desktop cone-beam micro-CT90 (µ-CT) in a laboratory onboard, we

could measure the microstructure of the snow semi-in situ. The laboratory was cooled to −15 ◦C, and the µ-CT had a custom

ventilation system meaning the sample remained at −12◦C during the scanning process.115

Once the snow samples were scanned, the data was analyzed by dividing each snow sample into sub-samples of volume 5.83

cm3 (18 × 18 × 18 mm) to calculate the density and the geometrical anisotropy defined by

Ag =
2ξz

ξx + ξy
(1)
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in terms of the the correlation lengths ξ in different coordinate directions x,y,z. The correlation lengths were obtained by fitting

the decay of the two-point correlation function in different directions to an exponential (Löwe et al., 2013). Subsequently, the120

effective thermal conductivity was computed through FEM.

Microstructure-based FEM is a standard method for computing the effective thermal conductivity tensor of two-phase ma-

terials, which governs macroscopic heat flow on length scales large compared to the microstructural scales of the ice matrix.

Here we have used the finite element code (Garboczi et al., 1998), which solves the variational formulation of the conduc-

tion problem with periodic boundary conditions. The numerical simulations carried out here precisely follow the procedures125

described by Löwe et al. (2013) and Gouttevin et al. (2018).

We computed the effective thermal conductivity tensor k (W K−1 m−1) from the 138 3-D µ-CT sample images collected

throughout winter during the MOSAiC expedition, as outlined above, following Calonne et al. (2011); Löwe et al. (2013). For

the thermal conductivity of ice (kice) and air (kair), we used their values at T =−20 ◦C, namely kice = 2.34 W K−1 m−1,

(Slack, 1980) and kair = 0.024 W K−1 m−1 and followed Calonne et al. (2019) who referenced Paterson (2000) for the ice130

conductivity values and Yen (1981) for the air conductivity values. We assume transverse isotropy in the (horizontal xy plane,

which is reasonable when temperature gradients are aligned with the (vertical) z direction. In this coordinate system, the tensor

is diagonal, and we refer to keff,z as the vertical component and to keff,xy (the average of keff,x and keff,y) as the horizontal

component of the effective thermal conductivity tensor.

The so-obtained effective thermal conductivity (keff,z) characterizes the steady-state, conductive heat flow through a unit135

area of a homogeneous material induced by a unit temperature gradient in a direction perpendicular to that unit area (W K−1

m−1). In the following we mostly focus on vertical temperature gradients and denote keff,z by keff throughout this study. The

relationship is shown in Eq. (2), where h is the sample thickness (m), ∆T represents the temperature difference (K), and q

represents the volume averaged heat flux (W m−2).

keff = q
h

∆T
(2)140

The thermal conductivity tensor was also used to calculate the thermal anisotropy Ak of the samples defined by

Ak =
keff,z

keff,xy
(3)

Calonne et al. (2011); Riche and Schneebeli (2013). The thermal anisotropy Ak is largely correlated with the geometrical

anisotropy Ag (cf. Appendix and (Löwe et al., 2013)).

The thermal conductivity of the µ-CT sub-samples, calculated from FEM (kFEM
eff ), were then analyzed for the parameteriza-145

tions in view of density and thermal and geometrical anisotropy of the sub-samples, to identify sources of variability.

2.2.1 Parameterizations of thermal conductivity

To distinguish different parameterizations for the effective conductivity we use the notation kPeff where P represents a particular

formulation. For details on the difference between each parameterization, please refer to Table 1, adapted from Table ∼1

(Calonne et al., 2019).150
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P Formula Density Temperature Anisotropy

Yen kYen
eff = 2.22362

(
ρ

1000

)1.885 80 − 600 Undefined No

Stm kStm
eff = 0.023+0.234 ρ

1000
for ρ < 156 Average −15 ◦C No

= 0.138− 1.01 ρ
1000

+3.233
(

ρ
1000

)2 for 156 < ρ < 600

Cal20 See Calonne et al. (2019) 102 − 888 −20◦C No

Löwe See Löwe et al. (2013) Approx. 91.6− 460 −20◦C Yes
Table 1. An overview of the thermal conductivity parameterizations. An overview of the thermal conductivity parameterizations used

throughout this manuscript from Yen (1981); Sturm et al. (2002a); Calonne et al. (2019) and Löwe et al. (2013).

kPeff parameterizations tested in this study used a) density, b) density and temperature, and c) density and anisotropy. An

overview is given in Table 1.

A temperature of −20◦C was used in the density and temperature parameterisations as this was representative of the temper-

ature conditions throughout the winter during the MOSAiC expedition (more details are given in Section 2.5. Our simulations

use kice at −20◦C = 2.34 W K−1 m−1 and we chose to analyse the (Calonne et al., 2019) parameter at −20◦C.155

By comparing these parameterizations to the values of kFEM
eff , we could identify which parameters are optimal for measuring

kPeff for snow on Arctic sea ice. After conducting this analysis, we calculated the second-order polynomial fit for this data set

to obtain a density parameterization specific for snow on sea ice, as seen in Eq. (4), where ρ represents the density of the

sub-samples, a= 2.62× 10−6, b= 1.54× 10−33 and c= 3.04× 10−2.

k
Mac(I)
eff = aρ2 + bρ+ c (4)160

When additionally allowing for anisotropy in the parameterization, it is straightforward to generalize (Löwe et al., 2013)

to obtain an accurate parameterization as a function of density and Ag in the entire density range. This parameterization is

denoted by

k
Mac(II)
eff = k0 + kice

(
Xβ

Ω(1−X)+X(β−1)

)
(5)

with X = k
(L)
z /kice and free parameters k0,β,Ω and known function k(L). The motivation and details for (5) are given in the165

Appendix.

2.3 SMP profiles

The snow micro penetrometer (SMP) instrument measures the penetration force resistance of a snow profile at 0.3 mm vertical

resolution. Five SMP force profiles were obtained within one snowpit, approximately 0.25 meters apart. Additional measure-

ments were often taken on both sides of the snowpit to capture the spatial heterogeneity of the snow in the surrounding area.170

These additional SMP measurements were taken at intervals of one meter which reduced operator bias when selecting an area

to measure. More details of the measurement protocol can be found alongside the published dataset and data paper (Macfarlane

et al., 2021a).
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Additionally, further details on the dataset can be found alongside the published SMP data (Macfarlane et al., 2021a) within

the snowpit bundle (Macfarlane et al., 2021b). 3266 SMP profiles are used in this study. The SMP penetration force profile175

can be used to obtain density and (in combination with parameterizations listed in the previous Section), estimates of the

thermal conductivity. To obtain density from the force profile, we used the density parameterization from King et al. (2020).

The seasonal comparison of the density obtained by these instruments can be seen in Fig. 7. This parameterization was cho-

sen because the data set was also collected on sea ice in the high Arctic meaning similar snow grain types were measured

Kaltenborn et al. (2022). When comparing the snow density using a) a density cutter to b) density derived from the SMP and180

King et al. (2020)’s parameterization, we experienced difficulties using the field data due to the high spatial heterogeneity at

the meter scale. Comparing the field measurements taken just a few cm apart showed different stratigraphy profiles. This is the

primary challenge when measuring snow in the snow-sea ice landscape. We try to answer the question: how do we measure a

representative sample size? How do we understand what variability is due to the uncertainty of our measurement methods, and

what is the result of the spatial heterogeneity? To derive an uncertainty, further laboratory work (by using similar methods to185

(Riche and Schneebeli, 2013)) is needed to understand uncertainties of the SMP-density derived method.

2.3.1 The effective thermal conductivity’s harmonic mean

As stated before, we assume the thermal gradient in a snowpack is vertical. For a layered material, such as snow, the average

thermal conductivity for the entire snowpack must take the layering into account, e.g.f̃or computing the thermal resistance. This

average thermal conductivity can be calculated in analogy to Ohm’s law by conduction resistances in series (Bergman et al.,190

2011). The harmonic mean of a snow profile’s thermal resistance (kPeff ) is calculated using Eq. (6). Where n is the number of

sub-samples in a profile, and ki is the effective thermal conductivity of individual sub-samples (simplified as all sub-samples

have the same dimension).

kPeff =


n∑

i=1

k−1
i

n


−1

(6)

After testing the listed parameterizations in Table 1, we used the parameterization with the highest r2 in relation to this195

dataset to upscale the single snowpits. The harmonically averaged kPeff of all the SMP profiles in winter were then grouped

depending on the snowpit site’s underlying ice type (e.g., FYI areas, SYI areas, or refrozen leads), topographic features (e.g.,

ridges), and month to understand spatial heterogeneity better.

2.3.2 Average effective thermal resistance

The SMP measurements of thermal conductivity and snow depth were used to investigate the snow’s thermal resistance (R) on200

the ice floe using the k
Mac(I)
eff parameterization. We conducted tests to see whether R is directly proportional to HS or if keff

also has an influence on the snow profile’s thermal resistance. The snowpack’s R-value is the temperature difference, at steady

state, between the ice-snow interface and ice-atmosphere interface, given a unit heat flow rate through a unit area (m2 K W−1).
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By combining this definition and Eq. (2), the snowpack’s R can be found by dividing the snow depth (HS) by the profile’s kPeff ,

as seen in Eq. (7). Thermal resistance is a useful parameter for modeling heat transfer in the sea ice system as it relates to snow205

thermal conductivity and depth. If snow is considered as an interface between the atmosphere, and the sea ice in models, it is

beneficial to use the reciprocal of the thermal conductivity multiplied by the layer thickness rather than a conductivity. This is

explained nicely in Bigdeli et al. (2020) using an analogy to a simple electrical circuit. An extract from Bigdeli et al. (2020) is

given below:

Consider electrical resistors, which, when placed in series, carry the same current. Similarly, our ice and snow210

layers convey the same vertical heat flux sequentially. The total resistance of the electrical resistors in series is

simply the sum of their individual resistances. Analogously, the snow and ice resistances in our system are additive,

but their (reciprocal) conductivities are not. The resistance of snow per meter (3.22 W−1 m K) is approximately

seven times larger than that of ice per meter (0.46 W−1 m K). Considering a case where 10 cm of snow is lost

through surface melt as an example, it is now easy to see that 70 cm of ice would need to form via basal freezing215

in order to retain the same total insulating effect, highlighting the efficiency of snow as a thermal buffer.

The resistance is, therefore, beneficial to Arctic climate simulations without explicitly resolving the snow cover. We tested

the dependence of thermal resistance on underlying ice type. We initially assumed a thermal conductivity and snow height

dependence on underlying ice type, as mentioned in Nicolaus et al. (2009). To test this, the measurements were grouped as

mentioned in Section 2.3.1.220

R=
∆T

q
=

HS

kPeff
(7)

2.4 Density profiles

We investigated temporal changes in thermal conductivity using all density measurements available in the winter period. The

instruments that are used to measure density include a density cutter (ρCutter), a SWE tube (ρSWE; measuring snow water

equivalent) and the SMP measurements (ρSMP), using the parameterization from King et al. (2020), as indicated in Section225

2.3.

2.5 Atmospheric data

Using three independent instruments, we investigated the influence of atmospheric conditions on the seasonal evolution of

snow density and thermal conductivity. We analyzed shortwave radiation data (Riihimaki, 2021) from up and down radiometer

systems, temperature, and wind data measured at 2 m (Cox et al., 2021) from a meteorological flux tower. These instruments230

were deployed at Met City (a station approximately 200 m away from the snowpit measurements). This additional atmospheric

data helped us understand and explain the conditions that might influence the density and thermal conductivity of the snow

cover. We also used the atmospheric conditions to confirm using the Calonne et al. (2019) parameterization at −20◦C.
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3 Results

3.1 Microstructure-based FEM235

Individual vertical snow profiles showed high vertical variability in a) the density profiles, b) Ak, and as a result of this, high

variability in kFEM
eff . Icy layers within the snow profile, crusts on the surface, and a "remnant surface scattering layer" at the

snow-ice interface (a granular layer at the top of the melting summer sea ice (Perovich et al., 1996; Macfarlane et al., 2023a))

were of high density and low Ak, in contrast to the low-density precipitated snow and high values of Ak for depth hoar. The

vertical profiles of kFEM
eff in Fig. 2 highlight the large variability amongst samples, showing that snow stratigraphy highly240

influences thermal conductivity.

Figure 2. Samples of effective thermal conductivity plotted against time. Snow samples were collected during the winter to be measured

using micro-computed tomography. We simulated effective thermal conductivity across these samples using microstructure-based FEM. Here

we see each sample plotted at the height taken in the snowpack against the collection date. Negative heights correspond to sea ice samples

beneath the snowpack, which are excluded from any snow thermal conductivity calculations. This figure highlights the vertical variability

within the samples.

The commonly occurring layers of depth hoar and rounded, wind-blown snow are of similar densities of approximately 300

kg m−3. Due to these two grain types being dominant on Arctic sea ice, we see a large proportion of our sub-sample’s densities

in the range of 200 to 400 kg m−3, seen in the high point concentration in this density range in Fig. 3. The colour in this figure

shows the range of Ak values and the influence of Ak on kFEM
eff . Ak values ranged between 0.25 and 2, indicated in the legend245

in Fig. 3. Extreme anisotropy values in the lower range show icy layers, and high values are depth hoar samples.
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Figure 3. The sub-samples density plotted against effective thermal conductivity. Microstructure-based FEM of the effective thermal

conductivity for the sub-samples is compared to the sub-sample density. A polynomial fit of the data is shown in the solid line. This relation-

ship between effective thermal conductivity and density has been tested in previous studies. This figure includes two current parameterizations

(Calonne et al., 2019; Sturm et al., 1997). Anisotropy values are indicated in different colors with details given in the legend, and the figure

shows how anisotropy influences the effective thermal conductivity of the sub-samples. The vertical red lines represent the cut-off between

snow, icy layers in the snowpack, and sea ice.

The density distribution of the kFEM
eff values are shown in Fig. 4, after a 550 kg m−3 density cut-off is applied. This threshold

was chosen as we found some wind-packed, depth hoar snow layers to have a high density with values ranging up to 550 kg

m−3. In addition, we wanted to exclude ice samples (Britannica, 2014) and the hard interfacial layers found on second-year

ice (mentioned above as a possible "remnant surface scattering layer"). The average kFEM
eff value is 0.27 ± 0.17 W K−1 m−1.250

The errors given throughout this manuscript are one standard deviation (± 1 σ).
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Figure 4. Density plot of effective thermal conductivity. The density distribution of kFEM
eff for all µ-CT sub-samples with densities below

500 kg m−3 and the harmonic mean of the SMP profiles (kMac(I)
eff ) from January to March 2020. The legend indicates the median values with

the symbol Md. The error given in the legend represents one standard deviation.

3.2 Parameterizations of thermal conductivity

The high sample variability allowed our dataset to cover density values of approximately 50 to 950 kg m−3 and anisotropy

values between 0.25 and 2. This allowed us to test each kPeff parameterization presented in this manuscript. When comparing

kPeff to kFEM
eff for all sub-samples, Fig. 5 shows the relationship for current parameterizations for the full range of possible255

snow densities. The r2 values for each parameterization analyzing the entire dataset can be found in Fig. 5. However, some

parameterizations result in a low r2 value due to the adjustable coefficients in the original work being optimized only in specific

density ranges. These are outlined in Table 3. For this reason, we conducted mean absolute error (MAE) tests on the dataset

with different thresholds (density thresholds set to below and above 550 kg m−3). The results can be seen in Table 2.
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Figure 5. Different parameterizations of effective thermal conductivity. Parameterizations of effective thermal conductivity plotted

against effective thermal conductivity measured using microstructure-based FEM. Effective thermal conductivity was measured for each

sub-sample using i) the microstructure-based finite element method (FEM) and ii) different parameterizations using density, anisotropy, and

temperature. a) shows the performance of density parameterizations in Yen (1981), b) the density parameterization by Sturm et al. (1997),

and c) the polynomial fit of this density data set, kMac(I)
eff . d) uses the temperature approximation by Calonne et al. (2019) at −20◦C. e) shows

the performance of the anisotropy and density parameterization by Löwe et al. (2013) plotted against the FEM-measured effective thermal

conductivity. Finally, e) shows the optimization of the anisotropy and density parameterization presented in this study as P = Mac(II) in Eq.

5.
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Parameterization (P) r2 (entire dataset) MAE (50 < ρ < 550) MAE (ρ > 550)

Yen 0.89 0.07 0.31

Stm 0.82 0.15 0.32

Mac(I) 0.97 0.05 0.15

Cal20 0.96 0.07 0.15

Löwe 0.27 0.03 4.40

Mac(II) 0.99 0.03 0.06
Table 2. Statistical tests for each parameterization. Mean Absolute error (MAE) analysis conducted at different density, ρ (kg m−3)

thresholds for each parameterization (P) presented in this study alongside the r-squared value of the entire range of density values for this

dataset (approximately 50 - 900 kg m−3).

Without including anisotropy in the parameterization, kMac(I)
eff is the best representation of keff for the entire dataset, as it260

has the highest r2 value compared to the microstructure-based FEM dataset. We use this parameterization and introduce the

SMP to upscale our measurements of keff , of which we do not have corresponding Ak or Ag measurements for this study.

Anisotropy is critical for reducing uncertainty in thermal conductivity, this is mentioned again in the discussion, and future

work is suggested.

3.3 Spatial heterogeneity and temporal changes265

For the rest of the study, we use SMP profiles and the effective thermal conductivity’s harmonic mean, kMac(I)
eff , using the density

of the SMP profiles (ρSMP) calculated using (King et al., 2020) parameterization of density to investigate spatial heterogeneity

and temporal changes of the snow cover on Arctic sea ice.

To understand the heterogeneity of the snow depth (HS), we categorized the snowpits in situ into ice type and ridged

areas. Fig. 6 shows the snow heights, snow density (measured using the SMP and the King et al. (2020) parameterization),270

thermal conductivity, and thermal resistance for each ice type and for ridge areas. This can be seen in the grey box plots in the

background of Fig. 6. Table 3 shows that more snow is found on ridges with HS = 335 mm and less on leads (as this ice type

is when thin ice has formed and snow has just started to accumulate) with 84 mm on average. A breakdown of this dataset to

investigate the average of each parameter for individual months can be seen in the colored bar charts in Fig. 6. The snow depth

is highly variable on all ice types, with standard deviations between 109 mm on FYI and 278 mm on ridges. The range of275

snow depth on ridges (0 to > 1000 mm) shows consistently high spatial heterogeneity throughout the winter season; therefore,

temporal changes are less discernible than in FYI and SYI areas.
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Ice type HS (mm) ρSMP (kg m−3) k
Mac(I)
eff (W K−1 m−1) R (m2 K W−1)

Refrozen leads 84 ± 124 301 ± 41 0.25 ±0.06 350 ± 469

FYI 129 ± 109 294 ± 32 0.24 ±0.05 515 ± 404

SYI 144 ± 113 277 ± 26 0.22 ±0.04 660 ± 475

Ridges 335 ± 278 304 ± 30 0.26 ±0.05 1411 ± 910
Table 3. Snow depth, density, thermal conductivity and resistance for each ice type. The median (± 1 σ) of snow depth (HS), density

(ρSMP), harmonically averaged effective thermal conductivity using the Mac(I) parameterization (kMac(I)
eff ), and thermal resistance (R) for

each ice type.

The snow density (ρSMP) median is slightly higher on refrozen leads, FYI, and ridges, compared to snow densities on SYI

(values are given in Table 3). Snow density has a similar monthly trend on all ice types (shown in the colored boxplots in Fig.

6), increasing until February/March and then decreasing in April. Looking at the median density values for this season in Fig.280

7 shows this feature in multiple data sets, not just the SMP. Fig. 7 shows a density increase from November to March (ρSMP

increases by 43 kg m−3, ρCutter increases by 78 kg m−3 and ρSWE increases by 96 kg m−3) and a decrease after that (average

ρ decrease in April is 24.3 kg m−3). The SMP penetration resistance was normalized for the snow depth (Fig. 8) to better see

changes throughout the season. Fig. 8 shows a surface snow density increasae in March followed by a reduction in April at the

surface and lower depths of the snow cover. This is further discussed in Section 4.3.285

k
Mac(I)
eff has a standard deviation between 0.04 and 0.06 W K−1 m−1 for all ice types the difference between the median

k
Mac(I)
eff of these ice types is 0.04 W K−1 m−1. This data can be found in Table 3. We see that kMac(I)

eff has a slight increase until

March and a decrease thereafter. We excluded any measurements conducted in May 2020 as the number of measurements was

insufficient to draw any conclusions on the temporal trend.

Due to keff having no significant variability on different ice types (3), we can state that R is directly proportional to HS. The290

average R for the winter is lowest on refrozen leads and FYI areas, increasing slightly on SYI and highest on ridged areas. R

remained constant through the season on FYI and SYI. Refrozen leads, and ridges had high variability between months.
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Figure 6. A box plot showing spatial and temporal trends for measured snow parameters. Snow depth (HS), density (ρSMP), harmon-

ically averaged thermal conductivity (kMac(I)
eff ) and resistance (R) were all measured using a snow micro-penetrometer and plotted against

underlying ice type and month. A snow micro penetrometer was used to measure vertical profiles of penetration resistance. These profiles

can be used to extract snow depth, density (using King et al. (2020)), harmonically averaged effective thermal conductivity using the Mac(I)

parameterization, given in Eq. (4), with the King et al. (2020) derived density as an input, and, finally, the resistance of the snowpack (R).

These profiles are grouped by underlying ice type, topographic feature (seen in the grey bar charts in the background of the figure, with grey

stars indicating the outliers), and month (seen in the colored bar charts, of which the outliers are not shown).
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Figure 7. Time series of density using three independent instruments, and atmospheric conditions. a) Time series of density using three

independent instruments. The lines show the daily average, and the points show the individual measurements. b) a box plot grouping the snow

micro penetrometer density measurements by month. c) a box plot grouping the density cutter density measurements by month. d) a box plot

grouping the snow water equivalent density measurements by month. All box plots show the temporal change in the medians (Md) and the

number of data points in each box plot (n). e) the local air temperature at 2 meters above the snow surface (T2m) and downward shortwave

(SW) radiation. f) time series of wind speeds (u). Density measurements from different instruments within the snowpit are compared in the

upper plot against time.
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Figure 8. A heatmap of winter snow micro-penetrometer profiles on level ice. A heatmap of winter snow micro-penetrometer profiles on

level FYI and SYI. All snow micro penetrometer profiles are concatenated, and their depths are normalized. The normalized SMP density

signals averaged for all profiles within one month are displayed throughout the winter to show seasonal changes in the snow cover. A relative

height of 0 represents the snow-ice interface, and 1 represents the snow-air interface. The denser snow surface in March shows higher thermal

conductivity values, possibly due to storm events with high wind speeds.

4 Discussion

Before advancing our understanding of the snow’s thermal conductivity heterogeneity and temporal trends, we must assess the

performance of existing parameterizations on samples of snow measured on sea ice in the high Arctic. The µ-CT simulations295

allowed us to assess the current parameterizations for the complete ranges of density and anisotropy values. Following this,

we introduced two new parameterizations, with and without anisotropy specifically adapted for use of snow on sea ice. The

µ-CT is highly time-demanding, so to investigate the spatial variability of the snow cover, we introduced the SMP to have more

measurements. The SMP does not currently have anisotropy measurements in parallel; therefore, the density parameterization

(kMac(I)
eff , given in Eq. (4)) was used for this up-scaling, as it had the highest r2 value for this data set when compared to the300

kFEM
eff values. Future SMP measurements, in combination with methods seen in Kaltenborn et al. (2022), hold the possibility

of deciphering the anisotropy of the snow grains in the field using the SMP. If a grain type is classified through SMP profiles

(using the methods in Kaltenborn et al. (2022)), then we could approximate the anisotropy of these different grain classes and

improve thermal conductivity measurements using the SMP. This is explained in greater detail below.

18



4.1 Assessing existing parameterizations305

A large range of the sub-sample density and anisotropy values allowed us to create parameterizations of thermal conductivity

(and test existing parameterizations) for all ranges of density (from 50 kg m−3 to 900 kg m−3) and anisotropy (from 0.25 to

2). The relationship between density and kFEM
eff in Fig. 3 was compared to the parameterizations from Calonne et al. (2019) at

−20 ◦C and Sturm et al. (1997). Through this comparison, we can see that the anisotropy heavily influences the kFEM
eff values.

For example, a snow sub-sample with a density of 400 kg m−3 can have a thermal conductivity value ranging from 0.2 W310

K−1m−1 to 0.6 W K−1m−1 depending on whether the snow is isotropic or anisotropic in the vertical direction, respectively.

Comparing parameterizations of kPeff and kFEM
eff , seen in Fig. 5, allows us to analyze which parameterizations represent the

simulated kFEM
eff most accurately. Fig. 5 shows that the majority of parameterizations appear to underestimate the keff of samples

with high anisotropy. Despite this, kCal20
eff has a very similar r2 value (0.96) to the polynomial fit of this data set (Mac(II), r2 =

0.97). Both P = Yen and P = Stm overestimate keff when in the higher range of density values due to the adjustable coefficients315

in the original work being optimized only in specific density ranges. When introducing an anisotropy parameter, P = Löwe

is well suited for low densities. However, similarly to P = Yen and Stm the r2 value when measured for the entire dataset is

heavily altered because this parameterization was not optimized for snow with a density above 550 kg m−3. For this reason,

we analyze higher and lower density ranges separately below.

4.1.1 Snow (density 50 − 550 kg m−3)320

Fig. 5 shows that kYen
eff and kCal20

eff align on the 1:1 line at low effective thermal conductivity values, this is also given in the

relatively low (0.07) mean absolute error (MAE) in Tab. 2 for P = Yen & Cal20. In contrast, P = Stm has the highest MAE

(0.15) for the lower density range as it appears to overestimate keff in most sub-samples, also seen in Fig. 5. P= Mac(I) had the

lowest MAE for any parameter which did not include anisotropy.

After introducing anisotropy into the parameterizations (P = Löwe and Mac(II)), the MAE value reduces to 0.03 for the325

sub-samples in the lower density range. This indicated that anisotropy is critical for accurate keff approximations.

4.1.2 Interfacial and icy layers (density > 550 kg m−3)

In the upper range of keff values, there is an underestimation when P = Stm, Yen and Löwe when compared to kFEM
eff resulting

in the large MAE values of 0.32, 0.31 and 4.40 respectively. However, this was expected as (Sturm et al., 1997), (Yen, 1981)

and (Löwe et al., 2013), as previously explained, did not include samples in the higher density range in their study. P = Mac330

(I), Cal20, and Mac(II) performed the best with the lowest MAE scores (0.15, 0.15, and 0.06, respectively) as these parameters

were constructed for the complete range of density values. We corrected the P = Löwe parameterization for higher densities

(outlined in Section 2.2.1, resulting in the k
Mac(II)
eff parameterization with an r2 of 0.99 and low MAE values for both density

ranges.

We have introduced two new thermal conductivity parameterizations; see Eq. (4) and (5). The latter requires an anisotropy335

factor, which can, for now, only be measured in the laboratory using µ-CT. Using the SMP snow grain classification methods
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introduced by (Kaltenborn et al., 2022) and an approximation of anisotropy for each grain type could be a future development

but is beyond the scope of this study. Currently, we recommend using Eq. (4) or (Calonne et al., 2019) when measuring the

thermal conductivity of snow on Arctic sea ice when only density measurements or approximations are available. kMac(I)
eff

is used throughout this study when there were no co-measured anisotropy values, for example, when using the SMP. It is340

important to mention that calculations of kFEM
eff exclude convection, which would increase the thermal conductivity values.

However, the convection is negligible compared to the conduction through the ice.

Anisotropy is critical for reducing uncertainty in calculations of snow’s thermal conductivity. However, measuring Anisotropy

in the field is challenging and, as a result, limits our ability to conduct large-scale spatiotemporal studies without installing a

µ-CT or shipping snow samples to a suitable laboratory for analysis. To this end, we propose a future study using techniques345

used in Kaltenborn et al. (2022), which classified snow grain type using the snow micro penetrometer force signal. By classify-

ing the snow grain types and assigning a "typical" anisotropy to the classification, we have the ability to use a single instrument

to obtain profiles of density, anisotropy, and consequentially thermal conductivity. If this method is successful, we can easily

measure and up-scale measurements of snow thermal conductivity throughout the cryosphere. This proposed method would in-

troduce alternative uncertainties, such as misclassification of snow grain type and uncertainty in the anisotropy value assigned350

to a snow grain type, which would need addressing and evaluating in a follow-up study.

4.2 Spatial heterogeneity

Due to the high heterogeneity of the snow cover on Arctic sea ice, we used 3266 vertical snow profiles to estimate the thermal

conductivity of the snow. These profiles were measured using the SMP after analyzing a suitable parameterization from the µ-

CT data set. As previously mentioned, the SMP does not have simultaneous anisotropy measurements, so the parameterization355

k
Mac(I)
eff was used. The SMP data set consisted of 3266 profiles taken during this study period. This is highly representative of

the landscape due to the spatial scale of the measurements taken over various conditions and a large measurement sample size.

This is the first time we have grouped a thermal conductivity measurement dataset by underlying ice type (FYI, SYI, and

refrozen leads) and topographic feature (ridges) for one winter period. This has allowed us to analyze different features of

importance for heat transfer. Fig. 6 highlights that snow depth is highly dependent on the ridging of the ice, as known from360

other studies on sea ice ridging (Warren et al., 1999; Gradinger et al., 2010; Hames et al., 2022). ρSMP is slightly higher

for refrozen leads, likely due to brine inclusions in the snow on refrozen leads during formation, which lowers the freezing

temperature and increases the density. The same is for ρSMP measured at ridged sites, likely due to wind densification. However,

the standard deviation is large enough for these variations not to be significant. kMac(I)
eff is derived from the ρSMP; therefore,

we see similar dependencies in the groups, as explained above.365

The average kFEM
eff for all sub-samples of this dataset had the value of 0.27 ± 0.17 W K−1 m−1 and the 1623 SMP profiles

harmonically averaged between January and March profiles of kMac(I)
eff had an average value of 0.25 ± 0.05 W K−1 m−1, seen

in Fig. 4. The harmonic mean reduces the importance of extreme values in the sample. As a result, the k
Mac(I)
eff dataset has a

smaller range in the histogram in Fig. 4. Despite the reduction in the range, the median value of kMac(I)
eff aligns with the median

value of kFEM
eff .370
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Including spatial heterogeneity in models is critical for improving heat transfer through the snow cover. Fig. 4 compares the

range of values of kMac(I)
eff and kFEM

eff to the constant average value of kCal20
eff and kModels

eff (also represented as ks) = 0.30−0.33

W K−1 m−1 proposed by Maykut and Untersteiner (1971) and Semtner Jr (1976). This snow thermal conductivity value is

inferred from thermodynamic ice growth and is widely used in the modeling community (Sturm et al., 2002a; Lecomte et al.,

2013a; Holland et al., 2021). The breakdown of kMac(I)
eff for each ice type can be seen in Table 3. We propose that large-scale375

sea ice models test a lower average ks value of 0.25 ± 0.05 W K−1 m−1 for snow on sea ice. We have calculated this using

independent methods. We need to answer the question: what would happen in Arctic sea ice models if the established value of

keff was too high?

We conducted tests to determine the relationship between underlying ice and the thermal resistance of the snow. (Nicolaus

et al., 2009) identified a dependence of thermal conductivity depending on the underlying ice age. However, this is not the380

case for this dataset. By grouping thermal conductivity measurements by underlying ice type, we can conclude that the thermal

resistance is influenced by the HS (snow height) and less by the underlying ice type.

We found that the snowpack’s thermal resistance R on sea ice heavily depends on the ice surface topography as a result

of different snow depths. Ridged areas showed approximately three times the thermal resistance compared to level ice areas.

SYI and FYI areas have similar R medians, with SYI areas having more significant heterogeneity than FYI areas. Finally,385

refrozen leads have the lowest R and have a significant standard deviation. Sampling difficulties are likely one reason for these

large standard deviations (especially on ridged and lead areas). Refrozen leads can not be measured until there is sufficient ice

thickness to walk on. However, different ages and seasons produce highly varying conditions on the leads Clemens-Sewall et al.

(2022), and our sampling was not focused on measuring different ages of refrozen leads throughout the season. This means

that our sampling was likely not representative of the many conditions of refrozen leads and cannot be used to draw concrete390

conclusions about snow thickness and thermal resistance. The high variability in the ridge’s R values is due to the uneven snow

distribution. SMP measurements were taken adjacent and perpendicular to the ridges to try and capture this heterogeneity.

4.3 Temporal change

The time component of this study shows that HS is highly variable, but the monthly median of SYI and lead areas remain

consistent throughout the season. These ice-type categories were defined in situ using observations, and any saline snow395

areas were categorized as above FYI. Snow depth on FYI increased until March, and after shows a decrease. This decrease

in snow depth is likely due to the significant wind speeds during the storm event described by Wagner et al. (2022). This

storm event could also have caused the increase in surface snow density in March, shown in Fig. 8. HS in ridged areas is highly

heterogeneous and is likely due to the blocks within the ridges causing an uneven sea ice topography causing high heterogeneity

in snow accumulation. Temporal variability of the ridged sites could also be due to the operator selecting different ridge areas400

to measure or the sudden inaccessibility of different snowpit sites due to ice dynamics.

As HS is directly influencing R, we see no seasonal trend in R values on level ice, with a value of R= 515 ± 404 m2 K

W−1 on first-year ice and 660 ± 475 m2 K W−1 on second-year ice. Therefore, we can conclude that the calculated values of
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R remain consistent during winter but include high spatial heterogeneity due to snow depth variability. Ridged areas show a

high heterogeneity throughout the season but no significant change in the average R from January to April.405

5 Conclusions

Using measurements of snow microstructure on different ice types and topographic features on Arctic sea ice for a six-month

winter period in the high Arctic, we have built upon previous work analyzing the seasonal evolution of snow’s thermal con-

ductivity (Sturm et al., 2002a; Calonne et al., 2019) using a method that has not previously been used on snow on sea ice.

By evaluating the seasonal evolution and spatial heterogeneity of the snow’s thermal conductivity and thermal resistance, we410

assessed the current thermal conductivity parameterizations and their performance for the range of possible snow densities.

We present two new parameterizations, with and without anisotropy. We have explained that all scatter of thermal conductivity

is related to the structural properties: density and anisotropy. Currently, the range of possible thermal conductivities associ-

ated with a single snow density is large enough to drastically influence sea ice growth model outputs Lecomte et al. (2013b).

Therefore, we argue that anisotropy is a critical parameter for thermal conductivity parameterizations. Density is reasonably415

quick and efficient to measure in the field. However, we lack a method to obtain anisotropy in the field without transporting

a µ-CT. One suggestion is to use the methods given in (Kaltenborn et al., 2022) to identify the snow grain type and assign an

anisotropy for each. This method would introduce uncertainties but allows for conducting more precise thermal conductivity

measurements using the SMP alone.

Field measurements highlighted the need for a high sampling density to represent spatial heterogeneity of thermal conduc-420

tivity due to snow’s high heterogeneity in the Arctic sea ice system. We conclude that the SMP data set used in this study can

be used to measure the thermal conductivity’s heterogeneity as it had a large sampling size over a wide variety of conditions.

However, we believe that the community will benefit from future studies comparing different instruments and independent

datasets from the MOSAiC expedition, which each measure the thermal conductivity of snow in the Arctic. In addition, we

propose testing lower values of snow thermal conductivities in large-scale sea ice models. The average of kMac(I)
eff for all SMP425

winter measurements was 0.25 ± 0.05 W K−1 m−1 for snow on sea ice. This indicates that 0.32 ± 0.01 W K−1 m−1, currently

used in sea ice modeling Lecomte et al. (2013b), may largely overestimate thermal conductivity. We also provide a breakdown

of snow’s thermal conductivity values per ice type and found the averages ranged from 0.22 to 0.26 W K−1 m−1 (the overview

can be seen in Table 3).

Due to the low correlation between thermal conductivity and ice type, we can confidently state that snow resistance is mainly430

influenced by snow height. We found approximately three times higher thermal resistance on ridges (1411 ± 910 m2 K W−1),

with extremely high spatial heterogeneity due to snow depth compared to level sea ice. The thermal resistance of snow on level

sea ice remains approximately constant with a value of R= 515 ± 404 m2 K W−1 on first-year ice and 660 ± 475 m2 K W−1

on second-year ice. We conclude that ridged and level areas must be treated separately in modeling, as thermal resistance is

almost three times higher in ridged areas. High spatial heterogeneity of thermal resistance is apparent, but temporal changes in435

the snow cover are challenging to identify and interpret due to the highly dynamic and heterogeneous landscape.
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6 Data availability

All snow datasets used in this article are published in Pangaea. The snowpit raw data is publicly available from:

https://doi.org/10.1594/PANGAEA.935934. This data set includes SMP, µ-CT, density cutter, and SWE data sets.

Shortwave radiation measurements were obtained from the Atmospheric Radiation Measurement (ARM) User Facility, a440

U.S. Department of Energy (DOE) Office of Science User Facility Managed by the Biological and Environmental Research

Program, and are publicly available in the ARM data archive (Riihimaki, 2021).

Near-surface meteorology (2-meter air temperature and wind speed) and surface energy flux measurements from the Uni-

versity of Colorado/ NOAA surface flux team are available through the Arctic Data Center (Cox et al., 2021).
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Appendix A: Geometric and thermal anisotropy

Figure A1. The comparison of geometrical and thermal anisotropy for each sub-sample of the MOSAiC snow on sea ice dataset. The

polynomial fit is given in the legend.

Appendix B: Anisotropy based parametrization

To obtain a parametrization for the thermal conductivity that is applicable to the entire density range, we essentially start form600

Löwe et al. (2013) who was using a linear transformation of the so-called lower bound k
(L)
z to predict the FEM values. The

lower bound is a known function k
(L)
z (ϕ,Ag) in terms of ice volume fraction ϕ (related to the density via ρ= ϕρice) and the

geometrical anisotropy Ag which are known parameters from the tomography analysis. The function k
(L)
z (ϕ,Ag) is explicitly

given in Löwe et al. (2013) in Eq. (2). However a linear transformation of the bound cannot work for the entire density range,

as detailed in Sundu et al. (2023) for the effective elasticity tensor. To this end, we use the same non-linear transformation605

proposed in Eq.s (11,12) in Sundu et al. (2023) and propose

k
Mac(II)
eff = k0 + kice

(
Xβ

Ω(1−X)+X(β−1)

)
(B1)

with X = k
(L)
z /kice as a suitable parametric fit function with three fit parameters Ω,β,k0 that must be obtained by minimizing

the differences between Eq. (B1) and the FEM estimates. The idea of the non-linear transformation of k(L)z in (B1) is to capture
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the crossover between low densities (where the conductivity increases super-linearly as reflected by the quadratic forms such610

as (4)) and high densities (where the effective conductivity of snow must linearly approach the conductivity of ice).
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