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Abstract 20 
 

Desert dust is an important atmospheric aerosol that affects the Earth's climate, biogeochemistry, 
and air quality. However, current Earth system models (ESMs) struggle to accurately capture the impact 
of dust on the Earth’s climate and ecosystems, in part because these models lack several essential aeolian 
processes that couple dust with climate and land surface processes. In this study, we address this issue by 25 
implementing several new parameterizations of aeolian processes detailed in our companion paper into 
the Community Earth System Model version 2 (CESM2). These processes include (1) incorporating a 
simplified soil particle size representation to calculate the dust emission threshold friction velocity, (2) 
accounting for the drag partition effect of rocks and vegetation in reducing wind stress on erodible soils, 
(3) accounting for the intermittency of dust emissions due to unresolved turbulent wind fluctuations, and 30 
(4) correcting the spatial variability of simulated dust emissions from native to higher spatial resolutions 
on spatiotemporal dust variability. Our results show that the modified dust emission scheme significantly 
reduces the model bias against observations compared to the default scheme and improves the correlation 
against observations of multiple key dust variables such as dust aerosol optical depth (DAOD), surface 
particulate matter (PM) concentration, and deposition flux. Our scheme’s dust also correlates strongly 35 
with various meteorological and land surface variables, implying higher sensitivity of dust to future 
climate change than other schemes’ dust. These findings highlight the importance of including additional 
aeolian processes for improving the performance of ESM aerosol simulations and potentially enhancing 
model assessments of how dust impacts climate and ecosystem changes. 

 40 
 

1 Introduction 
 

Desert dust is responsible for over half of the atmospheric mass loading of particulate matter (PM) 
(Kinne et al., 2006; Kok et al., 2017) and produces multiple impacts on the Earth system. Dust contributes 45 
to the aerosol radiative effect and forcings directly by absorbing and scattering solar and terrestrial 
radiation (Di Biagio et al., 2020; Ke et al., 2022; Adebiyi et al., 2023; Kok et al., 2023), and indirectly by 
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regulating liquid and ice cloud formation (e.g., McGraw et al., 2020; Froyd et al., 2022). Furthermore, 
dust provides essential nutrients such as iron and phosphorus to terrestrial and ocean ecosystems, thereby 
promoting biogeochemical activities and enhancing ecosystem carbon uptake (e.g., Mahowald et al., 2010; 50 
Hamilton et al., 2020). However, dust also causes pulmonary and cardiovascular diseases, posing a threat 
to human health (e.g., Esmaeil et al., 2014; Goudie, 2014; Achakulwisut et al., 2019). Despite its 
significance, global climate models (GCMs) and Earth system models (ESMs) still face challenges in 
accurately simulating the spatiotemporal distribution of dust aerosols (Zhao et al., 2022), leading to 
significant uncertainties in the assessments of their climatic impacts (Klose et al., 2021; Li et al., 2021). 55 
Current models also struggle to simulate the impacts of how past and future climate and land use changes 
impact dust emissions (Kok et al., 2023). Therefore, it is critical to improve dust simulations to better 
predict future dust changes and better simulate dust impacts on climate and climate change. 
 

The difficulty that GCMs and ESMs face in capturing the spatiotemporal variability of atmospheric 60 
dust can be attributed to two main factors. First, current dust emission parameterizations in ESMs are 
likely conceptually incomplete. There is still a limited understanding of dust emission mechanics, and 
several aeolian processes are not yet included in model parameterizations. For instance, the wind drag 
partition effect due to the presence of nonerodible roughness elements, interparticle forces involved in soil 
crusts (Rodriguez-Caballero et al., 2018), and human impacts such as agriculture (e.g., Kandakji et al., 65 
2020; Xia et al., 2022) on dust emission are not accounted for in many existing ESM dust 
parameterizations. As a result, many ESMs use preferential source masks (e.g., Ginoux et al., 2001; Zender 
et al., 2003a) to eliminate dust from marginal regions. Second, the existing dust emission 
parameterizations are not well constrained due to inadequate information and constraints on relevant 
parameters. For example, past studies show that the dust emission threshold wind speed should be modeled 70 
using a median soil particle diameter Dp (Martin and Kok, 2019). Leung et al. (2023) used soil data 
previous studies to show that the median Dp is about ~130 μm, in contrast to the existing parameter range 
of 75–500 μm (e.g., Zender et al., 2003a; Laurent et al., 2008). Furthermore, many meteorological and 
land surface variables such as wind speed and soil moisture, which dust emissions are heavily dependent 
on (Zender et al., 2003a), contain biases and are challenging to model well in ESMs. There is a need to 75 
improve dust emission modeling in ESMs by incorporating more physical aeolian processes and setting 
more accurate parameter constraints. 
 

Additionally, dust modeling in GCMs and ESMs suffers from a grid resolution-dependence 
problem, especially since dust emissions depend nonlinearly on meteorological and land surface fields 80 
(Feng et al., 2022). Coarse GCMs with horizontal resolutions of 100 km cannot capture local-scale (~1km 
scale) wind maxima, as well as other small-scale meteorological processes such as mesoscale convective 
systems (MCS) and low-level jets, leading to an underestimation of emissions over specific regions 
(Ridley et al., 2013; Gliß et al., 2021; Meng et al., 2021). This scale dependence problem is exacerbated 
by dust emission being a threshold process that scales with friction velocity 𝑢∗ to the power of ~2–4, 85 
resulting in dust emission schemes being further sensitive to inaccuracies in wind speed and other input 
data (such as soil moisture and vegetation cover). Although some ESMs employ a Weibull distribution to 
address the subgrid spatial variability of winds (e.g., Menut, 2018), it is challenging to represent the shape 
parameter 𝑘  of the Weibull distribution because of a lack of fine-resolution global wind datasets to 
calibrate a global distribution of 𝑘 (Tai et al., 2021). Moreover, many GCMs simply do not employ any 90 
subgrid wind distribution to address the scale-dependence problem. In addition, other meteorological and 
land surface variables such as soil moisture and vegetation also contribute to the scale-dependence 
problem of dust emissions. To improve the accuracy of simulations and to make ESM dust emission 
simulations self-consistent across different horizontal grid resolutions, it is crucial to address and mitigate 
this scale-dependence problem.  95 
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In our companion paper (Leung et al., 2023), we presented four improvements to enhance the 

physical realism of dust emission parameterizations in ESMs. These include: 1) a revised soil median 
diameter for better estimating the dust emission threshold, 2) a drag partition scheme considering the 
impacts of both rocks and vegetation in reducing soil erosion by winds, 3) a dust emission intermittency 100 
parameterization accounting for boundary-layer turbulent wind fluctuations that initiate and cease dust 
emissions, and 4) an upscaling approach to correct the spatial variability of dust emissions from native-
resolution ESMs to match that of high-resolution dust emission simulations, with the collective aim of 
these improvements to better capture the subgrid spatial variations of dust emissions. Our implemented 
scheme contains updated and more comprehensive dust emission processes. We will examine in this study 105 
how including more aeolian processes will benefit dust modeling performance. 

 
In this study, we integrate the improved dust emission scheme from Leung et al. (2023) into a 

premier ESM, the Community Earth System Model version 2 (CESM2). We describe the default and the 
updated dust emission modules in Sects. 2 and 3, respectively. In Sect. 4, we provide an overview of the 110 
observational and reanalysis datasets used to assess the effectiveness of our new scheme, including 
datasets of dust aerosol optical depth (DAOD), dust PM concentration, and dust deposition flux. In Sect. 
5, we then evaluate the new dust emission scheme by comparing the simulations against observations. We 
summarize our study in Sect. 6. 
 115 
2 Description of CESM2 and its default dust scheme 
 
 In this section, we summarize the default schemes and settings in CESM2. Section 2.1 describes 
the default dust emission scheme in the Community Land Model version 5 (CLM5), the land component 
of CESM2, including the dust emission threshold scheme (Sect. 2.1.1) and the emission flux 120 
parameterization (Sect. 2.1.2). Section 2.2 summarizes the atmospheric dust simulation in the Community 
Atmosphere Model version 6 (CAM6), the atmospheric component of CESM2, including transport, size 
distribution, and deposition. Section 2.3 describes the CESM2 configuration in this study.  
 
2.1 Default CESM2 dust emission scheme 125 
 
2.1.1 Dust emission threshold scheme 

Recent findings indicated that the dust emission process is a double-threshold mechanics problem 
(Kok et al., 2012; Comola et al., 2019). The fluid threshold, or static threshold 𝑢∗"# is the threshold friction 
velocity above which winds initiate emissions, whereas the impact threshold, or dynamic threshold 𝑢∗$# 130 
is the threshold friction velocity below which winds are too weak to sustain emissions (Kok et al., 2012). 
Without considering the soil moisture effect 𝑓% on enhancing the fluid threshold (Eq. 1), 𝑢∗$# is ~ 80 % of 
the “dry” fluid threshold 𝑢∗"#& (Sect. 3.4; Kok et al., 2012; Comola et al., 2019). However, if substantial 
soil moisture is present (e.g., over semiarid regions), the difference between 𝑢∗$# and 𝑢∗"# could be very 
large (see Fig. S3a–b) since 𝑢∗$# is not a function of soil moisture (see Eq. 11). Nevertheless, most dust 135 
emission schemes in global and regional models employ 𝑢∗"# as the single threshold for both the initiation 
and termination of dust emission flux in models (Menut et al., 2013; Klose et al., 2021; Tai et al., 2021; 
Li et al., 2022; LeGrand et al., 2023), which could be problematic (see Sect. 3.4). The current 𝑢∗"# 
parameterization scheme assumes that 𝑢∗"# is dependent on the particle size distribution (PSD) and the 
amount of moisture in the soil (Iversen and White, 1982; Marticorena and Bergametti, 1995; Zender et al., 140 
2003a). 𝑢∗"# is modeled as follows: 
𝑢∗"# = 𝑢∗"#&(𝐷', 𝜌()𝑓%(𝑤)          (1) 
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where 𝑢∗"#& is the “dry” fluid threshold friction velocity (in m s-1) with no soil moisture on a smooth and 
bare surface. 𝑢∗"#& is a function of 𝐷', which in this study will be the median diameter of a mixed soil, 
and 𝜌( the air density (kg m-3). 𝑓% is the correction factor for the presence of gravimetric soil moisture 𝑤 145 
(kg water / kg soil); 𝑓% ≥ 1 (mainly over semiarid regions) such that soil moisture protects soil particles 
from being lifted. 𝑢∗"# is the “wet” fluid threshold accounting for the moisture effect. We note that other 
factors can also affect 𝑢∗"#, such as salt concentration, electrostatics (Kok and Renno, 2009), and surface 
crusts (Rodriguez-Caballero et al., 2022), but most of these factors are not included in most modeling 
studies because they are not well understood and modeled (Shao et al., 2011; Foroutan et al., 2017).  150 

The variables in Eq. 1 are computed as follows. First, 𝑢∗"#& is parameterized in CLM following 
the Iversen and White (1982; hereafter I&W82) scheme (Oleson et al., 2013) as a function of 𝐷' and 𝜌(. 
CLM5 uses a global soil diameter of 𝐷' = 75 μm that corresponds to the lowest emission threshold (Zender 
et al., 2003), and thus the spatiotemporal variability of 𝑢∗"#&  purely follows that of 𝜌( . Then, CLM5 
calculates 𝑓%, the effect of soil moisture on enhancing 𝑢∗"# following Fécan et al. (1999). 𝑓% is a function 155 
of the difference between the gravimetric soil moisture 𝑤 (kg water / kg soil) and a threshold value 𝑤#. 
𝑓% > 1 once gravimetric moisture is bigger than 𝑤#, leading to an increase in 𝑢∗"# (see Oleson et al., 2013; 
also see the CLM5 technical documentation at github: https://escomp.github.io/ctsm-
docs/versions/master/html/tech_note/Dust/CLM50_Tech_Note_Dust.html):  
𝑓% = .1 + 1.21[100(𝑤 − 𝑤#)]&.*+    for 𝑤 > 𝑤#      (2a) 160 
𝑤# = 0.01𝑎(17𝑓,-(. + 14𝑓,-(.							0) = 0.01𝑎(0.17(%clay) + 0.0014(%clay)0)   (2b) 
where 𝑓,-(. ∈ [0,1] is the clay fraction, %clay = 100𝑓,-(.  is the clay percentage, and 𝑎  is a tunable 
constant typically around 0.5–2 (𝑎 = 1 was adopted in Kok et al., 2014b) and was set to be 1/𝑓,-(. for 
tuning purposes in CLM5 (Oleson et al., 2013). The threshold moisture 𝑤# increases with 𝑓,-(., since clay 
efficiently adsorbs water such that more moisture is required to enhance 𝑢∗"#. Note that we express 𝑤 as 165 
a fraction (kg water / kg soil), while previous dust modeling studies usually expressed gravimetric soil 
moisture 𝑤1 in % (i.e., 𝑤1 = 100𝑤; Fécan et al., 1999). Eq. 2 is thus identical to those in other dust 
modeling studies (e.g., Kok et al., 2014b; Foroutan et al., 2017). CLM5 currently uses the soil texture 
dataset from the Food and Agriculture Organization (FAO) for 𝑓,-(. , but will likely update to more 
recently developed datasets (e.g., SoilGrids; Hengl et al., 2017) in the future. 170 
 
2.1.2 Dust emission flux calculation 

After obtaining 𝑢∗"#, there are multiple published dust emission equations that relate the global 
dust emission flux to a given 𝑢∗"# and friction velocity 𝑢∗ (Gillette and Passi, 1988; Shao et al., 1996; 
Ginoux et al., 2001; Zender et al., 2003a; Klose et al., 2014). The default CLM5 uses the Zender et al. 175 
(2003a) scheme (hereafter Z03), also known as the DEAD scheme. Z03 is based on the Marticorena and 
Bergametti (1995) scheme and the White (1979) equation for saltation, which are used by many other 
global models (e.g., Foroutan et al., 2017; Meng et al., 2021; Klose et al., 2021; Wu et al., 2021). The Z03 
dust emission equation has a form of: 
𝐹2 = 𝑆𝑇𝐶34𝜑𝑓5(67

8!
9
𝑢∗:; D1 −

<∗#
		%

<∗&%
E D1 + <∗#

<∗&
E   for 𝑢∗: > 𝑢∗#   (3) 180 

where 𝑢∗: is the soil surface friction velocity (m s-1 ; 𝑢∗: = 𝑢∗ in Z03), 𝐹2 is the dust emission flux (kg m2 
s-1), 𝑢∗#  is the dust emission threshold (m s-1; 𝑢∗# = 𝑢∗"#  in Z03), 𝑇 = 5 × 10=>  is a proportionality 
constant in CLM5 (Oleson et al., 2013), 𝐶34 = 2.61 is the saltation constant (Oleson et al., 2013), and 𝜑 
is the sandblasting efficiency (m-1). 𝑆 is the source function used to characterize the preferential source 
regions where fluvial sediment accumulates and to scale down the emission flux out of desert regions 185 
(Zender et al., 2003b). 𝑓5(67 is the bare land fractional area; CLM5 uses a simple parameterization in 
which 𝑓5(67 is a function of vegetation area index (VAI) defined as a sum of the leaf area index (LAI) and 

https://escomp.github.io/ctsm-docs/versions/master/html/tech_note/Dust/CLM50_Tech_Note_Dust.html
https://escomp.github.io/ctsm-docs/versions/master/html/tech_note/Dust/CLM50_Tech_Note_Dust.html
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stem area index (SAI), so that dust emission scales down linearly with VAI and drops to zero when VAI > 
VAI?@A (= 0.3; Mahowald et al., 2010; Kok et al., 2014b):  
𝑓5(67 ∝ (1 − 𝑓B)           (4) 190 
where 𝑓B = VAI/VAI?@A  is the vegetation cover fraction. Other factors also considered to decrease 
bareness of the land such as the grid fraction of lake, snow cover, and the soil liquid content (see Oleson 
et al., 2013). 
 
 195 
2.2 Atmospheric dust simulation 

The land model (CLM5) simulates the dust emission as a function of soil and land properties 
(following Sect. 2.1), and the atmospheric model (CAM6) then takes the emission fluxes from the land 
model and simulates the transport, deposition, and microphysics (e.g., coagulation) of dust aerosols. The 
tropospheric modal aerosol model (MAM4) in CAM6 contains four aerosol modes (Liu et al., 2016): the 200 
Aitken mode (dust, sulfate, secondary organic matter, and sea salt), the accumulation mode (sulfate, 
secondary organic matter, primary organic matter, black carbon, sea salt, and dust), coarse mode (dust, 
sea salt, and sulfate), and the primary carbon mode (primary organic matter and black carbon). The size 
distribution of each mode is assumed to be log normal with fixed geometric standard deviations (GSDs) 
for each mode as 1.6 (Aitken), 1.6 (accumulation), 1.2 (coarse), and 1.6 (primary carbon). The geometric 205 
median diameters (GMDs) of the aerosol modes are then simulated accordingly. The emitted dust size 
distribution is derived from a parameterization based on brittle fragmentation theory (Kok, 2011) with the 
respective ratios of 0.1 %, 1.0 %, and 98.9 % for Aitken, accumulation, and coarse modes. Note that the 
coarse mode in CAM6 includes dust up to a diameter of ~10 μm and therefore misses the super-coarse 
dust ranged between 10 and 50 μm, and recent studies have therefore attempted to add more modes or 210 
particle bins to CAM (e.g., Ke et al., 2022; Meng et al., 2022). CAM6 then uses a tracer advection scheme 
to transport dust aerosols (Neale et al., 2012). Aerosols in each mode are transported as an internal mixture 
of the species present, with its physical properties (e.g., optical properties and density) predicted based 
upon the volume fraction of each species, while aerosol species from different modes are externally mixed. 
CAM6 simulates the removal of aerosols via dry deposition and wet deposition. Dry deposition includes 215 
turbulent and gravitational settling, as described in Zender et al. (2003a). Wet deposition includes in-cloud 
and below-cloud scavenging (Neale et al., 2012) of aerosols. The below-cloud precipitation provides rain 
and snow scavenging as a first-order process, which is the product of aerosol mass mixing ratio, 
precipitation flux, and scavenging coefficient (Dana and Hales, 1976). The in-cloud scavenging 
calculation assumes aerosols inside the cloud water are removed by precipitation, in proportion to the 220 
fraction of cloud water converted to rain through coalescence and accretion (Neale et al., 2012). The wet 
deposition rate depends on various factors including the prescribed dust hygroscopicity (0.068; Scanza et 
al., 2015) and the scavenging coefficient (0.1; Neale et al., 2012). 
 
2.3 Coupled model configuration  225 

The above dust emission equations are embedded into the CESM2.1 (hereafter CESM2; 
Danabasoglu et al., 2020), a coupled ESM with multiple earth system components including atmosphere, 
land, ocean, sea ice, etc. We use a component set (FHIST) of CESM2 that couples the land model 
component (CLM5) with the atmospheric component (CAM6), while other components (ocean, sea ice, 
glacier/land ice, etc.) are not active. The dust emission equations are simulated in CLM5. The 230 
meteorological and land surface variables that dust emission depends on, such as 𝑢∗ , 𝑤, and 𝜌( , are 
simulated by CLM5 and CAM6. The vegetation phenology in this configuration is prescribed from 
remote-sensing data (satellite phenology) in CLM5. We implement the new parameterizations described 
in Sect. 3 into CLM5 and evaluate the simulation performance with these new additional physics in Sect. 
5. In the model configuration that we utilize in this study, atmospheric variables (e.g., wind and 235 
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temperature) are simulated with a 30-minute timestep and are nudged every 3 hours toward the assimilated 
meteorology from the Modern Era Retrospective analysis for Research and Applications v2 (MERRA-2; 
Gelaro et al., 2017) obtained from the Global Modeling and Assimilation Office (GMAO). CAM6 has a 
default vertical resolution of 32 levels, and in this study, both CLM5 and CAM6 use a default horizontal 
resolution of 0.9°×1.25° with a default time step of 30 minutes. In this study, simulations are performed 240 
for 2003–2008 with 2003 discarded as a spinup year and 2004–2008 used for analysis purposes. We 
choose this time period because most of the observed and reanalysis datasets used for evaluation 
(described in Sect. 4) contain data over 2004–2008. 
 
 245 
3 Modifications to the CESM2 dust emission scheme  
 

In this section, we summarize the main improvements to the dust emission scheme proposed in 
Leung et al. (2023) and describe the new dust-related variables that these changes create.   
 250 
3.1 A new physical dust emission equation 
 

In this study, we first replace the Z03 dust emission equation with a more physical dust emission 
equation from Kok et al. (2014b; hereafter K14), which has been adopted by a number of other global and 
regional models (Evan et al., 2015; Ito and Kok, 2017; Mailler et al., 2017; Li et al., 2021; Tai et al., 2021), 255 
as the base dust emission scheme for additional modifications in Sect. 3.2–3.5. One key difference 
between K14 and Z03 is that Z03 uses a spatial source function 𝑆 to tune the dust emission flux to capture 
the magnitude of observed dust concentrations. 𝑆 essentially quantifies the soil erodibility, defined as the 
efficiency of a soil in producing dust aerosols under a given wind stress (Zender et al., 2003b). The need 
for this source function indicates that Z03 is unable to capture the physical processes that determine soil 260 
erodibility across the globe. The largest difference between Z03 and K14 (and our scheme in Leung et al., 
2023) is that Kok et al. (2014a) argued that soil erodibility (𝐶2 in K14) can be directly related to soil 
aridity as characterized by the standardized fluid threshold:  
𝑢∗:# = 𝑢∗"#.𝜌(/𝜌(&           (5a) 
because more erodible soils generally tend to have lower 𝑢∗"# and moisture values. 𝑢∗:# is a pure function 265 
of moisture 𝑤 since .𝜌( cancels the 𝜌(=&.C dependence in 𝑢∗"#& (from I&W82 or Eq. 6 below). Then the 
soil erodibility coefficient (or dust emission coefficient) in K14 is a pure function of 𝑢∗:#: 
𝐶2 = 𝐶2& exp D−𝐶7

<∗&#=<∗&#'
<∗&#'

E         (5b) 
where 𝐶2& = (4.4 ± 0.5) × 10=C , 𝐶7 = 2.0 ± 0.3 , and 𝑢∗:#& = 0.16  m s-1 are constants. The soil 
erodibility 𝐶2  increases with the dryness of the soil and is a pure function of the standardized fluid 270 
threshold 𝑢∗:#  (and thus 𝑢∗"#) and the soil moisture effect 𝑓% . Following Kok et al. (2014b), the dust 
emission flux (kg m-2 s-1) is: 
𝐹2 = 𝜂𝐶#<D7𝐶2𝑓5(67𝑓,-(.							1 8!E<∗&		%=<∗#

		%F
<∗&#

D<∗&
<∗#
E
G
	   for 𝑢∗: > 𝑢∗#    (5c) 

Where 𝑢∗: is the soil surface friction velocity (= 𝑢∗ in K14; to be detailed in Sect. 3.3), 𝑢∗# = 𝑢∗"# was 
assumed by K14, 𝜅 = 𝐶G

(<∗&#=<∗&#')
<∗&#'

 is the fragmentation exponent quantifying the sensitivity of 𝐹2 to 𝑢∗, 275 
𝐶G = 2.7 ± 1.0 is a constant, 𝐶#<D7 = 0.05 is the proportionality constant (previously set in Kok et al., 
2014b to scale their global K14 emission to the same global Z03 emission), 𝑓,-(.							1 is the soil clay fraction 
𝑓,-(. but capped at 0.2 (i.e., 𝑓,-(.							1 ∈ [0, 0.2]), and 𝜂 is the intermittency factor (= 1 in K14; to be detailed 
in Sect. 3.4). The biggest difference between Z03 and K14 is that the spatiotemporal variability of the K14 
dust emissions is much more sensitive to the emission threshold 𝑢∗"# and the moisture 𝑤 than Z03 (since, 280 
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from Eq. 5b, 𝐶2 increases exponentially with 𝑢∗:#). K14 showed improvements compared with Z03 when 
evaluated against ground-based dust AOD measurements (Kok et al., 2014b; Li et al., 2022). Same as Z03, 
VAI?@A was set to be 0.3 in the K14 scheme. In the Leung et al. (2023) scheme, however, we set VAI?@A =
1 mainly because observations show that dust is emitted from semiarid regions with VAI > 0.3 (e.g., Okin, 
2008). Using VAI?@A  = 1 will thus enable emissions from more marginal dust source regions, which 285 
reduces the spatial contrast of dust emissions between hyperarid and semiarid regions. 
 
3.2 A revised dust emission threshold description 
 
 Based on the K14 scheme, the first proposed change by Leung et al. (2023) is to update a new 290 
representation of the effects of soil particle sizes to the modeling of the emission threshold. This includes 
simplifying the dust emission threshold parameterization and updating the soil particle diameter in the 
threshold scheme. 
 Following Leung et al. (2023), we first employ an alternative dust emission threshold scheme by 
Shao and Lu (2000; hereafter S&L00), which is derived from a more physical approach, is 295 
computationally much simpler than I&W82, and produces a 𝑢∗"#& that is slightly more sensitive to 𝐷'. 
S&L00 is given as:  
𝑢∗"#& = .𝐴(𝜌'𝑔𝐷' + 𝛾/𝐷')	𝜌(=&.C         (6) 
where 𝐴 = 0.0123 and 𝛾 = 1.65 × 10=>	kg	s=0 are empirical constants accounting for the magnitude of 
interparticle forces. S&L00 has a parabolic shape as a function of 𝐷', and 𝐷'~80	𝜇m corresponds to the 300 
smallest 𝑢∗"#& of around 0.2 m s-1 (contingent upon the values of 𝜌', 𝛾, and 𝜌(). For larger sizes soil 
particles are heavier to lift; for smaller sizes soil particles are more strongly bound by interparticle forces. 
The S&L00 threshold scheme largely simplifies the I&W82 scheme by dropping the 𝑢∗"# dependence on 
the particle Reynold’s number ReJ and avoids the need of using an iterative method to calculate 𝑢∗"# 
(Oleson et al., 2013). We thus replace I&W82 with S&L00 in this study for CLM5 (following Leung et 305 
al., 2023).  
 𝑢∗"# is then modeled following Eqs. 1–2 with the soil moisture effect. For our scheme, we set the 
tuning parameter for the moisture effect as 𝑎 = 2 in Eq. 2b to reduce the moisture effect on enhancing 
𝑢∗"#. This is mainly because CLM5 in CESM2 has higher soil moisture across most of the globe than 
other soil moisture data, such as MERRA-2/NOAH-MP (Gelaro et al., 2017) and CESM1/CLM4 (see Fig. 310 
S1). For our simulations using the K14 and Z03 schemes in Sect. 5, we will maintain all the default 
parameter values in CLM5 (including VAI?@A = 0.3 for both schemes, 𝑎 = 1 in K14 and 𝑎 = 1/𝑓,-(. in 
Z03). 
 Then, we follow Leung et al. (2023) and employ a globally constant soil median diameter 𝐷' of 
127	𝜇m for S&L00. Default CLM5 followed Zender et al. (2003a) and used a globally constant soil 315 
particle diameter of 𝐷' = 75	𝜇m in I&W82, based on the argument that it is the optimal particle size that 
is the easiest to lift (DJ = 75	µm corresponds to the smallest u*L?& in I&W82; see discussions in Kok et 
al., 2012). However, Martin and Kok (2019) showed that for mixed sandy soils (i.e., soils with multiple 
sizes of soil particles mixed together), 𝑢∗"# should be a function of the median particle diameter of the soil 
PSD instead of the optimal particle size that produces the smallest 𝑢∗"# possible; we thus assume here that 320 
𝑢∗"# for soils containing fine particles is also determined by the median particle diameter because emission 
of dust aerosols from these soils is driven by impacts of saltating sand particles (e.g., Shao et al., 1993). 
Leung et al. (2023) then used soil PSD observations from a suite of 14 in-situ soil studies (47 data points) 
to show that the median 𝐷' of the soil PSD measurements over arid regions were within a range of 40–
250 μm. Regression analysis showed insignificant relationships between 𝐷' and other soil textures and 325 
properties, which indicated that the limited variability of the soil dataset did not allow us to precisely 
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define the global 𝐷' distribution and thus its impact on the global distribution of the emission thresholds. 
Thus, Leung et al. (2023) simplified and approximated the global median 𝐷' by taking a mean across all 
the 𝐷' observations, which was 127	𝜇m. Leung et al. (2023) also showed that the 𝐷' uncertainty range 
of 40–250 μm translates to a 𝑢∗"#&  range of 0.204–0.268 m s-1 using S&L00, much smaller than the 330 
magnitude of 𝑢∗"# which goes beyond 1 m s-1. Thus, Leung et al. (2023) argued it was reasonable to 
simplify and approximate the global median 𝐷' by taking a mean across all the 𝐷' observations, which 
was 127	𝜇m. In this study, we introduce the use of 𝐷' = 127	𝜇m as a global constant for the threshold 
schemes because it is conceptually more correct than using the optimal diameter of 𝐷' = 75	𝜇m; however, 
the resulting value of 𝑢∗"#& using the S&L00 scheme is  0.215 m s-1, which is similar to 𝑢∗"#& = 0.204 m 335 
s-1 using 𝐷' = 75	𝜇m with the I&W82 scheme in Z03. 
 
3.3 A wind drag partition scheme for reduced wind stress due to rocks and vegetation 
 

The second modification we proposed in Leung et al. (2023) is to include the effect of wind drag 340 
partitioning due to the presence of surface obstacles or roughness elements, such as vegetation, rocks, 
pebbles, and gravel, which protect the soil surface from wind erosion by absorbing part of the surface 
wind momentum. We account for the drag partitioning in the soil surface friction velocity 𝑢∗:: 
𝑢∗: = 𝑢∗𝐹7""            (7) 
where 𝐹7"" ∈ [0,1] is the drag partition factor, the fraction of wind drag available for wind erosion, which 345 
is reduced by wind momentum absorption by surface obstacles (rocks and plants). In the following, we 
describe the Leung et al. (2023) drag partition scheme, which combines the effects of surface roughness 
due to rocks (Marticorena and Bergametti, 1995) and vegetation (Okin, 2008) to parameterize 𝐹7"". 
 

 Leung et al. (2023) and previous studies (e.g., Menut et al., 2013; Klose et al., 2021) used the 350 
aeolian roughness length 𝑧&(  to represent the roughness of rocks. 𝑧&(  represents small-scale 
objects/obstacles of length scales of 1–10 m and is different from the typical aerodynamic momentum 
roughness length 𝑧& that represents the orography, terrain, and large-scale canopy roughness (Prigent et 
al., 2012; Menut et al., 2013). Leung et al. (2023) used the global aeolian 𝑧&( dataset from Prigent et al. 
(2005) (hereafter Pr05), which contains the climatological 𝑧&( (12 monthly values per grid) derived from 355 
the backscatter coefficient at 5.3 GHz measured by the European Remote Sensing (ERS) satellite. Because 
𝑧&( quantifies the roughness of both rocks and vegetation, we take the minimum value out of 12 months 
for all grids to obtain an aeolian 𝑧&(  map to eliminate the effect of vegetation as much as possible. 
Furthermore, we apply this map over regions with VAI < 1, where the backscatter signal is mainly 
generated by rocks with lower contribution from vegetation roughness. Then, Marticorena and Bergametti 360 
(1995; hereafter M&B95) previously derived a parameterization to quantify the drag partition effect 
𝑓7"",6 ∈ [0,1] of obstacles as a function of 𝑧&(, which drops from one to zero as nonerodible roughness 
elements becomes more abundant over a surface (Darmenova et al., 2009): 

𝑓7"",6 = 1 −
NOP('!('&

Q

NOR5)P
*
('&

Q
+%
S
          (8) 

where 𝑧&: = 2𝐷'/30 is the smooth roughness length (Sherman, 1992; Farrell and Sherman, 2006; Pierre 365 
et al., 2014b; Klose et al., 2021), and 𝑏T = 0.7 and 𝑏0 = 0.8 are empirical constants (Darmenova et al., 
2009). 𝑋 is the distance downstream the location of an obstacle, a length parameter that roughly scales 
with the internal boundary layer (IBL) height 𝛿 (Marticorena and Bergametti, 1995). Previous studies 
used different 𝑋  values, from 𝑋 = 0.1	m for small, dense blocks (0.025 m of height) in wind tunnel 
experiments (Marshall, 1971; Marticorena and Bergametti, 1995) to 𝑋 = 122	m for shrubs (MacKinnon 370 
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et al., 2004). 𝑋 thus should vary with land type and implicitly with space and time (e.g., Foroutan et al., 
2017), but most dust modeling studies have thus far used a globally constant of 𝑋 for simplicity. Leung et 
al. (2023) used 𝑋~𝛿~10	m for rocks, which is within the range of parameter choices, assuming the 
obstacles are a few meters apart and the IBL usually gets to a few meters high. We thus use the Pr05 global 
𝑧&( to obtain the rock drag partitioning 𝑓7"",6, as shown in Fig. S2a for CLM5.  375 
 

For vegetation drag partitioning, Leung et al. (2023) used the Okin (2008; hereafter O08) 
formulation, later simplified by (Pierre et al., 2014; hereafter P14) for GCMs, for modeling vegetation 
drag partitioning as a single function of VAI. 𝑓7"",B	that drops with increasing VAI: 
𝑓7"",B =

UV"',
UV,

            (9a) 380 

𝐾 = 2 DT
",
− 1E           (9b) 

where 𝑓7"",B ∈ [𝑓&, 1] is the area-averaged plant drag partitioning, 𝐾 (dimensionless) is the normalized 
mean gap length between obstacles (plants), and 𝑓& = 0.32 and 𝑐 = 4.8 are constants (Leung et al., 2023). 
As the land gets more densely covered by vegetation, 𝐾 → 0 and 𝑓7"",B → 𝑓&. The normalized mean gap 
length between obstacles 𝐾  is a function of vegetation cover fraction 𝑓B = VAI/VAI?@A  (Leung et al., 385 
2023), which is more valid for small VAI (plants are further apart and do not overlap each other). We thus 
only apply this model over dust emission regions (VAI ≤ VAI?@A). VAI is thus the only input for Eq. 9. 
Using VAI (= LAI + SAI) that include both leaf and stem areas, this scheme is accounting for drag 
partitioning due to both green and brown vegetation. Fig. S2b shows the resulting 2004–2008 mean global 
𝑓7"",B map in CLM5. 390 
 

After obtaining both the static 𝑓7"",6 map for rocks and the time-varying 𝑓7"",B map for vegetation, 
we combine the two drag partition sources to capture and represent the total drag partition effect for dust 
emission. Leung et al. (2023) obtained the fractions of a grid consisting of areas dominated by rocks and 
areas dominated by plants from the European Space Agency Climate Change Initiative (ESA CCI) dataset 395 
(ESA, 2017; https://www.esa-landcover-cci.org/?q=node/164, last access: 21 June 2022). The land cover 
product classifies the land cover of the whole globe into 37 categories (Li et al., 2018), with relevant land 
cover over arid regions such as shrub, herbaceous, sparse vegetation, cropland, grassland, as well as 
consolidated (gravels and rocks) and unconsolidated (soil) bare land. Leung et al. (2023) proposed to 
parameterize the total dust emission flus 𝐹2 for each grid box as a function of its fractional rock area 𝐴6 400 
and fractional vegetation area 𝐴B: 
𝐹2 = 𝐹2l𝑢∗𝐹7""m = 𝐴6𝐹2,6 + 𝐴B𝐹2,B = 𝐴6 	𝐹2l𝑢∗𝑓7"",6m + 𝐴B	𝐹2(𝑢∗𝑓7"",B)   (10a) 
where 𝐹7""  is the hybrid drag partition factor. Leung et al. (2023) further formulated the hybrid drag 
partition factor 𝐹7"" that encapsulates both rock and vegetation partition effects for these ESMs: 
𝐹7""					; = 𝐴6 	𝑓7"",6								; + 𝐴B	𝑓7"",B									;          (10b) 405 
where 𝐹7"" is simply the weighted mean of drag partition effects, and the exponent of three is the dust 
emission exponent (𝜅 + 2) of ~3 over deserts. An advantage of this weighted mean approach is that it 
produces a very smooth transition of the drag partition effect from a rock-dominated regime (e.g., the 
Sahara) to a plant-dominated regime (e.g., the Sahel), following the transition in land cover. We use Eq. 
10 to obtain the global time-varying 𝐹7"". Fig. 1a shows 2004–2008 mean of 𝐹7"" in CLM5, with more 410 
grassy areas resembling 𝑓7"",B (e.g., the Southern Hemisphere, the U.S., the Tibetan Plateau, etc.) and 
barer areas resembling 𝑓7"",6 (e.g., the Dust Belt).  
 
3.4 A dust emission intermittency scheme 
 415 

https://www.esa-landcover-cci.org/?q=node/164
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Our third modification is to account for the effects of boundary-layer turbulent fluctuations on dust 
emission intermittency. Dust emission intermittency exists because saltation is driven by high-frequency 
turbulent surface winds (with frequencies of ~ 1 minute or less), which exhibit strong spatiotemporal 
fluctuations in speed and direction. Instantaneous winds can thus pass within timescales much shorter than 
a model time step (e.g., the CESM2 time step is about ~30 minutes with a ~100 km grid size) across both 420 
the fluid (static) threshold 𝑢∗"# for initiating saltation and the impact (dynamic) threshold 𝑢∗$# for ceasing 
saltation (Martin and Kok, 2018). Consequently, saltation can be highly intermittent (Comola et al., 2019), 
with pronounced variability in timescales of seconds to hours (Dupont et al., 2013). However, existing 
dust emission parameterizations describe saltation as uniform in time and space and driven by a constant 
downward momentum flux within a model time step (typically 30 minutes for CESM2). Neglecting 425 
intermittent dust emissions in current models thus likely degrades the accuracy of dust emission 
simulations for arid regions during low-wind periods (when 𝑢∗: < 𝑢∗"#), but especially for marginal dust 
source regions since 𝑢∗"# values are much greater than 𝑢∗$# in high moisture regions (using 𝑢∗"# to model 
dust will strongly underestimate dust emissions). 

Since ESMs cannot explicitly resolve the high-frequency turbulent fluctuations, C19 employed 430 
turbulent statistics to estimate the effect of high-frequency turbulent winds on generating dust emissions 
within a time step. Note that the C19 scheme focuses on incorporating the effect of turbulent wind 
fluctuations on the saltation-driven dust emission. It does not address the convective turbulent dust 
emission (CTDE) with direct aerodynamic lifting of dust particles from the land surface, as addressed by 
other studies (e.g., Klose et al., 2014). Here we briefly describe the C19 scheme that accounts for the 435 
intermittency effect on dust emissions. C19 first formulates 𝑢∗$# as a linear function of 𝑢∗"#& (Kok et al., 
2012) from S&L00: 
𝑢∗$# = 𝐵$#𝑢∗"#&           (11a) 
where 𝐵$# = 0.82 is assumed to be a global constant. Dust emission intermittency happens when 𝑢∗: lies 
between both thresholds (𝑢∗$# < 𝑢∗: < 𝑢∗"#). If 𝑢∗: within a model time step has a value between 𝑢∗$# 440 
and 𝑢∗"#, there will be small and fluctuating emission fluxes in reality, while LSMs using a 𝑢∗"# scheme 
would predict zero emission within a model time step, thereby underestimating the emissions. Many field-
based studies showed that saltation flux sustains as long as the wind speed is above the dynamic threshold, 
i.e., 𝑢∗: > 𝑢∗$# (Sørensen, 2004; Durán et al., 2011; Ho et al., 2011; Martin and Kok, 2017). Therefore, it 
is important for climate models to employ 𝑢∗$# instead of 𝑢∗"# in the dust emission equation. C19 thus 445 
updates K14 by setting all 𝑢∗# terms in Eq. 5c as 𝑢∗$# instead of 𝑢∗"#: 

𝐹2 = 𝜂𝐶#<D7𝐶2𝑓5(67𝑓,-(.							1 8!E<∗&		%=<∗-#
		% F

<∗-#
D<∗&
<∗-#
E
G
	   for 𝑢∗: > 𝑢∗$#    (11b) 

where 𝐶2 = 𝐶2(𝑢∗:#), 𝜅 = 𝜅(𝑢∗:#), and 𝑢∗:# = 𝑢∗"#.𝜌(/𝜌(& is the same standardized fluid threshold as 
in K14. Note that the denominator 𝑢∗:# in Eq. 5c is replaced with 𝑢∗$# in Eq. 11b (following Leung et al., 
2023). Because 𝑢∗$#  < 𝑢∗"# , employing 𝑢∗$#  in the dust emission equation allows more small emission 450 
fluxes over the marginal source regions that are otherwise missed by employing 𝑢∗"# as the threshold. 
Also, we follow Leung et al. (2023) to cap 𝜅 at three in Eq. 5c since a large 𝜅 (e.g., > 10) combined with 
a small 𝑢∗$# will occasionally produce unrealistically high emissions over semiarid regions (which would 
not happen when using K14 with a large 𝑢∗"# over semiarid regions). The intermittency factor 𝜂 ∈ [0,1] 
denotes the fraction of time within an ESM time step (e.g., 30 minutes for CESM2) that saltation and dust 455 
emission are active (see a complete description of 𝜂 in Leung et al., 2023):  
𝜂 = 𝜂(𝑢∗:, 𝜎<W&, 𝑢∗$#, 𝑢∗"#)           (11c) 
𝜂 is formulated as a function of the time-step (30-minutes) mean 𝑢∗:, 𝑢∗$#, 𝑢∗"#, as well as the time-step 
standard deviation 𝜎<W& of instantaneous wind 𝑢q: at the typical saltation height of 𝑧XYN = 0.1 m (Leung et 
al., 2023). The instantaneous fluctuation 𝜎<W& is dependent on the wind shear and buoyancy of that time 460 
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step as quantified using the similarity theory (Panofsky et al., 1977; Comola et al., 2019; Leung et al., 
2023). 𝑢∗: and 𝜎<W& together control how frequently the instantaneous 𝑢q: will sweep across the thresholds 
in a time step. The relationship between 𝑢∗:  and 𝜂  was portraited in Fig. 6a of Leung et al. (2023). 
Basically, 𝜂  approaches one when 𝑢∗: − 𝜎<W& ≫ 𝑢∗"#  (continuous emission as the instantaneous wind 
distribution does not cross the threshold), approaches 0 when 𝑢∗: + 𝜎<W& ≪ 𝑢∗$# (no emission), and values 465 
between zero and one when 𝑢∗$# < 𝑢∗: < 𝑢∗"# (intermittent emission as 𝑢q: sweeps through the thresholds 
that initiate and terminate dust emission). Figure 1b shows the 2004–2008 averaged intermittency factor 
𝜂. Figure S3 shows the 2004–2008 averaged global distribution of 𝑢∗$#, 𝑢∗"#, and 𝑢∗"#/𝑢∗$#(= 𝑓%/𝐵$#) 
which shows the spatial pattern of the moisture effect 𝑓%. 
 470 
 
3.5 An upscaling correction map for coarse-grid simulations 
 
 The final modification in Leung et al. (2023) intends to address the long-standing issue of grid-
resolution dependence of ESM-modeled dust emissions (Ridley et al., 2013; Feng et al., 2022; Meng et 475 
al., 2022). The grid-scale dependence issue exists because ESMs normally use coarse gridboxes of ~100 
km to simulate dust emission, which depends on local-scale processes with typical length scales smaller 
than 1 km (Marsham et al., 2012; Heinold et al. 2013; Ridley et al., 2013). ESMs with horizontal grid 
resolutions of ~100 km likely fail to capture locally high emissions because the coarse meteorological and 
land surface fields used in the emission schemes are smoothed and do not accurately represent the subgrid 480 
variability of dust emissions within a 100 km grid (Feng et al., 2022). It is generally believed that the 
higher the horizontal resolution of an ESM, the better it simulates the local spatial variability of emissions 
and captures the locally high emission peaks (Ridley et al., 2013). Moreover, dust emission has nonlinear 
dependencies on multiple variables, especially 𝑢∗:  (𝐹2 ∝ 𝑢∗:GV0	~	𝑢∗:		;  typically over deserts); as such, 
capturing the subgrid high wind peaks will result in more emissions in a high-resolution simulation since 485 
the sensitivity 𝜕𝐹2/𝜕𝑢∗  is much stronger toward the higher end of 𝑢∗ . Thus, simulating dust in finer 
horizontal resolutions will generally result in higher global dust emission fluxes (Ridley et al., 2013). The 
grid-scale dependence problem here thus means that the simulated global dust emission maps are grid-
resolution dependent and possess different magnitudes and spatiotemporal variability across resolutions. 
Linearly interpolating the input variables, such as 𝑢∗:, to calculate dust emissions would be inaccurate as 490 
it is different from an area-weighted average of high-resolution dust emissions per se (Ridley et al., 2013). 
There is a need to better upscale low-resolution dust emissions to match the variability of high-resolution 
emissions, such that dust emission simulations tend to be less resolution-dependent. In addition, upscaling 
the coarse-resolution dust emission simulations can have the advantage of reducing the computational 
expense while achieving performance similar to that of high-resolution simulations.  495 

To mitigate the scale dependence of dust emission simulations, Leung et al. (2023) proposed to 
rescale the spatial variability of the modeled dust emissions in ESM native grid resolution by a map of 
correction factors to account for the spatial variability of higher-resolution dust emissions. We follow the 
approach in Leung et al. (2023) to yield a map of scaling factors 𝐾u, for CESM2 that corrects the spatial 
variability of the 0.9°×1.25° emissions 𝐹2,,  to that of the 0.47°×0.62° emissions 𝐹2," . We conduct a 500 
0.47°×0.62° simulation and a 0.9°×1.25° simulation for year 2006 to yield a fine-resolution emission map 
𝐹2," and a coarse-resolution emission map 𝐹2,,. We normalize both emissions to have the same global 
total emission (following Leung et al., 2023) to focus on the main differences in their spatial variability 
instead of their magnitude differences. Then, dividing the annual 𝐹2," map by the annual 𝐹2,, map for all 
grid cells results in an annual scaling map 𝐾u, that accounts for the changes in the spatial variability of dust 505 
emissions between high- and low-resolution simulations due to the subgrid variability of all 
meteorological and land surface variables in the emission scheme: 
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𝐾u,(lon, lat) = 𝐹2,"(lon, lat)/𝐹2,,(lon, lat)        (12) 
where (lon, lat) indicate the longitude and latitude of each grid cell. 𝐾u, could then be multiplied by 𝐹2,, 
in CLM5 in the native 0.9°×1.25° simulation to adjust the spatial variability of 𝐹2,, to 𝐹2," during the 510 
native grid simulation, such that the subsequent dust cycle simulation in CAM6 can yield improved spatial 
representation of dust variables such as DAOD.  

Leung et al. (2023) proposed this method with the annual 𝐾u, scaling instead of seasonal scaling 
because, while dust emissions exhibit seasonality and interannual variability (e.g., see Fig. S10 in Leung 
et al., 2023), the mismatch between 𝐹2," and 𝐹2,, are largely due to subgrid spatial heterogeneity such as 515 
local topography and soil properties, which are slowly varying variables and partially shared across 
different model configurations. 𝐾u,  in Fig. 1c thus captures the main characteristics of this subgrid 
variability, even though the ability of 𝐾u, to represent higher-resolution emissions could be improved even 
further if 𝐾u, was derived specifically for each season, year, or model configuration. In Sect. 5.6 of this 
paper, we will adjust the spatial distribution of the CESM2 dust emissions for 2004–2008 by multiplying 520 
the 0.9°×1.25° dust emissions by the annual 𝐾u, map from 2006. 

The resulting annual 𝐾u, map in Fig. 1c shows the difference in spatial variability between the high- 
and low-resolution emission simulations. The higher resolution run tends to produce more dust over the 
semiarid and marginal source regions (red color), producing > 3–5 times more emissions than in the lower 
resolution run. The reason is that lower-resolution runs employ coarse-resolution winds that smooth out 525 
small-scale wind peaks, and marginal source regions have relatively high emission thresholds such that 
the spatially averaged wind speed could easily be lower than the emission thresholds, leading to zero 
emissions for the entire coarse grid. Therefore, low-resolution models will generally underestimate 
emissions from marginal sources and create emission biases over hyperarid and other prominent source 
regions. Since high-resolution simulations typically pick up more emissions from marginal sources, the 530 
ratios over major sources (e.g., Sahara) are slightly smaller than 1 (light blue) as compensation to match 
the same global total emission.  

Leung et al. (2023) suggested that modeled dust emissions should be multiplied by the 𝐾u, map to 
adjust the spatial variability of dust emissions and mitigate coarse model bias due to grid resolution. The 
degree of how much local-scale dust variability that the scaling map in Fig. 1c can capture is limited by 535 
the spatial resolutions and accuracies of the available input datasets, since some of the input fields (e.g., 
MERRA-2 meteorological fields) have a native horizontal resolution of ~ 0.5° that represents the highest 
local-scale variability of dust emissions the 𝐾u, map can capture. The emission increase over marginal 
sources may be even larger if the scaling factors were calculated using higher resolution inputs such as 
0.25°×0.25° or finer (e.g., using ERA5 meteorology).  540 

Finally, we note that the upscaling approach is different from other process-based formulations of 
saltation processes in Sect. 3.1–3.4, in that Sect. 3.5 is an empirical formulation. The need to employ this 
scale-aware adjustment will gradually mitigate with increasing ESM horizontal grid resolution, but the 
importance of the process-based modifications remains regardless of grid resolutions. Since ESMs 
nowadays at 0.47°×0.62° typically cannot fully resolve smaller-scale meteorological features that drive 545 
dust emission (e.g., mesoscale convections and low-level jets), the 𝐾u, derived from the 0.47°×0.62° 𝐹2," 
will only remedy the scale dependence issue due to the smoothed meteorological inputs in coarser models, 
but will not represent emissions induced by those finer-scale meteorological features. As ESMs resolve 
the small-scale meteorology better in the future, 𝐹2,"  and 𝐾u,  will become more capable of capturing 
emissions generated by the small-scale meteorology. 550 

 
 



 13 

 
Figure 1. Implementations of proposed modifications in Leung et al. (2023) into the Community Land 
Model version 5 (CLM5). (a) Simulated hybrid drag partition effect 𝐹7""  on wind friction velocity 555 
considering the land surface roughness due to rocks and green vegetation. (b) The fraction of time that 
dust emission is active (intermittency factor 𝜂), averaging across all time steps when the emission flux 
𝐹2  > 0. Note that the colorbar in (b) is inverted compared to (a) to show the contrasts in 𝜂 between 
hyperarid and nonarid regions more clearly. (c) Correction map 𝐾u, for 0.9°×1.25° dust emission from the 
standalone dust emission model obtained in Leung et al. (2023).  560 
 
4 observational and reanalysis datasets for evaluating the dust emission schemes 
 
 To evaluate the CESM dust cycle simulations using different dust schemes, we employ multiple 
observational and reanalysis datasets of atmospheric dust over various spatial scales for comparisons. This 565 
section briefly summarizes the independent datasets that we use to evaluate the CESM dust simulations. 
 
4.1 Ridley et al. (2016) regional mean DAOD 
 We first employ a regional mean dust optical depth (DOD) dataset, constrained by Ridley et al. 
(2016) and compiled by Adebiyi et al. (2020) and Kok et al., (2021) (see Fig. 4 below). It is an 570 
observational–modeling constraint dataset on regional mean DAOD at 550 nm. Ridley et al. (2016) used 
various satellite AOD retrievals including the Multiangle Imaging Spectroradiometer (MISR) as well as 
the Moderate Resolution Imaging Spectroradiometer (MODIS), all bias-corrected by the more accurate 
ground-based AOD measurements by the Aerosol Robotic Network (AERONET). They then obtained the 
fraction of AOD due to dust using an ensemble of state-of-the-art global and region models, and combined 575 
the retrieved satellite AOD and the modeled dust fraction to total AOD to yield the DAOD. To reduce 
data uncertainties, Ridley et al. (2016) only chose 15 major dusty regions where dust contributed to a 
significant portion of total AOD (see Fig. S5 for the defined dusty regions) and obtained the regional mean 
DAOD instead of yielding grid-by-grid DAOD. Additionally, averaging across space and time (2004–
2008) enables error quantification of the regional mean DAOD. Nonetheless, Ridley’s DAOD values over 580 
the Southern Hemisphere (SH) are subject to more biases than those over the Northern Hemisphere (NH), 
mainly because the dust fraction contributing to total AOD is much smaller over the SH. Following Kok 
et al., (2021), we thus instead use the regional mean DAOD values estimated by Adebiyi et al. (2020), 
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which is based on reanalysis products, with smaller uncertainties over the three SH sources. Also, the 
regional mean DAOD over North America was obtained from Adebiyi et al. (2020). This dataset 585 
represents seasonal DAOD values averaged over 2004–2008; the Ridley and Adebiyi regional DAOD 
values are listed in Table 2 of Kok et al. (2021). We will compare this dataset to our gridded DAOD 
simulations, averaged across years and grids to regional mean, for evaluation purposes. 
 
4.2 AERONET and AERONET–SDA AOD 590 

Additional observational dust properties are provided by the Aerosol Robotic Network 
(AERONET; e.g., Holben et al., 1998; Dubovik and King, 2000; Dubovik et al., 2000). For AOD, we 
consider the AOD v3 Direct Sun Algorithm level 2 (prefield and postfield calibrated, cloud-cleared, and 
manually inspected) data. We selected 39 stations following Kok et al. (2014b) and Albani et al. (2014), 
based on the filtering criterion that only the dust-dominant AERONET sites are picked (see Fig. S11 in 595 
Kok et al., 2014b for all selected sites). These “dusty” stations are mostly located over the Sahara (as seen 
in Fig. 5). We further employ the AERONET coarse mode AOD data as retrieved by the spectral 
deconvolution algorithm (SDA; O’Neill et al., 2003), which was also used by other studies to represent 
DAOD (O’Neill et al., 2003; Capelle et al., 2018). Following Capelle et al. (2018), for some stations that 
do not contain level 2 data (not quality controlled and/or cloud-cleared), we use level 1.5 data for those 600 
sites instead. AERONET takes multiple measurements within an hour during the daytime, with sub-hourly 
data available on the AERONET website. The website also compiles daily mean AOD data for the stations. 
We thus take the daily mean AERONET–SDA values, which are helpful for examining the spatiotemporal 
variability of the model simulations. The 2004–2008 mean AERONET–SDA coarse mode AOD values 
are shown in the upper panels of Fig. 5 as overlaid points and more clearly in Fig. S6. The locations of the 605 
sites could be found in Table S1. 
 
4.3 MIDAS DAOD 

In addition to the ground-based AOD observations, we also employ a globally gridded reanalysis 
DAOD product provided by Gkikas et al. (2021), namely the MODIS Dust Aerosol (MIDAS) dataset. 610 
MIDAS combines quality-filtered MODIS/Aqua AOD collection 6.1 level 2 at 550 nm with DAOD-to-
AOD ratios from MERRA-2 reanalysis to yield DAOD on the MODIS native grid. The resulting dataset 
has a fine spatial resolution of 0.1° × 0.1° and contains daily DAOD and AOD over 2003–2017. The 
uncertainties of the Aqua AOD and MERRA-2 dust fraction are incorporated into the final MIDAS DAOD 
uncertainty. MIDAS DAOD highly complements AERONET AOD by providing global coverage of 615 
DAOD, with gridded AOD in high agreement with AERONET AOD (Fig. 3 of Gkikas et al., 2021). 
Another advantage of this dataset is that Gkikas et al. (2021) analyzed both land and ocean AOD, and thus 
MIDAS also provides DAOD over ocean surfaces. We will use the MIDAS dataset to examine the day-
to-day variability of our gridded DAOD simulations. To match the horizontal resolution of CESM2, we 
regridded MIDAS DAOD from 0.1° × 0.1° to 0.9° × 1.25° (see Fig. 3d). 620 
 
4.4 In-situ PM concentration and deposition flux measurements 
 We also use site measurements of dust PM (e.g., Prospero and Nees, 1986; Prospero and Savoie, 
1989) and dust deposition flux (e.g., Ginoux et al., 2001; Tegen et al., 2002; Lawrence and Neff, 2009; 
Mahowald et al., 2009; Albani et al., 2014) as climatological datasets for evaluating the spatial variability 625 
of dust PM and deposition flux simulations (see data availability section). Previous studies compiled dust 
PM measurements using high-volume filter collectors at the University of Miami Ocean Aerosol Network 
as well as station data that were previously compiled on annual averages (Mahowald et al., 2009; Zuidema 
et al., 2019). The dust deposition flux climatology used here was compiled by Albani et al. (2014) and 
used in later studies (e.g., Li et al., 2022). Since CESM2 only simulated dust < 10 μm, Li et al. (2022) 630 
processed the data to estimate concentration and deposition only below the size cutoff using the reported 
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parameters. The upper panels of Figs. 8–9 show the site dust PM10 (dust particulate matter of diameter > 
10 μm) concentrations (μg m-3) and dust deposition fluxes (kg m-2 yr-1) as overlaid points. 
 
5. Model evaluation  635 
 
 In this section, we evaluate the performance of the different dust emission schemes in CESM2 – 
Z03, K14, and our scheme – by comparing the spatial and temporal variability of the modeled dust against 
observations and reanalysis datasets. We first evaluate in Sect. 5.1–5.4 the use of our process-based dust 
emission scheme (in Sect. 3.1–3.4) without the use of the empirical upscaling method. Sect. 5.5 then 640 
briefly examines a sensitivity test of separating the effects of drag partition and intermittency on the 
resulting dust cycle simulations. Then, we also evaluate in Sect. 5.6 the effects of additionally using the 
empirical scaling map 𝐾u,  (Sect. 3.5) to rescale our scheme’s emissions on the resulting CESM2 
atmospheric dust simulation, in order to clearly separate the effects of the process-based modification and 
the scale-aware adjustment.  645 
 We note that global dust simulations typically employ a global tuning factor that scales the global 
dust emission to a reasonable level that matches observations, since thus far there is no known a priori 
physical principles that govern the order of magnitude of global total dust emission in the dust emission 
schemes. Past studies (e.g., Klose et al., 2021; Li et al., 2022) scaled the global dust emissions to produce 
a global mean modeled DAOD of 0.03±0.01 (95 % confidence interval), which is a global constraint given 650 
by Ridley et al. (2016). In this section, we thus also scale our dust simulations with a global tuning factor 
in the CAM6 namelist variable (dust_emis_fact) like past studies (e.g., Li et al., 2022) did. Here we scaled 
the simulations with K14 and our new scheme such that their simulated global mean DAOD in CESM2 is 
0.03. We did not scale the Z03 simulation since the default CESM2 simulation using Z03 already yielded 
a global mean DAOD of 0.03 during the CESM2 benchmarking.  655 
 
5.1 CESM2 dust emissions using different emission schemes 
 
 Figure 2 shows the dust emissions (for dust PM10) that arise from Z03, K14, and the Leung et al. 
(2023) scheme for 2004–2008. The emission maps are normalized such that the global mean DAOD is 660 
0.03±0.01 following ridley et al. (2016). The global sum of emission fluxes for each scheme are indicated 
at the bottom of the panels in Tg yr -1. They have different magnitudes because dust emissions originated 
from different geographical locations can be subject to different deposition rates (e.g., tropical dust 
particles experience stronger wet scavenging). Note that the global total emissions in other ESMs could 
be larger than those from our runs if they account for dust particles > 10 μm. Even if they scale their 665 
emissions to yield global DAOD of 0.03, they will yield larger global emissions than ours mainly because 
coarse dust particles have smaller optical thickness than fine dust (Adebiyi et al., 2023). 

The spatial variability of the emissions for Z03 (Fig. 2a) is controlled by the geomorphic source 
function S developed by Zender et al. (2003b). S was a continuous function when formulated by Zender, 
but in CESM2 the source function is truncated for all values of S smaller than 0.1 (also see Fig. 2 in Li et 670 
al., 2022), resulting in a rather spatially discrete and disjointed pattern of emissions. The Z03 scheme 
captures some major and marginal dust sources, such as the Bodélé Depression in Chad, El Djouf in Mali 
and Mauritania, the Namib Desert in Namibia, the Nubian Desert in Sudan and Egypt, the Taklamakan 
Desert in China, Patagonia in Argentina, the Karakum/Kyzylkum Deserts in central Asia, and the 
Strzelecki Desert in Australia. It does not fully capture some other major and secondary sources, such as 675 
the Rub’ al Khali Desert over Saudi Arabia and deserts in the U.S. Several other regions like the Nubian 
Desert in Sudan/Egypt appear as prominent sources, which is not supported by satellite retrievals (Fig. 
3d). 
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 K14 emissions (Fig. 2b) show a much more continuous spatial pattern. K14 successfully captures 
emissions not only over major sources such as the Sahara and the Arabian Peninsula, but also emissions 680 
over semiarid regions and secondary sources such as the United States and central Asian deserts. Without 
the constraint of soil erodibility 𝑆 in Z03, K14 produces much higher emissions over Australia because of 
the low moisture effect, and over the Horn of Africa (HoA) because of its very high 𝑢∗ compared to other 
hyperarid regions (see Fig. S4) especially during boreal summertime. In the CESM2 simulation of K14, 
some major sources like the Taklamakan Desert have comparable or smaller emissions than some semiarid 685 
regions such as the deserts in Australia, which could be a result of bias of input meteorological fields or 
not including enough aeolian physics in the K14 parameterization. 
 Our scheme (Fig. 2c) adds extra aeolian physics on top of K14. While using 𝐷' has little effect on 
the spatial variability of the dust emission thresholds and the emission fluxes, the drag partition effect 
𝐹7"" modifies 𝑢∗: and highlights the major sources over the Bodélé Depression, El Djouf, and the Rub’ al 690 
Khali Desert. 𝐹7"" suppresses emissions from most semiarid regions with higher surface roughness. The 
intermittency effect increases emissions from remote regions such as the northern U.S., northern Canada, 
and Siberia, and possibly overemphasizes emissions over the Tibetan Plateau.  
 

 695 
Figure 2. CESM/CLM5 dust emissions averaged across 2004–2008, for (a) Z03, (b) K14, and (c) our new 
scheme (Leung et al., 2023). All emissions are normalized such that the corresponding CAM6 dust aerosol 
optical depth (DAOD) is 0.03±0.01 (following the global DAOD constraint obtained by Ridley et al., 
2016). The global total emissions (in Tg yr -1) to yield a global mean DAOD of 0.03 are indicated in each 
panel. 700 
 
 
5.2 DAOD spatial variability  
 

Here we compare the spatial distributions of DAOD maps simulated by CAM6 using Z03 (Fig. 705 
3a), K14 (Fig. 3b), and our scheme (Fig. 3c), as well as derived from MIDAS (Fig. 3d), averaged across 
2004–2008. Figure 3d shows the MIDAS DAOD, with its peak over the Bodélé Depression of the Sahel 
of ~ 0.6. DAOD is also moderately high over El Djouf and the southwestern Sahara (~0.3–0.4). The annual 
MIDAS DAOD has several local peaks of > 0.3 (yellow color) over the Arabian Desert, the Thar Desert 
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in India, and the Taklamakan Desert over northwestern China. There are some modest DAOD levels over 710 
central China, e.g., < 0.2 over the Sichuan Basin and the North China Plain (NCP), which are metropolitan 
regions of high anthropogenic aerosol pollution (e.g., Leung et al., 2018). This indicates that MIDAS 
might occasionally not be able to truncate all anthropogenic aerosol signals from the MODIS/Aqua AOD 
data product.  

Figure 3a shows the Z03 DAOD simulated by CAM6. The spatial pattern of Z03 DAOD in CAM6 715 
is largely shaped by the Z03 source function (soil erodibility map S). It has multiple high DAOD regions 
(> 1), including the Bodélé Depression, the Nubian Desert over Sudan, the eastern Arabian Peninsula, the 
Taklamakan Desert, the Strzelecki Desert in Australia, and some small peaks over southern Africa and 
South America. The DAOD values over these regions are all scaled up by the source function S and are 
unreasonably high compared with the MIDAS DAOD. The source function also generates DAOD peaks 720 
that are absent in observations, e.g., the Nubian Desert in Sudan.  

Figure 3b shows the K14 DAOD simulated by CAM6. Without the source function, K14 has 
reduced DAOD over many source regions. K14 calculates the time-varying soil erodibility 𝐶2, which 
indicates the most erodible region to be the Bodélé Depression, El Djouf, and the southern Sahara, 
resulting in the high DAOD (~ 0.6–0.7) over the south of Sahara. The western Sahel has a larger area of 725 
high DAOD (~0.6) over Mali/Niger, which is different from MIDAS that indicates a higher DAOD peak 
over the Bodélé Depression than El Djouf. Due to the equatorial easterlies, dust advection toward the west 
leads to a DAOD 0.4–0.5 over a significant part of the tropical Atlantic Ocean. DAOD is also ~ 0.3–0.4 
over most of the Arabian Peninsula. Over Australia, the western region becomes the most erodible region 
because of low simulated soil moisture, which is not in agreement with observations which indicate the 730 
Strzelecki Desert (central Australia) has the highest DAOD across Australia (annual mean ~ 0.084).  

Our new scheme’s DAOD (Fig. 3c) shares a similar spatial variability with K14 DAOD. The main 
difference between K14 and our scheme’s DAOD is the relatively lower DAOD levels over the Mali/Niger 
region where El Djouf is located because the drag partition effect reduces emissions over most of the 
Mali/Niger region (Fig. 3c). Figure S7 shows the difference between our scheme’s DAOD and K14 735 
DAOD. Comparing against MIDAS DAOD, our scheme and K14 overestimate dust over Australia and 
the HoA, which is possibly due to the biases in the meteorological variables (e.g., 𝑢∗ and 𝑤) of CESM2. 
K14 and our scheme both overestimate DAOD over Sudan compared with the MIDAS DAOD because 
the dust emission equation is very sensitive to the low CESM soil moisture there, but our DAOD’s high 
bias is smaller than K14 DAOD’s. Both K14 and our scheme underestimate DAOD levels over the 740 
Taklamakan/Thar Deserts, which is also seen in other studies employing K14, e.g., Li et al. (2022) and 
Klose et al. (2021). None of the scheme captures the DAOD levels over the Thar Desert as shown by 
MIDAS. The overall improvements of our scheme’s DAOD is that it better captures the DAOD values 
over El Djouf and reduces the DAOD overestimations over the Arabian Peninsula and Sudan. Our scheme 
also has higher DAOD levels over semiarid regions.  745 
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Figure 3. Global DAOD averaged across 2004–2008 from CESM2 and MIDAS. (a-c) CESM DAOD for 
(a) Z03, (b) K14, and (c) our new scheme (Leung et al., 2023). (d) MIDAS DAOD (Gkikas et al., 2021). 
All maps have a global mean of 0.03±0.01 consistent with the global DAOD constraint obtained by Ridley 750 
et al., 2016). 
 
 Next, we compare Ridley et al. (2016) regional mean DAOD with CAM6 simulated DAOD using 
Z03, K14, and our scheme in Fig. 4. Simulated regional DAOD are regionally averaged following the 
definition of 15 dusty regions (see Fig. S5) in Kok et al. (2021). The upper and lower panels show the 755 
annual and seasonal mean regional DAOD, respectively. Our scheme’s DAOD (Fig. 4c) shows the highest 
correlations with Ridley’s DAOD (annual R2 = 0.82; seasonal R2 = 0.76), matching the regional DAOD 
distribution the best, whereas Z03 DAOD (Fig. 4a) produces the lowest correlations (annual R2 = 0.44; 
seasonal R2 = 0.42) and the highest root-mean-square error (RMSE). Z03 overestimates annual DAOD 
over Bodélé/Sudan and Australia but underestimates DAOD over Mali/Niger and western Africa, which 760 
are primarily controlled by the strength of the source function S. K14 (Fig. 4b) shares a similar 
performance with our scheme matching against Ridley’s regional DAOD values (annual R2 = 0.77; 
seasonal R2 = 0.67), but K14 overestimates the high regional DAOD values (e.g., Mali/Niger and 
Bodélé/Sudan). K14 also tends to overestimate wintertime and springtime dust over the tropical Atlantic 
and western Africa. Both K14 and our scheme underestimate DAOD levels over the Taklamakan/Gobi 765 
Deserts and the Thar Desert (Figs. 4b and c), mostly due to underestimations of dust in the springtime 
(MAM; green color). Finally, MIDAS DAOD (Fig. 4d) has the highest consistency with Ridley’s annual 
and seasonal mean DAOD (annual R2 = 0.96; seasonal R2 = 0.95). 

Our new scheme has the reduced major axis (RMA) regression slopes the closest to the 1:1 line 
(annual slope = 0.92, seasonal slope = 0.82), demonstrating the smallest fitting bias among the three 770 
schemes. K14 DAOD has larger regional DAOD over Mali/Niger and El Djouf (Fig. 3b) and the RMA 
regression slopes moderately smaller than 1 (annual slope = 0.72, seasonal slope = 0.67). Z03 in CESM2 
is pre-tuned, but also overestimates dust over major source regions (Fig. 3a) and the RMA slopes also 
deviate from 1 (annual slope = 0.81, seasonal slope = 0.78).  

All simulations, regardless of the dust emission scheme employed, show systematic 775 
underestimations for lower regional DAOD values and overestimations for higher regional DAOD values, 
consistent with the findings of Zhao et al. (2022). The reasons for the underestimations of lower regional 
DAOD values could be because the schemes (mainly Z03 and K14) are underestimating dust emissions 
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from marginal source regions (with lower regional DAOD values), which is partially corrected in our 
scheme by producing more emissions from semiarid regions. It could be further because ESMs 780 
overestimate wet depositions of dust over tropical oceans (Albani et al., 2014; van der Does et al., 2020), 
for possible reasons including an overestimated light rain frequency (Wang et al., 2021) and a higher 
hygroscopicity due to internal mixing with other aerosols (Neale et al., 2012). ESMs also overestimate 
dry depositions for reasons that remain unclear but could include turbulence in dusty layers and an 
underestimation of the extent to which particle asphericity enhances drag (Weinzierl et al., 2017; Huang 785 
et al., 2020; Meng et al., 2022; Drakaki et al., 2022). These factors all contribute to a shorter lifetime of 
dust, enhancing the dust concentration contrasts between sources and downwind / far-field regions.   

 
Figure 4. Ridley et al. (2016) regional mean DAOD vs. modeled CESM2 DAOD using (a) Z03, (b) K14, 
and (c) our scheme, as well as (d) MIDAS DAOD (Gkikas et al., 2021), for 2004–2008 over 15 dusty 790 
regions (see Fig. S5) defined following Kok et al. (2021). Top panels show annual mean DAOD 
scatterplots, with dashed lines as 1:1 lines and solid lines as the reduced major axis (RMA) regression 
lines. Bottom panels show seasonal mean DAOD scatterplots for the three schemes, with thin lines as 1:1 
lines and thick lines as the RMA regression lines. Seasons are defined as: DJF (December–January–
February), MAM (March–April–May), JJA (June–July–August), and SON (September–October–795 
November). 
 
 
 Next, we evaluate the simulated spatial DAOD variability against coarse mode AOD observations 
at multiple AERONET stations. Figure 5 compares the satellite-derived MIDAS DAOD and the CESM2 800 
simulations against the AERONET–SDA coarse mode AOD. The 39 site locations we chose (Sect. 4.2) 
are over arid regions such that the coarse mode aerosols are mostly dust. MIDAS (Figs. 5d and h) gives 
the best agreement when compared against AERONET, yielding the largest coefficient of determination 
(R2) of 0.76 and the smallest RMSE of 0.065. RMA regression gives a slope of 1.11 (blue line), which is 
close to the 1:1 line (black line).  805 

Evaluating the dust emission schemes using the AERONET AOD measurements gives the similar 
conclusion as using the Ridley DAOD values. The Z03 scheme (Fig. 5a and e) shows the lowest degree 
of agreement against AERONET with an RMSE of 0.21, more than three times the RMSE of MIDAS 
DAOD. Z03 substantially overestimates DAOD over Australia (Fig. 5a) because of the large source 
function S there (AOD values are < 0.1 for the Australian AERONET sites). There are also multiple 810 



 20 

underestimations of Z03 DAOD of ~0.3 over the Sahel, which can be > 0.5 for AERONET sites (Fig. 5a). 
Note that although Z03 has a relatively decent regional RMA regression slope in Fig. 4a, Z03 shows much 
stronger bias against AERONET AOD with an RMA slope of 0.66 because it strongly overestimates 
DAOD over hyperarid regions. Meanwhile, K14 (Figs. 5b and f) yields a much higher spatial R2 of 0.70 
and a much smaller RMSE of 0.080 against AERONET data. K14 has fewer DAOD underestimations 815 
over the Sahara–Sahel region and reduced DAOD overestimations in the Arabian Peninsula and Australia 
(Fig. 5f). The RMA regression slope of 0.85 shows that K14 simulates the spatial variability of AERONET 
AOD relatively well compared to Z03, different from Fig. 4b which shows that K14 regionally has 
stronger seasonal DAOD bias than Z03. This suggests that evaluating dust schemes against regional and 
local station data can yield different conclusions regarding biases. Our new scheme (Figs. 5c and g) 820 
reduces the bias generated by K14, yielding an RMA regression slope of 1.02. Our scheme’s DAOD yields 
an R2 of 0.73 and an RMSE of 0.072, marking modest improvements over K14 simulations. Overall, our 
scheme performs the best among three schemes in capturing the spatial AOD variability of AERONET 
sites. 
 825 
 

 
Figure 5. Gridded model/satellite DAOD vs AERONET–SDA coarse mode AOD for 2004–2008. Top 
panels show the global dust AOD for (a) MIDAS (b) Z03, (c) K14, and (d) our scheme, overlaid by 
AERONET sites of coarse mode AOD observations. (e–h) The respective scatterplots for AERONET 830 
AOD versus (e) MIDAS DAOD, as well as CESM DAOD using (f) Z03, (g) K14, and (h) our scheme. 
The 15 source regions (labelled with symbols) follow the definition of Fig. S5 adopted from Ridley et al. 
(2016) and Kok et al. (2021). 
 
 835 
5.3 DAOD day-to-day variability 
 
 Apart from examining the spatial variability, we also examine the temporal variability of CESM2 
dust using different dust emission schemes. Here we use globally gridded daily MIDAS DAOD across 
2004–2008 and multiple stations of AERONET–SDA coarse mode daily AOD for evaluations. For 840 
MIDAS DAOD, we calculate grid-by-grid daily Pearson correlations between MIDAS and CESM2 
DAOD, yielding a global correlation map for each scheme (Fig. 6). We note that since MIDAS is a 
reanalysis dataset, it itself is also subject to errors due to the MERRA-2 assimilation errors and MODIS 
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instrumental and algorithmic errors. Gkikas et al. (2021) reported that the day-to-day variability of 
MIDAS DAOD is highly consistent over the Dust Belt (e.g., their Fig. 2d) when compared against the 845 
CALIOP satellite retrievals of dust (LIVAS; Amiridis et al., 2013; Marinou et al., 2017). While both 
MIDAS and CALIOP have uncertainties, we view the day-to-day variability of MIDAS dust as most 
accurate over the Dust Belt and thus focus our CESM–MIDAS comparison in Fig. 6 over the Dust Belt. 
In Fig. 6, we show the correlation results over gridboxes with MIDAS annual mean DAOD (Fig. 3d) larger 
than its annual mean DAOD uncertainty (Fig. 8b in Gkikas et al., 2021), which largely corresponds to the 850 
gridboxes over the Dust Belt (as shown in Fig. S9b). Gridboxes with MIDAS mean DAOD smaller than 
the mean DAOD uncertainty are masked out in Fig. 6, and Fig. S8 shows the correlation maps without 
any masking. Figure S9 shows the MIDAS global DAOD/AOD fraction for 2004–2008 (Fig. S9a) and the 
ratio of MIDAS mean DAOD to the mean DAOD uncertainty (Fig. S9b). We also further discuss the daily 
correlations of CESM modeled dust with its driving meteorological and land surface variables at the end 855 
of this subsection (see also Figs. S10 and S11). 

We first examine the correlations between MIDAS DAOD and our CESM simulations of DAOD. 
In Fig. 6a, Z03 dust shows overall strong daily correlations with MIDAS dust over the Dust Belt and the 
tropical Atlantic. The correlations are generally lower over the eastern than the western Sahara, likely 
partially due to the strong extra dust sources represented by Z03 over Sudan/Egypt, which is absent in 860 
MIDAS DAOD. The predominant easterly trade winds bring dust signals from Sudan to the central and 
western Sahara, likely reducing correlations over dust sources such as the Bodélé Depression. Another 
possible reason is because the daily correlations between Z03 dust and the driving meteorological fields 
over the eastern Sahara are generally modest, with 𝑅 of only ~ 0.1–0.2 (see Figs. S10a-c). Another region 
of strong correlations occurs over the Arabian Sea, indicated in Fig. 6a as dominated by dust from the 865 
HoA, meaning both MIDAS and Z03 agree that dust advects from the HoA to central Asia and regulates 
dust air quality in downwind regions. Z03 also shows high correlations with MIDAS over the Thar Desert 
and moderately high correlations over China, especially over the Taklamakan Desert. This partially 
indicates that although the regional emission strengths of Z03 are likely overestimated as shown in the 
previous subsection, the Z03 source mask indeed helps emphasize the true source origins of dust, which 870 
subsequently benefit a more accurate temporal dust variability over the Taklamakan and its downwind 
regions. 

K14 dust in Fig. 6b generally shows weaker correlations with MIDAS dust over the Dust Belt than 
the other two schemes. K14 has smaller correlations with MIDAS than Z03 (negative Δ𝑅 values in Fig. 
6d), despite the fact that K14 emission has stronger daily correlations with the driving fields than Z03 dust 875 
(Figs. S10d-f). One possible reason is that K14 emissions over most of the Sahara are similarly strong 
(Fig. 2b), meaning K14 is less capable of distinguishing primary emission sources from secondary sources. 
As a result, simulated dust signals over downwind regions (western Africa and the Atlantic) could be 
contaminated by dust signals from secondary sources such as Sudan, Western Sahara, and western 
Mauritania. The same issue likely occurs over the eastern Sahara since the Arabian Peninsula (upwind of 880 
the eastern Sahara) emits similar orders of magnitude of dust across most of the Peninsula instead of 
coming primarily from the Rub’ al Khali Desert. Correlations over the Taklamakan Desert also appear 
weaker than in Z03 (Fig. 6d), possibly because of the higher-than-observed dust emissions from the 
Karakum/Kyzylkum region in central Asia advected by the predominant westerlies that contaminate dust 
signals over the Taklamakan. 885 

Our scheme in Fig. 6c captures similar correlations as Z03 overall, with higher correlations (R ~ 
0.7–0.8) over western Africa, the Atlantic, the Arabian Sea, and India. Our scheme performs modestly 
better than Z03 over the northern Sahara (the Algerian Desert and the Libyan Desert) as well as the Sahel 
and the Gulf of Guinea (positive Δ𝑅 values in Fig. 6e), which is likely a result of dust coming from more 
correct source regions. Modestly better performance is also seen over the Rub’ al Khali Desert likely due 890 
to the wind drag partition corrections. Additionally, our scheme’s dust emission correlates better with 
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meteorological drivers than K14 and Z03 (Fig. S10g-i), especially with 𝑢∗: , which likely also helps 
improve the DAOD correlations with MIDAS DAOD. Meanwhile, a more significant reduction in 
correlations occurs over China when comparing K14 and our scheme with Z03 (Fig. 6e). Our scheme 
might produce weaker correlations than Z03’s because our scheme with drag partitioning causes 𝑢∗: to 895 
exceed the emission thresholds less often, resulting in both weakened annual mean DAOD and weakened 
seasonality of the DAOD time series. Apart from northwestern China, there are some additional moderate 
correlation differences over central China (negative |Δ𝑅| values in Fig. 6e), which are metropolitan regions 
with vast anthropogenic aerosols (e.g., Leung et al., 2018). This again indicates that, as discussed in Fig. 
3d, MIDAS DAOD might still contain some anthropogenic aerosol signals in urban regions.    900 

  

 
Figure 6. Grid-by-grid MIDAS DAOD daily Pearson correlation maps with CESM2 DAOD for 2004–
2008. (a-c) Correlation maps 𝑅 of MIDAS daily DAOD time series vs. CESM2 daily DAOD time series 
using (a) Z03, (b) K14, and (c) our scheme. The correlation maps focus on gridboxes with MIDAS 905 
DAOD/AOD ratio > 0.25 only. Pixels with MIDAS annual DAOD uncertainty (defined by Gkikas et al., 
2021) larger than annual mean DAOD (see Fig. 9) are filtered out (Fig. S8 shows the unfiltered correlation 
maps). The values at the bottom of the panels show the global mean correlation values (for all gridboxes 
with MIDAS DAOD/AOD > 0.25). (d-f) Changes (Δ𝑅) in correlation maps from (d) Z03 to K14, (e) Z03 
to our scheme, and from (f) K14 to our scheme.  910 
 
 
 For AERONET data, we calculate daily Pearson correlations between the selected AERONET 
stations and the CESM2 grids that contain those stations. The conclusions are similar to the ones discussed 
in Fig. 6. For Z03 (Fig. 7a), strong correlations are generally seen over the Sahara and central Asia because 915 
of a relatively decent representation of the locations of dust sources. Z03 has a generally weaker 
representation of the temporal dust variability over Australia, as in K14 and our scheme. For K14 (Fig. 
7b), the correlations over the Sahara tend to be weaker (𝑅 around 0–0.4), likely due to the inadequate 
representation of dust source locations. The sites over northern and eastern Australia yield smaller 
correlations in K14 than Z03, because the modeled dust signals over there are contaminated by emissions 920 
from the west, which has higher emissions than the east. Our scheme yields overall the highest correlations 
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across the globe out of all schemes. Our scheme’s dust highly correlates with MIDAS dust over the Sahara 
and the Middle East (𝑅	~ 0.5–0.8). Correlations over the Australian sites in our scheme are also the highest 
among all schemes (𝑅	~ 0.3–0.5), even though our scheme generates similar orders of magnitude of 
emissions across different parts of Australia (in Fig. 2c). One issue is the correlation over a Mongolian 925 
site to the north of the Gobi is about zero (the weakened correlation also occurs in the K14 simulation in 
Fig. 7b). As discussed in the previous paragraph, this is likely a result of our scheme’s inability to generate 
high dust emissions from the Taklamakan than the Gobi, such that the DAOD signal over the Mongolian 
site is contaminated by the dust from other sources. Meanwhile, Z03 with high Taklamakan emissions and 
low Gobi emissions yields a high R of ~ 0.6 over the Mongolian site.  930 
 

 
Figure 7. AERONET–SDA coarse mode AOD daily correlations for 2004–2008 over selected sites with 
CESM DAOD using (a) Z03, (b) K14, and (c) our study. (d) MIDAS DAOD versus AERONET–SDA 
AOD daily correlation. The values at the bottom of the panels represent the mean correlation across all 935 
AERONET stations. 
 

As discussed above, our scheme’s dust not only matches well with external dust datasets but also 
correlates better with meteorological drivers in day-to-day variability than Z03 and K14 (in Figs. S10 and 
S11), for a number of reasons. First, implementating more aeolian physics (Sect. 3) allows our scheme to 940 
better couple with the simulated boundary-layer dynamics, vegetation dynamics, and the water cycle in 
CESM2. For example, our scheme’s emission strongly covariates with 𝑢∗:  (Fig. S10g) since the 
emission’s dependence on 𝑢∗: is not only in the K14 dust emission equation (Eq. 5) but also in the C19 
intermittency scheme (Sect. 3.4), resulting in an enhanced sensitivity of emissions to the winds. Another 
example is that our emission’s dependence on VAI is not only in the bare land fraction term (Eq. 4) but 945 
also in the vegetation drag partitioning (Eq. 9), enhancing the dust correlation with VAI (Fig. S10h and 
Fig. S11h). The second reason is because the use of 𝑢∗$#  in the dust emission equation increases the 
likelihood of emission 𝐹2 > 0 in the 𝐹2 time series. Z03 and K14 employing 𝑢∗"# have a lot of times with 
emission 𝐹2  = 0 in the time series, weakening their emissions’ temporal variability and thus the 
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covariation with 𝑢∗:. With more pronounced temporal fluctuations, our scheme’s 𝐹2 is further sensitive 950 
to the variability of 𝑢∗: and correlates better with other driving variables than Z03 and K14. Thus, dust 
emission schemes using 𝑢∗$# will generate emissions that correlate better with the day-to-day variability 
of 𝑢∗: than schemes using 𝑢∗"#. Third, the implemented aeolian processes allow more coupling between 
the driving fields such as boundary-layer meteorology and vegetation dynamics. For instance, as VAI 
regulates 𝑢∗: through the vegetation drag partition effect, 𝑢∗: carries both the temporal variability of 𝑢∗ 955 
and VAI. 𝑢∗:  thus almost dictates the temporal behavior of the our scheme’s emission time series 
analogous to the concept of dimensionality reduction (R ~ 1 in the Sahara; Fig. S10g). Figures S10 and 
S11 show that our scheme’s emission and DAOD are very sensitive to the day-to-day variability of 
meteorological and land surface variables, which means our scheme is likely also more sensitive to climate 
change and land use and land cover change (LULCC) in longer-term simulations. 960 
 
 
5.4 Comparisons against other measurements of the dust cycle 
 

We use more datasets of different dust cycle variables from other independent sources to evaluate 965 
our CESM2 dust cycle simulations regarding spatial variability. Figure 8 compares the simulated dust 
PM10 concentrations (background colors) using various schemes versus observed dust PM from multiple 
stations (overlaid dots). Z03 has some strong overestimations compared with the measurements over the 
downwind regions of dust sources (dark red in the bottom panel of Fig. 8a), such as over Japan, southern 
Australia, and South Africa. Dust concentrations over the source regions are very high (e.g., the 970 
Taklamakan desert and the Australian desert in the top panel of Fig. 8a), due to the very localized and 
high Z03 emissions over the source regions (Fig. 2a). Our scheme in Fig. 8c reduces the exaggerations of 
dust strength in Z03 over Asia, Australia, and other secondary sources, mitigating the overestimations of 
dust PM as shown in the bottom panel of Fig. 8c compared to Fig. 8a. Our scheme mainly overestimates 
dust PM over the Sahara, which is commonly shared by Z03 and K14 and consistent with the previous 975 
discussion on regional DAOD (Zhao et al., 2022). Due to in the insufficient emissions over the 
Taklamakan, our scheme produces ~60 μg m-3 of dust PM there, smaller than the ~100 μg m-3 reported by 
other observational studies (e.g., van Donkelaar et al., 2016; Leung et al., 2018; van Donkelaar et al., 
2021). Our scheme produces higher dust PM than K14 (Fig. 8b) over arid and semiarid regions, including 
the Gobi, the United States, and Patagonia. Compared with Z03’s spatial correlation of R = 0.80 (in the 980 
log10 space), our scheme yields a slight increase in the spatial correlation of R = 0.90. Overall, dust PM 
concentrations tend to be underestimated over the downwind regions (e.g., the Pacific and the Atlantic). 
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Figure 8. CESM2 dust PM10 concentration (in μg m-3) vs. climatological in-situ PM10 measurements (Sect. 985 
4.4) for (a) Z03, (b) K14, and (c) our study. In the bottom panels, sites are labeled over different continents 
/ oceans with different symbols and colors. 
 
 Figure 9 shows the dust deposition evaluation for all schemes. All schemes show that most 
deposition fluxes are concentrated over the source regions. Over remote areas (e.g., the central Pacific 990 
Ocean and the Southern Ocean), simulated deposition fluxes are small with an order of magnitude of ~10-

4 kg m-2 yr-1 or smaller (white color), whereas many measurements over those remote locations have an 
order of magnitude of 10-3 kg m-2 yr-1 (light blue). It shows that the deposition schemes in CAM6 are 
problematic in that dust typically deposits too quickly; switching between dust emission schemes does not 
address nor mitigate the issue. Generally, the spatial patterns of dust depositions follow those of the DAOD 995 
(comparing Fig. 3 with Fig. 9). Our scheme has a higher correlation of R = 0.65 (in the log space) compared 
with R = 0.49 by Z03, but K14 has an even slightly higher R = 0.69. There is some underestimation of 
dust deposition over the downwind regions of Asia (e.g., the extratropical Pacific), likely due to the 
underestimated Asian dust in K14 and our scheme (but not in Z03 because of its abundant Asian dust). 
There is also some overestimation of dust deposition over the downwind regions of the Sahara (e.g., the 1000 
equatorial Atlantic), which could be due to several possible reasons. There could be an overestimation of 
dry deposition due to an incomplete representation of deposition processes (e.g., Huang et al., 2021; Klose 
et al., 2021; Li et al., 2022; Meng et al., 2022). In particular, the dry deposition scheme in CAM6 (Zhang 
et al., 2001) was found to particularly overestimate dry deposition of fine dust (Li et al., 2022). In addition, 
previous studies indicated a possible overestimated tropical wet scavenging of dust, (e.g., Albani et al., 1005 
2014; van der Does et al., 2020). Fig. S12 shows the fraction of wet dust deposition flux to the total dust 
deposition flux from CESM2 using our scheme. 
 



 26 

  
Figure 9. CESM2 dust total (dry + wet) deposition (in kg m-2 yr-1) vs. climatological in-situ deposition 1010 
measurements for (a) Z03, (b) K14, and (c) our study. In the bottom panels, sites are labeled over different 
continents / oceans with different symbols and colors. 
 
 
5.5 Separating the contributions of drag partition and intermittency to our new scheme 1015 
 
 In this subsection, we briefly discuss a sensitivity experiment to separate the contributions of the 
hybrid drag partition scheme and the intermittency scheme to the improvements in dust cycle simulations 
produced by our new Leung et al. (2023) scheme. We performed the sensitivity experiment by turning off 
the Comola et al. (2019) intermittency scheme (experiment A using Sect. 3.1–3.3) to examine the effect 1020 
of drag partitioning, and by turning off the hybrid drag partition scheme (experiment B using Sect. 3.1–
3.2 and 3.4) to examine the effect of intermittency, respectively, on the resulting CESM2 dust cycle 
simulations. Here we focus on discussing the spatiotemporal variability of the simulated dust emission 
and DAOD. 
 Fig. 10 shows the main results of the sensitivity test. The left column shows experiment A with 1025 
the effects of drag partitioning, and the right column shows experiment B with the intermittency effect. 
For expt. A, the maps of dust emission 𝐹2 (Fig. 10a) and DAOD (Fig. 10c) show similar spatial patterns 
to those from our Leung et al. (2023) scheme (Figs. 2c and 3c). This means that the drag partition factor 
𝐹7"" dominates the spatial variability of our new scheme. It highlights the erodible regions across the 
globe and acts as a filter that shapes the spatial variability of 𝑢∗: and 𝐹2. 𝐹7"" shift dust sources to more 1030 
correct locations, such as the Bodélé Depression and El Djouf in the Sahara because of the use of the 
satellite-derived roughness map. For expt. B, which represents the intermittency effect, Fig. 10b shows 
substantially more emission fluxes from semiarid regions than in Fig. 10a due to the use of 𝑢∗$#, which 
reduces the dust overestimations over hyperarid regions as previously discussed in Zhao et al. (2022). The 
𝐹2  pattern in Fig. 10b is different from our scheme’s 𝐹2  map in Fig. 2c, which means that Comola’s 1035 
intermittency scheme is sensitive to 𝑢∗:. The spatial variability of 𝐹7"" will change that of 𝑢∗:, which 
subsequently changes the spatial variability of intermittency 𝜂 (Eq. 11c) and 𝐹2 (Eq. 11b). Therefore, 𝜂 is 
controlled by 𝐹7"" and the two variables share very similar spatial variability as shown in Fig. 1a–b. The 
DAOD pattern (Fig. 10d) also appear different from our scheme’s DAOD in Fig. 3c. There is more dust 
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in various semiarid regions, and without using 𝐹7"" the moderately high DAOD peaks are not constrained 1040 
to the most erodible regions, such as El Djouf in Mauritania. Fig. 10e–f shows the daily DAOD correlation 
with MIDAS DAOD, which indicate that both drag partitioning and intermittency overall yield similar 
levels of correlations with MIDAS dust.  

Overall, the sensitivity experiment shows that the drag partition scheme 𝐹7"" dictates the spatial 
variability of our new scheme’s dust. The drag partition scheme more correctly simulates the spatial 1045 
pattern of dust emissions in major source regions, while the intermittency scheme more correctly simulate 
the balance between dust from major sources and marginal sources. For the intermittency scheme, the use 
of 𝑢∗$# enhances dust levels over semiarid regions, while 𝜂 is in general sensitive to 𝑢∗: and the emission 
thresholds. Both the temporal variability of 𝐹7""  and the intermittency contributes to the temporal 
variability of our scheme’s dust to similar degrees. 1050 
  

 
Figure 10. Separating the contributions of the hybrid drag partition scheme (left) and the Comola et al. 
(2019) intermittency scheme (right) to our dust emission scheme (Leung et al., 2023). The rows represent 
simulated (a, b) dust emission, (c, d) dust aerosol optical depth (DAOD) with global means of 0.03, and 1055 
(e, f) daily DAOD correlation with MIDAS DAOD from Gkikas et al. (2021). 
 
 
5.6 Effects of employing a scale-aware adjustment to correct dust emission 
 1060 
 In this subsection, we discuss the effects of using an empirical correction map (𝐾u,)	to scale our 
scheme’s dust emissions simulated in the native 0.9°×1.25° resolution to be consistent with 0.47°×0.62° 
emissions of our scheme (Sect. 3.5) on the simulated dust cycle in CAM6. We focus on the changes in the 
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DAOD spatial variability; changes in other dust cycle variables are shown in Fig. S13. Figure 11a shows 
the global DAOD of our scheme after correction, which is not visibly very distinct from the uncorrected 1065 
DAOD in Fig. 3c. Figure 11b shows the ratio between the corrected DAOD and the uncorrected DAOD, 
both normalized to the same global mean, to better visualize their spatial variability discrepancies. It is 
worth comparing the map of DAOD discrepancies (Fig. 11b) to the map of emission discrepancies (Fig. 
1c). The more prominent sources, e.g., the Sahara, have suppressed DAOD compared to other dusty 
regions (𝐾u, ~ 0.8–0.9; light blue in Fig. 11b). This is because, as discussed in Fig. 1c, high-resolution 1070 
simulations produce more emissions from semiarid regions than low-resolution simulations but produce 
similar emission levels from primary sources as low-resolution simulations, leading to a relative 
suppression of dust over primary sources upon scaling to the same global mean DAOD. Many secondary 
dust sources have relatively enhanced dust levels, most noticeably the two American regions (𝐾u, ~ 1.2–
1.8), but the absolute increases in DAOD are modest as the baseline DAOD levels over there are low. The 1075 
Taklamakan/Gobi region also has a moderate rise in DAOD (𝐾u, ~ 1.3).  
 Since the high-resolution simulations generally pick up more emissions over semiarid regions, 𝐾u, 
tends to reduce the DAOD regional biases seen in Fig. 4 by enhancing the underestimated DAOD over 
semiarid regions and suppressing the overestimated DAOD over major sources. Comparing against the 
Ridley et al. (2016) regional DAOD (Fig. 11c-d), northern Africa has reduced DAOD and southern 1080 
hemispheric regions have increased DAOD, hence slightly enhancing R2 slightly from 0.82 to 0.84 and 
annual RMSE to drop from 0.053 to 0.048. Annual RMA regression slope modestly changes from 0.92 
(in Fig. 4c) to 0.94. This shows that 𝐾u,  helps reduce the biases of annual and regional mean DAOD 
predictions. However, since the errors mainly originate from seasonal biases, the improvements of using 
an annual 𝐾u, map are relatively modest. For instance, in Fig. 11d, the significantly underestimated MAM 1085 
DAOD (in red) in Asia and the Middle East are still not resolved by using the annual 𝐾u,. Using a seasonal 
or monthly 𝐾u, would more effectively reduce seasonal DAOD biases. 
 Although the correction map modestly improves the regional variability of DAOD, it does not 
necessarily produce improvements in comparisons against site-level dust observations. Figure 11e 
compares AERONET–SDA coarse mode AOD with the corrected DAOD of our scheme. Although the 1090 
scatterplot has an increased RMA slope from 0.97 (in Fig. 5h) to 0.99, the R2 value drops from 0.71 to 
0.65 and the RMSE increases from 0.077 to 0.088. This is mainly due to the small DAOD 
underestimations over major sources like Mali/Niger and Bodélé/Sudan (see the “x” points). Our rescaled 
simulation has a reduced Mali/Niger DAOD that better matches Ridley’s regional DAOD; however, it 
loses its local DAOD peaks and matches less well against AERONET–SDA AOD. There are also DAOD 1095 
overestimations over the southern Middle East. This evaluation likely has a bias in geographical location 
because the errors are mainly from major sources; if more selected AERONET stations were in the 
Taklamakan/Gobi and the U.S., this evaluation against AERONET would possibly show better results 
because our rescaling reduces the DAOD underestimations over those regions. Overall, this evaluation 
shows that despite the better performance in capturing the regional DAOD variability using 𝐾u,, it does 1100 
not necessarily guarantee a better performance in the grid-scale or site-scale spatial DAOD variability.  
 Finally, Fig. 11f shows that the annual 𝐾u, has few effects on the temporal variability of DAOD 
simulations, which depicts the correlation map differences ΔR between our scheme’s rescaled DAOD 
versus MIDAS DAOD (𝑅Z[AA\Z?\] ) and our scheme’s uncorrected DAOD versus MIDAS DAOD 
(𝑅^OZ[AA\Z?\]  from Fig. 6c). ΔR values are statistically insignificant across the globe (Sect. S1). It is 1105 
reasonable that 𝐾u, changes little our scheme’s DAOD temporal variability because 𝐾u, is a time-invariant 
map here that is meant to only change the spatial variability of the simulated dust. 
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Figure 11. Effects of using the scaling map 𝐾u, to correct the 0.9°×1.25° CLM5 dust emissions on the 1110 
CAM6 dust cycle. (a) DAOD spatial pattern simulated by our scheme after the global dust emission pattern 
is corrected by 𝐾u,. (b) Corrected DAOD (Fig. 11a) divided by the uncorrected DAOD (Fig. 3c). Both 
DAOD maps are rescaled to have the same global mean to emphasize their difference in spatial variability. 
(c, d) Corrected DAOD versus Ridley regional DAOD (c) annually and (d) seasonally. (e) Corrected 
DAOD versus AERONET–SDA coarse mode AOD. (f) Changes in correlation maps (Δ𝑅) between 1115 
corrected DAOD vs. MIDAS DAOD and uncorrected DAOD vs. MIDAS DAOD.  
 
 
6. Discussion and Conclusions 
 1120 
 This study has evaluated the new formulation of the dust emission scheme proposed in Leung et 
al. (2023) against measurements and compared its performance against existing emission schemes in 
CESM2. The major modifications implemented into CESM2 are the following: 1) updating the soil 
median particle diameter (as an input parameter to the dust emission threshold calculation) from 75 µm 
as proposed by Zender et al., (2003a) to 127 µm; 2) including a parameterization for the drag partition 1125 
effect that accounts for the impact of not only rocks but also green and brown vegetation on reducing the 
wind stress available for soil erosion; 3) implementing the intermittent dust emission parameterization by 
Comola et al. (2019) that accounts for the effects of boundary-layer turbulence on dust emissions, and 4) 
rescaling the CESM2-native resolution dust emissions toward high-resolution emissions. Following 
Leung et al. (2023), these modifications are 5) implemented on a newer dust emission parameterization 1130 
of Kok et al. (2014b; K14) instead of the default Zender et al. (2003a, b; Z03) scheme in CLM5, although 
the modifications 1–4 can also be implemented on top of Z03 or any other emission scheme. The major 
advances of Leung et al. (2023) are mainly that the drag partition effect successfully moves emissions 
toward important dust sources (e.g., the Bodélé Depression and El Djouf) and thus generates a more 
realistic spatial distribution of dust than Z03 or K14. Also, the intermittency scheme generates more 1135 
emissions from semiarid regions and even high-latitude regions, in agreement with observations. 
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 Our new scheme showed improvements over previous schemes (Z03 and K14) in terms of both 
the spatial and temporal variability of dust cycle variables. For instance, our scheme showed improved 
agreement against the annual and seasonal regional DAOD quantified by Ridley et al. (2016). Indeed, our 1140 
scheme’s annual regional DAOD had an R2 of 0.82 and RMSE of 0.053, compared to Z03’s R2 of 0.44 
and RMSE of 0.080. Evaluating against the AERONET–SDA coarse mode AOD, our scheme’s DAOD 
yielded an R2 of 0.71 and RMSE of 0.077 compared to Z03’s R2 of 0.36 and RMSE of 0.15. Our scheme 
also generated improved spatial distributions of dust PM10 concentrations and depositions against site 
measurements of PM10 and deposition fluxes than Z03 (Figs. 8 and 9). For day-to-day temporal variability, 1145 
our scheme’s DAOD also matched the MIDAS DAOD better over most of the Dust Belt than Z03 DAOD 
(Fig. 6e), with larger correlations of on average Δ𝑅 ~ 0.15 (p-value < 0.05; Sect. S1). Our scheme’s DAOD 
also showed high daily correlation values (with a mean of 0.45) against AERONET–SDA daily AOD time 
series (Fig. 7). However, our scheme’s DAOD generally showed worse performance in representing the 
day-to-day dust variability over East Asia (Fig. 6e and Fig. 7c), likely because of the significant low bias 1150 
of dust (DAOD ~ 0.1) over the Taklamakan Desert such that dust over East Asia was dominated by other 
transboundary dust signals instead of dust from the Taklamakan. Generally, our scheme better represented 
the spatial variability of Ridley’s regional DAOD, the site-level AERONET DAOD, the site-level dust 
PM, as well as the day-to-day temporal variability of MIDAS DAOD than the default Z03 scheme. Our 
scheme’s dust also shows better correlations with driving meteorological and land surface variables (e.g., 1155 
𝑢∗:, VAI,	𝑤;	Figs. S10 and S11), and is thus likely more sensitive to climate change and LULCC than 
other emission schemes’ dust. Since the more physically based Leung et al. (2023) scheme showed 
improvements in the model–observation comparison (Sect. 5), the developments in Leung et al. (2023) 
will be introduced into a future CLM (and CESM) version for the benefit and use of the dust community 
and the CESM community. 1160 
 
 Regardless of which dust emission scheme is used, Fig. 4 shows that CESM2 tends to overestimate 
DAOD over major sources (e.g., the Sahara) and underestimate DAOD over marginal source regions (e.g., 
SH sources) and downwind regions (e.g., oceans). This result is consistent with previous findings across 
multiple ESMs (Zhao et al., 2022), likely due to the insufficient dust emissions coming from the semiarid 1165 
regions. Theoretically, employing the intermittency scheme helps generate more emissions from semiarid 
regions, thereby reducing the DAOD biases and increasing the RMA slopes toward one. Our scheme did 
yield RMA slopes that most closely match the 1:1 line among all emission schemes (annual RMA slope 
= 0.92). 
 1170 

We then tested the proposed modification of rescaling dust emissions of lower resolutions toward 
higher resolutions by Leung et al. (2023). We used the 0.9°×1.25° and 0.47°×0.62° simulations from 
CESM2 to construct an annual correction map 𝐾u, (Eq. 12) used to rescale and correct the CESM2-native 
0.9°×1.25° dust emissions to the spatial variability of the finer resolution (0.47°×0.62°) emissions. 
Employing the scaling map 𝐾u, further reduced the CESM DAOD over hyperarid regions and enhanced 1175 
DAOD over secondary sources. Since 𝐾u,  is a time-invariant map, employing 𝐾u,  has little effects on 
improving the seasonal / day-to-day variability of the CESM DAOD (Figs. 10d and f). Employing an 
annual 𝐾u, to dust emissions modestly improved the spatial variability of atmospheric dust but altered little 
its temporal variability. This modification differs from other modifications proposed by Leung et al. (2023) 
in that it does not necessarily improve the process representation of the dust scheme, but the methodology 1180 
makes the scheme more scale-aware and consistent toward high-resolution dust simulations. Our new 
process-based emission scheme can still be employed in ESMs and in regionally refined models (RRMs) 
with different horizontal resolutions without the use of a scale-aware adjustment. 
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 Although CESM2 with our updated dust emission scheme thus shows an improved spatiotemporal 1185 
pattern of DAOD, some important biases remain. Our scheme overestimates DAOD levels over the Horn 
of Africa (HoA) and Australia. There are also dust underpredictions over the Taklamakan. The DAOD 
hotspot over the HoA (in Fig. 3c) is due mainly to the very high 𝑢∗ in MERRA-2 nudged CESM2 (> 0.5 
m s-1 in Fig. S4), resulting in a high dust emission flux of ~ 1–2 kg m-2 yr-1 (Fig. 2c) that is almost as high 
as emissions over the Bodélé Depression. The unrealistically high emissions from the HoA produce a dust 1190 
plume extending to the Middle East (e.g., Oman), central Asia, and as far as the Thar Desert due to the 
downwind transport. This problem also occurs in the default K14 and Z03 schemes (Figs. 2a-b), although 
Z03 uses a source mask that significantly reduces the HoA emissions. As for Australia, the relatively low 
soil moisture over the central and western parts of the country results in somewhat higher emissions in 
western than eastern Australia. Our study therefore shows a modest annual DAOD peak of ~0.2 (Fig. 3c) 1195 
over western Australia (e.g., the Great Sandy Desert and the Gibson Desert), which is different from the 
smaller eastern peak of ~0.1 in MIDAS/Aqua DAOD (Fig. 3d). In addition, CESM2 shows an annual 
DAOD of only ~0.1 over the Taklamakan/Gobi region in China, which is a strong underestimation 
compared with the yearly DAOD of ~0.35 from MIDAS/Aqua. This DAOD low bias occurs because 
CESM2 simulates over there a low emission flux (Fig. 2c) as a result of the moderately high soil moisture 1200 
𝑤 and aeolian roughness length 𝑧&( (compared with the Sahara). Furthermore, CESM background dust 
levels over downwind regions (e.g., the tropical Atlantic and the extratropical Pacific) are generally 
underestimated compared with MIDAS DAOD, likely because of the strong dust depositions and short 
lifetimes of dust, leading to dust preferentially depositing over the land. 
 1205 
 Although we have attempted to improve the dust emission model in both CLM5 and CAM6, there 
are more areas of dust cycle modeling that warrant further developments. We summarize several main 
issues in dust modeling that should be addressed in future versions of CESM and other ESMs to further 
enhance the dust modeling performance in the land and atmospheric models:  
 1210 

1. Dust emission physics: There are several mechanisms that affect the dust emission threshold that 
are not currently accounted for in most dust emission modules. First, soil crusts due to soil 
microbes can strongly aggregate soil particles and prevent winds from eroding the soils 
(Rodriguez-Caballero et al., 2018). Second, the impact of anthropogenic activities, such as 
agriculture/tillage, on dust emission is not explicitly included in dust emission modules, although 1215 
new parameterizations for anthropogenic dust emissions are under development (e.g., Xia et al., 
2022). Third, apart from saltation bombardment, soil particles can enter the atmosphere through 
direct aerodynamic entrainment (Klose and Shao, 2012). Models have been developed to represent 
direct particle entrainment into the atmosphere (Klose and Shao, 2013; Klose et al., 2014).  

2. Dust size distribution: Apart from dust emission physics, there are problems in representing the 1220 
dust aerosol size distributions in the atmosphere. Coarse and super-coarse dust particles are 
substantially underestimated (Adebiyi and Kok, 2020), and recent studies are working on 
implementing the coarse and super-coarse dust size bins (CAM4; Meng et al., 2022) or modes (Ke 
et al., 2021; CAM5) in different versions of CAM, such that CESM2 can represent the impacts of 
large dust particles on climate and ecosystem. Recent studies further found that the geometric 1225 
standard deviations (GSDs) of the accumulation and coarse modes in CAM6 are too narrow (Wu 
et al., 2020; Li et al., 2022), which subsequently adversely impacted the dust deposition, lifetime, 
and size distribution of the CAM6 simulations. 

3. Dust deposition: Dust deposition in ESMs is generally overestimated, and dust lifetime is 
underestimated (e.g., Albani et al., 2014; van der Does et al., 2020; Huang et al., 2021) due to a 1230 
few reasons. First, recent studies found that dust particles are highly aspherical, which 
subsequently alters the aerodynamic resistance of dust and slows down the dry deposition velocity 
of dust (Huang et al., 2021). This finding increases the lifetime of coarser dust particles and also 
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reduces the mass extinction efficiency (Huang et al., 2023). This effect of dust asphericity on dry 
deposition and extinction is being implemented into climate models (e.g., Klose et al., 2021; Li et 1235 
al., 2022; Meng et al., 2022). Second, the default dry deposition scheme in CAM6 (Zhang et al., 
2001) is known to overestimate dry deposition of fine dust, and Li et al. (2022) has employed a 
newer dust deposition scheme (Petroff and Zhang, 2010) to resolve the issue. Third, the modal 
aerosol model (MAM) of CESM2 merges dust and other aerosols (e.g., sea salt) into the same 
modes (e.g., accumulation and coarse modes) with internal mixing, such that the wet deposition of 1240 
dust is likely overestimated (e.g., the Atlantic Ocean) due to the higher hygroscopicities of other 
aqueous aerosols (Neale et al., 2012). Fourth, studies reported that modeled dust depositions are 
too high over the tropical oceans (Albani et al., 2014; van der Does et al., 2020). 

4. Speciation of dust: CESM and other ESMs mostly parameterize dust as a single mineral (e.g., 
aluminum silicate; Emmons et al., 2020), which cannot adequately represent a suite of chemical 1245 
reactions, radiative effects, and cloud processes that depend on mineralogy. Recent studies have 
initiated the modeling of multiple dust species (e.g., haematite, quartz, illite, feldspar, calcite) and 
better represented the dust optical properties and radiative effects (Li et al., 2021, 2022; Gonçalves 
Ageitos et al., 2023). Emergence of satellite measurements of global soil mineralogy such as from 
the Earth Surface Mineral Dust Source Investigation (EMIT; Green et al., 2020; Thompson et al., 1250 
2020) mission under NASA will help better represent dust species from specific source regions. 

5. Chemistry and cloud processing: Having accurate simulations of the modeled spatiotemporal 
variability of dust requires dust chemistry and dust–cloud interactions in ESMs, because they are 
crucial for simulating dust aging and dust removal processes. A correct mineralogical 
representation of dust is essential for representing the role of dust in atmospheric chemistry and 1255 
aerosol–cloud interactions. Previous studies have documented multiple chemical reaction 
pathways via which dust interacts with tracer gases and aerosols (Gaston, 2020; Adebiyi et al., 
2023; Kok et al., 2023). Dust acts as a source or sink of multiple chemical species, such as oxidants 
(e.g., ozone), aerosol precursors (e.g., sulfur dioxide and nitric acid), aerosols (e.g., via 
coagulation), halogens (e.g., chlorine), and more (Tang et al., 2017; Mitroo et al., 2019; Gaston, 1260 
2020). Furthermore, although many ESMs include the impacts of dust on ice cloud formation 
(Storelvmo, 2017), dust seeding on warm cloud formation are quantified in only a few ESMs (e.g., 
McGraw et al., 2020) as dust is considered hydrophobic by many ESMs. Chemical dust aging is 
crucial for dust to gain hygroscopicity and become effective cloud condensation nuclei (CCN). A 
comprehensive mineralogical representation of dust and a more complex heterogeneous dust 1265 
chemistry are required to adequately represent the roles of dust in the formation of warm, ice, and 
mixed phase clouds, as well as the effects of dust–cloud interactions on indirect radiative effects 
and forcings in ESMs. 

6. Observations for dust modeling development: The uncertainties in dust modeling are due to not 
only the uncertainties in the parameterized dust processes but also the uncertainties in the input 1270 
data of these parameterized processes. The availability of observations will influence the 
uncertainties of dust modeling both by entering the simulations as input datasets and by shaping 
the parameterization development. For instance, Leung et al. (2023) used a global soil particle 
diameter 𝐷' = 127	𝜇m (Sect. 3.2) for computing the emission thresholds since there were too few 
site 𝐷' measurements, which hindered the accuracy of the simulation of the global distributions of 1275 
emission thresholds. We also speculated in Sect. 5 that some of our simulated DAOD biases could 
be due to biases in the meteorological inputs rather than the missing physics in the dust scheme. 
More observations will also allow us to develop more accurate parameterizations for dust. For 
instance, recent coarse dust observations (e.g., Adebiyi and Kok, 2020) justified the importance of 
and quantified the necessary parameters for formulating the coarse dust modes in ESMs (e.g., Ke 1280 
et al., 2022; Meng et al., 2022). Having more observations of dust and its dependent variables is 
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highly warranted to reduce the uncertainties of dust simulations by improving the dust schemes 
and reducing the uncertainties of input dependent variables. 

 
 Finally, while many dust modeling studies focused on improving and evaluating the spatial 1285 
representation of modeled dust, the importance of evaluating the temporal variability of modeled dust is 
likely undervalued in global dust modeling studies. Relatively few dust studies (e.g., Zhang et al., 2013; 
Klose et al., 2021; LeGrand et al., 2023) provide evaluation of the temporal changes in dust emissions and 
DAOD. This study represents one of the early attempts to conduct a global-scale evaluation of the day-to-
day variability (Figs. 6–7) of the simulated dust time series (along with studies like Klose et al., 2021). 1290 
The next step in improving dust modeling should be on enhancing the long-term (interannual or 
interdecadal) variability of dust, especially since recent studies (e.g., Kok et al., 2023) found that ESM 
dust trends do not reproduce the historical increasing trends of dust. It is highly warranted to investigate 
how transient climate change and LULCC regulate the long-term variability of observed dust and 
reproduce them in ESMs. Improving long-term ESM dust predictions will also benefit the study of the 1295 
epidemiological consequences of future dust changes on human health, risk management, and mitigation 
strategies (Philip et al., 2017; Achakulwisut et al., 2019; Bauer et al., 2019; van Donkelaar et al., 2021). 
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Appendix. Mathematical symbols of major variables defined in this study. 1300 
 

𝜂 Intermittency factor 
𝜅 Fragmentation exponent 
𝜌( Air density 
𝜌' Soil particle density 
𝜑 Sandblasting efficiency in Zender et al. (2003) emission scheme 
𝜎<W& Standard deviation of instantaneous wind fluctuations 
𝐴6 Fractional rock area  
𝐴B Fractional vegetation area 
𝑎 Tuning constant for threshold gravimetric soil moisture  
𝐶2 Soil erodibility coefficient 
𝐶34 Proportionality constant in Zender et al. (2003) emission scheme 
𝐶#<D7 Proportionality constant for Kok et al. (2014) emission scheme 
𝐷' Soil particle diameter 
𝐹2 Dust emission flux 
𝐹2,, Simulated dust emission in coarse resolution 
𝐹2," Simulated dust emission in fine resolution 
𝐹7"" Hybrid drag partition effect 
𝑓,-(. Clay fraction (from 0 to 1) 
𝑓7"",6  Rock drag partition factor 
𝑓7"",B Vegetation drag partition factor 
𝑓% Soil moisture effect 
𝑓B Vegetation cover fraction 
𝑔 Gravitational acceleration 
𝐾u,  Scaling map for correcting spatial variability of simulated dust 

emission in coarse resolution toward simulated emission in fine 
resolution 

LAI Leaf area index 
𝑆 Preferential dust source filter in Zender et al. (2003) emission 

scheme 
SAI Stem area index 
VAI Vegetation area index 
VAI?@A Threshold vegetation area index 
𝑇 Proportionality constant in Zender et al. (2003) emission scheme 

𝑢∗"#& Dry fluid threshold 
𝑢∗"# Wet fluid threshold or static threshold (accounting for soil 

moisture effect 𝑓%) 
𝑢∗$# Impact threshold or dynamic threshold 
𝑢∗: Friction velocity at the soil surface 
𝑢∗# Dust emission thresholds (generic for indicating both fluid and 

impact threhsold) 
𝑢∗:# Standardized fluid threshold 
𝑢q: Instantaneous wind 
𝑤 Gravimetric soil moisture 
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𝑤# Threshold gravimetric soil moisture 
𝑧&( Aeolian roughness length (for rocks and plants) 
𝑧&: Smooth roughness length (for soil grain) 
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