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Abstract 24 

Accurate quantification of regional terrestrial fluxes is essential for improving our 25 

knowledge of the carbon sequestration potential of ecosystems, ecosystem functioning, and 26 

emission reduction demand in the context of climate change mitigation. However, the 27 

quantification is challenging owing to methodological and observational constraints, especially for 28 

regions with severe gaps in the ground-based observational network, like India. This study 29 

examines the potential of recent satellite missions, such as TROPOMI and OCO-2 providing 30 

retrievals of Solar-Induced chlorophyll Fluorescence (SIF) to improve terrestrial biosphere CO2 31 

flux estimates over India. Here, we present high-resolution estimates of Gross Primary Productivity 32 

(GPP) and Net Ecosystem Exchange (NEE) over India on a 0.1°×0.1° grid at a temporal resolution 33 

of 1 hour from 2012 to 2020. These products can be used for various applications such as those 34 

related to carbon cycle (e.g., inverse modelling of CO2), benchmarking terrestrial biosphere models 35 

over the region, and understanding ecosystem responses to climate change. We follow a satellite-36 

based diagnostic data-driven approach using a biosphere model, namely the Vegetation 37 

Photosynthesis and Respiration Model (VPRM) simulating both GPP and NEE, based on light use 38 

efficiency and satellite observations of the near-infrared radiance of vegetation (NIRv). We 39 

calibrate the standard VPRM GPP estimates using SIF-GPP relationship and investigate the model 40 

performance by comparing the simulations with eddy-covariance flux tower measurements. Our 41 

best model predictions are with a mean bias error (MBE) = 2.4 µmol m-2 s-1, root mean squared 42 

error (RMSE) = 3.8 µmol m-2 s-1 and squared correlation coefficient (R2) = 0.56 when evaluating 43 

with observations at a monthly scale over the period from 2012 to 2018. The observed seasonal 44 

anomalies in NEE and GPP range from -4.9 to 8.0 µmol m-2 s-1 and -7.0 to 17.0 µmol m-2 s-1, 45 

respectively, and are well captured by our model. The model simulations are highly correlated with 46 

observations during 2018, the only common year when both EC and SIF observations are available, 47 
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with R2 values of 0.68 and 0.74 for NEE and GPP, respectively. Incorporating the SIF signals in 48 

the vegetation model improves model performance in capturing the seasonality and magnitudes of 49 

GPP, thereby improving the estimates of NEE. We show the influence of soil temperature and soil 50 

moisture on ecosystem respiration and refined the VPRM's ecosystem respiration calculation to 51 

better constrain the fluxes, resulting in simulations closer to the observations. Ecosystem 52 

respiration fluxes are less well constrained than ecosystem productivity fluxes due to the limited 53 

observations. Based on satellite observations and the refined model, the annual NEE and GPP 54 

estimates range from -0.38 Pg C yr-1 to -0.53 Pg C yr-1 (land C sink) and 3.39 Pg C yr-1 to 3.88 Pg 55 

C yr-1, respectively over India for the years from 2012 to 2020. The biospheric flux distribution 56 

over the region is found to be associated with ecosystem heterogeneity, and variations in 57 

precipitation, and soil characteristics at a regional scale. Overall, our results show that the satellite-58 

based SIF data products can potentially inform the ecosystem-scale vegetation responses across 59 

biomes over India. Future improvements in the terrestrial biosphere CO2 flux estimates over India 60 

can be attained through the carbon cycle data assimilation with the availability of both flux and 61 

mixing ratio observations of CO2. 62 

 63 

  64 
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1. Introduction 65 

The terrestrial biosphere is the largest sink of atmospheric CO2. Globally, the net sequestration 66 

capacity of the terrestrial biosphere is ~3 Pg C yr-1, corresponding to approximately a quarter of 67 

the global annual CO2 emissions (Friedlingstein et al., 2022). Because of the vital role of the 68 

terrestrial biosphere in assimilating and exchanging atmospheric CO2 with reservoirs, global 69 

initiatives to reduce greenhouse gas (GHG) emissions have included the active management of the 70 

terrestrial biosphere as a complementary measure for curtailing the emissions (Framework 71 

Convention on Climate Change available at http://www.unfccc.de/resource/cop3.htm) in the 72 

context of current and future climate.   73 

However, the accurate estimation of terrestrial biosphere-atmosphere exchange fluxes at 74 

the scales relevant for climate change mitigation, which is well beyond the scale of single site 75 

observations, is still challenging. Major terrestrial fluxes, includes gross fluxes, Gross Primary 76 

Production (GPP), and Ecosystem respiration (Reco), and their net, Net Ecosystem Exchange 77 

(NEE=Reco-GPP), show considerable spatiotemporal variability owing to the differences in 78 

vegetation class and age, as well as in ecosystem response to the climate, geographic conditions, 79 

and other location-specific environmental factors (van der Meer et al., 2002). Terrestrial biosphere 80 

models can simulate these fluxes at different spatial and temporal scales over the globe (Peylin et 81 

al., 2013; Sitch et al., 2008, 2015; Thompson et al., 2016), however these model estimates often 82 

suffer from multiple sources of uncertainties, which include: the uneven distribution of eddy 83 

covariance flux tower observations worldwide for model validation or calibration, incomplete 84 

representation of vital processes in the model (e.g., drought-related mortality), and the insufficient 85 

understanding of how environmental factors affect atmosphere-biosphere carbon exchange. For 86 

example, the models are constrained with few observations over the Indian subcontinent, resulting 87 

in low confidence in the estimates of fluxes over India despite its important role in the global carbon 88 
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budget. The annual NEE estimates of India from previous studies range from 0 to -0.37 Pg C yr-1 89 

(Nayak et al., 2015; Patra et al., 2011; Rao et al., 2019). The spread among twelve vegetation 90 

models in estimating the annual NEE of India for 2017 is 0.2 Pg C yr-1, which is close to the 91 

magnitude of the Indian terrestrial sink estimation itself (Sitch et al., 2015), leaving the country’s 92 

carbon flux estimates primarily uncertain.  93 

Atmospheric CO2 measurements, including those from satellite instruments, can be utilised 94 

in an atmospheric inversion modelling framework to evaluate and improve the terrestrial biosphere 95 

estimates of India. Simultaneously, prior estimates of biospheric fluxes with reasonable 96 

spatiotemporal distributions are advantageous for the atmospheric inverse modelling to obtain the 97 

optimal solution to the inverse problem with an improved confidence level (Michalak, 2004; 98 

Rayner et al., 1999). The choice of prior and their spatiotemporal structures can be critical when 99 

solving an ill-posed inverse problem (Rodgers, 2000). Previous studies have relied on the Light 100 

Use Efficiency (LUE) model CASA (Carnegie Ames Stanford Approach;  Gamon et al. (1995)) 101 

and TRENDY model ensembles (Sitch et al., 2015) for estimating the spatiotemporal patterns of 102 

biospheric CO2 fluxes over southeast Asia covering India (Cervarich et al., 2016; Patra et al., 2011; 103 

Peylin et al., 2013) and for India specifically (Goroshi et al., 2014; Nayak et al., 2010, 2013). 104 

However, these models are employed at coarse resolution, e.g., 2′✕2′ spatial and monthly temporal 105 

resolution for CASA, and TRENDY with sub-daily temporal resolution (with output available 106 

monthly) and varying spatial resolution with respect to the model, typical 0.5° or above (see Table 107 

3 for further details), with limited model validation against observations over India. This leads to 108 

inadequate capturing of the spatiotemporal distribution of fluxes, resulting in varied estimates 109 

among studies (Cervarich et al., 2016; Patra et al., 2013; Rao et al., 2019). 110 
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Recent advancements in satellite instruments, measuring Solar-Induced chlorophyll 111 

Fluorescence (SIF) from space can be helpful, especially for the region with severe gaps in ground-112 

based in-situ observations. These satellite-based SIF retrievals, representing re-emitted solar 113 

radiation at the long wavelength range (650–850 nm) by the chlorophyll-a pigment, can be utilised 114 

to improve the prior estimates of carbon uptake through photosynthesis at regional to global scales 115 

(Frankenberg et al., 2011; Gu et al., 2019; Köhler et al., 2018; Li et al., 2018; Smith et al., 2018; 116 

Sun et al., 2017; Yu et al., 2019). Since the re-emission process (fluorescence) by chlorophyll is 117 

linked to the primary steps in photosynthesis, SIF can be used as the proxy for photosynthesis 118 

(Parazoo et al., 2018; Sun et al., 2018; Yu et al., 2019). Only ~2% of the incident solar energy 119 

absorbed by green plants is re-emitted by chlorophyll as fluorescence. Thus, SIF retrievals from 120 

space need advanced spectrometers with a high spectral resolution and a high Signal-to-Noise Ratio 121 

(SNR) due to narrow Fraunhofer lines and weak signals. However, SIF observations are prone to 122 

systematic errors which are associated with the strength and extraction range of the signal (Joiner 123 

et al., 2016; Köhler et al., 2015; Li et al., 2018). The SIF-GPP relationship can become weak in 124 

certain environmental conditions such as drought (e.g., Shekhar et al. (2022) and variable within 125 

certain biome based on leaf physiology (e.g., Wu et al. (2022)). The first satellite-based global 126 

retrievals of SIF are achieved by the Fourier transform spectrometer (fluorescence spectrum at 127 

755–775 nm) on board the Greenhouse gases Observing SATellite (GOSAT). Other satellite 128 

missions that provide SIF retrievals at different spatial and temporal resolutions are GOME-2 129 

(Global Ozone Monitoring Experiment 2; Frankenberg et al. (2011)), OCO-2 (Orbiting Carbon 130 

Observatory 2; Sun et al. (2018)), OCO-3 (Orbiting Carbon Observatory 3; Taylor et al. (2020)), 131 

and TROPOMI (TROPOspheric Monitoring Instrument; Guanter et al. (2021)). 132 

This study presents high-resolution terrestrial biosphere CO2 flux estimates over India on a 133 

0.1°×0.1° grid at a temporal resolution of 1 hour for the period from 2012 to 2020. These high-134 
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resolution biospheric flux products can be used in the near-future as prior estimates in the inverse 135 

data assimilation of CO2 or can be coupled with high-resolution transport models for understanding 136 

the atmospheric CO2 transport or variability associated with natural fluxes. We follow a diagnostic 137 

data-driven approach using a biosphere model based on light-use efficiency and satellite 138 

observations of SIF and demonstrate their potential to capture the spatiotemporal variations of 139 

biosphere fluxes. The gridded NEE, GPP and Reco are initially generated by utilising the diagnostic 140 

satellite-based biosphere model, namely Vegetation Photosynthesis and Respiration Model 141 

(VPRM; Mahadevan et al. (2008)). Previously, Thilakan et al. (2022) have generated the VPRM 142 

simulations of terrestrial biosphere fluxes (NEE, GPP, and Reco) over the Indian subcontinent at a 143 

spatial resolution of 0.1°×0.1° and a temporal resolution of 1 hour using uncalibrated model 144 

parameters. These VPRM fields are revised by improving the ecosystem uptake across different 145 

biomes using SIF retrievals from OCO-2 and TROPOMI, which provide much finer resolutions 146 

and higher data density over the region than those from previous missions (e.g., GOSAT and 147 

GOME-2). As we expect a distinct contribution of soil moisture stress in ecosystem respiration 148 

signals, we also re-define Reco calculation in the VPRM (originally as a linear function of air 149 

temperature) to include the influence of both, soil temperature and soil moisture so that the NEE 150 

estimates can be improved. A recent study over the Eastern USA and Canada has also showed 151 

improvements in Reco simulations when including the influence of changing foliage, water stress 152 

and non-linear dependence of temperature (Gourdji et al., (2022). 153 

Variations in temperature, radiation, and resource availability (e.g., water and soil nutrients) 154 

influence plant phenology and ecosystem stress levels, contributing to seasonal anomalies in GPP 155 

and NEE. It remains challenging to accurately represent the seasonal dynamic attributes of 156 

ecosystem fluxes and simulate their associated variability.  In this study, we assess the usefulness 157 

of the SIF signals to capture the seasonality and magnitudes of GPP in the model by comparing 158 
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them with eddy-covariance flux tower measurements from India for the period from 2012 to 2018. 159 

We further investigated the influence of environmental factors and processes on modelled 160 

respiration at the regional level. We assess the VPRM against estimates from TRENDY model 161 

ensemble and Carbon Tracker inversion. By improving the diagnostic biospheric model and 162 

generating simulations at a high resolution, comparing the derived flux components from multiple 163 

terrestrial models, and evaluating the improved model against observations, we investigate the 164 

spatial and temporal variations of biosphere fluxes in different ecosystems over India on seasonal 165 

and annual scales. 166 

2. Methods 167 

For deriving improved estimates of terrestrial biosphere CO2 fluxes across the ecosystem 168 

over India: ⅰ) we implement and customise the standard VPRM for a domain covering India (5°N 169 

to 40°N,  66°E  to 100°E, Fig. 1 and Fig. S1) and perform the simulations of NEE, GPP and Reco 170 

fluxes (Sect. 2.1); ⅱ) we derive ecosystem-specific linear relations between SIF and GPP using SIF 171 

retrievals based on OCO-2 and TROPOMI (detailed in Sect. 2.2); ⅲ) we apply the above satellite-172 

derived information in the VPRM to improve the estimates of the ecosystem uptake (Sect. 2.2); 173 

and iv) we further modify the VPRM-derived ecosystem respiration to include the influence of soil 174 

temperature and soil moisture specific to vegetation classes (Sect. 2.3). 175 

We compare the standard and improved VPRM simulations with the TRENDY model 176 

ensemble and other model simulations (Sect. 2.4) and evaluate the simulations with the flux tower 177 

observations (Sect. 2.5). In this section, we also describe the approaches used for overall analyses 178 

for assessing the model's performance and deriving the spatiotemporal characteristics of fluxes 179 

(Sect. 2.6). An overview of the datasets used in the study is presented in Table 1. 180 

2.1 VPRM model implementation 181 
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The standard VPRM employs a remote sensing-based scheme to obtain high-resolution 182 

estimates of NEE, GPP and Reco, using Enhanced Vegetation Index (EVI) and Land Surface Water 183 

Index (LSWI), derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 184 

measurements onboard the NASA's Terra and Aqua satellites. We use the MODIS tiles of the 185 

surface reflectance dataset (MOD09A1) on sinusoidal grids at a 500 m spatial resolution with an 186 

8-day interval to generate EVI and LSWI fields. Specifically, we use the red band (band 1), the 187 

near-infrared band (band 2), the blue band (band 3) for deriving EVI, and the near-infrared band 188 

(band 2) and the shortwave infrared band (band 6) for deriving LSWI. For representing different 189 

biomes in VPRM, we use vegetation classification based on SYNMAP (Jung et al., 2006). 190 

In VPRM, NEE for each vegetation class is calculated based on GPP (light-dependent term) 191 

and Reco (light-independent term). NEE is assessed based on the sign convention where negative 192 

values indicate CO2 uptake and positive values represent CO2 release into the atmosphere. 193 

𝑁𝐸𝐸 =  −𝐺𝑃𝑃 + 𝑅𝑒𝑐𝑜                (1) 194 

𝐺𝑃𝑃 =  𝜆✕𝑃𝑠𝑐𝑎𝑙𝑒✕𝑊𝑠𝑐𝑎𝑙𝑒✕𝐹𝑃𝐴𝑅𝑃𝐴𝑉✕
1

[1+(𝑆𝑊𝑑𝑜𝑤𝑛/𝑆𝑊𝑑𝑜𝑤𝑛0)]
✕𝑆𝑊𝑑𝑜𝑤𝑛✕𝑇𝑠𝑐𝑎𝑙𝑒           (2) 195 

𝑅𝑒𝑐𝑜  =  𝛼✕𝑇𝑎𝑖𝑟 + 𝛽                 (3)196 

 where 𝜆 is the factor representing light use efficiency. FPARPAV is the fraction of 197 

photosynthetically active radiation available to the photosynthetically active part of vegetation 198 

which is derived from MODIS EVI. Tscale, Pscale and Wscale are dimensionless scalars representing 199 

the sensitivity of plants to changes in temperature, phenology, and water availability, respectively. 200 

Tscale is derived using ecosystem-specific temperature as follows: 201 

𝑇𝑠𝑐𝑎𝑙𝑒 =
 (𝑇− 𝑇𝑚𝑖𝑛) (𝑇−𝑇𝑚𝑎𝑥)

 (𝑇− 𝑇𝑚𝑖𝑛) (𝑇−𝑇𝑚𝑎𝑥)−(𝑇−𝑇𝑜𝑝𝑡)2 
                (4) 202 

where Topt, Tmax, Tmin represent optimal, maximum, and minimum temperatures for photosynthesis 203 

activity for each vegetation class. Photosynthesis is assumed to be absent above or below Tmax and 204 

https://doi.org/10.5194/egusphere-2023-817
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



10 
 

 

Tmin, respectively. Tair is the hourly air temperature at 2 m prescribed from ERA5 (Dee et al., 2011). 205 

In this study, we set Topt, Tmin and Tmax to 20 °C, 0 °C and 45 °C, respectively. We utilise Pscale to 206 

account for the effects of leaf age on photosynthesis; hence it is set to 0 for water bodies and 207 

unclassified vegetation classes. Pscale is assumed to always be 1 for the Evergreen vegetation class. 208 

For all vegetation classes other than Evergreen, we compute Pscale as a function of LSWI except at 209 

the time of maximum greenness (representing full leaf expansion) as follows: 210 

𝑃𝑠𝑐𝑎𝑙𝑒  =
1+𝐿𝑆𝑊𝐼

2
                  (5) 211 

For the maximum greenness time, Pscale is set to 1. 212 

 Wscale is used to represent the effect of water stress on photosynthesis and is derived as follows: 213 

𝑊𝑠𝑐𝑎𝑙𝑒  =  
1+𝐿𝑆𝑊𝐼

1+𝐿𝑆𝑊𝐼𝑚𝑎𝑥
                                               (6) 214 

PAR is the photosynthetically Active Radiation, which is calculated based on incoming shortwave 215 

solar radiation (SWdown; µmol m-2 s-1). SWdown is prescribed from ERA5. 216 

In Eq. (3), Tair is constrained with a threshold value (Ttshld), and Tair below Ttshld is set to 217 

Ttshld for accounting for ecosystem respiration in winter times. Negative values of Reco are set to 0. 218 

The VPRM parameters, 𝜆, SWdown0, 𝛼, and  𝛽 are usually calibrated against site-level eddy 219 

covariance measurements across different ecosystem types by minimising the least squares 220 

between VPRM fluxes and eddy flux tower observations. This optimization procedure with discrete 221 

tower locations representing major vegetation classes is expected to enhance the model 222 

performance for the region of interest (Dayalu et al., 2018; Luus & Lin, 2015). Due to the lack of 223 

availability of sufficient observational eddy flux measurements for calibration for India, we use the 224 

VPRM parameters that were originally optimised against the Amazonian Tropical biomes (Botía 225 

et al., 2022) but modified as given in Table 2. We acknowledge that these parameters are not 226 
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necessarily representing subtropical Indian biomes, which may lead to reduced model performance 227 

compared to other VPRM model simulations for regions like Europe or North America.  228 

2.2 Ecosystem uptake refinements using SIF 229 

As the reliability of the standard VPRM simulations depends on the model parameters, 230 

which are currently not specific to Indian biomes, we use satellite products based on OCO-2 and 231 

TROPOMI deriving the relationships between SIF and GPP across different vegetation classes and 232 

utilise them to improve the VPRM estimates of GPP.  233 

We use two SIF products: GOSIF_v2 (http://data.globalecology.unh.edu/; Li & Xiao  234 

(2019a)), and the TROPOMI based product TROPOSIF (http://ftp.sron.nl/open-access-data-235 

2/TROPOMI/tropomi/sif/v2.1/l2b/; Köhler et al. (2018)). GOSIF_v2 (hereafter referred to as 236 

GOSIF) provides SIF retrievals at spatial and temporal resolutions of 0.05° and 8-day. The spatial 237 

discontinuity in the original daily OCO-2 retrievals is improved in GOSIF using a machine learning 238 

approach based on MERRA-2 meteorological fields, MODIS reflectance and landcover data, 239 

preserving the observed variability of discrete SIF retrievals, as explained in (Li & Xiao, 2019a).  240 

In addition to SIF products, we also use the GPP product derived from OCO-2 SIF (Li & Xiao, 241 

2019b), namely GOSIF_GPP_v2, providing 8-day GPP at 0.05° grid resolution for model 242 

comparison (see details below). Hourly SIF retrievals are available from TROPOMI (hereafter 243 

referred to as TROPOSIF) at 0.1° spatial resolution from May 2018 onwards. 244 

We assumed GPPSIF (i.e., GPP derived from SIF) to be varied linearly with SIF (Sun et al., 245 

2017; Zhang et al., 2016). The SIF-GPP relationship across the vegetation classes in VPRM is 246 

derived as follows: 247 

𝐺𝑃𝑃𝑆𝐼𝐹(𝑣𝑔) = 𝛾𝑣𝑔✕𝑆𝐼𝐹𝑣𝑔 + 𝐶𝑣𝑔               (7) 248 
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Here 𝛾𝑣𝑔 is the factor converting SIF to GPP and 𝐶𝑣𝑔 represents the constant, specific to each biome 249 

𝑣𝑔. The biome specific 𝛾𝑣𝑔  and 𝐶𝑣𝑔 over India are derived from the 8 day averaged OCO-2 derived 250 

GPP (GOSIF_GPP_v2) and SIF (GOSIF) products that followed the optimization procedure as 251 

described in Li & Xiao, (2019b), which are separated for each vegetation classes, denoted as 252 

𝐺𝑃𝑃𝑂𝐶𝑂2(𝑣𝑔) and 𝑆𝐼𝐹𝑂𝐶𝑂2(𝑣𝑔). 𝛾𝑣𝑔  and 𝐶𝑣𝑔 are thus the linear slope between 𝐺𝑃𝑃𝑂𝐶𝑂2(𝑣𝑔) and 253 

𝑆𝐼𝐹𝑂𝐶𝑂2(𝑣𝑔), and the y-intercept respectively. When using TROPOSIF, the factor of difference 254 

between GOSIF and TROPOSIF values (𝑆𝐺𝑂𝑆𝐼𝐹(𝑣𝑔)) is taken in to account to derive SIF-GPP 255 

relationship: i.e., 𝛾𝑇𝑅𝑂𝑃𝑂𝑆𝐼𝐹,𝑣𝑔 =  𝛾𝑣𝑔/𝑆𝐺𝑂𝑆𝐼𝐹(𝑣𝑔) and 𝐶𝑇𝑅𝑂𝑃𝑂𝑆𝐼𝐹,𝑣𝑔 =  𝐶𝑣𝑔/𝑆𝐺𝑂𝑆𝐼𝐹(𝑣𝑔) (see Sect. 256 

3.1 for more details).  257 

The distribution of GPP derived by the VPRM (𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑆𝑇𝐷) is improved by up-scaling it as 258 

follows: 259 

𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑚𝑜𝑑(𝑖, 𝑗, 𝑡, 𝑣𝑔) = 𝜂𝑣𝑔✕𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑆𝑇𝐷(𝑖, 𝑗, 𝑡, 𝑣𝑔) + Ɛ           (8) 260 

i, j, and t correspond to latitude, longitude, and time respectively. 𝜂𝑣𝑔  is the scaling factor 261 

corresponding to the specific vegetation class, applied to upscale 𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑆𝑇𝐷 to include the 262 

information provided by SIF. 𝜂𝑣𝑔   is thus: 263 

𝜂𝑣𝑔 =  
Ʃ(𝐺𝑃𝑃𝑆𝐼𝐹(𝑣𝑔)×𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑆𝑇𝐷(𝑣𝑔))

Ʃ𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑆𝑇𝐷(𝑣𝑔)
2                          (9) 264 

2.3 Soil moisture and temperature in respiration model equation 265 

The soil properties can influence both autotrophic and heterotrophic respiration, especially 266 

over a region with distinct wet and dry seasons (Flexas et al., 2006; Meir et al., 2008; Molchanov, 267 

2009). Since the standard VPRM constructs ecosystem respiration as a simple linear function of 268 

air temperature, here we assess the impact of soil temperature and soil moisture (SM/ST) content 269 

in ecosystem respiration and refine the formulation accordingly. We utilise the SM/ST fields from 270 
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the high-resolution land data assimilation system (HRLDAS; Chen et al. (2007)) based on the Noah 271 

land surface model (LSM), providing 3 hourly fields at 4 km spatial resolution for the period 2012 272 

to 2017. As this data product does not cover our analysis period, we also use the SM fields from 273 

GLEAM v3 (https://www.gleam.eu/#datasets; Martens et al. (2017)) model and ST from ERA5 274 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview; Hersbach 275 

et al. (2020)) reanalysis product (see Table 1).  276 

The distribution of Reco derived by the standard VPRM is re-defined as follows: 277 

𝑅𝑒𝑐𝑜,𝑣𝑝𝑟𝑚,𝑚𝑜𝑑(𝑖, 𝑗, 𝑣𝑔) = 𝑇𝑠,𝑣𝑔. 𝑆𝑇(𝑖, 𝑗, 𝑣𝑔) + 𝑀𝑠,𝑣𝑔. 𝑆𝑀(𝑖, 𝑗, 𝑣𝑔) + 𝑅𝑣𝑔. (𝛼𝑣𝑔. 𝑇𝑎𝑖𝑟(𝑖, 𝑗, 𝑣𝑔) +278 

𝛽𝑣𝑔)                                                    (10) 279 

where, 𝑇𝑠,𝑣𝑔, 𝑀𝑠,𝑣𝑔 and 𝑅𝑣𝑔 represent the vegetation specific parameters derived using the multi-280 

linear regression with soil temperature (ST), soil moisture (SM), and standard VPRM respiration 281 

against observation-based respiration fluxes. Here, we used two available observation-based 282 

datasets to calibrate respiration model parameters. The terrestrial vegetation fluxes (specifically 283 

ecosystem respiration fluxes) derived from 1) FLUXNET 284 

(https://db.cger.nies.go.jp/DL/10.17595/20200227.001.html.en, see Table 1, Zeng, Jiye (2020)) 285 

and 2) FLUXCOM (https://www.bgc-jena.mpg.de/geodb/projects/DataDnld.php, see Table 1, 286 

Jung et al. (2020)) observational database are used for parameter optimization. Table 2 provide the 287 

details of the vegetation specific model parameters derived for refining Reco. 288 

2.4 Other model products for comparison 289 

For the inter-model comparison and performance assessment, we use simulated surface 290 

CO2 fluxes from process-based terrestrial biosphere models commonly used for carbon cycle 291 

studies and the global inverse modelling system providing flux estimates consistent with 292 

atmospheric mixing ratio observations.  293 
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We have used process-based simulations generated by 14 Dynamic Global Vegetation 294 

Models (DGVM’s) employed in the TRENDYv10 model ensemble for the Indian region (see Table 295 

3). All land surface models under TRENDY were driven with common input/forcing data from 296 

1901 to 2020 and followed a common simulation protocol. Model simulations include climate 297 

forcing from CRU+CRU-JRA (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/) monthly and 6 298 

hourly historical forcing for the period 1901 to 2020, ice core data from 1700 to 2020 and land-use 299 

change data from Hyde database for the period 850 to 2021. Specifically, this study uses TRENDY 300 

S3 simulation products, which consider the impact of atmospheric CO2 concentration changes, 301 

climate change, and land cover changes on the global terrestrial ecosystem GPP (see 302 

https://blogs.exeter.ac.uk/trendy/). The TRENDY models used in this study differ in spatial 303 

resolution, but each provides fluxes at a monthly temporal resolution.  304 

We use inverse model estimates of fluxes provided by the Carbon Tracker (CT2019B, 305 

hereafter referred to as CT) modelling system 306 

(https://gml.noaa.gov/ccgg/carbontracker/download.php; Peters et al. (2007)). The prior fluxes for 307 

the biospheric module of CT were from a diagnostic CASA biogeochemical model based on the 308 

remote-sensed monthly fraction of Photosynthetically Active Radiation (fPAR). Three hourly 309 

gridded estimates of optimised biospheric CO2 fluxes with a horizontal resolution of 1°×1° over 310 

the Indian domain for the years 2016 to March 2019, available at 311 

https://gml.noaa.gov/ccgg/carbontracker/ are used in this study. 312 

All these gridded flux estimates used for comparing spatial patterns are aggregated or 313 

disaggregated to a common spatial and monthly temporal resolution for comparison (see Sect. 2.6). 314 

2.5 EC flux tower observations for model evaluation  315 

For the model evaluation, we use eddy covariance observations of terrestrial biosphere CO2 316 

fluxes from a flux tower located at Betul (21°51՚46.84՚՚ N latitude and 77°25՚33.67՚՚ E longitude, 317 
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Madhya Pradesh; Jha et al. (2013)) in the Central Indian state of Madhya Pradesh. Betul tower 318 

(commissioned in November 2011) is 507 m above mean sea level inside the mixed Deciduous 319 

forest where a tropical climate prevails. Further descriptions of the site and details of the 320 

instrumentation from Betul can be found in (Jha et al., 2013; Rodda et al., 2021). Table 4 provides 321 

an overview of the characteristics of the flux tower site, and Fig. 1 shows the location map of the 322 

flux towers under this study. 323 

The half-hourly data from Betul is aggregated into hourly, daily, monthly and annual time 324 

scales for this analysis. All the available data from 2012 to July 2019 is used in this study (more 325 

details can be seen in Rodda et al. (2021)). There exist data gaps for specific years. For the 326 

evaluation analyses, model simulations are compared to observations at hourly, daily and monthly 327 

timescales. We estimate mean biases error (MBE), root mean squared error (RMSE), and squared 328 

correlation coefficient (R2) to assess the model’s efficiency in predicting the magnitude and 329 

variability.   330 

2.6 Spatial and Biome-specific Pattern analysis 331 

Here, we use flux simulations generated by refined VPRM, TRENDY model ensemble and 332 

CT, re-gridded to a spatial resolution of 1°✕1°, to examine spatial gradients and seasonal variations 333 

of biospheric fluxes. Since some ecosystems can be more biologically productive than others, we 334 

aggregated flux patterns separately for each vegetation class based on SYNMAP land cover types 335 

for estimating each ecosystem's productivity in capturing atmospheric CO2. We have also 336 

considered different periods, such as pre-monsoon (March to May), monsoon (June to September) 337 

and post-monsoon (October to December), to assess the seasonally varying biome productivity. 338 

We use improved VPRM fluxes at hourly time scales for these ecosystem-based analyses. 339 

3. Results and Discussion 340 
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3.1 Spatial and temporal patterns of SIF over Indian biomes 341 

As explained in Sect. 2.2, we utilise satellite retrievals of SIF from OCO-2 (GOSIF) and 342 

TROPOMI (TROPOSIF) to improve VPRM-derived GPP (𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑆𝑇𝐷). Here, we present biome-343 

specific analyses of SIF products, deducing their spatial and temporal characteristics over Indian 344 

biomes from 2018 to 2020. For the spatial analysis, the monthly and annual mean GOSIF data have 345 

been regirdded to 0.1°✕0.1°. Both 8-day averaged SIF products agree with each other across 346 

biomes with R2 ranging from 0.45 to 0.62 except for Grassland (R2= 0.22) (see Table S1). A similar 347 

good agreement between SIF retrievals from OCO-2 and TROPOMI on global scale is also 348 

reported by Köhler et al. (2018) and Guanter et al. (2021). 349 

Annually, the highest SIF values (GOSIF, mean/min/max: 0.28/0.03/0.44 mW m-2 sr-1 nm-350 

1 and TROPOSIF, mean/min./max: 1.18/0.17/1.93 mW m-2 sr-1 nm-1 for the year 2019) are 351 

exhibited by Evergreen forest, and the lowest values are observed (GOSIF, mean/min/max: 352 

0.07/0/0.24 mW m-2 sr-1 nm-1, TROPOSIF, mean/min/max: 0.41/0/1.61 mW m-2 sr-1 nm-1) over the 353 

desert regions of Rajasthan where Shrubland vegetation dominates. Over the years (2019 to 2020), 354 

based on GOSIF, the rates of an annual increase in SIF value for Cropland, Savanna, Shrubland, 355 

Deciduous forest, and Evergreen forest are in the range of 0.01 mW m-2 sr-1 nm-1 to 0.23 mW m-2 356 

sr-1 nm-1, with Grassland showing no enhancement. Mixed Forest biomes exhibit a negative growth 357 

rate of -0.005 mW m-2 sr-1 nm-1. Like GOSIF, TROPOSIF also indicates zero growth rate for 358 

Grasslands, while other ecosystems show an annual growth rate between 0.04 mW m-2 sr-1 nm-1 to 359 

0.11 mW m-2 sr-1 nm-1. On an annual scale, large spatial variability in the SIF values is exhibited 360 

by Shrubland and the least by Savanna. Overall, we find that TROPOSIF values (based on SIF 361 

retrievals at 735 nm) are ~4 times greater than GOSIF (based on SIF retrievals at 757 nm) over the 362 

study region for all the biomes except for Grassland, where the biome-specific TROPOSIF is ~3 363 
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times larger than GOSIF. Hence, we scaled up GOSIF and the derived scaling factors are specific 364 

to each biome (see Table S1). A similar up scaling of OCO-2 SIF is also done by Köhler et al. ( 365 

2018) and Guanter et al. (2021) for comparing the fields with TROPOSIF on a global scale. In Fig. 366 

2, we compare scaled GOSIF and TROPOSIF across different biomes. 367 

We find that the spatial heterogeneity observed in SIF emission is directly related to the 368 

vegetation class and the availability of rainfall. For example, biomes in Central, North East and 369 

South West India, where significant rainfall occurs during the summer monsoon period (June - 370 

August), show higher fluorescence than the rest of the region (see Fig. 3). All vegetation classes 371 

exhibit large seasonal variability with a seasonal maximum from June to July and a seasonal 372 

minimum from March to April (see Fig. 4), indicating changes in the rate of photosynthesis with 373 

rainfall availability with correlation values ranging from 0.78 to 0.93. A similar high positive 374 

correlation between precipitation and SIF is indicated by Albright et al. (2022) over the Amazon 375 

region. No significant influence of rainfall is found in the seasonality over Grassland (R2 = <0.4). 376 

Cropland and Shrubland vegetation show the primary maximum with the onset of monsoon (June-377 

July) and the secondary maximum during winter months (January-February). These two seasonal 378 

maxima are consistent with the prominent crop-growing seasons of India (Nayak et al., 2010), 379 

which are associated with enhanced primary productivity. Compared to GOSIF, TROPOSIF better 380 

exhibits the double peak in SIF temporal distribution for both ecosystems over this region.   381 

3.2 SIF-GPP relationship across different biomes 382 

We have derived SIF-GPP relationship similar to Li & Xiao (2019b) using up scaled GOSIF 383 

and 𝐺𝑃𝑃𝑆𝐼𝐹 across different biomes over India, as mentioned in Sect. 2.2 (see Table 5). Li & Xiao 384 

(2019b) used linear relationship between GOSIF flux tower network of observations (FLUXNET; 385 

Baldocchi et al. (2001)) based GPP to map GPP globally. Our derived scalars for converting SIF 386 

to GPP are different from Li & Xiao (2019b) due to the differences in Indian biomes, their 387 
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classifications, and the up-scaling of the GOSIF product (see Table 5). The derived scalars for 388 

converting SIF to GPP range from 4.80 to 7.84 mW m-2 sr-1 nm-1/µmol m-2 s-1 for different biomes. 389 

While both SIF patterns are in good agreement with VPRM-derived GPP over most of the 390 

vegetation classes under our study (e.g., R2 = 0.77 to 0.85 for Shrubland), we find a weak 391 

correlation between SIFs and standard VPRM-derived GPP for Savanna (R2 = 0.09 to 0.36). The 392 

above correlation values are based on the annually averaged data analysis from 2018 to 2019 (not 393 

shown).  394 

3.3 Model evaluation with eddy covariance flux observations 395 

Figure 5 shows the inter-annual variations in monthly averaged fluxes of GPP, Reco, and 396 

NEE over Betul from 2012 to 2018. A significant data gap exists during 2014 and 2017. Since 397 

Betul is a tropical Deciduous forest, the strong seasonality exhibited by the observed fluxes can be 398 

associated with changes in plant physiology throughout the year. Based on Betul observations, 399 

Rodda et al. (2021) reports a net sink at site level with an annual NEE, GPP and Reco of -524 ± 40 400 

g C m-2 yr-1, 3358 ± 167 g C m-2 yr-1, and 2834 ± 157 g C m-2 yr-1, respectively. While observed 401 

NEE shows positive values (representing carbon release to the atmosphere) during summer (March 402 

- June), the ecosystem uptake was observed (negative NEE values) for the rest of the year (July - 403 

February). Seasonal maxima for GPP range from 19 µmol m-2 s-1 to 25 µmol m-2 s-1 from July to 404 

September due to peak photosynthetic activity associated with optimal water and moisture 405 

availability. The forest site receives rain from June onwards, with maximum precipitation during 406 

July (South West monsoon period, based on TRMM precipitation data). However, the ecosystem 407 

productivity is less in June due to a shortage in photosynthetically active solar radiation owing to 408 

cloud cover, as seen from satellite images (https://www.mosdac.gov.in/). Also, the transition in 409 

vegetation development from dry summer to wet periods occurs during the early monsoon month 410 

(June). The availability of rainfall and radiation enhances plant productivity at the site, Rodda et 411 
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al. (2021) noted. The variability in seasonal maxima over the year can thus be associated with the 412 

inter-annual variability of the summer monsoon. Ecosystem productivity reaches its annual 413 

minimum during March and April (1 µmol m-2 s-1 to 3 µmol m-2 s-1) due to the leaf shedding of 414 

Deciduous vegetation during summer. Ecosystem respiration showed two peaks, a primary peak 415 

during early monsoon months (June & July) and a secondary peak during late monsoon months 416 

(August & September). These respiration peaks are associated with increased air temperature when 417 

autotrophic respiration is expected to increase and enhanced soil microbial respiration when 418 

attaining sufficient soil moisture. An increase in vegetation greenness with water availability also 419 

enhances autotrophic respiration. A sharp fall in Reco after the primary maxima can likely be due 420 

to the decrease in soil respiration due to water logging associated with enhanced precipitation 421 

creating anoxic conditions and limiting microbial activity in the area (Han et al., 2018). The 422 

conditions become favourable for autotrophic and heterotrophic respiration during post-monsoon 423 

(enhanced vegetation greenness and optimal soil moisture content), resulting in the observed 424 

secondary maximum. We find weak ecosystem respiration from November to May (2 µmol m-2 s-425 

1 to 7 µmol m-2 s-1) owing to the leaves shedding and reduced soil respiration, limited by dry soil. 426 

On comparing observations with model simulations, standard VPRM (hereafter referred to 427 

as VPRMSTD) shows better agreement in predicting the seasonality in observed monthly averaged 428 

NEE fluxes (R2 = 0.59) than CT (R2 = 0.24) and TRENDY (R2 = 0.45), but with a significant 429 

underestimation of NEE fluxes at a monthly scale (see Table 6).  The model bias increases from 430 

August to December (MBE = 4.83 µmol m-2 s-1 and RMSE = 5.0 µmol m-2 s-1) compared to other 431 

periods. Note that we have used the TRENDY model ensemble for the comparison, and the 432 

variation among TRENDY model simulations for NEE (as calculated by the standard deviation 433 

from the ensemble mean over the seven years) ranges from -2.84 µmol m-2 s-1 to 1.80 µmol m-2 s-434 

1
 over Betul. Similar to NEE, the model predicted the monthly mean variations in GPP reasonably 435 
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well (R2 = 0.71), but with considerable bias (MBE = -6.7 µmol m-2 s-1, RMSE = 8.3 µmol m-2 s-1). 436 

The model-observation bias for GPP is found to be high during productive months (June-437 

December). Previous studies have shown the underestimation of GPP when MODIS-derived 438 

products are used for GPP estimation (e.g., Zhang et al., 2008). The GPP underestimation by 439 

VPRMSTD can be thus related to the usage of MODIS reflectance products. Overall, VPRMSTD 440 

captures the seasonal pattern in NEE and GPP compared to other biospheric models with different 441 

model structures, such as the inversion product CT and the ensemble of process-based models 442 

TRENDY.  443 

We further investigated reducing the model-observation bias in the VPRMSTD model.  In 444 

addition to standard datasets in VPRMSTD, we utilised GPPSIF products, soil moisture and soil 445 

temperature to improve GPP and Reco simulations. Incorporating SIF in simulating the VPRM GPP 446 

has noticeably improved the ability of the model to capture the observed seasonal variability (see 447 

Fig. 5). Both GPPGOSIF and GPPTROPOSIF show good agreement in capturing the seasonal variations 448 

(R2 = 0.65 to 0.68), with values closer to the observation. Though SIF based GPP products are 449 

closer than 𝐺𝑃𝑃𝑣𝑝𝑟𝑚,𝑆𝑇𝐷 to the observed GPP in terms of magnitude, the observed patterns in GPP 450 

are better captured by VPRMSTD (R2 >0.7) than other products (see Sect. 3.3). This shows the 451 

potential of VPRM model to predict the observed variations in GPP, leading to calibrate VPRM 452 

model parameters rather simply using GPPGOSIF and GPPTROPOSIF in our NEE estimations. VPRM 453 

GPP modified based on GOSIF (hereafter referred to as VPRMGOSIF), and VPRM modified based 454 

on TROPOSIF (hereafter referred to as VPRMTROPOSIF) are evaluated with observations, and the 455 

inter-comparison with VPRMSTD shows remarkable improvement in the model performance for 456 

GPP with a significant reduction in RMSE and MBE values (see Fig. 5a and Table 6). For GPP, 457 

the bias reduced significantly for refined models (RMSE: VPRMGOSIF = 4.9 µmol m-2 s-1, and 458 
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VPRMTROPOSIF = 4.3 µmol m-2 s-1 and MBE: VPRMGOSIF = -3.3 µmol m-2 s-1, VPRMTROPOSIF = -2.6 µmol 459 

m-2 s-1). The observed seasonal anomalies in GPP (variability after subtracting the decadal mean), 460 

associated with ecosystem stress and phenology, ranges from -7.0 to 17.0 µmol m-2 s-1 with a 461 

standard deviation of 6.3 µmol m-2 s-1. These variations are well captured by our model with a 462 

mean bias of -1.8 µmol m-2 s-1. The above levels of model improvements confirm the potential of 463 

using high-resolution satellite-derived SIF in capturing the seasonal cycle of GPP at an ecosystem 464 

level. Hence, our results are broadly consistent with Qiu et al. (2020); Joiner et al. (2018); and 465 

Wood et al. (2017). As a direct proxy for photosynthesis, SIF is expected to provide improved 466 

estimates than conventional vegetation indices (Zhang et al., 2016) (e.g., EVI, LSWI) used in 467 

VPRM GPP estimation.   468 

The VPRMSTD model fails to capture the seasonality in respiratory fluxes (R2 = 0.02) for 469 

the period from 2012 to 2018, with a significant underestimation of ecosystem respiration by -3.5 470 

µmol m-2 s-1 (RMSE values: ~5.7 µmol m-2 s-1). To improve the model performance, we performed 471 

three sets of modified VPRM simulations for Reco, utilising observation-based datasets in addition 472 

to those already used for VPRMSTD Reco simulations, such as 1. ST, 2. SM, and 3. both ST and SM. 473 

Reco modified based on various datasets (e.g., HRLDAS ST/SM, ERA5 ST, and GLEAM SM) 474 

provide similar results. Here we present the analysis using ERA5 ST and GLEAM SM, considering 475 

the large temporal coverage of the data. VPRM respiration modified using SM (Fig. 5b) shows 476 

much improvement in model prediction (R2: 0.80) than when ST alone is used. VPRM respiration 477 

modified using both SM and ST (i.e., VPRMMOD) shows slightly better improvement than using 478 

only SM. The model-observation bias reduced considerably, with RMSE reducing from 5.7 µmol 479 

m-2 s-1 to 1.9 µmol m-2 s-1 and MBE reducing from -3.5 µmol m-2 s-1 to -0.01 µmol m-2 s-1. In general, 480 

incorporating the soil temperature and soil moisture in addition to air temperature in the ecosystem 481 

respiration calculation in the VPRM improves the model's ability to simulate more realistic values 482 
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over the Deciduous ecosystem of Betul. The improvement in VPRM Reco while incorporating soil 483 

temperature is also reported elsewhere (e.g., Luus et al., 2015).  484 

The VPRM NEE estimated based on modified GPP from VPRMGOSIF and Reco from 485 

VPRMMOD (hereafter referred to as VPRMGOSIF,SMST) and based on VPRMTROPOSIF and VPRMMOD 486 

(hereafter referred to as VPRMTROPOSIF,SMST) are evaluated with observation over Betul (Fig. 5c). 487 

The modified models showed improvement over VPRMSTD in capturing the observed seasonal 488 

pattern with a reduction in errors during the period from 2012 to 2018 (RMSE: VPRMGOSIF,SMST = 489 

4.4 µmol m-2 s-1, VPRMTROPOSIF,SMST = 3.8 µmol m-2 s-1and MBE: VPRMGOSIF,SMST = 3.2 µmol m-490 

2 s-1, VPRMTROPOSIF,SMST = 2.4 µmol m-2 s-1) (see Table 6). The observed seasonal anomalies in 491 

NEE ranges from -4.9 to 8. µmol m-2 s-1 with a standard deviation of 3.6 µmol m-2 s-1. These 492 

variations are well captured by our model with a mean bias of 1.6 µmol m-2 s-1. The modifications 493 

made to VPRM GPP and Reco fluxes improved the model's ability to capture NEE fluxes over Betul.  494 

Since VPRMTROPOSIF,SMST is found to be closer to the observation among other modified 495 

VPRM models, the rest of the analysis uses the simulations from VPRMTROPOSIF,SMST (hereafter 496 

referred to as VPRMrefined).  497 

3.4 Flux spatial patterns 498 

We find strong spatial variations in the NEE and GPP estimates by VPRMrefined over the 499 

Indian region (see Figs. 6 and 7), with distinct zonal and meridional variations. These variations 500 

are expected, resulting from factors such as patterns in annual mean temperature, precipitation, and 501 

radiation which can have significant influences on the spatial pattern of ecosystem carbon fluxes 502 

(e.g., Yu et al., 2013). The inter-annual variability in simulated NEE during the study period is 503 

highly correlated (R2>0.5) with the interannual variability in the country’s precipitation pattern, 504 

which is in line with Dadhwal, 2012. Annually, most of the country’s biomes remained as a net 505 

carbon sink, with higher NEE values over the southwest and northeast regions, which are 506 
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dominated by Evergreen and Mixed forest ecosystems. The highest GPP values are also found in 507 

these regions, marking the highest productive biomes. Comparatively, high GPP is observed in the 508 

eastern part of central India, where the Deciduous ecosystem prevails. However, respiration 509 

exceeds primary productivity over the above region, leaving it as a carbon source on an annual 510 

scale. A major part of the country shows moderate GPP values (~0.08 kg C m-2 month-1 to 0.15 kg 511 

C m-2 month-1), while a large area is covered by cropland vegetation. Ecosystem productivity is 512 

minimal in the northern and north western parts of the country under Shrubland vegetation.  513 

During the period from 2012 to 2020, the Indian terrestrial biosphere acted as a net carbon 514 

sink annually. The NEE value ranges from -0.38 Pg C yr-1 to -0.51 Pg C yr-1 in 2012 to -0.53 Pg C 515 

yr-1 to -0.64 Pg C yr-1 in 2020 (see Fig. 6). The inter-comparison of total NEE fluxes are lower in 516 

CT and TRENDY compared to those of VPRMrefined (µ(𝑉𝑃𝑅𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑−CT)  = -0.34 Pg C yr-1; 517 

µ(𝑉𝑃𝑅𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑−CT)  = -0.25 Pg C yr-1 in which µ represents sample mean of differences). The NEE 518 

differences reported above used VPRMrefined respiration model parameters calibrated using 519 

FLUXNET. The corresponding NEE differences when using FLUXCOM are: µ(𝑉𝑃𝑅𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑−CT)  = 520 

-0.52 Pg C yr-1; µ(𝑉𝑃𝑅𝑀𝑟𝑒𝑓𝑖𝑛𝑒𝑑−CT)   = -0.41 Pg C yr-1. An ensemble means using 14 TRENDY 521 

models is used for the analysis and the above reported values are based on the year 2018. Our NEE 522 

estimates (see Fig. 6) are higher than the previously published studies in which process-based and 523 

light-use efficiency models were used (Cervarich et al., 2016; Nayak et al., 2015; Rao et al., 2019). 524 

Based on the CASA model, Nayak et al. (2015) estimated a NEE value of -0.0098 Pg C yr-1 for a 525 

26-year period from 1981 to 2006, showing ecosystem transition from a carbon source in the 1980s 526 

to a carbon sink in the subsequent decades. Using a process-based model ensemble, namely 527 

TRENDY, Cervarich et al. (2016) estimated an annual NEE value of -0.2 Pg C yr-1 from 2000 to 528 
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2013. A similar study using TRENDY models by Rao et al. (2019) also showed the uptake capacity 529 

of the Indian region by -0.14 Pg C yr-1 from 1901 to 2010. 530 

The spatial patterns for monthly averaged NEE and GPP are presented in Fig. 7. The highest 531 

values for NEE and GPP are found during the months of July to September i.e., the summer 532 

monsoon season and the lowest values are found during the dry and hot months from March to 533 

May (Fig. 7). The Indo-Gangetic plain shows higher NEE values during the winter months and 534 

summer monsoon seasons. This coincides with the highest productivity associated with the peak 535 

growing stage of the two major cropping seasons in India. Enhanced NEE and GPP values across 536 

the entire Indian region from June to September are associated with enhanced agricultural crop 537 

production based on the availability of monsoonal rainfall. The south eastern part of the country 538 

shows an increase in NEE and GPP values as a result of increased productivity upon the 539 

commencement of the North East winter monsoon. Most parts of the country remained carbon 540 

neutral from March to May. Winter crop harvesting and unfavourable conditions for plant growth 541 

(e.g., high temperature, low water availability, low soil moisture content etc.) resulted in minimum 542 

productivity during this period. A major part of Deciduous vegetation persisted as a source 543 

throughout the seasons. Even though Deciduous vegetation shows higher seasonality and GPP 544 

values, ecosystem respiration dominates GPP across this biome, leaving it as a carbon source or 545 

carbon neutral on an annual scale (e.g., Deb Burman et al., 2021; Sarma et al., 2022).  546 

3.5 Derived ecosystem productivity and exchanges across different biomes 547 

Here, we present the derived ecosystem productivity and exchange fluxes across seven 548 

vegetation classes used in VPRM (Table 7). Large variability in ecosystem productivity is found 549 

on different temporal scales. On an annual scale, the Mixed forest vegetation shows the highest 550 
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(GPP = 6.35 kg C m-2 yr-1) productivity, followed by the Evergreen forest, Deciduous forest and 551 

Savanna biomes (GPP = 5.51 kg C m-2 yr-1, 4.63 kg C m-2 yr-1, 4.60 kg C m-2 yr-1, respectively). 552 

Figure 8 presents the spatial pattern in annually averaged GPP over different vegetation for the 553 

year 2020. The GPP distribution is found to be spatially heterogeneous and is influenced by local 554 

geographic and climatic factors. The spatial distribution of GPP also exhibits inter-annual 555 

variations (see Fig. S2). As expected, lower productivity rates are found for Shrubland (1.74 kg C 556 

m-2 yr-1) and Cropland (1.43 kg C m-2 yr-1). Cropland covers more than 68% of Indian land mass. 557 

However, the total Cropland GPP is found to be lower than Deciduous forests (area coverage: 558 

4.4%), Evergreen (area coverage: 4.8%) and Mixed forests (area coverage: 3.7%), while the total 559 

area covered by these vegetation classes is small. The lowest annual productivity is seen over the 560 

Grassland with a GPP value of 0.66 kg C m-2 yr-1. Even though higher productivity is associated 561 

with Deciduous forest, this biome results in less net carbon uptake due to the high respiration fluxes 562 

of this vegetation. The highest productivity of forest ecosystems over Grassland is also seen in 563 

other parts of the globe (e.g., Yu et al., 2013). The contribution of each vegetation to the national 564 

GPP budget also depends on the area covered by each vegetation. As a result, to the national GPP 565 

budget of 3.88 Pg C yr-1, for the year 2020, Cropland is the major contributor (49.6%), followed 566 

by Evergreen forest (14.9%), Mixed forest (12.2%), Shrubland (12.0%), Deciduous forest (9.3%), 567 

Savanna (1.1%) and Grassland (0.5%). Figure 9.a shows the annual mean GPP from different 568 

vegetation classes from 2012 to 2020. On an annual scale, Mixed and Evergreen forest vegetation 569 

groups show large GPP variability, while Cropland and Grassland exhibit lower GPP variability. 570 

This variability across biomes remains consistent over the years during the analysis period.  571 

Evergreen Forest is the largest contributor to the national NEE budget (~39.7%) followed 572 

by Cropland (~33.6%), Mixed Forest (~31.5%), Shrubland (~10.7%), Savanna (~1.1%), Grassland 573 
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(~-0.2%), and Deciduous forest (~-17.3%), based on the data from 2020. The Evergreen forest and 574 

Mixed forest vegetation are with the highest carbon fixation sink capacity, showing high NEE 575 

values (see Table 7) (NEE of ~-2.4 kg C m-2 yr-1), followed by Savanna with an annual NEE value 576 

of ~-1.3 kg C m-2 yr-1. A Moderate net carbon fixation efficiency (NEE of ~-0.3 and – 0.2 kg C m-577 

2 yr-1) is shown by Shrubland and Cropland vegetations, respectively. The above reported values 578 

are based on VPRMrefined in which respiration and model parameters are calibrated using 579 

FLUXNET. The lowest efficiency is found for Deciduous vegetation, indicating a carbon-neutral 580 

biome. Evergreen and Mixed forest ecosystems persisted as net sinks throughout the seasons with 581 

higher productivity (Fig. 8). Figure 9.b shows the annual mean NEE from different vegetation 582 

classes from 2012 to 2020. On an annual scale, Mixed and Evergreen forest vegetation groups 583 

show large NEE variability while lowest by the Cropland and Grassland. Similar to GPP, the 584 

variability found across biomes remains consistent over the years during the analysis period with 585 

interannual variations. It is also seen that over the years sink capacity of most of the vegetation has 586 

increased. 587 

3.6 Seasonal and diurnal cycles across different biomes 588 

Figure 10 shows the seasonal variations in VPRMrefined simulated NEE fluxes across 589 

different biomes from 2012 to 2020. The seasonality varies across the vegetation. Vegetations such 590 

as Cropland, Savanna, and Shrubland show similar seasonal carbon dynamics with higher NEE 591 

from September to October and lower NEE from April to May. These biomes remained as carbon 592 

sinks throughout the year except for March to May. On the other hand, Grassland shows higher 593 

NEE from July to August and lower NEE from November to January. Even though Mixed forests 594 

show seasonal variations, it is not consistent over the years. Throughout the year, Grassland, 595 

Cropland, Evergreen forest, and Mixed forest remained as a net carbon sink. On the other hand, 596 

Deciduous vegetation remained a carbon source as ecosystem respiration surpassed primary 597 
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production. Strong seasonality in NEE is exhibited by Savanna (11.94 µmol m-2 s-1), followed by 598 

Mixed forest (10.57 µmol m-2 s-1), while the least is observed for Cropland (3.38 µmol m-2 s-1) 599 

(Statistics presented for the year 2020). For each vegetation, the spatial heterogeneity in NEE 600 

values is more during those months showing higher uptake capacity (Fig. not shown).  601 

We find that the seasonality in the ecosystem uptake is associated with the wet and dry 602 

conditions, showing a transition from dry and cooler winter months to wet and hot summer months 603 

(see Fig. S3). The majority of the vegetation shows higher productivity during August to September 604 

and lowest during March to May (e.g., Cropland, Savanna, Deciduous forest, Evergreen forest, 605 

Mixed forest, and Shrubland). The ecosystems show a semi-annual cycle with a primary 606 

productivity peak during the winter months (December - January) and a secondary peak during the 607 

monsoon season (August - September). Productivity of Grassland remained high from June 608 

onwards and lasted till August. For 2020, the Savanna shows strong seasonality with 18.6 µmol m-609 

2 s-1 variation in GPP value from low to high productive month followed by Deciduous and Mixed 610 

forest groups (16.57 µmol m-2 s-1, 12.01 µmol m-2 s-1, respectively). Grassland shows the lowest 611 

variation in GPP with the season (3.83 µmol m-2 s-1). Also, the magnitude of seasonal variability 612 

remains low for vegetations such as Cropland (5.05 µmol m-2 s-1) and Savanna (5.29 µmol m-2 s-613 

1).  614 

Figure 11 shows the diurnal variations in VPRMrefined simulated GPP fluxes at a monthly 615 

scale for different vegetation classes during 2020. The diurnal variability of GPP varies with the 616 

season. A seasonal shift in the peak uptake time is found, and it varies with vegetation. Larger 617 

productivity is found during noon hours (10:00 -14:00 local time), of summer monsoon months of 618 

August and September and the post-monsoon months of October and November. The productivity 619 

gradually decreases with the progress of the dry season. The lowest GPP values are found during 620 

March and May. Strong daytime variability, with peak uptake during early morning hours and weak 621 
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uptake during afternoon hours, is also found during this dry season, indicating the temperature 622 

dependence on ecosystem productivity, which also varies with biome type and age.  623 

4. Conclusion: 624 

This study presents the terrestrial flux distribution of CO2 over India on a 0.1°×0.1° grid at 625 

a temporal resolution of 1 hour from 2012 to 2020. We utilise satellite-based vegetation and 626 

ecosystem productivity indices and high-resolution meteorological data in a data-driven biospheric 627 

model to improve the model estimates of terrestrial biosphere CO2 flux components over India. In 628 

particular, we take advantage of satellite missions, such as TROPOMI and OCO-2 providing 629 

retrievals of solar-induced chlorophyll fluorescence (SIF) and relate them to ecosystem 630 

productivity across different biomes. The derived flux products better explain the magnitude and 631 

fine-scale variability over the region compared to other existing model estimates.  632 

We investigated how our model captures the seasonal pattern in NEE and GPP compared 633 

to other biospheric models with different model structures, such as the inversion product CT and 634 

the ensemble of process-based models TRENDY. Though VPRMSTD shows better agreement with 635 

observations in predicting the seasonality of NEE fluxes (R2 = 0.59) than CT (R2 = 0.24) and 636 

TRENDY (R2 = 0.45) for the period from 2012 to 2018, the simulations considerably 637 

underestimated the NEE fluxes at a monthly scale, with model biases of 3.2 µmol m-2 s-1 for NEE 638 

and -6.7 µmol m-2 s-1 for GPP.  The model-observation bias is high for simulating GPP during 639 

productive months (June - December). We infer that the GPP underestimation by VPRMSTD can 640 

be related to the MODIS reflectance products and the plausible errors in model parameters. The 641 

VPRMSTD model parameters are not optimised using flux tower measurements due to the 642 

unavailability of flux observations over the Indian sub-continent, thereby limiting the model 643 

performance over the domain while using uncalibrated model. 644 
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We performed biome-specific analyses of SIF products, deducing their spatial and temporal 645 

characteristics over Indian biomes and applied them to VPRMSTD. Compared to other process-646 

based biospheric models and atmospheric inversion products, the refined VPRM shows remarkable 647 

performance in explaining small-scale variability. By improving GPP and Reco simulations, the 648 

model has improved its ability to capture the observed NEE fluxes (R2>0.5) with a significant 649 

reduction in RMSE (~3 µmol m-2 s-1) and MBE (~3 µmol m-2 s-1) values. While evaluating 650 

VPRMrefined GPP with observation-based GPP at the Betul site, we find better model performance 651 

compared to VPRMSTD with reduced bias (RMSE = 4.3 µmol m-2 s-1 and MBE = -2.6 µmol m-2 s-652 

1).  The monthly variations in GPP (R2>0.7) and Reco (R
2>0.8) are better captured by VPRMrefined 653 

than other models. The VPRMrefined reproduces the seasonal anomalies exhibited by Betul 654 

observations remarkably well, for example, with explained variability of GPP and NEE anomalies 655 

by 85% and 68%, respectively from 2014 to 2018. However, the model evaluation is limited only 656 

to the Deciduous ecosystem due to the observational constraints that are only representative of the 657 

above ecosystem.   658 

We find significant spatial variations in the NEE and GPP flux distributions simulated by 659 

VPRMrefined, which are associated with the spatial heterogeneity in annual mean temperature, 660 

precipitation, and radiation. Evergreen and Mixed forests covering southwest and northeast of India 661 

show the highest productivity annually. Ecosystem productivity is minimal in the northern and 662 

north western parts of the country (mainly Shrubland vegetation). The Deciduous forest remained 663 

as an annual carbon source despite the high productivity due to higher respiratory fluxes. NEE and 664 

GPP fluxes show higher values during July to September (i.e., the summer monsoon season) and 665 

lower values during March to May (dry and hot months), and these seasonal variations are in line 666 

with the seasonal variations in the rain, temperature, and solar radiation. Since more than 60% of 667 

the country is covered with Croplands, the agricultural pattern also influences the seasonality in 668 
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GPP and NEE. Overall, we find that the Indian biosphere acts as a sink with an annual NEE ranging 669 

from -0.38 Pg C yr-1 (-0.51 Pg C yr-1) to -0.53 Pg C yr-1 (-0.88 Pg C yr-1) when the respiration 670 

model parameters calibrated using FLUXNET (FLUXCOM) and an annual GPP ranging 3.39 yr-1 671 

to 3.88 Pg C yr-1 for the years from 2012 to 2020. 672 

Though we have demonstrated the use of additional satellite-based observations and 673 

provided the high-resolution gridded CO2 flux distributions, future work evaluating the simulated 674 

flux distribution with an adequate number of flux site observations and atmospheric CO2 mixing 675 

ratio is warranted. Potential improvements to VPRM include i) further refinement in the ecosystem 676 

respiration accounting for moisture and heat stress and other biomass disturbance and ii) 677 

incorporating flux observations from different ecosystems to enhance the flux representativeness 678 

with better empirically derived and biome-specific model parameters. The increased number of 679 

flux tower observations in the future will help to optimise the model parameters to enhance the 680 

robustness of these simulations.  681 

 Given the considerable difference in flux components among the terrestrial biospheric 682 

models, the analyses demonstrated here can guide future model improvements in deriving GPP and 683 

ecosystem respiration. By showing the potential of VPRM model to predict the observed variations 684 

in GPP better than solely SIF-based GPP products, the present study demonstrates the way to 685 

calibrate the VPRM model parameters in the absence of eddy covariance measurements. The next 686 

step would be to combine atmospheric data and VPRM through inverse modelling to better 687 

understand the Indian carbon balance.  688 

 689 

 690 

 691 

 692 
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Data availability 693 

The VPRM simulations will be made available upon request to the corresponding author. The 694 

Carbon Tracker (CT2019B) is freely available online at 695 

https://gml.noaa.gov/ccgg/carbontracker/CT2019B/. TRENDYv10 datasets used in this study are 696 

available upon request to S. Sitch. Eddy covariance observation data may be available upon request 697 

to NRSC; https://www.nrsc.gov.in/. The TROPOMI data is available online at 698 

http://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/sif/v2.1/l2b/. GOSIF_v2 datasets used 699 

are available freely from http://data.globalecology.unh.edu/. ERA5 data used is freely available at 700 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview. GLEAM 701 

v3 data is available freely at https://www.gleam.eu/#datasets. FLUXNET data is available freely 702 

from https://db.cger.nies.go.jp/DL/10.17595/20200227.001.html.en. FLUXCCOM data used is 703 

freely available from https://www.bgc-jena.mpg.de/geodb/projects/DataDnld.php. TRMM 704 

precipitation data used is available freely from 705 

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary.  706 
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Tables 728 

Table 1: An overview of the observational- and model- based datasets used in this study. 729 

Dataset Products Spatial 

resolution 

Temporal 

resolution 

Period  Reference 

VPRM GPP, NEE, 

Reco 

0.1°✕0.1° Hourly 2012 - 2020 (Mahadevan et 

al., 2008) 

TROPOMI SIF 0.1°✕0.1° Hourly 2018 - 2020 (Köhler et al., 

2018) 

GOSIF_v2 SIF 0.05°✕0.05° 8 day 2016-2020 (Li & Xiao, 

2019a) 

ERA5 ST 0.1°✕0.1° Hourly 2012-2020 (Hersbach et 

al., 2020) 

GLEAM v3 SM 0.25°✕0.25° Daily 2012-2020 (Martens et al., 

2017) 

HRLDAS  ST and SM 0.030✕0.030 3 hourly 2012- 2017 (Chen et al., 

2007) 

Gridded 

Reco from 

FLUXNET 

Reco 0.10✕0.10 10 days 2012-2019 (Zeng, Jiye, 

2020) 

FLUXCOM Reco 0.50✕0.50 Monthly 2012-2019 (Jung et al., 
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2020) 

EC NEE, GPP, 

Reco 

1 km2 Half hourly 2012-July 2019 (Jha et al., 

2013) 

CT2019B NEE 1°✕1° Three hourly 2012 – March 

2019 

(Peters et al., 

2007) 

TRENDYv

10 

NEE, GPP, 

Reco 

Vary with 

model 

Monthly 2012 - 2020 Ref. Table 2 

GOSIF_GP

P_v2 

GPP 0.05°✕0.05° 8 day 2016-2020 (Li & Xiao, 

2019b) 

TRMM Rainfall 0.25°✕0.25° Daily 2016 - 2019 (Kummerow et 

al., 2000) 

 730 

 731 

 732 

 733 

 734 

 735 

 736 

 737 
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Table 2. List of VPRM (both standard and refined) parameters and vegetation classes used 738 

in this study. a. respiration model parameters calibrated FLUXNET; b. respiration model 739 

parameters calibrated using FLUXCOM.* 740 

 741 

Vegetation 

class 

𝝀  𝜶 𝜷 

 

SWdown

0 

𝜼𝒗𝒈  𝑻𝒔,𝒗𝒈 𝑴𝒔,𝒗𝒈 𝑹𝒗𝒈 

aT bT aM bM aR bR 

Grassland  0.1334 0.0269 0 157 3.2945 -0.0023 0.0004 2790.4 1320.2 3.96 2.9 

Cropland  0.1209 0.0043 0 646 1.6002 -0.0008 -0.001 8588.3 7835.9 0.20 0.094 

Savanna  0.1141 0.0049 0 682 3.7301 -0.0009 -0.003 10321.

2 

9546.6 -0.07 -0.01 

Shrubland  0.0874 0.0239 0 303 3.3241 -0.001 0.002 5059.4 2749.0 0.72 0.4 

Deciduous 

forest  

0.2555 0.3422 0 206 2.4613 -0.043 -0.043 29429 29429 2.502 2.502 

Evergreen 

forest  

0.1729 0.3258 0 324 1.788 0.005 -0.003 4505.6 6906.2 0.44 0.4 

Mixed Forest 0.2101 0.1601 0 501 2.3238 -0.005 -0.01 10214.

6 

10469.

6 

0.31 0.3 

*Units are as follows: λ :µmol CO2 m
-2 s-1/ µmol SWdown m

-2 s-1; α: µmol CO2 m
-2 s-1/˚C; β: µmol 742 

CO2 m
-2 s-1; SWdown0: µmol m-2 s-1; Ts,vg: µmol CO2 m

-2 s-1 K-1; Ms,vg: µmol CO2 m
-2 s-1 m-3 m3; 743 

ηvg and Rvg: dimensionless. 744 
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Table 3: Spatial and temporal resolutions of the 14 dynamic global vegetation models from 745 

TRENDY. The annual NEE and GPP fluxes of India from individual models, calculated as 746 

the cumulative sum of corresponding fluxes at the models’ original resolution in Pg C yr1 are 747 

also given. 748 

Model Spatial 

resolution 

Temporal 

resolution 

Reference NEE (Pg C 

yr-1) 

GPP (Pg C 

yr-1) 

 

ISBA-CTRIP 1°✕1° Monthly (Decharme et 

al., 2019) 

-0.47 3.7 

SDVGM 0.5°✕0.5° Monthly (Woodward 

et al., 1995) 

-0.14 2.7 

IBIS 1°✕1° Monthly (Foley et al., 

2003; 

Kucharik et 

al., 2000) 

-0.05 2.9 

VISIT 0.5°✕0.5° Monthly (Kato et al., 

2013) 

-0.21 2.9 

CABLE-POP 1°✕1° Monthly (Haverd et 

al., 2013) 

-0.007 2.7 

ORCHIDEEv 0.5°✕0.5° Monthly (Lurton et al., -0.34 3.1 

https://doi.org/10.5194/egusphere-2023-817
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



37 
 

 

3 2020) 

CLM5.0 1.25°✕0.942° Monthly (Buzan et al., 

2015) 

-0.24 2.1 

DLEM 0.5°✕0.5° Monthly (Tian et al., 

2015) 

-0.45 3.5 

ISAM 0.5°✕0.5° Monthly (Meiyappan 

et al., 2015) 

-0.06 2.2 

JSBACH 1.875°✕1.87

5° 

Monthly (Goll et al., 

2015); (Reick 

et al., 2013) 

-0.21 4.5 

LPX-Bern 0.5°✕0.5° Monthly (Spahni et al., 

2013; Stocker 

et al., 2013) 

-0.07 2.9 

OCN 1°✕1° Monthly (Zaehle & 

Friend, 2010) 

-0.12 3.5 

ORCHIDEE 0.5°✕0.5° Monthly (Krinner et 

al., 2005) 

-0.32 2.6 

LPJ 0.5°✕0.5° Monthly (Sitch et al., 

2003) 

-0.05 2.6 

 749 
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Table 4: An overview of the eddy flux tower site, Betul. 750 

Site Name Sukhwan, Betul 

  

Country India 

State Madhya Pradesh 

Location 21°51՚46.84՚՚ N, 77°25՚33.67՚՚ E 

Area 1.76 km2 

Vegetation type Deciduous forest 

Canopy height 22 m 

Tower height 34 m 

Annual precipitation 1016 mm 

Mean air temperature 27 °C 

Dominant species Tectona grandis, Miliusa tomentosa 

 751 

 752 

 753 

 754 

 755 

 756 
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Table 5: Biome-specific scalars used for the conversion of TROPOSIF to GPPTROPOSIF across 757 

different vegetation classes (see Sect. 2.2). 758 

Vegetation  𝜸𝑻𝑹𝑶𝑷𝑶𝑺𝑰𝑭,𝒗𝒈 (mW m-2 sr-1 

nm-1)/ (µmol m-2 s-1) 

CTROPOSIF,vg 

Grassland  7.84 0.40 

Cropland  4.81 0.22 

Savanna  5.12 0.32 

Shrubland  5.00 0.39  

Deciduous forest  5.35 0.34 

Evergreen forest  5.47 0.64 

Mixed forest 5.59 0.61 

 759 

 760 

 761 

 762 

 763 
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Table 6: Comparison of monthly averaged NEE, GPP and Reco fluxes from VPRM model 764 

simulations against EC observations for Betul from 2012 to 2018. Also reporting values for 765 

2018, the only common year for which the SIF, and EC data are available. 766 

Model vs Observations 

 

 

2012 - 2018 (µmol m-2 s-1) 2018 

R2 RMSE MBE R2 RMSE MBE 

GPP 

VPRMSTD 0.71 8.3 -6.7 0.74 8 6.2 

VPRMGOSIF 0.71 4.9 -3.4 0.74 4.1 2.57 

VPRMTROPOSIF 0.71 4.3 -2.6 0.74 3.6 1.77 

Reco 

VPRMSTD 0.02 5.7 -3.5 0.01 4.9 -2.9 

VPRMST 0.06 4.4 0.08 0.16 3.8 0.7 
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VPRMSM 0.80 2.0 -0.01 0.84 1.6 0.4 

VPRMMOD(STSM) 0.82 1.9 -0.01 0.88 1.4 0.2 

NEE 

VPRMSTD   

(-GPP (VPRMSTD) + 

Reco(VPRMSTD)) 

0.59 4.4 3.2 0.65 5.2 3.3 

VPRMGOSIF,SMST   

(-GPP(VPRMGOSIF)+ 

Reco(VPRMMOD(STSM))) 

0.53 4.4 3.2 0.66 4.3 2.8 

VPRMTROPOSIF,SMST   

(-GPP(VPRMTROPOSIF)+ 

Reco(VPRMMOD(STSM))) 

0.56 3.8 2.4 0.68 3.7 2 

TRENDY 0.45 3.3 1.1 0.51 3.6 1.4 

CT 0.24 3.5 1.2 0.17 4 1.4 
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Table 7. Biome specific annual fluxes from VPRMrefined in kg C m-2 yr-1 and total fluxes in Pg 768 

C yr-1 are provided for the year 2020. The reported NEE values used respiration model 769 

parameters calibrated using FLUXNET. 770 

Statistics for the year 2020 

 Grassland Cropland Savanna Shrubland 

Evergreen 

Forest 

Mixed 

Forest 

Deciduous 

Forest 

NEE 

kg C m-2 

yr-1 0.11 -0.28 -1.31 -0.39 -2.42 -2.65 2.70 

Pg C yr-1 0.005 -0.30 -0.01 -0.07 -0.31 -0.22 0.31 

GPP 

kg C m-2 

yr-1 0.66 1.43 4.60 1.74 5.51 6.35 4.63 

Pg C yr-1 0.03 2.60 0.062 0.63 0.78 0.64 0.49 

Reco 

kg C m-2 

yr-1 0.69 1.19 2.92 1.35 3.05 3.4 5.71 

Pg C Yr-1 0.03 2.21 0.04 0.51 0.36 0.32 0.66 

 771 

 772 

 773 
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Figures 774 

 775 

Fig. 1: An overview of the major vegetation classes for the study region. Solid red circle 776 

denotes the Eddy covariance observation site at Betul.  777 
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 778 

Fig. 2: Comparison between annually averaged SIF retrievals from OCO-2 (GOSIF) and 779 

TROPOSIF based products across vegetation classes over India for 2019. GOSIF (estimated 780 

at 757 nm) are scaled by respective biome-specific scaling factors (see Table. 5) to compare 781 

with TROPOMI SIF (estimated at 757 nm and 771 nm).  782 
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 783 

Fig. 3: Seasonal distribution patterns of SIF and precipitation over India for the year 2019: 784 

First row: GOSIF, Second row: TROPOSIF, and Third row: TRMM precipitation data, 785 

respectively. 786 
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 787 

Fig. 4: Time series of monthly averaged SIF (GOSIF and TROPOSIF) across different 788 

biomes over India from 2018 to 2020. The vegetation classification based on SYNMAP is 789 

used to represent SIF for different biomes. 790 

https://doi.org/10.5194/egusphere-2023-817
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



47 
 

 

 791 

Fig. 5: Comparison of monthly averaged EC observations with a) GPP, b) Reco, and c) NEE 792 

simulations over Betul for the period 2012 to 2018.  793 

https://doi.org/10.5194/egusphere-2023-817
Preprint. Discussion started: 4 May 2023
c© Author(s) 2023. CC BY 4.0 License.



48 
 

 

 794 

Fig. 6: Spatial patterns in annual NEE fluxes as simulated by VPRMrefined over the Indian 795 

region for the years from 2012 to 2020. The shown NEE values used respiration model 796 

parameters calibrated using FLUXNET. 797 
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 798 

Fig. 7: Spatial pattern in monthly averaged fluxes from VPRMrefined for the year 2020. a) 799 

NEE and b) GPP. The shown NEE values used respiration model parameters calibrated 800 

using FLUXNET. 801 
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 802 

Fig. 8: Spatial pattern in the annual GPP from VPRMrefined over different vegetation for the 803 

year 2020.  804 
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 805 

Fig. 9: The biome-specific annual VPRMrefined a) GPP and b) NEE from 2012 to 2020. 806 

Upper and lower limit of the box shows 25th and 75th percentile of the data and center line 807 

shows the median. All the values which are 1.5 times higher than the 25th and 75th 808 

percentile are considered as outliers and are removed from the graph. The shown NEE 809 

values used respiration model parameters calibrated using FLUXNET. 810 
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 811 

Fig. 10: Temporal variations in monthly averaged NEE fluxes from VPRMrefined for the 812 

years 2012 to 2020. The shown NEE values used respiration model parameters calibrated 813 

using FLUXNET. 814 

 815 
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 816 

Fig. 11: Diurnal variations in VPRMrefined GPP fluxes during 2020. 817 

 818 

 819 

 820 
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