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Abstract. This work quantifies the uncertainty of accumulation-season peak snow water storage in the portions of the 

midlatitude American Cordillera where snow is a dominant driver of hydrology. This is accomplished through 

intercomparison of commonly used global and regional products over the Western U.S. (WUS) and Andes domains, which 

have similar hydrometeorology but are disparate with respect to the amount of available in situ information. The recently 10 

developed WUS Snow Reanalysis (WUS-SR) and Andes Snow Reanalysis (Andes-SR) datasets, which have been 

extensively verified against in situ measurements, are used as baseline reference datasets in the intercomparison. Relative to 

WUS-SR climatological peak SWE storage (269 km3), high- and moderate-resolution products (i.e., those with resolutions 

less than ~10 km) are in much better agreement (284 ± 14 km3; overestimated by 6 %) compared to low-resolution products 

(127 km3 ± 54 km3; underestimated by 53 %). In comparison to the Andes-SR peak snow storage (29 km3), all other products 15 

show large uncertainty and bias (19 km3 ± 16 km3; underestimated by 34 %). Examination of spatial patterns related to 

orographic effects, showed that only the high- to moderate-resolution SNODAS and UA products show comparable 

estimates of windward-leeward SWE patterns over a subdomain (Sierra Nevada) of the WUS. Coarser products distribute 

too much snow on the leeward side in both the Sierra Nevada and Andes, missing orographic-rainshadow patterns that have 

important hydrological implications. The uncertainty of peak seasonal snow storage is primarily explained by precipitation 20 

uncertainty in both the WUS (R2
 = 0.55) and Andes (R2

 = 0.84). Despite using similar forcing inputs, snow storage diverges 

significantly within the ERA5 (i.e. ERA5 vs. ERA5-Land) products and the GLDAS (modeled with Noah, VIC, and 

Catchment model) products due to resolution-induced elevation differences and/or differing model process representation 

related to rain–snow partitioning and accumulation-season snowmelt generation. The availability and use of in situ 

precipitation and snow measurements (i.e., in WUS) in some products adds value by reducing snow storage uncertainty, 25 

however where such data are limited, i.e. in the Andes, significant biases and uncertainty exist.  

1 Background and Motivation 

Seasonal snow storage in mountains provide vital freshwater to downstream users estimated to be over 16.7 % of 

the global population (Immerzeel et al., 2020; Rhoades et al., 2022). Melt of accumulated winter snow in the spring and 
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summer impacts agriculture, hydropower generation, and water supply and recreation, making it a key component of the 30 

food-energy-water nexus in many regions of the world (Siirila-Woodburn et al., 2021; Huss et al., 2017; Qin et al., 2020). 

Despite its importance, a complete understanding of continental terrestrial water cycles is hampered by a limited 

characterization of seasonal mountain snow storage uncertainty.   

The lack of in situ and remotely sensed measurements of mountain snow water equivalent (SWE), a key metric 

related to water availability, are primarily responsible for the limited characterization of seasonal snow storage in these 35 

regions. For example, in the midlatitude American Cordillera, where snowmelt is estimated to contribute to as much as 70 % 

of total runoff in some basins (Li et al., 2017), existing in situ networks are both sparse and unrepresentative of the 

conditions spanning the larger domains in the Western United States (WUS) and South American Andes (Nolin et al., 2021; 

Dozier et al., 2016; Molotch and Bales, 2006, Saavedra et al., 2018). Current remotely sensed SWE estimates from passive 

microwave measurements are useful over much of the globe, but are too coarse to capture the spatial heterogeneity and deep 40 

snowpacks in these regions with complex terrain (Luojus et al., 2021).  

In lieu of measurements, globally available snow products, typically generated from land surface models (LSMs), 

provide the majority of large-scale estimates of the spatiotemporal patterns of mountain snow water storage. However, 

seasonal snow storage estimates from global snow products remains highly uncertain, which results from discrepancies in 

meteorological forcings, variations in snow process representation, and coarse spatial resolution (Broxton et al., 2016b; 45 

Wrzesien et al., 2019; Cho et al., 2022; Liu et al., 2022). The uncertainty (including bias) of seasonal snow storage further 

propagates to streamflow forecasts (Kim et al., 2021) and impacts water resources management. Coarse spatial resolutions 

smooth topography and impact the ability to resolve orographic features (including rainshadows) over complex terrain (Daly, 

2006). Current estimates of mountain snow water storage uncertainties in both space and time need to be characterized to 

ensure the reliability of impact studies that rely on SWE estimates (e.g., Mankin et al., 2015; Immerzeel et al., 2020; Huning 50 

and AghaKouchak, 2020).  

The analysis herein is applied to the snow-dominated midlatitude portions of the American Cordillera (Fig. 1), 

which are representative of regional mountains of significant importance to humans. To quantify the spatiotemporal 

uncertainties of snow storage from commonly used snow products, recently-developed high-resolution snow reanalysis 

datasets covering the WUS (Fang et al., 2022) and Andes (Cortés and Margulis, 2017) are used in this work as reference 55 

datasets. The WUS and Andes domains have comparable atmospheric circulation patterns and hydrologic cycles (Rhoades et 

al., 2022), but are disparate with respect to elevation and the amount of available in situ information. The WUS has among 

the highest density of in situ snow information, which either directly or indirectly inform SWE estimates, while the Andes 

has little to no ground measurements, making SWE estimates almost entirely model-based. This paper aims to assess: 1) the 

spatiotemporal uncertainty of SWE in the WUS and Andes over the accumulation season, and 2) the drivers of the SWE 60 

uncertainty. Knowledge of the uncertainty and its drivers will put current snow-impact studies in better context and provide a 

pathway for improving future estimates aimed at reducing SWE quantification uncertainty. 
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2 Study Domain and Datasets 

2.1 Study Domain 

This study focuses on the snow-dominated midlatitude mountain ranges of the America Cordillera (Fig. 1), where 65 

snowmelt-driven runoff serves large populations. Specifically, the WUS and Andes are selected as the study domains based 

on recently developed snow-specific reanalysis products (Fang et al., 2022; Cortés and Margulis, 2017). These SWE 

estimates have been significantly verified against independent in situ and airborne measurements, making them well-suited 

to being used as references for other products. The average elevation across the WUS is ~ 1383 m with a maximum > 4300 

m, in contrast to a higher average elevation of ~ 2999 m with a maximum > 6800 m in the Andes. The beginning of the 70 

seasonal snow cycle starts from 01 October and 01 April in the WUS and Andes, respectively. Hence, a water year (WY) 

spans from 01 October to 30 September in the WUS, and 01 April to 31 March in the Andes. 

 

Figure 1. DEM and location of midlatitude American Cordillera including its subdomains in the Western U.S. (WUS) and 

Andes. Bottom left cartoon highlights the typical rainshadow effect whereby moist air rises on the windward side of a 75 

mountain depositing significant amounts of snow, and drier air flows down the leeward side of the mountain creating a 
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rainshadow effect. Arrows represent the generalized directions of westerlies that drive orographic and rainshadow SWE 

patterns. The Sierra Nevada (SN, sub-basin of WUS) and Andes are chosen to study the rainshadow effect. Windward 

watersheds are shown in gray boundaries and leeward watersheds are shown in black boundaries. Mountain ranges are based 

on Snethlage et al. (2022). 80 

The WUS contains three major mountain ranges including the Sierra Nevada, Rocky Mountains and Cascades (Fig. 

1). Amongst these, the Sierra Nevada subdomain is the closest analog to the Andes, sharing similar hydroclimatology and 

topography. Winter westerlies dominate precipitation timing and patterns in these two mountain ranges, leading to 

orographic gradients on the windward side of the mountains and rainshadow effects resulting in significant snow differences 

across relatively short windward-leeward gradients. 85 

2.2 Datasets 

This paper intercompares data from the Andes Snow Reanalysis (Andes-SR) and WUS Snow Reanalysis (WUS-

SR) datasets (as reference datasets), to seven global snow datasets (available over both domains), and two regional datasets 

(available only over the WUS domain) shown in Table 1. The Andes-SR (WYs 1985 to 2015; Cortés and Margulis, 2017) 

SWE estimates were derived at a regular 180 m resolution grid before regridding to a regular latitude/longitude grid (0.001° 90 

or ~100 m). The WUS-SR (WYs 1985 to 2021; Fang et al., 2022) SWE estimates are at ~ 480 m resolution. The different 

resolutions used for the Andes and WUS domains were based on computational constraints. In addition to spatial resolution 

differences, glaciers and elevation below 1500 m were masked out before applying the Andes-SR. The newer WUS-SR 

dataset is applied over the full domain and then masked afterwards as described in Fang et al. (2022). The Andes-SR and 

WUS-SR datasets were both generated from the Bayesian framework developed by Margulis et al. (2016, 2019) with 95 

assimilation of fractional snow-covered area images derived from Landsat 5, 7 and 8 using the Particle Batch Smoother 

(PBS; Margulis et al., 2015). Independent verification shows that both datasets are consistent with in situ peak SWE with a 

correlation coefficient of 0.73 over the Andes (Cortés and Margulis, 2017) and 0.77 (using > 25,000 station-years of in situ 

data) over the WUS (Fang et al., 2022). Further verification of the WUS-SR SWE against Airborne Snow Observatory 

(ASO) SWE estimates shows consistent performance between these two spatial products with correlation coefficients 100 

ranging from 0.75 to 0.91. With high consistency against point-scale in situ and spatially-distributed airborne SWE 

estimates, as well as the high spatial resolutions specifically targeting mountainous domains, these two snow reanalysis 

datasets are used as reference SWE datasets to evaluate the snow storage of global and regional products over the WUS and 

Andes. 

The seven global snow products include ERA5-Land, ERA5, MERRA2 and four GLDAS-2.1 products (GLDAS-105 

NOAH at 0.25°, GLDAS-NOAH at 1.0°, GLDAS-VIC at 1.0°, and GLDAS-CLSM at 1.0°). The SNODAS and UA products 

only cover the US and therefore are not included in the Andes intercomparison. Following Liu et al. (2022), SWE, 

precipitation and snowfall were collected from each of the seven global products, SNODAS, and UA (including PRISM 

precipitation (Daly et al., 1994) used in the UA product). Since the reference snow reanalysis datasets do not output 
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precipitation and snowfall, only SWE is used for reference. For the purposes of analysis and discussion in this work, the 110 

products described above are classified by their spatial resolution. Specifically, reference datasets and those products with 

spatial resolution less than ~1 km are deemed “high-resolution” (HR: WUS-SR, Andes-SR, and SNODAS), those with 

spatial resolutions between ~1 km and ~10 km are deemed “moderate-resolution” (MR: UA, ERA5-Land), and those with 

spatial resolutions greater than ~10 km are deemed “low-resolution” (“LR”: ERA5, GLDAS subset). Globally and regionally 

available datasets are referred to as “products” to distinguish them from the reference “datasets”, i.e., WUS-SR and Andes-115 

SR. 

The snow reanalysis reference datasets are, by design, constrained by satellite snow cover observations using a data 

assimilation approach. However, not all the products are solely model-based. SNODAS uses in situ snow, airborne SWE 

from gamma radiation snow surveys and satellite snow cover, and UA uses in situ SWE as inputs to constrain estimates. 

Although ERA5 assimilates snow depth, limited examples of these in situ measurements are used in the WUS and Andes. 120 

However, in the WUS, with its relatively high density of in situ meteorological sites, almost all products are based on models 

with meteorological forcings that include some in situ measurements. In contrast, due to limited in situ meteorological sites 

in the Andes, the quality of input forcings remains unclear, but is likely more uncertain than over the WUS. More details on 

the snow products used herein are given in Table 1 and Appendix A. 

 125 
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3 Intercomparison Methodology 

3.1 Intercomparison study period 130 

Where possible, the intercomparison study periods in the two domains are chosen as WYs 1985-2021 (01 October 

1984 to 30 September 2021) for the WUS, and WYs 1985-2015 (01 April 1984 to 31 March 2015) for the Andes, based on 

the availability of the respective snow reanalysis datasets. Among the products listed in Table 1, only GLDAS (starting in 

WY 2001) and SNODAS (starting in WY 2005) are not available over the full snow reanalysis period. For those products, 

long-term climatologies are necessarily derived over the shorter periods. Hence in the WUS, climatologies for the GLDAS 135 

and SNODAS products are over their available 21- and 17-year records, while all other products span the 37-year record. In 

the Andes, the GLDAS products are over their 15-year record, while all other products span the 31-year record. Analysis of 

climatological results from the products with longer periods do not show significant differences when applied to the shorter 

study periods (Fig. S1).  

3.2 Focusing on intercomparison during the snow accumulation season 140 

The intercomparison herein focuses on the snow accumulation season. To motivate this focus, the climatological 

(long-term average) daily time series of domain-aggregated SWE volume across all products are illustrated in Fig. 2. Two 

key points are evident: (i) there are significant discrepancies between products (that are analyzed in more detail below) and 

(ii) much of the uncertainty occurs during the accumulation season (and then propagates to the ablation season). An accurate 

characterization of peak SWE (at the end of the accumulation season) is a key metric of the final condition of snow 145 

accumulation processes and the initial condition leading into the main snowmelt season. Intercomparison of modeled 

snowmelt season processes are made more difficult when the initial conditions (i.e., peak SWE prior to the primary ablation 

season) across models are different. Given the large uncertainties observed in domain-wide peak SWE climatology (Fig. 2), 

this paper focuses on the uncertainties in the accumulation season (as done in Liu et al., 2022) in order to better understand 

how and why accumulation season estimates diverge across products. All the analyses focus on the accumulation season 150 

using metrics described below. 
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Figure 2. Climatology of seasonal cycle of SWE volume in the WUS and Andes domains. Solid lines represent high-

resolution (HR) datasets and products, dashed lines represent moderate-resolution (MR) products, and dotted lines represent 

low-resolution (LR) products. 155 

3.3 Snow metrics used in the intercomparison 

The processes leading to the domain-aggregated peak SWE shown in Fig. 2 depend on pixel-scale snow mass 

balance processes. Hereafter, for each product, the pixel-wise processes are analyzed prior to aggregating to the larger 

domain. The day corresponding to pixel-wise peak SWE (defined as tpeak) is computed for each product at their raw spatial 

resolution. The pixel-wise peak SWE depth (swepeak) is aggregated to get pixel-wise peak SWE volume (SWEpeak). Hence in 160 

results to follow, swepeak is used to describe and analyze maps of SWE, while SWEpeak is used to describe spatially 

aggregated volumes of SWE.  

At each pixel, accumulation-season precipitation and snowfall are accumulated from the beginning of the WY up to 

tpeak, where the accumulated maps of SWE can then be aggregated over the domain of interest. The mass balance equations 
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relating domain-aggregated cumulative snowfall (Sacc), SWE (SWEpeak), cumulative ablation (Aacc), cumulative precipitation 165 

(Pacc), cumulative snowfall (Sacc), and cumulative rainfall (Racc) are shown below: 

 SWEpeak = Sacc - Aacc (1) 

 Sacc = 𝑃acc - Racc (2) 

where in Eq. (1) and (2), Pacc, Sacc, SWEpeak are directly computed from the snow products. Racc and Aacc are the residuals 

based on these two mass balance equations. Climatological values are computed as the long-term (interannual) mean of Pacc, 170 

Sacc, SWEpeak over the intercomparison periods.  

Persistent snow and ice areas are excluded before spatially integrating the SWE volumes, since most products 

analyzed in this work do not explicitly estimate glaciers and persistent snow. Such persistent snow and ice masks are first 

obtained from the Andes-SR and WUS-SR products and then aggregated to the spatial resolution of each product (as done in 

Liu et al., 2022). Domain masks in each product are also applied here, which are derived based on the reference datasets 175 

using the same approach. Details of persistent snow and ice masks and domain masks are described in Supplement S2, and 

shown in Fig. S2 and S3.  

Beyond domain-wide results, we intercompare products and their ability to capture rainshadow effects, that often 

occur over short geographic scales, but have significant influence on the water availability between windward and leeward 

sides of mountain ranges. For simplicity we focus on the windward-leeward contrasts over the Sierra Nevada in the WUS 180 

and those over the Andes. Figure 1 shows the boundaries of windward basins (in gray) and leeward basins (in black) for both 

domains. The Sierra Nevada and Andes are analogs of each other due to the mostly north-south orientation of the mountain 

ranges that are relatively perpendicular to the mostly westerly prevailing winds. In both cases, the windward and leeward 

basins serve distinct downstream populations and so resolving those spatial variations have important hydrological 

implications. To assess the ability of products in capturing rainshadow effects, pixel-wise SWEpeak is aggregated over the 185 

windward (SWEpeak
wind) and leeward (SWEpeak

lee ) watersheds. Since pixels may cover both windward and leeward watersheds, 

for MR and LR products, fractional swepeak is aggregated to get SWEpeak over the two types of watersheds separately (Fig. S4 

and S5). For HR products and datasets, the pixels spanning the windward to leeward side has a negligible impact on the 

distribution. The fractional swepeak is computed by multiplying pixel-wise swepeak and the fraction of pixel within the 

windward or leeward watershed. The detailed steps used to derive the windward and leeward watershed snow storage are 190 

described in S3. 
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4 Results and Discussion 

4.1 Climatological SWE uncertainty 

4.1.1 Spatial distribution of pixel-wise peak SWE 

Climatological pixel-wise swepeak maps for the WUS-SR (Fig. 3a) clearly show the highest snow storage occurring 195 

in the Sierra Nevada, Cascades, and Rocky Mountains. When integrated over the whole domain, the climatological WUS 

SWEpeak is 269 km3 (Fig. 3k). Similar spatial distributions of swepeak are observed for the HR (SNODAS; Fig. 3b) and MR 

products (UA and ERA5-Land; Fig. 3c and 3d). However, the remaining products (ERA5, MERRA5 and GLDAS subset; 

Fig. 3e to 3j) significantly underestimate swepeak and smooth out the spatial patterns captured by the HR and MR products. 

The combined HR and MR inter-product average of climatological WUS SWEpeak is 284 ± 14 km3, in contrast to an average 200 

of 127 ± 54 km3 for LR products (Fig. 3k). This suggests large uncertainty (both bias and spread) in SWEpeak among LR 

products. Compared to WUS-SR,  SNODAS overestimates SWEpeak by ~12 % (Fig. 3k) and exhibits higher swepeak in the 

Sierra Nevada, Cascades, and Rocky Mountains. UA and ERA5-Land both exhibit a similar magnitude of SWEpeak 

(differences < 5 %) compared to WUS-SR, both of which have higher swepeak in the Cascades. Despite similar spatial 

distribution of swepeak, ERA5 underestimates WUS SWEpeak by 22 % (Fig. 3k) compared to WUS-SR. All GLDAS products 205 

severely underestimate SWEpeak, where GLDAS-VIC10 shows the highest WUS SWEpeak (with a 35 % underestimation 

compared to WUS-SR). 

Based on the Andes-SR, the climatological SWEpeak is 29 km3 (Fig. 4i). The southern Andes has higher swepeak 

compared to the northern region (Fig. 4a). The spatial distribution of swepeak and integrated SWEpeak volumes vary much 

more broadly across different products (Fig. 4b to 4k) in the Andes than they do in the WUS. The MR and LR inter-product 210 

average of climatological SWEpeak is 19 ± 16 km3 (Fig. 4i). ERA5-Land and ERA5 overestimate SWEpeak by 66 % and 18 %, 

respectively (Fig. 4i). ERA5-Land significantly overestimates swepeak in the southern part of the Andes. Most of the LR 

products, including MERRA2 and the GLDAS subset, significantly underestimate SWEpeak by as much as 79 % (MERRA2), 

compared to Andes-SR (Fig. 4i). These findings for the Andes domain are qualitatively similar to Liu et al. (2022), where 

ERA5 and ERA5-Land overestimate SWEpeak and MERRA2 and GLDAS underestimate SWEpeak in High Mountain Asia 215 

(HMA), another snow-dominated region with limited in situ measurements. 
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Figure 3. (a – j) Spatial distribution of climatological swepeak in the WUS. (k) shows the climatological WUS SWEpeak 

(colored bars) and the interannual inter-quartile range (IQR; black error bars). The bar plots are ordered by spatial resolution, 

with highest resolution on the left and lowest resolution on the right. The vertical dashed lines separate the three spatial 220 

resolution categories (i.e., HR < ~ 1 km, ~ 1 km < MR < ~ 10 km, LR > ~ 10 km). Glacier and permanent snow areas are 

masked out in the maps and domain aggregated volumes. 
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Figure 4. (a – h) Spatial distribution of climatological swepeak in the Andes. (i) shows the climatological Andes SWEpeak 

(colored bars) and the interannual inter-quartile range (IQR; black error bars). The bar plots are ordered by spatial resolution, 225 

with highest resolution on the left and lowest resolution on the right. The vertical dashed lines separate the three spatial 

resolution categories (i.e., HR < ~ 1 km, ~ 1 km < MR < ~ 10 km, LR > ~ 10 km). Glacier and permanent snow areas are 

masked out in the maps and domain aggregated volumes.  

4.1.2 Resolving key spatial gradients: Rainshadow effects 

In addition to the overall spatial distribution in SWE, the orographically-driven rainshadow (windward vs. leeward) 230 

distribution represents an example of an important spatial feature in many mountain contexts. In mountain ranges exposed to 

persistent prevailing winds, it is expected that the windward side of the range will have more SWE than the leeward side 
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(Fig. 1). While significant biases exist in products as described in Section 4.1.1, this section focuses on the relative patterns 

of windward vs. leeward storage. The differences in rainshadow storage gradients are specifically examined in the Sierra 

Nevada subdomain of the WUS and the Andes. While resolving rainshadow effects is challenging for narrow topographic 235 

regions like the Sierra Nevada and Andes, it has important hydrological implications as large gradients in SWE storage 

propagate to spring/summer runoff and streamflow that supply downstream users.  

Based on the WUS-SR in the Sierra Nevada (Fig. 5),  the latitudinal distribution of SWEpeak
wind is the largest in the 

37°–38° N latitudinal band, while the latitudinal distribution of SWEpeak
lee  is the largest in the 38°–39° N latitudinal band. The 

latitudinal windward and leeward storage of SWE decreases monotonically north and south of these maximum values. The 240 

total stored windward volume SWEpeak
wind is 3.74 times more than the leeward volume SWEpeak

lee . This ratio is the combined 

effect of variations in area and SWE depth between the windward and leeward basins and identifies that (on average) the 

windward basins store between 3 and 4 times more SWE volume than the leeward basins. Given that the windward and 

leeward areas across which SWE is integrated are effectively the same across products, any differences in windward-leeward 

ratio are driven by differences in SWE depth. SWE depth variations are primarily driven by resolving orographic 245 

enhancement of snowfall between windward and leeward slopes. In the Sierra Nevada, only SNODAS and UA products 

(spatial resolutions < ~ 4 km) exhibit comparable SWEpeak
wind to SWEpeak

lee  ratios. The ratios of SWEpeak
wind to SWEpeak

lee  are 4.20 

(12 % greater than the WUS-SR) for SNODAS and 3.14 (16 % less than WUS-SR) for UA, suggesting a fairly good 

agreement between windward-leeward snow volume distributions in these products. However, resolving the pattern of 

windward-leeward snow distribution is significantly impaired in the other MR and LR products. The ratios computed from 250 

ERA5-Land, ERA5, GLDAS-NOAH025, MERRA2, GLDAS-VIC10, GLDAS-NOAH10, and GLDAS-CLSM10 range 

from 1.08-2.40 and are 36 %, 46 %, 43 %, 55 %, 68 %, 66 %, and 71 % less than that in the WUS-SR, respectively. Hence, 

the MR and LR products generally have too little snow on the windward side compared to the leeward side. The location of 

the windward maximum SWEpeak is consistent in most snow products with the exception of the LR products (i.e., ERA5, 

GLDAS), which have a secondary maximum between 39°–40° N. The location of the leeward maximum SWEpeak is 255 

consistent in most of the snow products with the exception of MERRA2, which is maximum at a lower latitude.  

Based on the Andes-SR, the largest SWEpeak
wind is distributed in the 35°–36° S latitudinal band, while the distribution 

of SWEpeak
lee  has two local maxima in the 31°–32° S and 35°–36° S latitudinal bands (Fig. 6). The ratio of SWEpeak

wind  to 

SWEpeak
lee  is 1.58 from the Andes-SR, which is again the combined effect of windward-leeward variations in both area and 

SWE depth. Like the Sierra Nevada, ERA5-Land and all of the LR products improperly partition SWEpeak over the windward 260 

vs. leeward basins in the Andes. These products have SWEpeak
wind to SWEpeak

lee  ratios less than 1 indicating deficient snow in the 

windward watersheds compared to the leeward watersheds. The lowest SWEpeak
wind to SWEpeak

lee  ratio of 0.72 is observed from 

MERRA2 (54 % less than Andes-SR). GLDAS-VIC10 has the largest SWEpeak
wind  to SWEpeak

lee  ratio of 0.92 among Andes 

global products, which is still 42 % less than the Andes-SR. For the windward watersheds, SWEpeak
wind from ERA5-Land and 
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GLDAS-CLSM10 are the highest in the same latitudinal band as the Andes-SR, however, the other products have an 265 

erroneous SWEpeak
wind distribution. None of the products resolve the SWEpeak

lee  distribution on the leeward side. 

 

Figure 5. Latitudinal distribution of integrated SWEpeak (km3) over windward (SWEpeak
wind; light gray areas) and leeward basins 

(SWEpeak
lee ; dark gray areas) in the Sierra Nevada in first and third columms. Text labels indicate the ratio of latitudinally-

integrated SWEpeak
wind to SWEpeak

lee . The climatological swepeak (m) spatial patterns corresponding to the latitude bands indicated 270 

by dashed boxes are illustrated in the second and fourth columns. The red line represents the Sierra Nevada ridgeline 

separating windward (western) from leeward (eastern) basins. Note: Different swepeak ranges are used for each product to 

highlight latitudinal/spatial patterns more than absolute values (due to significant biases in some products).  
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Figure 6.  Latitudinal distribution of SWEpeak (km3) over windward (SWEpeak
wind ; light gray areas) and leeward basins 275 

(SWEpeak
lee ; dark gray areas) in the Andes in first and third columms. Text labels indicate the ratios of latitudinally-integrated 

SWEpeak
wind to SWEpeak

lee . The climatological swepeak (m) spatial patterns corresponding to the latitude bands indicated by dashed 

boxes are illustrated in the second and fourth columns. The red line represents the Andes ridgeline separating windward 

(western) from leeward (eastern) basins. Note: Different swepeak ranges are used for each product to highlight 

latitudinal/spatial patterns. 280 

The elevational distributions of bin-averaged climatological swepeak in the Sierra Nevada (Fig. 7a) and Andes (Fig. 

7b) are plotted to compare the elevational gradient of windward and leeward swepeak from products with different spatial 

resolutions. The lapse rate in swepeak was determined by linear regression of swepeak averaged across elevational bins (Text 

S5). Lapse rates from GLDAS products at 1.0° are not included because the subdomains analyzed are covered by less than 

10 pixels (Fig. S7 and S8).  285 
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Based on the WUS-SR, climatological swepeak on the windward side of the Sierra Nevada monotonically increases 

up to ~3.5 km. Across different products, the uncertainty of swepeak is smaller at the lower elevation ~ 1-1.5 km, however, the 

differences in lapse rate project to larger swepeak uncertainty as elevation increases. The gradients of windward swepeak (i.e., 

d(swepeak)/dz) from WUS-SR, averaged over HR and MR products, and averaged over LR products are 0.340 m/km, 0.3826 

m/km, and 0.105 m/km, respectively. On the leeward side of the Sierra Nevada, the swepeak increases monotonically with 290 

elevation from ~ 1 – 3.5 km in the WUS-SR and most of the other products. Similarly, the uncertainty of swepeak is smaller at 

low elevation from ~ 1 – 1.52 km and gradually increases with elevation corresponding with the differences in lapse rate 

across different products. The gradients of leeward swepeak (i.e., d(swepeak)/dz) from WUS-SR, averaged over HR and MR 

products, and averaged over LR products are 0.22 21 m/km, 0.2319 m/km, and 0.0713 m/km, respectively. HR and MR 

products have qualitatively similar elevational distributions of swepeak on both the leeward and windward side of the Sierra 295 

Nevada for elevations below 3 km, whereas that swepeak from LR are underestimated with large differences in lapse rates 

compared to WUS-SR. 
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Figure 7. Elevational distribution of windward and leeward swepeak in the Sierra Nevada (a) and Andes (b) across reference 300 

datasets and products with spatial resolution higher than 1°. Each dot represents the elevation bin-averaged swepeak. The 

interval of each bin is set to be 0.5 kmnumber of pixels per bin is roughly equal. GLDAS products at 1° are not included for 

comparison due to too few points. On the windward side of the subdomains, dots within the red shaded areas are used to 

compute lapse rates. On the leeward side, dots in the darker shaded areas are used to compute lapse rates. 

On the windward side of the Andes, swepeak from the Andes-SR increases from ~ 1.5 – 3 km, with decreases 305 

between 3 and 56 km. The swepeak uncertainty is smaller at low elevation bands between ~ 1.5 - 2 km. The uncertainty gets 

larger as elevation increases from 2 – 3 km corresponding to large differences in positive lapse rates. In contrast, large 

differences in negative lapse rates above 3 km reduces the uncertainty as elevation increases. The lapse rates of windward 

swepeak from the Andes-SR are 0.304 m/km between elevation bands of ~ 1.5 – 3 km and -0.0816 m/km between 32.5 – 56 

km (Table S1). On the leeward side, swepeak increases between ~ 1.5 – 34 km and slightly decrease above 43 km in the 310 

Andes-SR. Similar to the windward side, differences in positive lapse rate below 3 km project to larger swepeak uncertainty as 

elevation increases from ~ 1.5 km, whereas differences in negative lapse reduces uncertainty as elevation increases above 3 
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km. The lapse rates of windward leeward swepeak from the Andes-SR are 0.227 m/km between elevations of ~ 1.5 – 3 km, 

and -0.032 m/km between 3.5 – 56 km. 

4.2 Interannual SWE uncertainty 315 

The interannual variability of SWEpeak is in general agreement (with correlation coefficients R > 0.85) between the 

WUS-SR snow reanalysis and other products shown in Fig. 8. SWEpeak from UA and ERA5-Land agrees well with WUS-SR 

in both magnitude and correlation (Fig. 8b and 8c), with relative mean differences (RMD) of less than 3 % in absolute value 

and R > 0.9. While SNODAS overestimates SWE volume with a RMD of 14 % (Fig. 8a), it shows consistent interannual 

variations with a high R value of 0.92. The LR products are generally well correlated with WUS-SR, although SWEpeak from 320 

these products is underestimated by as much as 190 km3 (GLDAS-CLSM10), equivalent to a RMD of 71% compared to 

WUS-SR. Figure 8j shows that SWE percentiles computed from different products in the WUS are in better agreement in 

extreme years and in less agreement for near-average years. For example, WY 2017 was the wettest year among all products 

and WY 2015 was the driest year for all products except for SNODAS (in which WY 2005 is suspiciously low). WY 2014 

was a normal-to-wet year with SWEpeak between the sixtieth and seventieth percentiles from GLDAS-NOAH025, MERRA2, 325 

GLDAS-NOAH10, and GLDAS-CLSM10, but a normal-to-dry year with SWEpeak less than the fiftieth percentile in the 

other products. 

The interannual variability of SWEpeak is in much less agreement in the Andes (Fig. 9; with R as low as 0.56). Fig. 9 

shows that ERA5-Land and MERRA2 are most consistent with Andes-SR in terms interannual variability (R > 0.85). 

However, ERA5-Land overestimates SWEpeak by 18 km3 (RMD = 65 %) and MERRA2 underestimates SWEpeak by 23 km3 330 

(RMD = -80 %). Although ERA5 has the smallest RMD of 17 %, the correlation coefficient R is 0.74, suggesting that 

SWEpeak from ERA5 is less representative of interannual variation in the Andes. For the GLDAS products, GLDAS-

NOAH025 has R = 0.79, whereas R values for other GLDAS products at 1° are less than 0.65, indicating that SWE from 

these LR products are less consistent with the interannual variation from Andes-SR. Figure 9a illustrates that the SWEpeak 

percentiles computed from the common 12-year record are much less consistent in the Andes than in the WUS (shown in 335 

Fig. 8j) for both normal and extreme years. Despite good temporal correlation of SWEpeak (R > 0.86) in WUS, the relatively 

poorer temporal correlations (R > 0.56) identified from the LR products in the Andes, indicate that they may be less suitable 

for trend or other analyses that require snow estimates with representative interannual variability. 
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Figure 8. Scatter plots (a – i) of SWEpeak volumes between WUS-SR and other products. Each dot represents SWEpeak 340 

volume (km3) for each year over the study period (WYs 1985 to 2021) where data are available. For the SNODAS and 

GLDAS products, the comparison is over WYs 2005 to 2021, and 2001 to 2021, respectively. The WY 1993 SWEpeak in 

WUS-SR is the highest and much higher than those from UA and ERA5-Land. Statistics do not change significantly if 

excluding this data point. (j) shows the SWEpeak percentiles in each WY over the overlapping period including all products 

(WYs 2005 to 2021).  345 
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Figure 9. Scatter plots (b – h) of SWEpeak volumes between Andes-SR and other products. Each dot represents SWEpeak 

volume (km3) for each year over the study period (WYs 1985 to 2015) where data is available. For the GLDAS products, the 

comparison is over WYs 2001 to 2015. (a) shows the SWEpeak percentiles in each WY over the overlapping period including 

all products (WYs 2001 to 2015).  350 

Overall, dry to wet years identified from products in the WUS generally agree with the WUS-SR with a correlation 

coefficient above 0.8 over WYs 2005 to 2021 (Table 2). In contrast, discrepancies are evident among SWEpeak percentiles 

computed from different products over WYs 2001 to 2021. Percentiles from ERA5-Land and GLDAS-NOAH025 agree well 

with the Andes-SR. However, the correlation is low between other products and Andes-SR. Although SWEpeak from ERA5 
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has comparable climatology with Andes-SR (Fig. 4i), its interannual distribution disagrees with the Andes-SR, especially 355 

after WY 2001.”   

Table 2. Correlation of SWEpeak percentiles of each product against the reference datasets over WYs 2005 to 2021 in the 

WUS, and WYs 2001 to 2021 in the Andes. 

Products  WUS-SR ANDES-SR 

SNODAS 0.89  - 

UA 0.86  - 

ERA5-Land 0.91 0.93 

ERA5 0.95 0.11 

GLDAS-NOAH025 0.92 0.85 

MERRA2 0.87 0.51 

GLDAS-VIC10 0.95 0.60 

GLDAS-NOAH10 0.91 0.42 

GLDAS-CLSM10 0.84 0.46 

 

4.3 Drivers of SWE uncertainty 360 

4.3.1 Impact of accumulation-season precipitation and snowfall on annual SWEpeak   

To better understand the accumulation-season SWEpeak uncertainty driven by model inputs, the relationship among 

Pacc, Sacc, and SWEpeak is quantified for all products. The annual data points are more clustered in the WUS (Fig. 10a, b) than 

those in the Andes (Fig. 10c, d). GLDAS-CLSM10 and MERRA2 tend to have lower Pacc, Sacc and therefore SWEpeak in both 

the WUS and Andes. ERA5-Land and ERA5, on the other hand, have higher Pacc, Sacc and SWEpeak in both domains. For 365 

rain-snow partitioning, UA (Fig. 10a) tends to have higher Sacc over the WUS compared to the other products. Given similar 

Sacc, SNODAS (Fig. 10b) is inclined to generate higher SWEpeak. In the Andes, GLDAS-NOAH10 and GLDAS-CLSM10 

partition less Pacc into Sacc (circles lower than the regression line), in contrast to ERA5-Land and ERA5 that tend to partition 

more (Fig. 10c). SWEpeak from ERA5-Land diverges from ERA5 (Fig. 10d) given similar amount of Pacc and Sacc, 

presumably caused by different melt amounts between the two products driven by resolution-induced elevation differences. 370 
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Figure 10. Left panels show scatter plots of accumulation-season Sacc (km3) vs. Pacc (km3) volumes over the WUS and 

Andes, respectively, indicating the partitioning of precipitation into snowfall. Right panels show scatter plots of 

accumulation-season SWEpeak (km3) vs. Sacc (km3) over WUS and Andes, respectively, indicating how much snowfall 

remains as SWE vs. being lost to ablation. Solid lines are linear regression and dashed lines are 1:1 lines. 375 

Annual values of Pacc and Sacc estimates from all products show that the variance in Pacc explains the majority of the 

variance in snowfall in the accumulation season with a coefficient of determination R2 = 0.55 in the WUS (Fig. 10a) and R2 = 

0.84 in the Andes (Fig. 10c). This is consistent with previous findings (Cho et al., 2022; Broxton et al., 2016b; Liu et al., 

2022) and the expectation that precipitation is the major contributor to uncertainy in SWE. The lower R2 in the WUS 

compared to the Andes suggests that other factors such as air temperature plays a more important role in rain–snow 380 
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partitioning in the WUS. Approximately 49 % of Pacc falls as snow in the WUS, whereas, around 75 % of Pacc falls as snow 

in the Andes (Fig. 10a, c). This is because the Andes are at higher average elevation (~2999 m) with cooler temperature than 

the WUS (~1383 m), leading to more precipitation falling as snow. The variance in SWEpeak is mostly explained by the 

variance in Sacc, i.e., R2 = 0.77 in WUS (Fig. 10b) and R2 = 0.87 in the Andes (Fig. 10d). As a fraction of cumulative 

snowfall, 65 % and 76 % remains as SWEpeak in the WUS and Andes, respectively, while the rest is lost to accumulation-385 

season ablation.  

4.3.2 Impact of LSM and spatial resolution on climatological SWEpeak  

To understand the impact of varying LSM mechanisms (i.e., rain–snow partitioning and snowmelt generation) and 

spatial resolution on the uncertainties in SWE, the climatological precipitation, snowfall, and SWEpeak for all products over 

the WUS and Andes are shown in Fig. 11. The rainfall to precipitation ratio (Racc/Pacc, gray text) represents the impact of 390 

rain–snow partitioning mechanisms, and the ablation to snowfall ratio (Aacc/Sacc, black text) represents the impact of 

accumulation-season snowmelt mechanisms. It should be noted that different peak SWE days may impact Racc/Pacc via the 

accumulation window, i.e., the shorter accumulation season in the GLDAS subset (associated with earlier peak SWE days, 

tpeak, Fig. 11 red symbol) has cooler average temperature, and thus lower Racc/Pacc. However, no significant relationship was 

found between tpeak and Racc/Pacc, suggesting that Racc/Pacc is not sensitive to tpeak. The WUS, with relatively lower elevation, 395 

has higher precipitation in the form of rainfall and higher snowfall loss to ablation than the Andes at higher elevation. In the 

WUS, Racc/Pacc ranges from 0.39 (UA) to 0.69 (GLDAS-CLSM10), and Aacc/Sacc ranges from 0.15 (SNODAS) to 0.56 

(MERRA2). In the Andes, Racc/Pacc ranges from 0.19 (ERA5-Land) to 0.57 (GLDAS-CLSM10), and Aacc/Sacc ranges from 

0.13 (ERA5-Land) to 0.48 (GLDAS-CLSM10). Precipitation tends to fall more as snow in the HR, MR, and ERA5 products, 

whereas a higher fraction of precipitation falls as rainfall in the other products (GLDAS, MERRA2), even though lower Pacc 400 

are observed in both domains. The differences in melt mechanisms across product models further differentiate the Aacc/Sacc, 

and therefore SWEpeak. 
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Figure 11. Climatological SWEpeak, Sacc, and Pacc volumes aggregated over WUS (top panel) and Andes (bottom panel) in 

km3. Red triangles (corresponding to right y-axis) shows the tpeak averaged over all pixels and WYs. The horizontal dashed 405 

lines and red lines are the reference snow reanalysis SWE volumes and tpeak, respectively, from WUS-SR and Andes-SR. The 

vertical dashed lines group the products by spatial resolution (i.e., HR, MR, LR). The black text lists the Aacc/Sacc and gray 

text lists the Racc/Pacc.  

Accumulation-season snowfall and SWEpeak are sensitive to different rain–snow partitioning and snowmelt 

generation mechanisms across products. The same precipitation inputs (with only minor differences caused by downscaling) 410 

are used to derive GLDAS estimates at 1.0° from three different LSMs, making the GLDAS models a useful subset to 

understand the impact of LSM process representation on SWE estimates. Among the GLDAS subset at 1.0°, Racc/Pacc and 

Aacc/Sacc range from 0.59-0.69 and 0.24-0.54, respectively, in the WUS (Fig. 12a), and range from 0.48-0.57 and 0.34-0.48, 

respectively, in the Andes (Fig. 12b). Compared to Racc/Pacc, a wider range of Aacc/Sacc values are observed in both the WUS 

and Andes, suggesting that snowmelt generation mechanism differences contribute more to the climatological SWEpeak 415 

uncertainties than the rain-snow partitioning differences. Given a similar amount of Pacc, GLDAS-VIC10 partitions the most 
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into snowfall even with later peak days, whereas GLDAS-CLSM10 partitions the least in both domains. The differences in 

Racc/Pacc are ≤ 0.1 between GLDAS-VIC10 and GLDAS-CLSM10 in contrast to the differences of 0.2-0.3 in Aacc/Sacc. 

GLDAS-VIC10 tends to have higher Pacc, Sacc, and SWEpeak which are closer to those from the HR or MR snow products. 

The better performance of GLDAS-VIC10 than others might be associated with the usage of snow elevational bands in the 420 

VIC model, in which sub-grid snowfall and SWE estimates are better represented. GLDAS-CLSM10 has the highest rates of 

Aacc/Sacc and lowest SWEpeak. Previous study shows a larger portion of snowfall is lost as accumulation-season ablation in the 

Catchment model (Xiao et al., 2021). Therefore, a better characterization of snowmelt during the accumulation season is 

beneficial to improve SWEpeak accuracy.   

Domains with larger variance in elevation are likely to be more sensitive to model spatial resolution, and therefore 425 

impact elevation-dependent mechanisms in the LSMs. ERA5-Land (0.1°) and ERA5 (0.25°) SWE are derived from the same 

LSM driven by similar forcings but modeled at different spatial resolutions. Similarly, GLDAS-NOAH025 (0.25°) and 

GLDAS-NOAH10 (1°) SWE are derived from the same Noah model driven by similar forcings but at two spatial 

resolutions. These two groups of products (Fig. 12c to f) are useful to isolate the impact of spatial resolution on SWE 

estimates via differences in elevation representation. The raw DEMs from each product are used to compute the mean and 430 

standard deviation of elevation over WUS and Andes. The Andes, located at higher elevation also has a larger variance in 

elevation (standard deviation > 1100 m) compared to the WUS (standard deviation < 800 m) for any resolution. The standard 

deviation varies more significantly with resolution than the mean in both WUS and Andes (Fig. 12g, h). With coarser spatial 

resolution, the variance in elevation decreases, indicating that coarse-resolution products tend to underestimate the true 

variance in elevation. The differences in elevation variance between products are larger in the Andes than the WUS. For 435 

example, when increasing resolution of GLDAS from 1.0° (~ 100 km) to 0.25° (~ 25 km), the standard deviation of elevation 

increases by 14% in the Andes compared to 8% in the WUS. The Racc/Pacc is similar in the ERA5-Land and ERA5 for the 

same domains (i.e., 0.46 from ERA5-Land and 0.47 from ERA5 in the WUS; 0.19 from ERA5-Land and 0.20 from ERA5 in 

the Andes), suggesting that the rain–snow partitioning in the ERA5 models is relatively insensitive to the elevation 

differences introduced by different spatial resolutions. The Andes are located at a higher elevation than the WUS, resulting 440 

in lower Racc/Pacc. However, the Aacc/Sacc varies significantly between ERA5-Land and ERA5 in both WUS (0.32 vs. 0.44, 

respectively) and Andes (0.13 vs. 0.35, respectively). Hence, even though similar amounts of snowfall are generated for 

ERA5 and ERA5-Land, SWEpeak can be significantly different due to differences in ablation resulting from spatial 

resolution-based elevation differences. For GLDAS-NOAH025 and GLDAS-NOAH10, Racc/Pacc and Aacc/Sacc are similar in 

the WUS. Large differences of both Racc/Pacc and Aacc/Sacc are observed between GLDAS-NOAH025 and GLDAS-NOAH10. 445 

This suggests that increasing spatial resolution from 0.25° to 0.1° (ERA5 subsets) significantly impact snowmelt generation 

in both Andes and WUS, whereas increasing spatial resolution from to 1° to 0.25° (GLDAS subsets) impacts rain-snow 

partition and snowmelt generation only in Andes with its larger differences in standard deviation of elevation between 

products at two different spatial resolutions.  
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 450 

Figure 12. (a) and (b) Racc/Pacc and Aacc/Sacc for three GLDAS LSMs (VIC, Noah, and Catchment) at the same spatial 

resolution (~ 100 km). (c) and (d) Racc/Pacc and Aacc/Sacc for ERA5-Land (~ 10 km) and ERA5 (~ 25 km) using the same LSM 

and similar forcings, but different spatial resolutions. (e) and (f) Racc/Pacc and Aacc/Sacc for GLDAS-NOAH025 (~ 25 km) and 

GLDAS-NOAH10 (~ 100 km) using the same LSM and similar forcings, but different spatial resolutions. (g) and (h) mean 

and standard deviation of elevation over WUS and Andes from the ERA5-Land and ERA5 group, and the GLDAS-455 

NOAH025 and GLDAS-NOAH10 group (where colors represent the products shown in (c)-(f)). 
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5 Conclusion 

This paper quantifies the spatiotemporal snow storage uncertainty over the midlatitude American Cordillera (i.e., 

the intermountain WUS and Andes) that is influenced significantly by snow processes. These two domains are both snow-

dominated areas sharing similar hydrometeorology, however, much fewer in situ measurements are available in the Andes 460 

compared with the WUS. The uncertainties of snow water storage, spatial patterns (including orographic-rainshadow effect), 

and interannual variability are analyzed among the high-resolution (HR, less than ~1 km), moderate-resoution (MR, between 

~1 km to ~10 km) and low-resolution (LR, greater than ~10 km) snow products. The impact of forcings, LSM differences 

and spatial resolution on snow storage uncertainty is assessed to provide insights for generating future snow products 

especially for snow-dominated regions including areas with scarce in situ measurements. 465 

With respect to characterizing climatological and interannual storage uncertainty, the key conclusions are:  

1) In the WUS, HR and MR snow products are in better agreement with WUS-SR peak snow storage (269 km3) 

than the LR snow products, where the snow storage is biased low with large uncertainty. The climatological 

snow storage was found to be 284 km3 ± 14 km3 among HR and MR products and 127 km3 ± 54 km3 among LR 

products. For context, the reservoir capacity in the contiguous U.S. is around 600 km3 (Steyaert et al., 2022). 470 

Thus, based on the WUS-SR, the snow water stored in the WUS is 45 % (269 km3 of WUS-SR SWEpeak / 600 

km3 of contiguous US reservoir capacity) of the total reservoir capacity. Compared to the snow storage from 

WUS-SR, the averaged snow water storage from LR products misses 142 km3 of snow water storage, 

equivalent to 24% of total reservoir capacity over the contiguous U.S In the Andes, MR and LR products 

exhibit much larger relative uncertainty in snow storage. The Andes-wide peak snow storage estimates are less 475 

clustered by spatial resolution with climatological estimates of 19 km3 ± 16 km3
 compared with peak snow 

storage of 29 km3 from Andes-SR. The averaged SWE volumes from LR products in the WUS and Andes are 

underestimated by over 30% compared to the reanalysis datasets. For similar melt rates, SWE computed from 

LR models would therefore disappear more quickly than HR/MR products. Hence calculation of snow volume 

sensitivity based on LR products could exaggerate the impact of warming on snow loss. 480 

2) Beyond significant biases in overall storage, most of the global products poorly characterize snow storage 

variations related to orographically-induced rainshadow effects. Compared to the WUS-SR, only SNODAS 

(spatial resolution of ~ 1 km) and UA (~ 4 km) reasonably distribute snow storage over windward and leeward 

watersheds in the Sierra Nevada. Globally-available MR and LR products partition less snow storage on the 

windward side in both Sierra Nevada and Andes. In the Andes, global products show that more snow water is 485 

stored on the leeward side of the mountain than the windward side, completely missing the orographic-

rainshadow patterns. Based on these results, to accurately resolve topographically-driven features in snow 

storage likely requires spatial resolutions less than ~5 km.   
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3) Consistent interannual variability is observed among all products assessed in the WUS, whereas there is less 

agreement in the Andes. This suggests that snow trend studies based on these globally availably snow products 490 

applied in the Andes might not be as reliable as those applied in the WUS. 

With respect to drivers of uncertainty in snow storage estimates, the key conclusions are: 

1) Precipitation primarily explains the variance of snowfall as expected, which propagates to the variance of snow 

storage. Precipitation uncertainty accounts for a larger portion of snowfall uncertainty in the Andes than the 

WUS.  495 

2) Aside from precipitation, LSM differences result in varying rain–snow partitioning and snowmelt generation, 

that play important roles in snow storage variance. Accumulation-season snowmelt generation mechanisms 

tend to contribute more to the climatological SWEpeak uncertainties than the rain–snow partitioning. At coarser 

spatial resolutions, there is a larger spatial variance in elevation between products in the Andes that propagates 

to larger differences in precipitation falling as rainfall, snowfall loss to ablation, and thus SWEpeak than in the 500 

WUS where elevation variance is lower.   

 

Data assimilation techniques are used to constrain the SWE uncertainties in SNODAS, UA, WUS-SR and Andes-

SR. Moreover, many products are implicitly constrained by their use of in situ precipitation data in some form over the 

WUS. With more accurate precipitation estimates in the WUS, products at HR to MR show reasonable estimates of SWEpeak. 505 

However, ERA5-Land (MR) and LR products miss orographic-rainshadow patterns (Section 4.1.2). SNODAS and UA 

generate high quality SWE estimates in the WUS via inclusion of in situ SWE measurements that are generally unavailable 

for regions like the Andes. Additionally, regions like Andes do not have sufficient in situ forcing measurements, resulting in 

a large uncertainty in forcings that propagates to SWE.  

Although HR and MR products reasonably estimate snow storage in the WUS, uncertainty in snow storage from 510 

products at coarse spatial resolution in the WUS and at moderate and coarse spatial resolution in the Andes (where there are 

limited in situ measurements) need to be reduced to increase their utility for understanding the role of snow in regional water 

and energy cycling. Resolving orographic-rainshadow patterns is still a challenging task among existing products. Future 

work is needed to reduce the accumulation-season snow storage uncertainty for mountainous regions with limited in situ 

measurements. Beyond the accumulation-season processes focused on herein, the snowmelt uncertainty and its drivers in the 515 

melt-season should be investigated to further characterize additional uncertainty in warm-season snowmelt rates and timing.  

New and future SWE products such as the recently published SWE reconstruction at 500 m (Bair et al., 2023), and other 

products such as Daymet SWE at 1 km (Thornton et al., 2021) could be examined to further characterize uncertainty in 

higher resolution products. The ability to capture orographic rainshadow patterns from snow reanalysis datasets and 

SNODAS encourages the usage of existing spaceborne snow covered area measurements and/or future spaceborne missions 520 

that can directly provide high-resolution SWE measurements to constrain mountain SWE.  
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Appendix A. Description of products compared to WUS-SR and Andes-SR 

A1. HR product  

SNODAS (NOHRSC, 2004) outputs daily SWE from WY 2004 at 1 km over CONUS. Although SNODAS is 

available starting from WY 2004, data assimilation was only regularly performed from WY 2005. Therefore, it is suggested 525 

to exclude SNODAS data in WY 2004 for analysis. SNODAS SWE is generated the from NOHRSC Snow Model, an energy 

and mass balance model forced with downscaled forcings from numerical weather prediction (NWP) models. Assimilation 

of ground-based snow data, airborne SWE from gamma radiation snow surveys, and satellite snow cover is performed via 

Newtonian nudging. 

A2. MR products 530 

The UA daily SWE dataset (Zeng et al., 2018; Broxton et al., 2019) at 4 km over CONUS is generated from 

analysis and interpolation of in situ measurements including SWE from SNOTEL, snow depth, air temperature and 

precipitation from COOP stations, and gridded estimates including air temperature and precipitation from PRISM. The 

ordinary kriging method is used for interpolating the ratio of SWE to net snowfall at in situ sites to the PRISM grid. The 

interpolated ratio is then multiplied by gridded 4-km PRISM net snowfall to get gridded SWE. At in situ sites, precipitation 535 

falls as snow on days when snow depth change is positive. As a result, snowfall may be overestimated on rain-on-snow days 

when both rainfall and snowfall occur, but precipitation is entirely recorded as snowfall. The temperature threshold to 

partition PRISM precipitation into snowfall and rainfall is interpolated from in situ threshold determined by each site 

(Broxton et al., 2016a, b). Net snowfall is estimated by the difference in accumulated snowfall and accumulated ablation 

which is a function of degree days above 0 °C. A new snow density parameterization (Dawson et al., 2017) was developed to 540 

convert snow depth at COOP stations to SWE. Precipitation and air temperature for UA are taken from PRISM (Daly et al., 

1994). 

ERA5-Land (Muñoz-Sabater et al., 2021) hourly SWE globally at 0.1° is generated from the same land surface 

model as ERA5 (with different versions) but driven by downscaled and lapse rate corrected forcings from ERA5 at higher 

spatial resolution. Specifically, shortwave, longwave, liquid, and solid precipitation are downscaled using a linear triangular 545 

mesh interpolation. Other variables such as air temperature, specific humidity, relative humidity, and surface pressure are 

adjusted to account for differences in elevations between the two spatial resolutions. No additional data assimilation is 

involved in generating the ERA5-Land SWE. 

A3. LR products 

ERA5 (Hersbach et al., 2020) outputs hourly SWE globally at 0.25° using the H-TESSEL model. An optimal interpolation 550 

(OI) method is used to update the grid-averaged snow depth from a maximum of 50 in situ measurements within a radius of 

250 km from a given grid cell. In situ snow depth observations from SYNOP and GTS are used as assimilated 
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measurements, and 4-km snow extent from NOAA/NESDIS is applied at elevation lower than 1500 m since 2004. However, 

SNOTEL/SCAN/COOP snow depth in the WUS are not currently used in the snow assimilation system. Though there might 

be some sparsely distributed in situ sites that measure snow depth which were assimilated in the WUS and Andes, the impact 555 

of data assimilation on SWE in both regions appears to be negligible. The binary snow extent is converted to snow depth at 

grids below 1500 m, assuming 5 cm of snow depth when snow cover is 1. The conversion is not conducted at elevations 

above 1500 m to avoid improper terrain information from coarse spatial resolution in mountainous area. SWE is set to 10 m 

at permanent snow and ice grids. Beyond snow observations, 4-km precipitation data from NCEP stage IV over the U.S. was 

assimilated in ERA5 using 4D var data assimilation method (Lopez, 2011). NCEP precipitation data is produced radar and 560 

gauge observations (Lin and Mitchell, 2005). Hence it is reasonable to assume that ERA5 precipitation may be more 

accurate over the WUS than the Andes where such data is not assimilated. 

The suite of GLDAS 2.1 products consist of daily SWE since WY 2001 from four globally distributed products 

(Rodell et al., 2004). The four products are generated from three LSMs and at two spatial resolutions (i.e., Noah LSM at 

0.25°: GLDAS – NOAH025; Noah LSM at 1.0°: GLDAS – NOAH10; VIC LSM at 1.0°; GLDAS –VIC10; Catchment LSM 565 

at 1.0°: GLDAS – CLSM10). The same meteorological forcings from multiple sources, including NOAA/GDAS, GPCP1.3, 

and corrected AGRMET, are employed to generate the four products. Adjustments for forcings are conducted to account for 

the elevation differences between GLDAS at 1.0° and 0.25°. No snow data assimilation is conducted in generating the 

products, whereas input forcings include sources from in situ measurements. 

MERRA2 outputs hourly SWE globally at 0.625° x 0.5° resolution using the Catchment LSM (Reichle et al., 2017). 570 

The Catchment LSM is forced by bias-corrected precipitation using Climate Prediction Center (CPC) unified gauge-based 

analysis of global daily precipitation products. Similar to the GLDAS subset, no snow data assimilation is involved in 

generating the MERRA2 dataset, whereas in situ precipitation measurements are involved in deriving the SWE. 

Data availability 

The Andes-SR and WUS-SR datasets are publicly available on https://doi.org/10.5061/dryad.ngf1vhj0s (last access: 16 575 

November 2022) and https://doi.org/10.5067/PP7T2GBI52I2  (last access: 6 September 2022), respectively. SNODAS 

product is available on https://doi.org/10.7265/N5TB14TC. The UA daily SWE product is available on 

https://doi.org/10.5067/0GGPB220EX6A (last access: 6 December 2022). The PRISM product is available on 

https://ftp.prism.oregonstate.edu/ (last access: 17 October 2022). The ERA5 product is available on 

https://doi.org/10.24381/cds.adbb2d47 (last access: 24 September 2022). The ERA5-land product is available on 580 

https://doi.org/10.24381/cds.e2161bac (last access: 25 October 2022), respectively. For GLDAS 2.1 products, the GLDAS – 

NOAH025 is available on https://doi.org/10.5067/E7TYRXPJKWOQ (last access: 17 October 2022); GLDAS – NOAH10 is 

available on https://doi.org/10.5067/IIG8FHR17DA9 (last access: 17 October 2022); GLDAS – VIC10 is available on 

https://doi.org/10.5067/ZOG6BCSE26HV (last access: 17 October 2022); and GLDAS – CLSM10 products are available on 

https://doi.org/10.5061/dryad.ngf1vhj0s
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https://doi.org/10.5067/VCO8OCV72XO0 (last access: 17 October 2022). MERRA2 SWE is available on 585 

https://doi.org/10.5067/RKPHT8KC1Y1T (last access: 16 August 2022); bias-corrected precipitation is available on 

https://doi.org/10.5067/7MCPBJ41Y0K6 (last access: 19 December 2022); bias-corrected snowfall is available on 

https://doi.org/10.5067/L0T5GEG1NYFA (last access: 19 December 2022).  
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Using newly developed snow reanalysis datasets as references, snow water storage is at high uncertainty among commonly 710 

used global products in the Andes, and low-resolution products in the western U.S, where snow is the key element of water 

resources. In addition to precipitation, elevation differences and model mechanisms variances drive snow uncertainty. This 

work provides insights for research applying these products and generating future products in areas with limited in situ data. 


