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Abstract. While the growth rate of atmospheric CO2 mole fractions can be measured with high accuracy, there are still large

uncertainties in the attribution of this growth to diverse anthropogenic and natural sources and sinks. One major source of

uncertainty is the net flux of carbon dioxide from the biosphere to the atmosphere, the Net Ecosystem Exchange (NEE).

There are two major approaches to quantifying NEE: top-down approaches that typically use atmospheric inversions, and

bottom-up estimates which rely on process-based or data-driven terrestrial biosphere models or inventories. Both approaches5

have known limitations. Atmospheric inversions produce estimates of NEE that are consistent with the atmospheric CO2

growth rate at regional and global scales, but are highly uncertain at smaller scales. Bottom-up data-driven flux models match

local observations of NEE, but have difficulty in accurately upscaling to a global estimate. We combine the two approaches,

constraining a bottom-up data-driven flux model trained on meteorological, remotely-sensed, and eddy-covariance data with

regional estimates of NEE derived from an ensemble of atmospheric inversions.10

We link the two approaches using a region-specific sparse linear model for 18 regions consistent with the Regional Carbon

Cycle Assessment and Processes-2 (RECCAP2) (Bastos et al., 2020; Tian et al., 2018), which allows us to quickly generate

regional estimates of NEE based on the data-driven flux model by simulating only a small number of optimally representative

pixels. These regional totals then become part of a machine-learning objective function that compares them with top-down

regional estimates from an ensemble of atmospheric inverse models. By adding this additional constraint from the top-down15

objective term, we produce a new “dual-constraint” data-driven flux model that is informative across spatial scales, producing

consistent estimates both of the local per-pixel flux and at regional and global scales.

The inferred global terrestrial carbon flux from land, excluding fires and riverine evasion across 2001-2017 is -3.14±1.75

PgC year-1 (±1 σ). This is a strong improvement over the -20.28±1.75 PgC year-1 from the exact same data-driven flux

model trained without the additional regional top-down constraint (i.e., single constraint) when compared to current best20

estimates of the global carbon flux from land. The shift in the carbon flux from land estimated by the model with the additional

atmospheric constraint occurs largely in tropical regions where the data-driven flux model is poorly constrained, or affected

by biased observations of NEE derived from difficult micrometeorological conditions. In extratropical regions, the estimated

NEE from dual and single constraint data-driven flux models are very similar, reflecting the denser observational networks

of ecosystem fluxes and atmospheric CO2. Our approach, training a data-driven flux model with multiple constraints at site-25
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level and continentally integrated scales, and different temporal resolutions, opens new avenues for data-driven flux models

constrained by other observations of atmospheric carbon dioxide, making use of the wealth of available Earth observation data.

1 Introduction

Since 1957, the growth of carbon dioxide in the atmosphere can be directly measured with high accuracy (Keeling et al.,

1989). However, linking atmospheric CO2 changes to the diverse anthropogenic and natural sources and sinks is still prone to30

uncertainties. One of the main sources of uncertainty is the land biosphere, which has large uncertainties both in the human-

related (land-use change) and the natural flux components (Friedlingstein et al., 2022). Improved understanding of driving

processes and drivers of variations in the global carbon budget requires, among others, improved observational constraints on

the net flux of carbon dioxide from the land surface to the atmosphere or Net Ecosystem Exchange (NEE), at local, regional,

and global scales (Bastos et al., 2022; Ciais et al., 2022; Gaubert et al., 2019; Saeki and Patra, 2017; Thompson et al., 2016).35

Two different approaches to constrain sources and sinks of carbon dioxide can be distinguished: top-down estimates, typi-

cally from atmospheric inversions of observed mole fractions, and bottom-up estimates, usually relying on flux observations,

remote-sensing products, or process-based models. Both approaches have known strengths and limitations (Jung et al., 2020;

Kondo et al., 2020).

Top-down estimates from atmospheric inversions infer the surface fluxes over land and ocean based on observations of atmo-40

spheric CO2 mixing ratio based on a Bayesian inversion framework using prior estimates of the flux of carbon dioxide and an

atmospheric transport model. Inversions provide terrestrial fluxes that are consistent with the global atmospheric CO2 growth

rate and show increasing agreement between different inversion systems at the scale of continental-sized regions (Gaubert

et al., 2019). However, inversion-based estimates of NEE are conditioned by the uncertainties of their flux priors, their atmo-

spheric transport model, the distribution of the CO2 observational data (Peylin et al., 2013), and their estimates are increasingly45

uncertain for smaller regions (Kaminski and Heimann, 2001). Inverse model evaluations at the scale of individual ecosystem

sites is rarely done, as the mismatch in spatial scales represented is simply too large.

The FLUXCOM project (Jung et al., 2020) produced a comprehensive comparison of data-driven bottom-up approaches for

upscaling terrestrial biosphere carbon dioxide and water fluxes based on eddy-covariance measurements. The project produced

two products, one using remotely-sensed variables (RS), and another using both meteorological and remotely-sensed variables50

(RS+METEO), as predictors in a data-driven flux model. FLUXCOM model ensemble capture the shape of the seasonality, and

the sign of the annual anomalies of NEE compared with inversion-based estimates of NEE in the extratropics, but they have

systematic biases in the tropics, leading to an overestimation of NEE (Jung et al., 2020). This is partly due to the distribution

of eddy-covariance towers, dense in the northern extratropics and sparse in the tropics, which therefore is not representative

of the global biome distribution. This leads to an under-constrained model at locations that are distant from eddy-covariance55

observations (Tramontana et al., 2016; Chu et al., 2017). The systematic tropical bias may also be caused by errors and data

quality issues in the tropical eddy-covariance record, in particular at night-time (Fu et al., 2018; Jung et al., 2020).
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Previous studies suggested that observations of atmospheric CO2 could provide an additional constraint to bottom-up data-

driven flux models (Jung et al., 2020; Anav et al., 2015; Beer et al., 2010). It is important to note that the carbon fluxes estimated

from top-down and bottom up approaches are not exactly the same, as emphasized in detail in Ciais et al. (2022). The primary60

observational constraint of top-down methods is atmospheric CO2 observations, hence atmospheric inversions are sensitive to

nearly all carbon exchange with land ecosystems as well as with the inland water systems (lakes, rivers) in these ecosystems,

illustrated in the blue and green boxes in Fig 2 of Ciais et al. (2022). In contrast, eddy-covariance flux measurements reflect

carbon exchange across a smaller footprint, and their location is often selected to explicitly exclude fire fluxes and inland

water systems. A meaningful comparison between fluxes derived from each thus includes accounting for both fires, and inland65

water fluxes, as also discussed in Friedlingstein et al. (2022). In this study, we similarly account for these inherent differences

as described in Section 3.2. From hereon, when we refer to "NEE" in the text we refer to land-ecosystem derived carbon

exchange, excluding inland water system contributions, and excluding the release of carbon by fires.

Atmospheric inversion estimates of NEE are most reliable at regional scales, and as such are most comparable to the re-

gional integral of a data-driven flux model’s output. It is infeasible to run a data-driven flux model regionally or globally for70

every step during the training process. Reading the necessary data to create an inference at every pixel is too time-intensive

for efficient experimentation. Given this barrier, adding an atmospheric constraint to a data-driven approach therefore requires

a computationally efficient "bridge model" which connects the data-driven flux model with the atmospheric data. The central

hypothesis of this study is that individually trained regional sparse linear models can serve this function, and enable a com-

plementary constraint based on (top-down) atmospheric inversions to the (bottom-up) data-driven flux model, improving the75

estimates of regional and global land surface CO2 fluxes. [It does not become clear that the bridge model conceptually is trivial

(summing up), but the challenge to overcome is computational] This methodology of multiple constraints across diverse data

using a computational bridge may point the way towards accessing the large volume of direct observations of atmospheric CO2.

The improvement we see from the inclusion of the second constraint, described in this study, indicates that our computational

bridge efficiently transmits information from the top-down data to the bottom-up data-driven flux model. A computational80

bridge which calculates or emulates atmospheric transport could provide the same benefits, linking a data-driven flux model to

a point observation of atmospheric CO2 mole fraction by estimating the near-field sources and strength of the flux that impacted

the observation.

2 Data

2.1 Eddy-Covariance / Driver Data85

The data-driven flux models in this study are trained using meteorological observations and NEE data collected by globally

distributed eddy-covariance towers in the La Thuile synthesis dataset of the FLUXNET network (https://fluxnet.fluxdata.org/

data/la-thuile-dataset/). Following Tramontana et al. (2016), driver variables are created using a set of remotely-sensed and

meteorological data from the Moderate Resolution Imaging Spectroradiometer (MODIS) data (http://daac.ornl.gov/MODIS/),

and the European Center for Medium-Range Weather Forecasting ERA5 atmospheric reanalysis dataset (https://www.ecmwf.90
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int/en/forecasts/dataset/ecmwf-reanalysis-v5). At tower locations the meteorological data is derived from the FLUXNET and

ERA5 data, while the global dataset uses only ERA5 data. See Tramontana et al. (2016) for a full discussion of the handling

of meteorological data. The FLUXCOM-RS+METEO V1 NEE ensemble data using ERA5 meteorological forcing from Jung

et al. (2020) were used to generate the regional sparse linear models described below.

2.2 Atmospheric Inversion Data95

For the atmospheric constraint we use the members from the ensemble of atmospheric inversions from the Global Climate

Budget (GCB22) (Friedlingstein et al. (2022), https://doi.org/10.18160/7AH8-K1X4) that are based on surface observations

and are available for the period of our analysis, 2001-2017. We use the Copernicus Atmospheric Monitoring Service (CAMS

v21r1) (1979-2021) (Chevallier et al., 2005), CarbonTracker Europe (CTE v21r1) (2001-2021) (van der Laan-Luijkx et al.,

2017), Jena CarboScope (sEXTocNEET v2022) (1957-2021) (Rödenbeck, 2005; Rödenbeck et al., 2018), UoE in situ (v6.1b)100

(2001-2021) (Feng et al., 2016; Palmer et al., 2019), and NISMON-CO2 (v2022.1) (2001-2021) (Niwa et al. (2022), available

at https://www.nies.go.jp/doi/10.17595/20201127.001-e.html). All inversion results were provided on a common 1°grid.

Table 1. Atmospheric inversions and references from the Global Climate Project 2022 (Friedlingstein et al. (2022),

https://doi.org/10.18160/7AH8-K1X4). All inversions are adjusted for fossil fuels, cement production and carbonation, and lateral

river flux. To make the inversions more comparable with data-driven flux model estimating NEE, all inversions have the CAMS Global Fire

Assimilation System (GFAS) estimate of fires removed. Only atmospheric inversions based on surface observations are used for reasons of

data availability over the period 2001-2017.

Inversion Version Date range Reference

CAMS v21r1 1979-2021 Chevallier et al. (2005)

CarbonTracker Europe (CTE) v21r1 2001-2021 van der Laan-Luijkx et al. (2017)

Jena Carboscope (sEXTocNEET) v2022 1957-2021 Rödenbeck et al. (2003), Rödenbeck et al. (2018)

UoE in situ v6.1b 2001-2021 Feng et al. (2016), Palmer et al. (2019)

NISMON-CO2 v2022.1 1990-2021 Niwa et al. (2022)

3 Methods

3.1 Driver Data

We use the driver variables from the FLUXCOM-RS+METEO with ERA5 forcing ensemble as in Jung et al. (2020): Enhanced105

Vegetation Index (EVI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), Daytime Land Surface Temper-

ature (LSTday), Nighttime Land Surface Temperature (LSTnight), the Medium Infrared Reflectance band (MIR), Normalized

Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), extracted for each site and globally from
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MODIS, and the ERA5 variables incoming global radiation (Rg), top of atmosphere potential radiation (Rpot), Water Avail-

ability Index (WAI), and Air Temperature (Tair). The full set of drivers were constructed following Jung et al. (2020) and110

Tramontana et al. (2016), see Appendix table A2 for the driver formulation. These variables are were computed globally and

stored by Plant Functional Type (PFT) derived from the MODIS Land Cover Type Yearly L3 Global 500m dataset Collection

5 (Friedl et al., 2010), and are reconstructed here by the on the percentage of the component PFTs in each pixel following the

approach in Jung et al. (2019). Two drivers, WAI and Tair are used at daily time step, while the other eight are constructed from

the mean seasonal cycle (MSC) signal across the component variables. All are used at a 0.5°spatial resolution.115

3.2 Atmospheric Inversion Adjustment

As discussed above, and in more detail in Ciais et al. (2022), these atmospheric data are not directly comparable with the NEE

output of an data-driven flux model based on eddy-covariance data. FLUXNET observations of NEE include the difference

between the gross primary productivity and the ecosystem respiration across a small footprint and implicitly include disturbance

and management fluxes. Atmospheric inversions use observed CO2 mole fraction with estimates of the non-biogenic fluxes to120

infer the exchange of carbon between the land and atmosphere create a product corresponding better to net biome productivity,

or the total regional gain or loss of carbon from all processes, i.e. including the signal from fires and other disturbances, land

use change and management, and river evasion (Ciais et al., 2022).

To account for this mismatch, this study uses the atmospheric inversion data from the GCB22, which are adjusted to rectify

small differences in prescribed fossil fuel emissions and cement production and carbonation fluxes. The inversions are further125

adjusted for lateral riverine CO2 transport to make their output more comparable with bottom-up models. See Friedlingstein

et al. (2022) for a full discussion of inversion systems. To facilitate the comparison to, and combination with, EC-driven carbon

exchange, we subtracted the fire flux from all inversion land fluxes at each grid cell. For this adjustment, we used the gridded

fire fluxes from CAMS Global Fire Assimilation System (GFAS) (Di Giuseppe et al., 2018) without additional adjustment,

which is consistent with the CarbonTracker Europe treatment of fire. The resulting fluxes thus represent land-ecosystem carbon130

exchange excluding inland waters and fires.

3.3 Modelling approach

We use two identical data-driven flux models, EC (eddy-covariance only), and EC-ATM (eddy-covariance plus regional NEE

from atmospheric inversion) which both accept a set of drivers and predict daily NEE (Fig. 1). They consist of feed-forward

neural networks, or a set of fully connected network layers, which we train using the standard gradient-based backpropagation135

algorithm (Kelley, 1960). To rule out effects of parameter initialization, we use the same initial state for the EC and EC-ATM

networks. The fully-connected layers consist of nodes or ‘neurons’, which are exposed to the output of all neurons in the

previous layer. Non-linearity is introduced by passing each node output through a non-linear activation function. Our network

is a set of three fully-connected layers with the ReLU activation function (Agarap, 2019). We provide a detailed illustration of

the model architecture in Appendix Figure B1.140
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The EC model is trained with a single term in the objective function, minimizing the difference between model inferences

of NEE and eddy-covariance observations of NEE. The EC-ATM model has two terms in the objective function: the first is

identical to the EC model. The second minimizes the difference between the estimates of the integral of per-region NEE and

the atmospheric inversions regional NEE values. As a result, the comparison of EC and EC-ATM results reflects the specific

effect of the atmospheric inverse constraint compared with the underlying EC model.145

The EC and EC-ATM output provide a side-by-side view of the paired learning process and a check on the impact of the

additional term in the cost-function. The hyperparameter set is available in the Appendix (table B1).

Figure 1. Experimental setup for parallel model training: Two data-driven flux models, EC and EC-ATM, are created for each experimental

run with identical initial weights for the model’s neural network f(x). The two models are optimized for the same EC data x. The EC-ATM

model additionally sends output of f(x) to the set of regional sparse linear models G(f(x)), inferring the regional monthly integral of NEE.

The inferred integrals are compared with the monthly regional integrals from the inversions, and this term is added to the objective function.

Both the EC and EC-ATM return the output of G(f(x)) as an evaluation output during training.

Each data-driven flux model is trained using a 10-fold cross-validation scheme, splitting the eddy-covariance observations

by site, holding out one fold per training cycle for validation. The folds are the same as those in Tramontana et al. (2016) for

comparability. For the atmospheric inversion training data used by the EC-ATM model, two random years from the full 18 year150

set are held out for validation. There are insufficient years available for a fully independent set of test years outside the training

and validation folds. We use the land sink, Sland for the CGB22 from the as an independent data to test the model at global

scale. Comparisons with the atmospheric inversions in results below are the same inversion data that is used in training. The

reported results are for the ensemble mean across the 10 folds. For both the EC and EC-ATM models, the ensemble members

are the data-driven flux model with the weights from epoch with the best validation result for that fold. These members are155

used for a full forward run across the period 2001-2017.
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3.4 EC-ATM constraint

The link between the EC-ATM model and the regional atmospheric inversion data are sparse linear models trained for each

RECCAP2 region, created using Least Absolute Shrinkage and Selection Operator (Lasso) regression. The targets for the

regression are created using the global NEE data cube created by the FLUXCOM intercomparison (Jung et al., 2020). These160

targets are the sum of NEE for all non-zero pixels p ∈ P in the region for time steps t in all times T (Eq. 1). A subset of candidate

pixels for a region s ∈ Sr is selected from P at time t using stratified random sampling from a set of clusters generated using

Dynamic Time Warping (DTW) (Tormene et al., 2008) as a metric of similarity, followed by spectral clustering. DTW is a

method for comparing two time series which finds an minimum distance between them by allowing non-aligned time steps to

be paired in the distance calculation as a similarity metric. The candidates from the stratified random sampling Sr are then165

used for Lasso regression which extends Ordinary Least Squares (OLS) regression (Eq. 2) by adding a term to the objective

function. This term, a weighted L1 norm, or the mean of the absolute values of the weights of the linear model β times the

weighting term α, has the effect of driving some weights to zero as α is increased. The result of this regression analysis is

a sparse set of non-zero parameters which linearly combine to produce a high-fidelity estimate of the regional sum of NEE.

The locations with non-zero coefficients are referred to as "contributing pixels". For each region a threshold of 0.95 R2 is set,170

and the training loop iterates, reducing the α term, and increasing the number of contributing pixels in the region until the

correlation threshold is reached using the training set. This result is tested using cross-validation.

yt =
P∑

p=0

NEEtp (1)

min

{
T∑

t=0

(yt−
Sr∑

s=0

NEEtsβs)2 + α

Sr∑

s=1

|βs|
}

(2)

The robustness of the sparse linear model was tested by 1000 runs with random stratified sampling within the discovered175

classes. The output shows stable spatial locations of contributing pixels within each region. Heat maps of contributing pixels

(Fig. B2) show that the Lasso approach repeatedly finds similar pixel locations, and will select spatial neighbors if the most

advantageous pixels are not included in the randomization.

The stability of these spatial regimes indicate that there is a statistical link at the spatial resolution of the analysis between the

contributing pixels and the regional integral of the EC model. It is plausible that this relationship might be scale-independent180

due to the spatial auto-correlation in the NEE fields. The contributing pixels cover the range of the PFTs in the region (fig

B3. The EC and EC-ATM models receive no PFT information during training, and the included PFT breakdown is based on

the majority class at 0.5°resolution, not the available PFT information at the eddy-covariance sites, which is specific to the

footprint of the EC tower.
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3.5 Model Training - EC185

At each training step, the EC model f with parameters ω is run for a set of driver variables from eddy-covariance measurements

xbatch (Eq. 3). The resulting inferences of NEE, ŷ, are used to calculate the first term in the objective function, the loss at the

EC tower locations, ℓEC, which is the Mean Squared Error (MSE) between the ŷ, and the observed NEE at the tower locations

in the training batch ybatch (Eq. 4).

ŷ = f(ω,xbatch) (3)190

ℓEC = MSE(ybatch, ŷ) (4)

3.6 Model Training - EC-ATM

The EC-ATM model has two constraints. The first, ℓEC, is based on EC tower observations of NEE and driver variables

measured or extracted at the EC tower sites. This term is identical to the objective function of the EC model. The second

constraint ℓATM, is calculated for each region r in all regions R, for all months m in a year M using the linear equation with195

region-specific parameters Θr and intercept br discovered with Lasso regression using the inferred flux estimate from f(ω) at

the contributing pixel locations with data xr,d as inputs. The sparse linear model is run for for the days of the month d ∈D, and

averaged for a monthly estimate (Eq. 5). This regional monthly estimate, ˆmr,m, is compared using the ℓ3-norm with inversion-

based estimates from inversions a ∈A of regional NEE, ar,m, producing the monthly regional loss ℓr,m (Eq. 6). The ℓ3-norm

was chosen because it improved the Interannual Variability (IAV) of the final NEE estimates.200

m̂r =
1
D

D∑

d=0

f(ω,xr,d) ·Θr + br (5)

ℓr,m = 3

√√√√ 1
A

A∑

a=0

(Aa,r,m− m̂r,m)3 (6)

This ℓr,m term is normalized by the range of the regional NEE from atmospheric inversions for that month ranger,m (Eq. 7).

This reduces the weight of the loss where the atmospheric inversion ensemble has a higher uncertainty. The weighted losses are

averaged for all months in M creating a regional loss term ℓATM,r. The area-weighted average of the regional losses creates205

an atmospheric loss term ℓATM (Eq. 8).

ℓATM,r =
1
M

M∑

m=0

(
ℓr,m

1 + ranger,m

)
(7)

ℓATM =
R∑

r=0

ℓATM,r ×
land arear

land areaglobe
(8)
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The two terms of the objective function, ℓEC and ℓATM are combined using an empirically learned weighting scheme

(Kendall et al., 2018), which learns the appropriate relative weights for the set of losses. This method adds a parameter to the210

learned weights of the data-driven model that estimates the task-dependent, homoscedastic uncertainty for each of the different

terms of the objective function, which is dependent on the inherent noise in the data, rather than the scale or quality of the

inputs. This term is an estimate of the variance of each component loss of the objective function over all training steps. For the

EC-ATM model these parameters, σ2
EC and σ2

ATM , are are added to the model training weights, and updated by the regular

backpropagation step of the neural network training. The σ2
LOSS parameter is used to create a weighting term wLOSS (Eq. 9)215

and a regularization term sLOSS (Eq. 9) for each component term of the objective function, LOSS ∈ [EC,ATM ]. These are

then combined to provide a learned estimate of the total loss, balanced by the learned uncertainty of the terms (Eq. 11).

The total loss of the EC-ATM model is then:

w[LOSS] =
1

2σ2
[LOSS]

(9)

s[LOSS] = log
√

σ2
[LOSS] (10)220

Ltotal = (wEC × ℓEC) + (wATM × ℓATM ) + sEC + sATM (11)

3.7 Post-Hoc Analysis

We additionally conduct a post-hoc test of the relationship between the regional sparse linear models and the calculated integrals

by applying the regional sparse linear models over the contributing pixel locations within the output of our training runs. This

helps diagnose differences between the loss values calculated against the regional linear model and the calculated integrals that225

occur during training.

4 Results

The addition of an atmospheric constraint based on modeled NEE from atmospheric inversions to a data-driven flux model (i.e.

the EC-ATM model) leads to a global estimate of NEE that is closer to the current best estimates from GCB22 (Friedlingstein

et al., 2022) than the model only based on eddy-covariance flux data (EC model). Figure 2a shows the global annual NEE for230

EC-ATM, to be much closer to the the atmospheric inversion ensemble mean and member totals, and the GCB22 estimate of

the land flux than the EC and FLUXCOM-RS+METEO V1 (Jung et al., 2020) estimates. Figure 2b shows that the IAV of NEE

estimated by EC-ATM ensemble largely captures the sign of the atmospheric inversion and GCB22 anomalies, but the IAV is

still underestimated by both the EC-ATM and EC models, which is a persistent issue with the FLUXCOM approach (see Jung

et al. (2020) for full discussion). The EC-ATM ensemble mean preserves the correlation with the scaled anomalies, producing235

very similar results to the FLUXCOM RS+METEO results 3.
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Figure 2. Panel (A) is the global annual NEE in PgC year-1. (B) shows the detrended anomalies in PgC year-1. (C) shows the IAV, or standard

deviation, of detrended annual anomalies

Table 2. Results of monthly NEE aggregated by regions: Pearson’s R and RMSE of the monthly time-series of regional/global integrals

over the period 2001-2017 and the corresponding monthly NEE from atmospheric inversions, and the Pearson’s R of the regional/global

Mean Seasonal Cycle (MSC) of NEE, the RMSE of the MSC relative to the inversion mean and the model MSC. FLUXCOM refers to the

RS+METEO V1 product (Jung et al., 2020). Country/region abbreviations are expanded in Appendix table A1

.
Pearson’s R – monthly integrals RMSE – monthly integrals Pearson’s R – MSC RMSE – MSC

EC-ATM EC FLUXCOM EC-ATM EC FLUXCOM EC-ATM EC FLUXCOM EC-ATM EC FLUXCOM

GLOBAL 0.991 0.969 0.976 0.176 1.502 1.542 0.996 0.976 0.982 0.125 1.496 1.537

USA 0.989 0.971 0.974 0.036 0.090 0.105 0.998 0.979 0.982 0.022 0.086 0.101

CAN 0.991 0.949 0.974 0.048 0.083 0.049 0.997 0.958 0.981 0.044 0.080 0.045

CAM 0.658 0.557 0.607 0.022 0.061 0.071 0.861 0.685 0.751 0.020 0.060 0.070

NSA 0.133 -0.007 -0.023 0.018 0.148 0.127 0.197 -0.072 -0.080 0.012 0.147 0.126

BRA 0.787 -0.028 0.040 0.055 0.354 0.350 0.893 -0.051 0.024 0.043 0.352 0.348

SSA 0.751 0.388 0.387 0.032 0.176 0.173 0.869 0.431 0.431 0.025 0.175 0.172

EU 0.988 0.986 0.989 0.034 0.059 0.061 0.997 0.994 0.997 0.026 0.055 0.058

NAF 0.929 0.809 0.902 0.031 0.058 0.033 0.959 0.834 0.926 0.027 0.056 0.030

EQAF 0.675 0.186 0.253 0.057 0.251 0.247 0.783 0.173 0.248 0.046 0.249 0.245

SAF 0.920 0.600 0.665 0.037 0.102 0.117 0.982 0.628 0.698 0.025 0.099 0.114

RUS 0.993 0.931 0.970 0.074 0.225 0.138 0.999 0.939 0.977 0.059 0.220 0.130

CAS 0.936 0.835 0.655 0.039 0.069 0.054 0.957 0.856 0.698 0.036 0.067 0.052

MIDE 0.913 0.882 0.919 0.025 0.046 0.020 0.926 0.893 0.931 0.025 0.046 0.019

CHN 0.969 0.973 0.973 0.035 0.104 0.073 0.987 0.990 0.990 0.025 0.101 0.070

KAJ 0.962 0.937 0.939 0.004 0.009 0.012 0.984 0.960 0.959 0.003 0.008 0.011

SAS 0.803 0.184 0.607 0.028 0.111 0.046 0.896 0.208 0.680 0.020 0.109 0.042

SEAS 0.273 0.204 0.204 0.050 0.173 0.174 0.436 0.312 0.300 0.042 0.170 0.172

OCE 0.199 0.223 0.240 0.044 0.047 0.036 0.289 0.263 0.310 0.037 0.041 0.030
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Table 3. Results of annual NEE aggregated by regions: Pearson’s R of annual integral of inferred NEE with the annual integral of NEE from

the inversion ensemble mean, and the RMSE of the annual regional/global NEE with the annual integral of NEE from the inversion ensemble

mean in PgC year-1

Pearson’s R – Annual RMSE

EC-ATM EC FLUXCOM EC-ATM EC FLUXCOM

GLOBAL 0.280 0.054 0.080 0.7502 16.8872 17.3236

USA 0.502 0.519 0.543 0.2303 0.8030 1.0836

CAN 0.325 -0.463 -0.236 0.3970 0.3747 0.0627

CAM -0.067 -0.085 -0.149 0.2236 0.6598 0.7898

NSA -0.360 -0.140 -0.253 0.0969 1.7467 1.4909

BRA 0.358 0.221 0.186 0.1319 3.8447 3.8912

SSA -0.037 -0.094 0.007 0.2021 1.9080 1.8467

EU -0.068 0.187 0.191 0.2074 0.6336 0.6805

NAF 0.557 0.616 0.694 0.1900 0.4362 0.2438

EQAF 0.749 0.725 0.740 0.3876 2.8844 2.8576

SAF 0.780 0.734 0.621 0.1352 0.5242 1.0036

RUS 0.534 -0.353 -0.409 0.6273 1.1558 0.1809

CAS -0.379 -0.258 -0.167 0.1326 0.7133 0.0759

MIDE 0.254 0.405 0.442 0.2277 0.5117 0.1585

CHN 0.084 0.297 0.292 0.1103 1.0917 0.8059

KAJ 0.185 0.173 0.216 0.0147 0.0798 0.1167

SAS 0.262 0.066 0.039 0.1384 0.9604 0.3685

SEAS -0.227 -0.263 -0.221 0.4350 2.0118 2.0409

OCE 0.499 0.599 0.508 0.4094 0.3703 0.1037

4.1 Mean Seasonal Cycle, Monthly results

The mean seasonal cycle (MSC) of the global NEE estimated by the EC-ATM model shows a clear adjustment towards the

atmospheric inversion ensemble mean, as expected. The global correlation is very close to the FLUXCOM RS+METEO results,

and the extratropical regions are similar, but the tropical regions show a meaningful improvement of the correlation (Table 2).240

The amplitude of the global MSC is also closer to the atmospheric inversion ensemble mean (3). Figure 3 also shows that the

distribution of the annual flux is very close to the atmospheric inversion ensemble mean, although the EC-ATM model appears

to underestimate the source during the Northern Hemisphere winter and conversely overestimate it in the Northern Hemisphere

early spring. The EC-ATM model shows an improvement in the global RMSE of monthly NEE from 1.54 PgC/month for

the EC ensemble mean to 0.13 PgC/month for the EC-ATM ensemble mean (Figure 2). This result confirms that additional245

atmospheric constraints are indeed reflected in the EC-ATM model at seasonal and continental scales, i.e., the scales where

atmospheric data are most informative. We will focus next on the sub-continental scales, turning to RECCAP2 regions.
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Figure 3. Mean seasonal cycle of ensemble mean of monthly NEE (PgC mon-1) for a representative tropical region (Brazil BRA), extratrop-

ical region (Europe EU) and the globe, for years 2001-2017. The solid line is the ensemble mean, and the shaded region is the mean ± the

ensemble standard deviation.

4.2 RECCAP2 Regions

When the estimates from EC-ATM and EC are compared for the RECCAP2 regions, the additional atmospheric constraint

shifts the regional NEE integrals from EC-ATM towards the inversion regional estimates in tropical regions, but the EC and250

EC-ATM MSC results are very similar in extratropical regions, where the EC model is better constrained by the denser eddy-

covariance measurement network. Figure 3 shows two selected regions, (1) Brazil which is representative of tropical regions

with sparse EC observations and potential systematic bias in the EC data, and (2) Europe which is representative of extratropical

regions with a dense EC network. The results in Europe are very similar for the EC, EC-ATM and FLUXCOM, with all three

models producing a MSC very close to the ensemble mean of the atmospheric inversions. In Brazil, the EC-ATM ensemble255

mean shows closer MSC seasonality and magnitude to the mean of the atmospheric inversions. At a monthly time-step, the

correlation of the EC-ATM with the atmospheric inversions is largely similar with the FLUXCOM RS+METEO V1, only

out-performing it in some tropical regions. EC-ATM shows a persistent improvement in the RMSE, showing a reduction of the

difference to the inversions across almost all regions (Table 2).

The shift towards the inversion regional values can be formalized with the normalized Nash Sutcliffe model efficiency260

(nNSE) metric (fig 4). Normalized Nash Sutcliffe model efficiency is a rescaling of standard Nash Sutcliffe metric which

assesses the predictive skill of a model in regard to a reference set of values. The normalization transforms the range of the

metric from (−∞,1) to (0,1). An nNSE of 0 represents no skill, 0.5 is where the model predicts the reference better than the
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mean, and 1.0 represents perfect skill. The score is calculated for the EC and EC-ATM regional monthly integrals compared to

the inversion mean monthly integrals as the reference value. Figure 4 shows that in almost all regions the EC-ATM model is265

better able to predict of the atmospheric inversions than the EC model.

From these different metrics, we demonstrate a successful integration of the new constraint into the EC-ATM model which,

at the regional level, can improve the inference of NEE. We turn now to the spatial distribution of inferred NEE.

Figure 4. Normalized Nash-Sutcliffe model efficiency over all regions ordered by EC-ATM performance.

4.3 Spatial Analysis

The spatial patterns of mean annual NEE (Fig. 5) shows that the EC-ATM estimates deviates from the EC model, from a strong270

annual sink to a mix of sources and sinks in the tropical regions. For example, in the Amazon region, the EC model estimates

a strong sink and the mean of the atmosphere inversions a weak and rather homogeneous source, while the EC-ATM model

infers a strong pattern of sinks and sources across the Amazon and Cerrado regions. The strong source and sink bands in the

Amazon basin may indicate some instability of the model, or amplification of the limited signal coming from the low density

of eddy-covariance sites. The EC-ATM ensemble mean shows an annual source in western tropical Africa, where the EC and275

atmospheric inversion members both show a sink. It must be noted that also among the inverse models themselves, tropical

fluxes are highly uncertain and the location of sources and sinks varies strongly (Friedlingstein et al., 2022; Gaubert et al.,

2019; Palmer et al., 2019)). Reconciliation with the EC-based constraints is not likely to resolve these spatial differences but

rather to include a bit of both, as exemplified by the patterns in the figure.

Moreover, we note that the EC-ATM and EC outcomes display much weaker year-to-year variability in NEE compared to280

the inversions, as reflected in the standard deviation of each grid box. This difference highlights the difficulty that both the EC

and EC-ATM models have in capturing the magnitude of the interannual variability, as also shown in Jung et al. (2020). We

will discuss this further in Section 5.2.
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At a monthly level the distribution of the mean monthly flux from years 2001 to 2017 shows the reduced flux in the tropics

throughout the year (Fig 6, blue regions in column 3). The EC-ATM model also shows a stronger extratropical sink for C3-crop285

areas in the USA, Europe and north-central Asia.

The spatial distribution of NEE estimated by the EC-ATM model is largely consistent with the EC distribution, while

reducing the tropical sink. It shows some irregularities where there is insufficient information in either the eddy-covariance

data or atmospheric inversions to robustly localize the NEE. Next, we discuss the strength of the relationship between the

spatial distribution of NEE between the different data sources and the resulting data-driven flux models.290

Figure 5. Mean (top panel) and standard deviation (bottom-panel) of the ensemble mean annual NEE from the EC-ATM and EC models,

compared to the ensemble mean of the atmospheric inversions. The top row shows the per-pixel mean of the annual NEE. The bottom row

shows the per-pixel standard deviation of the annual NEE in TgC year-1.

Figure 7 shows that both the EC-ATM and EC models correlate well with the inversion mean in the extratropics where both

products are better constrained by observations, while the EC ensemble mean has a negative correlation with the inversion mean

in the tropics. The EC-ATM shows a corresponding negative correlation with FLXUCOM RS+METEO V1 in tropical forests.

We note, however, that there is low confidence in atmospheric inversions’ estimates at the pixel level. Nevertheless, there is an

overall reduction in correlation between the EC-ATM ensemble and the EC ensemble with the FLUXCOM RS+METEO V1295

spatial distribution (Fig 7, Difference C-D) with a only partially corresponding increase in correlation with the inversion mean

(A-B). This demonstrates that the model is not simply learning a bias correction, but a new pattern of land flux that incorporates

some but not all of the information in the atmospheric inversions.

4.4 Eddy-covariance site comparison

The comparison of EC and EC-ATM modelled NEE at the eddy-covariance sites (Fig. 8) shows that the EC-ATM and EC300

models have a similar RMSE with observed NEE globally. The both the EC and EC-ATM model RMSE performances of

1.349 and 1.321 gC m-2 day-1 respectively are similar to the median results of RMSE for NEE using the setup in Tramontana

et al. (2016) of 1.298 gC m-2 day-1. The optimization of the model hyperparameters for EC-ATM performance, may lead to

a slight underperfomance by the EC model. The RMSE for the EC and EC-ATM ensembles is very similar globally and by
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Figure 6. Monthly mean fluxes for 2001-2017. The left column shows the EC-ATM results, the middle column shows EC results and the

right column shows the difference between them (EC - EC-ATM).

Figure 7. Pearson’s R for pairwise spatial distributions. The correlation is calculated using the time-series of each pixel.

majority PFT. A breakdown of tower performance by majority PFT is available in the appendix C2. This may indicate that305

for the majority of sites the additional information acts as a complementary constraint, very slightly improving the EC-ATM

model response at the site level. However, in some cases the model learns different responses in some tropical eddy-covariance

towers (see Fig 9). This shows where the atmospheric constraint adds information that allows the EC-ATM model to better

adapt to potential biases in the tower data from its additional exposure to non-tower pixels. In figure 9, the EC and EC-ATM

model results at the tower are plotted against the observed NEE. At BR-Ji2 (left) the two data-driven flux models have very310
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similar responses, which show a reduced sink compared to the tower observations. At BR-Ma2 (right) the EC-ATM ensemble

has learned an overall reduced sink compared with the EC ensemble.

Figure 8. Comparison of EC tower inferences with EC and EC-ATM model output across the whole training set. The Y axes are the NEE

EC-ATM and NEE EC in gC m-2 day-1, the X axes are the eddy-covariance observations in gC m-2 day-1.

Figure 9. Comparison of EC and EC-ATM model output at two Brazilian eddy-covariance sites. X axes are the model estimates and the Y

axes are the tower observations.
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5 Discussion

5.1 Constraint versus bias-correction

The addition of atmospheric information to a bottom-up data-driven flux model has several effects. It acts as a constraint,315

adding new information about the response in NEE from the drivers. The EC-ATM model results show changes in the seasonal

pattern and magnitude of the MSC across regions (see Fig C1), indicating that the atmospheric information in EC-ATM is

modifying the data-driven flux model’s (EC) response away from the eddy-covariance measurements. This indicates that the

additional information does not create a simple global or regional bias-correction term. This is also evident in the correction

at some tower locations (Fig 9). The difference between the observed and inferred NEE by the EC and EC-ATM models at320

specific towers shows that the atmospheric information can also act locally during training.

5.2 Interannual Variability (IAV)

This study shows very limited improvement in the IAV magnitude estimated by EC-ATM compared with the FLUXCOM

RS+METEO V1 results, it is still well below the IAV of the atmospheric inversions. This may be attributed to the optimization

of the neural network, the formulation of the driver variables, which are common to the FLUXCOM RS+METEO V1 results,325

and to missing information in the training set, for example due to under-representation of semi-arid tropical region (Ahlström

et al., 2015; Poulter et al., 2014) in the FLUXNET network. In this discussion of IAV, we use the standard deviation of the

detrended yearly integrals. Detrending the data removes the influence of land-use change (LUC) (Friedlingstein et al., 2022)

which is not represented in the eddy-covariance data.

The absolute value of the IAV component of the signal is small compared to the MSC, so the data-driven flux model330

may tend to optimize for the MSC, which will be the major component of the objective function term, while ignoring the IAV.

Experiments (not shown) with the architecture of the data-driven flux model and the formulation of the loss were not successful

in producing an IAV that is consistent with the atmospheric inversions. The structure of the model was varied, both in depth

(number of hidden layers) and width (number of neurons per layer). Increasing network complexity on both axes tended to

reduce the estimated IAV, while marginally increasing the accuracy of the MSC. Experiments were conducted on the objective335

function both structurally, and in its formulation. Structurally, the number of regions included in the atmospheric term at each

step, and the number of months included at each step were varied. The best results, as indicated in the methods, were the

maximum; all regions run for a full year at each training step. Additionally we experimented adding a third global term in the

objective function, formulated as the integral of all regions over a year with compared with the yearly integral of the ensemble

of atmospheric inversions. This term should directly inform the model about its performance with regard to the IAV, but our340

experiments did not produce a better IAV estimate with this term included. We also experimented with the formulation of the

objective term, with a small increase in IAV resulting from the use of the ℓ3-norm compared with a MSE (ℓ2-norm), or mean

absolute error.
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The driver variables are largely constructed from the MSC of the underlying remotely-sensed or meteorological data directly

(Table A1), or with data derived from the MSC, such as the minimum or range of the MSC for the driver variable. This limits345

the amount of information available for the EC or EC-ATM model to learn about the IAV component of the signal.

The eddy-covariance sites represented in the training set do not sufficiently represent important biomes that are important

for the global IAV of NEE, particularly semi-tropical arid regions (Poulter et al., 2014). These regions have been shown to

control the IAV of NEE while the mean of global NEE is largely controlled by tropical forests (Ahlström et al., 2015). This

missing influence may also degrade the ability of the data-driven flux model to fully capture the IAV.350

5.3 Outlook and Challenges

This study demonstrates both the impact of regional atmospheric information on the training of a data-driven flux model,

and the framework for using a bridge model to link a data-driven flux model to additional constraints. In this case, these are

regional integrals of NEE from atmospheric inversions, but these can be, in principle, multiple data streams at different scales

(temporal, spatial), or in different formats (grid, point). Incorporating these different data streams would require different model355

formulations, potentially including neural network architecture and objective functions, as well as data-driven, or physics-based

bridge models to create the link the data-driven flux-model to these new data. Our aim here is to demonstrate that adding an

atmospheric "top-down" constraint can positively impact the evolution of a "bottom-up" data-driven flux model during training,

leading to meaningful improvement in the data-driven flux model outputs.

While demonstrating the ability of top-down constraint to partially resolve the mismatch between the atmospheric inver-360

sions and the bottom up data-driven estimates of NEE, These results also shows the potential for a confounding effect from

the training process. The EC-ATM model is a learned statistical response between the drivers and the training data. There are

mismatches between the EC-ATM inference of NEE and the atmospheric data used for the top-down constraint. The atmo-

spheric data still implicitly includes disturbance and trade fluxes, along with other flux components that are not accounted

for in our model. This means that in reducing the the MSC error, these flux components are implicitly incorporated into the365

EC-ATM inference, although the model lacks the necessary process information, since these are not included in the drivers.

And, because of the statistical nature of the training process, the data-driven model is not an analog for a process-based model

where terms can be more easily backed out. Training using our double constraint should become less confounded as more

additional spatially-explicit flux components become available. However, despite these data mismatches, training a data-driven

flux model using a dual constraint does create a useful estimate of the NEE at multiple scales.370

6 Conclusions

This study demonstrates that a bottom-up data-driven flux model derived from eddy-covariance data can be successfully con-

strained by top-down observations of atmospheric carbon dioxide. The global and regional integrals of NEE preserve the

strengths of top-down estimates, while the spatial distribution remains closer to the better spatially-resolved bottom-up es-
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timates. The global annual NEE in the EC-ATM model with the atmospheric constraint is closer to the global annual NEE375

estimated by independent datasets in the Global Carbon Budget 2022 Friedlingstein et al. (2022).

This multi-scale approach may allow us to leverage the large volume of atmospheric carbon dioxide mole fraction observa-

tions for constraining a data-driven flux model. Using an atmospheric transport model as the bridge, the data-driven flux model

can generate an inference of the mole fraction at a location by estimating the flux at the set of locations that contributed to that

observation. Because this set of contributing locations would vary with the local meteorology, covering a range of biomes, the380

data-driven flux model would see a more diverse training set. This may improve the performance of the data-driven flux model

by learning from a more representative distribution of the driver variables across the land surface. In the future, this logic could

also be extended to other datasets, for example satellite retrievals of xCO2, pairing the deep archive of EC observations with

novel ’flux towers in the sky’ (Schimel et al., 2019).

Data availability. Working on a DOI385

Appendix A: Data

Figure A1. RECCAP2 Regions
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Table A1. RECCAP2 region ID, names and abbreviations

ID Region Abbreviation

0 United States USA

1 Canada CAN

2 Central America CAM

3 Northern South America NSA

4 Brazil BRA

5 Southwest South America SSA

6 Europe EU

7 Northern Africa NAF

8 Equatorial Africa EQAF

9 Southern Africa SAF

10 Russia RUS

11 Central Asia CAS

12 Mideast MIDE

13 China CHN

14 Korea and Japan KAJ

15 South Asia SAS

16 Southeast Asia SEAS

17 Oceania OCE

20

https://doi.org/10.5194/egusphere-2023-805
Preprint. Discussion started: 5 June 2023
c© Author(s) 2023. CC BY 4.0 License.



Table A2. Driver variables used for the data-driven EC and EC-ATM models and the calculation of the drivers from the base variables

above. The global dataset uses only the MODIS and ERA5 data, while the data used at the eddy-covariance sites also uses meteorological

observations from the tower instruments. See Tramontana et al. (2016) for a full discussion.

Name Variable MSC calculation period (Source)

WAI2 Water Availability Index Calculated from a water

balance model derived

from MODIS variables

(see Tramontana et al.

(2016) supplement S3

for full model descrip-

tion)

MSC_EVIRpot Mean Season Cycle(EVI × Rg) 2001–2012 MODIS (EVI), ERA5

(Rg)

MSC_FparLST Mean Season Cycle(fAPAR × LSTday) 2001–2012 MODIS

MIN_MSC_NDWI Min(Mean Season Cycle(NDWI)) 2001–2012 MODIS

AMP_Band4 Amplitude(band 4 reflectance) MODIS

MSC_LST_Night Mean Season Cycle(LSTnight) 2001–2012 MODIS

Rg_VIMSC Mean Season Cycle(NDVI) × Rpot 2001–2012 MODIS (NDVI), ERA5

(Rg)

AMP_MSC_NDVI Amplitude(Mean Season Cycle(NDVI)) 2001–2012 MODIS

Tair Air Temperature 2001–2012 ERA5

AMP_MSC_WAI Amplitude(Mean Season Cycle(WAI)) 2001–2012 ERA5

All variables: Daily values 2000-2017, 0.5°spatial resolution
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Table B1. Hyperparameters for reported EC and EC-ATM model runs

Input shape 10

Latent dimension 32

Learning rate 0.003

EC batch 10000

Appendix B: Technical Implementation

Figure B1. Model Architecture, the model is a feed-forward neural network, or a set of fully connected network layers. The fully-connected

layers consist of nodes or ‘neurons’, which are exposed to the output of all neurons in the previous layer. Non-linearity is introduced by

passing each node output through a non-linear activation function. Our network is a set of three fully-connected layers with the ReLU

activation function (Agarap, 2019).
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Figure B2. Robustness of contribution pixel selection: A Heat map of pixel inclusion in the sparse linear model using Lasso regression.

Values represent the log-scaled number of pixel inclusions in the non-zero set of parameters across 500 regressions using a randomized

subset of the data. Pixels that are most often included provide a more important constraint to the calculation of a regionally summed NEE,

minimizing Eq. 2

Figure B3. The representation of PFTs across all contributing pixels in all regions. All PFTs are the majority type per pixel. This image

shows the relative number of times a certain PFT is included in the optimal set of contributing pixels which construct a regional integral of

NEE, when selecting from all global land pixels. The black outlines show the proportion of that majority PFT type globally. A per-region

analysis of PFT inclusion is available in appendix B4
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Figure B4. Regional composition of PFT in contributing pixels
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Appendix C: Results

Figure C1. MSC of the ensemble mean of all regions in PgC mon-1. The solid line is the ensemble mean, and the shaded region is the mean

± the ensemble standard deviation.
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Figure C2. Scatter-plots of eddy-covariance NEE (x axis) and inferred NEE (y axis) by PFT and model (ATM-EC, EC).
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