
Impact-based flood forecasting in the Greater Horn of Africa

Lorenzo Alfieri1, Andrea Libertino1, Lorenzo Campo1, Francesco Dottori1, Simone 
Gabellani1, Tatiana Ghizzoni1, Alessandro Masoero1, Lauro Rossi1, Roberto Rudari1, Nicola 
Testa1, Eva Trasforini1, Ahmed Amdihun2, Jully Ouma2,3, Luca Rossi3, Yves Tramblay4, Huan
Wu5,6, and Marco Massabò1 

1 CIMA Research Foundation, University Campus of Savona, Via Armando Magliotto, 2, 17100 Savona - Italy
2 IGAD Climate Prediction and Applications Centre (ICPAC), Nairobi, Kenya
3 United Nations Office for Disaster Risk Reduction (UNDRR), Regional Office for Africa, Nairobi, Kenya
4 HSM, University of Montpellier, CNRS, IRD, Montpellier, France
5 Southern Marine Science and Engineering Laboratory (Zhuhai), School of Atmospheric Sciences, Sun Yat-sen 
University, Zhuhai, 519082, China
6 Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen 
University, Guangzhou, 510275, China

Correspondence to: Lorenzo Alfieri (Lorenzo.Alfieri@cimafoundation.org)

Abstract. Every year Africa is hit by extreme floods which, combined with high levels of vulnerability and 
increasing population exposure, often result in humanitarian crises and population displacement. Impact-based 
forecasting and early warning for natural hazards is recognized as a step forward in disaster risk reduction, 
thanks to its focus on people, livelihoods and assets at risk. Yet, the majority of the African population is not 
covered by any sort of early warning system. This article describes the setup of Flood-PROOFS East Africa, an 
impact-based riverine flood forecasting and early warning system for the Greater Horn of Africa (GHA), with a 
forecast range of 5 days. The system is based on a modeling cascade relying on distributed hydrological 
simulations forced by ensemble weather forecasts, link to inundation maps for specific return period, and 
application of a risk assessment framework to estimate population and assets exposed to upcoming floods. The 
system is operational and supports the African Union Commission and the IGAD Disaster Operation Center in 
the daily monitoring and early warning from hydro-meteorological disasters in Eastern Africa. Results show a 
first evaluation of the hydrological reanalysis at 78 river gauging stations and a semi-quantitative assessment of 
the impact forecasts for the catastrophic floods in Sudan and in the Nile River Basin in Summer 2020.
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1 Introduction

Globally, between 2000 and 2019 disasters caused approximately US$ 2.97 trillion in economic losses, claimed

1.23 million lives, and affected a total of over 4 billion people (UNDRR and CRED, 2020). Out of those, floods

hold  the  largest  share,  with  1.65  billion  people  affected,  on  average  over  82  million  per  year.  While  the

economic impacts are higher in absolute terms in high income countries, their toll in terms of casualties and

human displacement is usually larger in poorer countries, due to higher vulnerability and limited capacity to

cope with the disasters (Christian Aid, 2022). In the Greater Horn of Africa (GHA), the indirect impacts of

disasters  such as  floods and droughts  often  result  in  greater  devastation  than their  direct  impacts,  yet  this

association is frequently overlooked. These include water-borne disease spreading, failure of the crop season,

malnutrition, livelihood impoverishment, increase of infant mortality rates, severe food insecurity, large-scale

migration flows, ultimately increasing social inequality, political instability and civil conflicts (Maystadt et al.,

2015; FAO and WFP, 2022). Targeted flood risk profiling efforts confirm that over 2 million people are affected

on average  every  year  in  the  GHA region,  possibly  becoming 2.7  millions  under  high-end future  climate

scenarios in combination with socio economic projections for 2050 (UNDRR, 2021). Furthermore, an average

of 1.3 million people are estimated to be forcibly displaced each year (ICPAC, 2023).

Climate change is likely to increase the impacts of weather-related disasters in the GHA, by altering the regimes

of seasonal rainfalls which are key sources of water for the agricultural lands. Climate projections predict large

uncertainty in precipitation patterns across most of East Africa by 2050. Yet, there is high confidence for an

increase  in  seasonal  rainfall  over  the  Ethiopian  highlands  (Richardson  et  al.,  2022).  The variability  in  the

seasonal rainfalls is projected to increase, resulting in more frequent wetter and drier years and a higher risk of

flood and drought events. Advances in weather prediction models have enabled skillful early warning systems

for floods and other weather related hazards, also covering areas with very limited in situ measurements such as

Africa (e.g., Lienert et al., 2022; Sheffield et al., 2014; Arsenault et al., 2020; Alfieri et al., 2013; Wu et al.,

2019;  Hales  et  al.,  2022).  The most  common approach  used  in  flood  early  warning  systems is  to  force  a

hydrological model with numerical weather predictions (NWP) and detect upcoming floods when predicted flow

peaks exceed warning thresholds derived from long-term statistics. Although such a method has demonstrated

its robustness in predicting potential flood occurrences, it has limitations in accurately identifying the full extent

of their impacts and the efforts required for emergency support and recovery in the aftermath of disasters. The

estimation of flood impacts requires the spatial characterization of the inundation extent, rather than mono-

dimensional information on discharge threshold exceedance. In addition, adding the information on the exposed

assets, vulnerability and coping capacity is crucial to shift the system from a purely hazard-based, to impact-

based forecasting. This is particularly important for developing countries as in Africa, which has high flood

exposure due to unplanned human settlements in flood-prone areas (Di Baldassarre et al., 2010; Douglas, 2017).

In addition, actual vulnerability to disasters has remarkably dynamic components, not only in space but also in

time. For instance, Matanó et al. (2022) found higher than expected drought and flood impacts in Kenya and

Ethiopia  in  2017–2018,  when government  elections,  crop  pest  outbreaks  and ethnic conflicts  increased  the

countries vulnerability. Similarly, exposure to floods may experience rapid increase in the next few decades in

Africa if the planned population growth does not come with adequate land use planning (Alfieri et al., 2017;

Winsemius et al., 2016; Tabari et al., 2021).
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This work describes the design, setup, operational implementation and first evaluation of an impact-based flood

forecasting  system  for  the  GHA  region  named  Flood-PROOFS  East  Africa.  Flood-PROOFS  (Flood

PRObabilistic Operational Forecasting System) is designed to support decision makers during the operational

phases of flood forecasting, flood monitoring, and water resource management. Its main goal is to protect the

population  and  infrastructures  from damage caused  by  intense  hydro-meteorological  events.  The system is

operational  for  the  Italian  National  Civil  Protection  Department  and  other  hydro-meteorological  offices  in

various  world  countries  (e.g.,  Bolivia,  Caribbean,  Mozambique).  In  the  East  African  configuration,  Flood-

PROOFS is based on a hydro-meteorological modeling chain including ensemble discharge forecasting forced

by NWP, link to inundation scenarios, and application of a risk assessment framework to include all the relevant

components to forecast disaster impacts. The activity is part of the development of an African Multi Hazard

Early Warning System (AMHEWAS), a multi-year project funded by the Italian Government and implemented

by CIMA Research Foundation through the United Nations Office for Disaster Risk Reduction (UNDRR), in

collaboration with national hydro-meteorological services, climate centers from different Regional Economic

Communities (RECs) and the African Union Commission (AUC).

2 Material and Methods

2.1 The study region

The Greater Horn of Africa (GHA) region is composed of 11 countries (Figure 1), including Ethiopia, Eritrea,

Djibouti,  Sudan,  South  Sudan,  Somalia,  Uganda,  Burundi,  Rwanda,  Kenya,  and  Tanzania,  with  a  total

population of 375 million in 2020, projected to exceed 700 million by 2050 (United Nations, 2022). The region

experiences  a  highly variable  climate,  influenced  by both oceanic  and  atmospheric  processes.  Precipitation

patterns are particularly complex, with some areas receiving high amounts of rainfall and others experiencing

prolonged dry spells (Nicholson, 2017). The climate in the GHA ranges from dry to tropical, with temperatures

that vary depending on elevation and proximity to water bodies. 

The seasonal cycle of precipitation in the GHA is characterized by a bimodal pattern for the equatorial and

southern parts and unimodal for the northern part. In the equatorial and southern part of the GHA region, the

long rains occur from March to May, while the short rains fall between October and December. Differently, the

northern  part  of  the  region  receives  rainfall  in  the  period  June-September.  The  dry  seasons,  which  are

characterized  by  low rainfall  and  high  temperatures,  occur  from  June  to  September  and  from January  to

February in the equatorial and southern parts of the region. The climate of the GHA is characterized by large

spatial  heterogeneity,  which  can  be  largely  attributed  to  the  topographic  differences  that  can  be  found

throughout the region as well as the oscillation of the intertropical convergence zone (ITCZ)  (Lyon, 2014).

Despite  the variability  in precipitation patterns,  the region has  significant  water  resources,  including lakes,

rivers, and underground aquifers. However, the variability of the climate, together with other factors such as

population growth and land use changes, pose significant challenges to the sustainable management of these

resources.

The economy of GHA countries is highly dependent on rain-fed agriculture, thus it is extremely sensitive to

weather  and  climate  variability.  The  GHA  region  is  already  experiencing  changes  in  temperature  and

precipitation patterns due to climate change, which exacerbates the region's vulnerability to extreme weather
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events. Climate projections point towards more severe river flooding in the White Nile, Kenya and southern

Somalia by the end of the century (Hirpa et al., 2019). On the other hand, the northern part of the GHA is likely

to experience  in  the  coming decades  further  drying  and  reduction  of  low flows,  partly  linked  to  a  higher

warming rate than the global average (Osima et al., 2018). 

2.2 Static data
2.2.1 Hydrological modeling
The setup of Flood-PROOFS East Africa required the collection of several static and dynamic data, which are

described in the following. The Digital Elevation Model (DEM) is taken from the Hydrologic Derivatives for

Modeling and Applications (HDMA) database (Verdin, 2017), with spatial resolution of 3 arc-second (~90 m at

the  equator).  HDMA comes  with  a  pre-computed  and  corrected  set  of  hydrological  derivatives,  including

channel network and basin partitioning. Ancillary data including flow accumulation and drainage direction were

extracted from the DEM with GRASS GIS (https://grass.osgeo.org/).  The DEM was upscaled at the chosen

domain resolution and carved using the 90 m stream network.

Land use and land cover information at 300 m resolution are taken from the ESA-CCI Land Cover map v2

(ESA, 2017), which was used to estimate the soil characteristics and the vegetation cover. Further, we applied

the USDA method for soil texture identification and hydrologic soil type classification (Shirazi and Boersma,

1984) by combining the ISRIC SoilGrids (Hengl et al., 2017) maps of soil fraction in sand and clay at 250 m

spatial resolution.

2.2.2 Impact modeling
Inundation maps are taken from the set of global flood hazard maps produced by the European Commission,

Joint Research Centre (JRC, Dottori et al., 2016) and distributed through its Data Catalog service. Maps are

provided at 30 arc-second resolution (~1000m) for rivers with drainage area above 5000 km 2 and for six return

periods, i.e., the 1 in 10, 20, 50, 100, 200 and 500 years. These represent the maximum flood extent and depth

assuming an unprotected scenario, i.e., assuming the failure of flood defenses. Maps are produced with a bi-

dimensional hydrodynamic model forced by flood hydrographs taken from the GloFAS reanalysis (Alfieri et al.,

2020), and come with a set of Areas of Influence maps, which define the links between portions of inundated

areas and the corresponding pixel of the GloFAS river network at 0.1 degree resolution (Alfieri et al., 2017).

Exposure maps were collected for the following classes: Population, Crop land, Grazing land, Gross Domestic

Product (GDP), Livestock units, and Road network. Maps cover the entire GHA region and were chosen as the

best tradeoffs between data quality, year of release and homogeneous coverage in the region. Additional details

on exposure layers are reported in the Supplement material.

Country-based lack of coping capacity (Lcc) values were taken from the latest version of the INFORM Risk

Index (De Groeve et al., 2015) available at the time of development (i.e., year 2022). Lcc ranges between 0 and

10,  with  largest  values  for  countries  with lowest  coping capacity,  hence  needing  more  support  in  case  of

disasters. East African countries ranks the highest in the global ranking of INFORM, with South Sudan having

the largest value (Lcc=9.5) among all world countries, Somalia ranking 3 rd (Lcc=8.8), Eritrea 8th (Lcc=7.8), and

Uganda and Ethiopia in the top 25 countries.

Vulnerability is defined as the conditions determined by physical, social, economic and environmental factors or

processes which increase the susceptibility of an individual, a community, assets or systems to the impacts of

hazards.  In particular, vulnerability to riverine flooding is linked to the probability of being affected by the
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inundation in the flood-prone areas, hence it depends on the flood protection level, probability of a levee failure,

early  warning  systems  in  place,  and  other  impact-reduction  measures.  In  this  work  we  use  vulnerability

information from Alfieri et al. (2022a) which values range between 0 and 1 depending on the hazard magnitude,

and were tuned on the basis of reported affected impacts in past disasters in Africa.

 
2.3 Dynamic data
Variables  needed by  Continuum, the  hydrologic  model  underpinning  the Flood-PROOFS flood forecasting

system,  are  10m  wind  speed,  relative  humidity,  2m  temperature,  downward  short-wave  radiation,  and

precipitation.  Hydrological  model  runs for  historical  simulations over  2001-2022 are  forced  by  the  gauge-

adjusted GSMaP precipitation (Kubota et al.,  2020) and by surface air temperature,  relative humidity, wind

speed and incoming solar radiation taken from the ERA5 atmospheric reanalysis (Hersbach et al., 2020) from

the European Centre for Medium-Range Weather Forecasts (ECMWF). GSMaP has a resolution of 0.1° and 1

hour.  It  relies  on  a   Dual-frequency  Precipitation  Radar  (DPR)  onboard  GPM core  satellites,  other  GPM

constellation  satellites,  Geostationary  satellites,  and  a  bias  correction  based  on  CPC Unified  Gauge-based

Analysis of Global Daily Precipitation. The near real time version of the product, with a nominal latency of 4

hours, has been selected to feed the operational runs of the flood forecasting chain. 

ERA5 is produced on regular latitude-longitude grids at 0.25° x 0.25° hourly resolution, with daily updates

being available 5 days behind real time. Data from both GSMaP and ERA5 were downscaled from the original

to the respective domain resolutions through a natural neighbor interpolation method.

Weather forecasts are taken from the Global Forecast System (GFS) of the United States National Centers for

Environmental Prediction (NCEP), together with the corresponding 30-member ensemble product GEFS. Both

products have 0.25° resolution and are acquired up to 120 hour forecast range at hourly resolution for GFS and

3-hourly for GEFS. 

Daily discharge data was collected at ~200 gauging stations in the GHA region. Data sources are the Global

Runoff Data Centre (GRDC), the African Database of Hydrometric Indices (ADHI, Tramblay et al., 2020), and

the national  hydrometeorological  services  of  Burundi,  Sudan,  South Sudan,  Tanzania  and  Uganda.  After  a

screening for data quality, period of record and minimum record length of 3 years, we selected 56 stations to use

for calibration and 78 for model validation.

2.4 Methods
2.4.1 Modeling setup
Hydrological processes in the study region are simulated with the Continuum model (Silvestro et al., 2013).

Continuum is a semi-physically based rainfall-runoff-routing distributed hydrological model, which completely

solves the mass and energy balance at the land surface. It relies on a morphological approach placing the Digital

Elevation  Model  (DEM)  as  the  key  element,  from  which  the  drainage  network  and  other  hydrological

derivatives are computed (Giannoni et al., 2000). Continuum reproduces the spatio-temporal evolution of runoff,

soil moisture, energy fluxes, surface soil temperature, snow accumulation and melting, by reproducing all main

processes of the hydrological cycle. For the implementation in the GHA region, Continuum was set up over 17

independent and hydrologically coherent domains (Figure 1), to cover 11 countries and additional land portions

located upstream, for a total simulated area of 6.8 million km2. The model setup has variable grid resolution
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depending  on  the  domain,  with  D01  and  D02  (including  the  Nile  River  Basin)  at  0.03°  (~3.3  km),  D15

(including the Juba-Shabelle river basin) at 0.02° (~2.2 km), D13a, D13b and D13c (the three main Tanzanian

islands) at 250 m, and all the other domains at 0.01° (~1.1 km) resolution. Point features implemented include

the largest 19 reservoirs and 20 lakes, extracted from the Global Dam Watch (Mulligan et al., 2021), the FAO-

AQUASTAT-Dams (https://www.fao.org/aquastat/en/databases/dams) and the HydroLAKES (Messager et al.,

2016) datasets. Both lakes and reservoirs were selected among those having total storage larger than 300 Mm 3.

An  additional  lake  was  inserted  to  model  the  Sudd  swamps  in  South  Sudan.  To  estimate  its  two  model

parameters (emptying constant and volume with zero outflow discharge) we took the maps of minimum and

maximum flood extent in 2001-2018 from Di Vittorio and Georgakakos (2021) and estimated the corresponding

water storage using the procedure by Peter et al. (2022) and the Shuttle Radar Topography Mission (SRTM)

DEM at 30m resolution.

series resulting after the data screening. The calibration strategy follows the procedure described by Alfieri et al.

(2022), yet using the normalized Root Mean Square Error (nRMSE) in place of the Kling Gupta Efficiency

(KGE), which is then weighted by the logarithm of their upstream area, to give a comparable but higher weight

to  stations  located  downstream.  For  each  domain  we  calibrated  four  parameters,  chosen  through a  global

sensitivity  analysis  (GSA)  on  eight  Continuum  parameters  to  investigate  their  sensitivity  and  the  most

influential ones for each output variable. GSA was based on the SAFE Toolbox (Pianosi et al., 2015), using the

Elementary Effects Test (EET) (or method of Morris) and One-at-a-time (OAT) sampling using Latin Hyper-

cubes. Additional details on the GSA and on the calibration strategy are reported in the Supplement material.
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2.4.2 Parameter calibration
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Multi-site  calibrations  are  known to give on average  lower  performance than cascading  calibrations in  the

calibration period,  though they improve and stabilize basin-wide performance,  with noticeable  skill  gain in

uncalibrated rivers and overall in validation (Wi et al., 2015). The calibration period was chosen to include three

years of observed discharge data in the most recent period of availability, considering the quality of the data and

possibly including both periods of high and low flows. Each calibration run has a 4-year duration, to include a

1-year warm up period at the start of each run.

In most of the calibrated domains the entire calibration process was repeated more than once to fine tune the

choice of the parameter set, the calibration stations and the calibration period. Overall, the entire calibration

procedure required over 2000 model runs. Parameter regionalization was performed on those domains with no

calibration stations, according to criteria of proximity and climatic conditions. Calibrated parameters were then

used  in  a  set  of  long-term hydrological  simulations  over  2001-2022,  having  three  key  functions.  First,  to

estimate suitable initial conditions to initialize the operational forecasts. This is particularly useful for large river

basins (e.g., Nile, Juba-Shabelle) with long memory (i.e., more than 1 year), thus requiring long initialization

periods to adequately characterize their water balance conditions. Second, to serve as an evaluation dataset to be

compared with observed discharges. Third, long term simulations are analyzed statistically to extract discharge

annual maxima and estimate extreme value distributions at each pixel of the river network. Analytical functions

were estimated with the 3-parameter Generalized Extreme Value (GEV) distribution based on L-moments (e.g.,

Hosking, 1990). Maps of discharge peaks corresponding to the 1 in 2, 5, and 20 year return periods were chosen

as medium, high and severe warning thresholds for the operational forecasting chain, thus identifying three

hazard classes (Hc). Performance of the hydrological model was assessed over the maximum extent of discharge

data availability at the validation stations over the period 2002-2022, using the long term simulations described

above.  Validation  was  performed  over  78  river  gauges,  hence  including  some  that  were  not  used  in  the

calibration phase. Validation skills are key predictors of the model skills of the operational model runs and are

thus more representative than the skills obtained in the calibration phase.

2.5 The impact-based forecasting chain
The operational  forecasting chain  is  composed of  three  main components:  hydrological  runs and threshold

exceedance detection, composite of the corresponding inundation depth and extent, and impact forecast. These

are activated every day as soon as new weather forecasts are available.

2.5.1 Hydrological runs and event detection
GFS deterministic forecasts with a 5-day horizon are downloaded and pre-processed to be taken as input by

Continuum. Hydrological states are updated to the 00 UTC of the current day through a 1-day run starting from

the previous day conditions and taking as input the GSMaP 24-hour precipitation and the other atmospheric

variables of the last 24 hours from the same global forecasting model. Continuum is run in forecast mode for the

subsequent 5 days and the maximum discharge at each pixel of the river network is compared with the three

warning thresholds extracted from the long-term runs, to detect high-flow events. 

A similar  exceedance analysis is  performed versus a threshold corresponding to the 20-th percentile  of the

analytical cumulative distribution function of the GEV distribution at each pixel (i.e., the 1 in 1.25 year return

period). When such exceedance is detected at any point, the ensemble forecast is triggered for the same domain,

which consist of 5-day hydrological forecasts based on the 30-member GEFS as forcing input. The 30 output
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discharge scenarios at each reporting point are then shown in the visualization platform, enabling the forecaster

on duty to evaluate the range of variability of predicted flows (see example in the Supplement material).

2.5.2 Impact forecasts
Impact  forecasts  are  triggered  when  the  forecast  deterministic  discharge  exceeds  the  1  in  2  year  warning

threshold at any section of the river network. First, an unprotected inundation scenario (i.e., assuming that all

flood defenses fail) is produced by linking the grid points where the highest discharge threshold is exceeded to

the JRC inundation map with the closest return period. To this aim, each pixel of the GloFAS river network was

mapped to one or more pixels of the Continuum network, using automated criteria of proximity and similarity

between the drainage areas, followed by manual fitness check. In addition to the three warning thresholds used

for early warning (i.e.,  annual frequencies of 1 in 2, 5 and 20 years), we extracted four additional threshold

maps with the same annual frequencies as those of the JRC inundation maps (i.e., 1 in 50, 100, 200 and 500

years), to enable impact assessments for a wider spectrum of event magnitude. Finally, the inundation scenario

of each forecast is produced by mosaicking together all the portions of flooded area (with variable return period

along the river network). 

Absolute (I) and relative (RI) impacts are calculated as aggregate values for each administrative region (GADM

level 1, see https://gadm.org) according to the following formulas:

I AR=∑
AR

∑
Hc=1

3

( H ⋅E ⋅V ) Lcc (1)

RI AR=
I AR

E AR
(2)

where: H is the hazard, i.e., the mask of maximum inundated area in the forecast range;

E is the exposure of the considered class (Population, Crop land, Grazing, Gross Domestic Product (GDP),

Livestock units, and Road network);

V is the vulnerability;

Lcc is the lack of coping capacity.

IAR is the potential impact for any considered administrative region (AR), obtained as a double summation over

all pixels within AR and over each of the three considered hazard classes (Hc), where Lcc is a constant value for

each country and the product (H E V) is computed at the pixel level for each Hc and then added to the sum. For

each forecast run, eq. (1) and (2) are evaluated for all 227 administrative regions in the GHA and for the seven

exposure categories. Results of flood impacts are displayed in the myDewetra web interface on average at 6:30

UTC,  typically  within  1  hour  from the  availability  of  the  weather  forecast  data.  Ensemble  simulations,  if

triggered, are produced afterwards and progressively displayed on the interface when available. 

3 Results and Discussions

3.1 Hydrological model evaluation
Long term runs of the calibrated model domains over 2002-2022 are evaluated at 78 quality controlled river

gauges for the available period of record of each station. Four summary performance scores are reported in

Figure  2: the Kling-Gupta Efficiency (KGE) and its three decomposition terms, i.e., correlation (r), bias rate,

and variability rate. Note that all four scores have their optimum at 1. Figure 3 shows a comparison of observed
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versus simulated discharges  at  10 sample validation stations while a  table with the scores  of all  validation

stations  is  reported  in  the  Supplement  material.  Median  scores  taken  from  the  validation  sample  include

KGEVAL=-0.76, correlationVAL=0.35, bias rateVAL=0.33 and variability rateVAL=2.33. For comparison, the same

scores  in  the  calibration  period  are  KGECAL=-0.37,  correlationCAL=0.47,  bias  rateCAL=0.51  and  variability

rateCAL=2.03. Best KGE are generally found along the main rivers: Blue Nile, White Nile, Jubba, Shabelle and

Awash, while poorest performances are seen particularly in Tanzania and regions south of the Equator, in river

sections with smaller basin area and faster runoff dynamics. The reduction in performance in this area is largely

attributed to a significant negative bias and large variability rates. Those results are supported by the work of

Awange et al. (2016), who found that GSMaP precipitation severely underestimates rainfall in Tanzania and to a

lesser  extent  also in  the  Equatorial  part  of  the GHA.  This  results  in  model  parameters  tuned to  minimize

infiltration and favor a quick runoff, which increase the variability rate of the output discharges. The issue of

bias in hydrological simulations in Africa was already pointed out in various previous works, yet with a trend of

overestimating discharges when atmospheric reanalyses are used as input. Hirpa et al. (2019) found an average

bias rate of 3.50 while comparing the output of a global hydrological model with 29 observed river gauges in the

GHA. Similarly, the GloFAS Reanalysis v3 (Alfieri et al., 2020) produces average bias rates of 4.12 (1.97) in an

evaluation exercise versus 7 (89) discharge stations in the GHA (entire African continent). However, it is known

that bias does not deteriorate the performance of systems based on threshold exceedance detection, if warning

thresholds are consistent with the discharge time series.

Correlations generally denote larger skills, with 75% of stations having values larger than 0.25. Stations best

correlated with observations are in line with those having best KGE. Worst correlations are mostly located in

stations  immediately  downstream  large  reservoirs  (i.e.  Victoria  Nile  downstream  Lake  Victoria  and  Lake

Kyoga; White Nile downstream Lake Albert and Jebel Aulia dam; Awash River at Tendaho dam), which release

rules are not easily predictable, as well as in small headwater catchments.  Correlation is better linked to the

performance  in  detecting  rise  or  decrease  in  discharge  levels  without  being  penalized  by multiplicative  or

additive errors, hence it is a suitable indicator to measure the capability in event detection and in turn of flood

early warning based on threshold exceedance. 

9

305

310

315

320

325

330

35

https://doi.org/10.5194/egusphere-2023-804
Preprint. Discussion started: 2 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 2:  Validation skills  at  78 river gauges:  KGE and its  decomposition terms correlation (r),  bias  rate,  and
variability rate. Numeric values are reported in the Supplement material.  Map data: © Google 2019.
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Figure 3: Comparison of simulated versus available observed discharges at 10 stations sampled from all 8 validation
domains for the period 2002-2021.

3.2 Case study - the Nile floods in summer 2020
Here we illustrate an example of the system output for the floods in the Nile River Basin in Summer 2020, based

on  the  analysis  of  hazard  and  impact  forecasts,  screenshots  from  the  myDewetra  visualization  platform,

qualitative and quantitative comparison with reported data. 

Between July and September 2020,  continuous rainfall  in Sudan and upstream countries  in  the Nile Basin

caused devastating floods across 17 out of the 18 Sudanese states, with the Blue Nile exceeding water level

records set in 1946 and 19881. The flood event killed over 100 people in Sudan, affected nearly one third of

cultivated land and about 3 million people from agricultural households, worsening already acute levels of food

insecurity (FAO, 2020). The dynamics of the event and of the resulting flood impacts is particularly challenging

1 https://floodlist.com/africa/sudan-floods-update-september-2020 
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to  simulate  through a  modeling  chain,  due  to  the  superposition  of  different  drivers.  The first  one  are  the

exceptional seasonal rainfalls recorded in the Ethiopian Highlands, contributing to extreme levels in the Blue

Nile and its tributaries. Second are the slow yet persistent rise of the flows in the White Nile, resulting from

exceptionally high-water levels in upstream lakes, including Lake Victoria, Lake Albert and Lake Kyoga. This

dynamic triggered the well known floods in South Sudan, causing the expansion of the Sudd Swamps which

affected over a million people and lasted over two years before starting to recede in 2022 (FAO and WFP,

2022). The third driver is the series of short-lived and intense rainfall events causing flash floods and pluvial

flooding in various areas of Sudan during summer 2020. Those events usually affect relatively small areas, yet

their poor predictability coupled with their rapid evolution and destructive power causes on average the largest

death toll by catching people unprepared.

In Flood-PROOFS East Africa (FPEA), the Nile basin was calibrated using observed discharges at 22 gauging

stations. The 20-year hydrological reanalysis forced by GSMaP satellite precipitation correctly identifies the

flow peak of September 2020 in the lower Blue Nile as the largest  in the available simulation record (see

Supplement material). The hydrological and impact forecasts were simulated using initial conditions and input

weather forecasts available at the time of the event. We ran one 5-day forecast every 4 days for the three months

July-September  2020  and  visualized  the  output  in  myDewetra  as  in  operational  mode.  According  to  the

Sudanese Ministry of Irrigation and Water Resources, on 7 September 2020 the Blue Nile River at Khartoum

reached 17.67 meters2,  the highest level  on record, before starting to decrease on the following day. FPEA

forecast run of 2 September 2020 predicted a flow peak well above the 1 in 20 year return period in the Blue

Nile at the same location in the evening of the 5 September, less than 2 day difference with the observed peak

(see Supplement material). The same forecast shows return periods in the Blue Nile generally above the 1 in 5

year return period, then exceeding the 1 in 20 years after the confluence with the Dinder River, all the way

downstream beyond Khartoum till the Merowe Reservoir in the Nile River. Flooding is worsened also by high

discharges from the Atbara River joining the Nile River in Atbara and forecast to exceed the 1 in 5 year return

period of peak flows. At the same time, flows in the White Nile are forecast to exceed the 1 in 2 year return

period in the entire Sudanese portion down to Khartoum, with a slight but persistent increasing trend resulting

from the lamination of flood volumes released by the Sudd Swamps in South Sudan (Figure  4a). Each river

reach exceeding the 1 in 2 year flood threshold in the 5-day forecast is then assigned with the corresponding

inundation scenario taken from the JRC flood hazard maps (Figure  4b). The figure shows the large potential

extent of the flooding along the White Nile, Blue Nile and Atbara River. Differently, the extensive threshold

exceedance visible in the western part of the country occurs in an ephemeral river in a desert area, where the 1

in 20 year peak flow corresponds to moderate discharges and limited or no flooding outside the river bed. The

forecast map of inundation extent is then used as the hazard component in the subsequent estimation of flood

impacts.

2 https://www.reuters.com/article/sudan-floods-int-idUSKBN26L308
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Figure 4: FPEA forecast on 2 September 2020 from the myDewetra web platform. (a) Reporting points and 5-day
discharge forecast at four sample points. (b) 5-day forecast of flood hazard levels and maximum inundation extent.
Map data: © Google 2019.

5-day impact forecasts for the seven exposure categories listed in Sect. 2.2.2 are produced at each model run

(see, e.g., Figure 5). In the FPEA forecasts of 2 September 2020, most regions of Sudan and South Sudan have

considerable impacts in all considered categories, together with parts of Uganda, Ethiopia and Eritrea. 5-day

forecasts of population affected are also displayed as time series in Figure 6, to show the evolution of impact

forecasts by country and by Sudanese state in the period July-September 2020. The same figures for the six

other exposure categories are provided in the Supplement. These figures show that most of the impacts were

forecast in Sudan, starting towards the end of July 2020 and then sharply increasing towards the end of August.

The peak of total population affected was predicted in the run of 2 September 2020, when the most severe flood

wave in the Blue Nile was about to transit by Khartoum, the largest city in the affected region. Maximum

forecast population affected was 3.9 millions in Sudan (Table 1), of which 1.9 in the country capital. The peak

of impacts of the floods in South Sudan was forecast on 10 September 2020, with 0.9 million people affected.

Forecasts  compare well  in magnitude with recorded  impacts  in Sudan, South Sudan and Uganda,  from the

EMDAT database (EM-DAT, 2023). For comparison, estimates by GloFAS are one order of magnitude lower,

with about 224,000 people affected in the three countries and only 40,000 in Sudan. In FPEA, people affected in

Khartoum and in the states along the Nile and Blue Nile River are generally above the figures reported by UN-

OCHA (https://www.unocha.org/sudan, see comparison in  Figure 7). This is partly attributed to a considerable

overestimation of the inundated area for all flood scenarios in the JRC flood hazard maps (Dottori et al., 2016).

For instance, in those maps, most of the city of Khartoum is inundated even with a flood return period as low as

1 in 10 years, due to the coarse map resolution, and the simplified representation of flood defenses and river

channels in the modeling framework. In addition, the definition of affected population by floods is non univocal

and may lead to very different estimates depending on the approach used, such as the one by UN-FAO reporting

up to 3 million people affected in Sudan in the 2020 event3. In FPEA we count population as affected for any

flood depth, while estimates by governments are likely to consider higher levels of impact. On the other hand,

impact estimates are generally underestimated in smaller flash flood-prone catchments (e.g., in Darfur), due to

3 https://www.theguardian.com/world/2020/sep/05/sudan-declares-state-of-emergency-record-flooding 
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the poor predictability of those events by global atmospheric models and to the lower limit of 5,000 km 2 below

which the JRC flood hazard maps are not defined.

Figure 5: FPEA forecast on 2 September 2020 from the myDewetra web platform. Absolute (left) and relative (right)
5-day forecasts of affected cropland aggregated at 1 st level sub-national administrative regions in the Nile Basin.
Map data: © Google 2019.

Figure 6: 5-day forecast of population affected in the Nile Basin for the period July-September 2020 from FPEA.
Country totals (left) and aggregations for the Sudanese states (right).

Table 1: Impacts recorded by EMDAT for the floods in 2020 and comparison with FPEA and GloFAS forecasts.

Population Affected [1,000] Damage [million USD]
EMDAT FPEA GloFAS EMDAT FPEA

Sudan 875 3920 39.7 250 243
South Sudan 1042 891 184 NA 69
Uganda 8.7 49 0 NA 6.7
Total 1925.7 4860 223.7 318.7
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Figure 7: Maximum forecast population affected for the 2020 floods by FPEA and comparison with figures by UN-
OCHA. Aggregations by Sudanese states.

4 Conclusions

This work describes the status of implementation of Flood-PROOFS East Africa, a novel medium-range impact-

based system for ensemble flood forecasting and early warning in the Greater Horn of Africa. The system is

based on a hydro-meteorological modeling chain coupled with impact predictions at sub-national administrative

level,  taking into account  all  elements  of  the risk assessment  formula:  hazard,  exposure,  vulnerability,  and

coping capacity.  Being an operational  system, it  runs within an automated daily scheduling including data

acquisition, model runs, archiving of the model output, creation of visualization products, display in the web

interface myDewetra,  process monitoring, service status notification and backup operations. Flood-PROOFS

East Africa is one of the key activities of the UNDRR “Programme for a continental coordination, early warning

and action system in Africa” currently being performed in collaboration with the African Union Commission

(AUC) and relevant African partners working in the field of climate prediction and disaster management. The

system operations started in December 2022 and foresee to provide continuous support ahead of major floods

during the  rainy  seasons  in  the  GHA:  March–May and October–December  in  the equatorial  region,  June–

September in the northern sub-region including most of the Nile river Basin, and December-May in Tanzania.

To maximize the system’s value, impact forecasts must be translated into clear and concise warning messages

and  reach  emergency  operators,  including  national  civil  defense  forces  and  humanitarian  organizations.

Achieving such a full operating status involves identifying some additional steps, including: i) setting up a team

of duty officers composed by hydro-meteorological experts and disaster risk managers,  working in shifts to

monitor daily forecasts; ii) establishing a network of national and regional focal points in the GHA region, to

contact ahead of major events; iii) ensure that warning messages are correctly interpreted, together with their

key strengths and limitations, and propose a set of advisories and suggested actions; iv) collect feedback on

predicted impacts to improve the future system performance. Currently, model results are available through the

password-protected  web  interface  myDewetra,  and  dedicated  accounts  have  already  been  shared  with  the

Disaster Operation Centers of the AUC, in Addis Ababa - Ethiopia, the Climate Center of the IGAD region

(ICPAC), based in Nairobi - Kenya, and at national level with the Sudanese National Council of Civil Defence
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NCCD and its members, including early warning units from different institutions: Ministry of Irrigation and

Water Resources, Sudan Meteorological Authority, Ministry of Agriculture and Forests.

Future  activities  include  a  more  extensive  evaluation  of  the  model  output  in  flood  prediction,  specifically

targeted  to  achieving  robust  quantification  of  expected  flood  impacts.  Such  an  approach  has  multiple

advantages. First, it focuses on relevant metrics for disaster mitigation and preparedness, which can be directly

linked  to  the  amount  of  resources  needed for  emergency  support  and  recovery.  Second,  validation data  is

independent from in situ hydrological measurements, which are particularly difficult to obtain in near-real time

in  this  region.  Model  evaluation  is  instead  performed  on  data  which  is  of  higher  interest  for  emergency

operations and thus is collected promptly, including people affected and damage to infrastructures. Similarly,

forecasts  of  inundation  extent  can  be  benchmarked  to  satellite  acquisitions,  which  improved  latency  and

availability  currently  enable  almost  daily  coverage  of  flood  disasters  globally,  even  in  cloud  conditions

(Salamon et al., 2021). In addition, being based on a full hydrological modeling system, the model output can be

evaluated both in wet and dry conditions, to understand if it generates skillful results that can be of use also for

drought and water resources monitoring.

Code availability

Continuum is an open source hydrological model. Its code is available at  https://github.com/c-hydro/hmc-lib.
Meteorological data was downloaded with the open source package “door”, available at  https://github.com/c-
hydro/door.

Data availability 

GSMaP  precipitation  data  is  available  from  ftp://hokusai.eorc.jaxa.jp.  Operational  GFS  forecasts  are
downloaded  through  the  NOAA  Nomads  grib  filter  (https://nomads.ncep.noaa.gov/gribfilter.php?
ds=gdas_0p25)  while  historical  GFS  data  were  downloaded  from  the  NCAR  Data  Archive
(https://rda.ucar.edu/thredds/catalog/files/g/ds084.1/catalog.html).  ERA5  atmospheric  reanalysis  were
downloaded from the Copernicus Climate Data Store (https://cds.climate.copernicus.eu/) through the dedicated
python api. ESA-CCI land cover can be downloaded from  https://www.esa-landcover-cci.org/. The SoilGrids
map are  available  from the ISRIC data hub at  https://data.isric.org/geonetwork/srv/ita/catalog.search#/home.
Lakes and dams data were downloaded respectively from https://www.hydrosheds.org/products/hydrolakes and
https://www.globaldamwatch.org/directory. Observed discharges from the GRDC database are freely available
for  download  at  https://www.bafg.de/GRDC.  Global  flood  hazard  maps  from Dottori  et  al.  (2016)  can  be
downloaded from  https://data.jrc.ec.europa.eu/collection/id-0054. Lack of coping capacity  values were taken
from the INFORM Risk Index at https://drmkc.jrc.ec.europa.eu/inform-index/INFORM-Risk.  
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