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Abstract. Vegetation largely controls land surface-atmosphere interactions. Although vegetation is highly dynamic across spa-
tial and temporal scales, most land surface models currently used for reanalyses and near-term climate predictions do not ade-
quately represent these dynamics. This causes deficiencies in the variability of modeled water and energy states and fluxes from
the land surface. In this study we evaluated the effects of integrating spatially and temporally varying land cover and vegetation
characteristics derived from satellite observations on modelled evaporation and soil moisture in the Hydrology Tiled ECMWF
Scheme for Surface Exchanges over Land (HTESSEL) land surface model. Specifically, we integrated inter-annually varying
land cover from the European Space Agency Climate Change Initiative, and inter-annually varying Leaf Area Index (LAI) from
the Copernicus Global Land Services (CGLS). Additionally, satellite data of the Fraction of green vegetation Cover (FCover)
from CGLS was used to formulate and integrate a spatially and temporally varying effective vegetation cover parameterization.
The effects of these three implementations on model evaporation fluxes and soil moisture were analysed using historical offline
(land-only) model experiments at the global scale, and model performances were quantified with global observational products
of evaporation (£) and near-surface soil moisture (SMy). The inter-annually varying land cover consistently altered the evapo-
ration and soil moisture in regions with major land-cover changes. The inter-annually varying LAI considerably improved the
correlation of SM and E with respect to the reference data, with largest improvements in semiarid regions with predominantly
low vegetation during the dry season. These improvements are related to the activation of soil moisture-evaporation feedbacks
during vegetation-water-stressed periods with inter-annually varying LAI in combination with inter-annually varying effective
vegetation cover, defined as an exponential function of LAI. The further improved effective vegetation cover parameterization
consistently reduced the errors of model effective vegetation cover, and it regionally improved SMy and E. Overall, our study
demonstrated that the enhanced vegetation variability consistently improved the near-surface soil moisture and evaporation
variability, but the availability of reliable global observational data remains a limitation for complete understanding of the
model response. To further explain the improvements found, we developed an interpretation framework for how the model

development activates feedbacks between soil moisture, vegetation, and evaporation during vegetation-water-stress periods.
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1 Introduction

Land surface-atmosphere interactions are largely controlled by vegetation, which is dynamic across spatial (local, regional and
global) and temporal (seasonal, inter-annual and decadal) scales (Seneviratne et al., 2010). Land surface models (LSMs) aim
to describe these interactions and are, therefore, a crucial aspect of models used for climate reanalysis and climate predictions.
However, most state-of-the-art LSMs do not adequately represent the temporal and spatial variability of vegetation, resulting
in weaknesses in the associated variability of modelled surface water and energy states and fluxes (e.g. Alessandri et al., 2007;
Pitman et al., 2009; Ukkola et al., 2016; Fisher and Koven, 2020; Hersbach et al., 2020; Van Oorschot et al., 2021).

To improve the representation of land surface-atmosphere dynamics, satellite remote sensing data based products have
been widely used in LSMs. Global satellite derived maps of land cover and albedo have been directly used as boundary
conditions (Faroux et al., 2013; Alessandri et al., 2017; Boussetta et al., 2021).). In addition, Leaf Area Index (LAI) derived
from satellite remote sensing has been assimilated in several LSMs for different spatial scales, generally leading to improved
water, energy and carbon fluxes (Kumar et al., 2019; Ling et al., 2019; Rahman et al., 2020, 2022). Albergel et al. (2017, 2018)
also combined LAI assimilation with the assimilation of remote sensing based surface soil moisture in the LSM called ISBA
(Interactions between Soil, Biosphere and Atmosphere). This resulted in reduced errors of modeled soil moisture, evaporation,
river discharges, and gross primary production with respect to observations. Furthermore, satellite products have been used to
improve model parameterizations of for example leaf phenology, surface roughness, soil characteristics, and subsurface water
storage (Lo et al., 2010; Trigo et al., 2015; MacBean et al., 2015; Yang et al., 2016; Orth et al., 2017). Moreover, LSMs have
been evaluated using global satellite products of e.g. land surface temperatures, snow depth, and soil moisture (Balsamo et al.,
2018; Johannsen et al., 2019; Dong et al., 2020; Nogueira et al., 2020, 2021; Boussetta et al., 2021).

Recent studies have exploited latest satellite campaigns to update land cover (LC) and Leaf Area Index (LAI) representation
into the land surface model ‘Carbon-Hydrology ECMWF Tiled Scheme for Surface Exchanges over Land’ (CHTESSEL)
(Johannsen et al., 2019; Nogueira et al., 2020, 2021; Boussetta et al., 2021) as part of the Integrated Forecasting System (IFS)
of the European Centre for Medium-range Weather Forecasts (ECMWF). These studies replaced the original fixed map of
land cover from the Global Land Cover Characteristics (GLCC) dataset representing the early 1990s (Loveland et al., 2000)
with an updated map obtained from the latest generation estimates of land cover from the European Space Agency Climate
Change Initiative (ESA-CCI) (Poulter et al., 2015). Similarly, the LAI climatology from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Boussetta et al., 2013) was replaced with updated climatology from the recent Copernicus Global
Land Service (CGLS) LAI dataset (Verger et al., 2014). The integration of these satellite-derived variables considerably reduced
the bias of model land surface temperatures (Johannsen et al., 2019; Nogueira et al., 2020, 2021). In addition, Boussetta et al.
(2021) showed an overall reduction of model annual mean evaporation bias when using the updated LC and LAIin CHTESSEL.

LAI in LSMs can be coupled to the effective vegetation cover (Ces), which characterizes the density of the vegetated surface

from a top view that effectively contributes to the water and energy balances. The organization structure of leaves inside the
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canopy is reported as vegetation clumping. In previous modelling studies, the seasonal variations in Ceg have been described
as an exponential function of LAI considering vegetation clumping in (C)HTESSEL (Alessandri et al., 2017; Nogueira et al.,
2020; Boussetta et al., 2021) and in other land modelling efforts (Anderson et al., 2005; Krinner et al., 2005; Le Moigne, 2012).
The shape of the exponential relation between Cog and LAI in state-of-the-art land surface models has, to our knowledge been
assumed constant in time and space so far (Krinner et al., 2005; Alessandri et al., 2017; Nogueira et al., 2020; Boussetta et al.,
2021). However, studies have shown that the degree of vegetation clumping, and so the shape of this relation, actually varies
for different vegetation types (Chen et al., 2005; Ryu et al., 2010; Zhang et al., 2014).

The research gap that we identified is that most previous LSM studies using HTESSEL aimed at improving the temporally
fixed boundary condition of land cover and the monthly seasonal cycle of LAI, while not exploring the effects of inter-annual
variations of LC and LAIL. Moreover, these studies have generally used one spatially fixed relationship between effective
vegetation cover and LAI, while there is considerable evidence that this relationship is vegetation type dependent (Chen et al.,
2005; Ryu et al., 2010; Zhang et al., 2014).

The objective of this research is to evaluate the effects of integrating temporal and spatial variations of land cover and
vegetation characteristics derived from satellite observations on modelled evaporation and soil moisture in the land surface
model HTESSEL. Specifically, we will integrate annually varying LC from ESA-CCI as well as seasonally and inter-annually
varying LAI from CGLS. Additionally, CGLS ’Fraction of green vegetation cover’ (FCover; Verger et al., 2014) is used to
formulate and implement a spatially (i.e. vegetation dependent) and temporally (i.e. inter-annually) variable effective vegetation

cover parameterization in HTESSEL.

2 Methods

This section describes how we integrated temporal and spatial variations of land cover and vegetation characteristics in HTES-
SEL. In Sect. 2.1 we describe the land cover and vegetation data used, in Sect. 2.2 we describe the model characteristics with
relevance to water dynamics, and in Sect. 2.3 the model developments performed in this study are reported. Finally, the model

experiments and model evaluation are described in Sect. 2.4 and in Sect. 2.5, respectively.
2.1 Land cover and vegetation data

Here we used yearly land cover maps at a 300 m spatial resolution from ESA-CCI for the time period 1993-2019 (Defourny
et al., 2017; Copernicus Climate Change Service, 2019). In this dataset the land cover is classified into 22 classes based on the
United Nations Land Cover Classification System (LCCS) (Di Gregorio and Jansen, 2005).

LAI and FCover data were obtained from CGLS for 1999-2019 (Copernicus Global Land Service, 2022). We used the
1km version 2 collection in which both products were derived at a 10-daily resolution from the top of canopy reflectance
measurements by the SPOT/VEGETATION (1999-2013) and PROBA-V (2014-2019) sensors (Verger et al., 2019). These
two timeseries were homogenized using a cumulative distribution function (CDF) approach following Boussetta and Balsamo

(2021). For model spin-up purposes, the CGLS LAI (1999-2019) was further extended backwards with former-generation LAI
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data from the Advanced Very-High Resolution Radiometer (AVHRR) for 1993-1999 at a 0.05° resolution (Pacholczyk and
Verger, 2020). The AVHRR LAI (1993-1999) was interpolated using conservative interpolation (Schulzweida, 2022) to the
CGLS 1km resolution and harmonised with CGLS (1999-2019) using CDF-matching (Boussetta and Balsamo, 2021).

2.2 Relevant model components for water cycle representation

Here we used the HTESSEL land surface model (Balsamo et al., 2009) as it was developed and implemented for climate
predictions with the EC-Earth3 Earth System Model (Doscher et al., 2022). This version already implements a temporally, but
not spatially, varying effective vegetation cover, which is further developed in this work (Alessandri et al., 2017). This section
describes the relevant model representations of land cover (2.2.1), leaf area index (2.2.2), and effective vegetation cover (2.2.3)
in the current HTESSEL version as part of the EC-Earth3 ESM, and the role of these representations in the modelled water

cycle. Section 2.3 describes the adaptations of these model components made in this study.
2.2.1 Land cover representation

In HTESSEL the vegetated area of a grid cell is divided into high and low vegetation tiles. In case of snow there are separate
model tiles for snow on bare ground/low vegetation and snow beneath high vegetation (Balsamo et al., 2009). Figure la
represents an example of the vegetation types and cover fractions for a single grid cell, that were originally based on the GLCC
land cover dataset (Loveland et al., 2000). The low (L) and high (H) vegetation types with the largest cover fraction in each
grid cell (see example in Fig. 1a) are used in HTESSEL as dominant vegetation types 71, and Ty (Fig. 1b). The corresponding
HTESSEL vegetation cover fractions A, and Ay are based on the total low and high vegetation grid cell cover fractions.

T1, and Ty directly control surface water and energy fluxes because model parameters such as vegetation root distribution,
minimum canopy resistance, and roughness lengths for momentum and heat are obtained from lookup tables based on the
vegetation type (ECMWF, 2015). Surface fluxes are calculated separately for low and high vegetation tiles, and combined based
on the fractions Ay, and Ay. Here we only focus on the surface evaporation flux, that we define as the sum of transpiration, soil
evaporation, interception evaporation, and, in case of lakes, also open water evaporation (Savenije, 2004; Miralles et al., 2020).
The subsurface in HTESSEL consists of 4 soil layers with thicknesses of 7, 21, 72 and 189 cm, totalling a depth of 289 cm. In
this study we differentiate between near-surface soil moisture (SMs) in the top layer (0-7 cm), and the subsurface soil moisture

(SMgy,) in the three deeper layers (7-289 cm).
2.2.2 Leaf Area Index representation

LAI is defined separately for the high and low vegetation tiles (LA}, and LATIy). In the original HTESSEL model, LA}, and
LATy are prescribed as a seasonal cycle that is derived from a satellite-based climatology based on MODIS (Boussetta et al.,
2013), and the vegetation cover fractions Ay, and Ay. The LAI controls the canopy resistance 7. of the high and low vegetation
tiles through the following linear relation:

re = TR fi(R) fo(Da) f5(SM) M
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with 75 min the prescribed vegetation specific minimum canopy resistance, that does not change in time, and f1(Rs), f2(Da)
and f3 (SW) functions describing the dependencies on shortwave radiation (Rs), atmospheric water vapor deficit (D,), and
weighted average soil moisture based on the root distribution over the four soil layers (SM), respectively. The effects of CO5
changes on r. are not explicitly taken into account in present study. The root fractions are generally the largest in soil layers
2 and 3, and, therefore, transpiration mostly origins from the SMgy,. The transpiration is linearly related to r. and atmospheric

variables. Furthermore, the LAI controls the capacity of the model interception reservoir Wy,,, by:
Wim = Wimax * (CB + CL x LAIL, + Cy * LAIH) 2)

with W11.x=0.0002m and Cg, C1, and Cy the fractions of bare soil, effective low and high vegetation, respectively (Sect.
2.2.3). The interception evaporation per time step follows from the water content of the interception reservoir (calculated from

precipitation), W1, and the potential evaporation.
2.2.3 Effective vegetation cover representation

The model effective low and high vegetation cover (Ceg 1, and Ceg 1) represent the part of the model vegetation cover fraction
(AL, and Ap) that is actively contributing to the water balance through transpiration and interception evaporation (Fig. 1c). The
fraction of the grid cell not covered by effective vegetation is treated as bare soil (Cp), where only soil evaporation takes place.
Soil evaporation only occurs in the top soil layer (0-7 cm), and, therefore, origins only from SMj. The model resistance to soil

evaporation (r4.i1) is described by
Tsoil = rsoil,minfS (SMS) (3)

with 7goil min = 50sm ™! and f3(SM;) representing the dependency on the first layer soil moisture content. The effective

vegetation cover fractions Ceg 1, and Ceg i and bare soil fraction Cg, are described by:

Cegp 1, = Cy,1L ¥ AL 4)
Cegr i = Cv,u * Al )
Cett = Ceft,L. + Cet,n (0)
Cp=1-Ceg (7

with ¢, 1, and ¢, y representing the low and high vegetation density. Originally, ¢, 1, and ¢, i were described by a lookup table
with vegetation specific values, allowing for spatial variation of the Ceg 1., Cer, 1, and Cp fractions. However, this approach
does not represent temporal variations in vegetation density. To allow for temporal variability in C.g (represented by the arrows
in Fig. 1¢), ¢y 1, and ¢, g were linked to the seasonal variability of LAI by the following exponential relation (Alessandri et al.,
2017):

cop=1— e—kLAL (8)

Cop =1 —e FLAIn 9)
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with £ the canopy light extinction coefficient that represents the degree of vegetation clumping (Anderson et al., 2005). Previ-
ously k was in general for all vegetation types set to constant values of 0.5 (Krinner et al., 2005; Alessandri et al., 2017) or 0.6

(Boussetta et al., 2021). As a consequence, the vegetation-dependent spatial variability in & was not accounted for.
2.3 Model developments
2.3.1 The implemented land cover variability

Here we implemented the annually varying ESA-CCI land cover (LC) data for the 1993-2019 period (Sect. 2.1), as developed
by Boussetta and Balsamo (2021) for the HTESSEL vegetation types and spatial resolution. For consistency with the other
model adaptations and evaluations (Sect. 2.3.2, 2.3.3 and 2.5), our LC analyses were based on 1999-2018. The inter-annually
varying LC from ESA-CCI introduced a change in 77, in 5%, and 131 in 4% of the land grid cells between the first (1999)
and the last (2018) year of the considered study period (Fig. 2). Figure 2c shows the fraction of land grid cells in which each
vegetation type (dominant in 1999) is replaced by another type in 2018 (plain colors), and conversely how often each vegetation
type replaces the 1999 dominant one in 2018 (hatched colors). The figure shows that crops and short grass were relatively
often replacing other low vegetation types (relatively large hatched bars), while evergreen needleleaf (EN) and deciduous
broadleaf (DB) trees were relatively often replaced by other high vegetation types (relatively large plain bars). The low and
high vegetation cover fractions changed in many regions according to the ESA-CCI LC dataset (Fig. 3). During the 1999-
2018 period, low vegetation replaced high vegetation in the Southern Amazon and North-Eastern Siberia. Conversely, high
vegetation replaced low vegetation in the boreal regions of Lapland and North-Western Siberia. Moreover, arid regions such as
Central Asia and Australia experienced an expansion of low vegetation over the 1999-2018 period. In Fig. 3 we highlighted the
Southern Amazon, Lapland and Central Asia regions where the vegetation cover fraction changed considerably. These regions

are further analyzed in Sect. 3.1.
2.3.2 The implemented Leaf Area Index variability

We used the monthly CGLS LAI data described in Sect. 2.1 to prescribe model LAI, representing both the seasonal cycle
and inter-annual variability of LAI The 1 km LAI data was interpolated using conservative interpolation to the HTESSEL
grid (Schulzweida, 2022). Next, LAI was disaggregated into low and high LAI (LA, and LAIg) based on the low and high
vegetation cover fractions (Ay, and Ay), for the use in the HTESSEL model setup with separate low and high vegetation tiles
(Boussetta et al., 2021; Boussetta and Balsamo, 2021). Figure 4 shows the LAI inter-annual variability as integrated here in

HTESSEL, quantified with the standard deviation. The effects of this added variability are presented in Sect 3.2.
2.3.3 The implemented vegetation specific effective vegetation cover parameterization

The CGLS FCover and LAI data were used (Sect. 2.1) to further develop the model effective vegetation cover parameterization
as described by Egs. (4)-(9). The constant k=0.5 parameter was replaced with a vegetation specific £ to improve spatial and

temporal variability of the model Co. We assumed that the model Clg is equivalent to the CGLS FCover data. Following the
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model Cog parameterization, FCover is then described as follows:
FCover = 1 — ¢ FLAL (10)

We estimated k for different HTESSEL vegetation types by solving the minimization problem in Eq. (11) using a non-linear

least squares optimization at a 1 km spatial resolution.

—kLAI

min||1 —e — FCoverl||s. (11)

To discriminate vegetation types, the grid cells where each vegetation type maximizes its cover fraction based on the ESA-CCI
LC developed in Boussetta and Balsamo (2021) were selected for each year. For each set of grid cells corresponding to each
vegetation type, the FCover and LAI 10-daily, 1 km data for 1999-2019 were extracted. . Here we used a 1x1 km resolution for
LAI FCover and LC in order to obtain the most representative discrimination of vegetation types, and to minimize vegetation
mixing within each resolved grid cell. For the optimization of k, a randomly selected subsample of 2000 grid points of the
LAT and FCover timesteps (10-daily) for each vegetation type was used to keep the analysis computationally feasible, while
ensuring a representative sample with robust significance of the fit. In this way, we obtained a sample of 2000 grid cells times
36 timesteps per year times 20 years, which equals 1 440 000 data points to be used for the optimization for each vegetation
type. This optimization resulted in vegetation specific k-values that were implemented in the HTESSEL code as in Egs. (4)-(9).
The robustness of the optimization was verified by repeating the random selection procedure several times, which resulted in

negligible changes in the k-estimates.
2.4 Model experiments

We performed experiments with an offline, uncoupled version of HTESSEL to evaluate the effect of the implemented vegetation
variability as described in Sect. 2.3. HTESSEL was forced with atmospheric hourly forcing from ECMWF Reanalysis v5
(ERAS) and simulations were performed from 1993-2019, with 1993-1999 as spin-up period (details in Table S1). The model
spatial resolution is the n128 reduced Gaussian grid corresponding to grid-cells of ~75x75 km. In total, four different model
experiments were performed (Table 1). In the first experiment, as a benchmark and control experiment (CTR) the land cover
of all years was set to the ESA-CCI land cover of 1993, the LAI of all years was set to the 1993-2019 climatology and the Ceg
parameterization with £=0.5 was used. This reflects standard settings of the EC-Earth3 version of HTESSEL. In the second
experiment (IALC) the inter-annually varying ESA-CCI LC was included, while in the third experiment (IAKS) we further
added inter-annually varying CGLS LAI. Finally, the model sensitivity to the vegetation specific Cog parameterization (see
Sect. 2.2.3) was evaluated in the fourth experiment (IAKV). The model experiments were evaluated for 1999-2018, which is
the longest period to consistently assess all three model implementations, with the available evaluation data described in Sect.
2.5.
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2.5 Model evaluation
2.5.1 Model variables

The effects of the vegetation specific Ceg parameterization on the model Ceg were assessed in IAKV compared to TAKS.
Furthermore, we analysed the effects of the increasingly detailed model land cover and vegetation variability in the three
experiments (IALC, IAKS, TIAKV) on total evaporation (), and the evaporation components, i.e. transpiration (E), soil
evaporation (Fs) and interception evaporation (F;). In addition, the effects on model near-surface soil moisture (SMy) and

subsurface soil moisture (SMyy,) were analysed.
2.5.2 Reference data

The modeled C.g was compared to the CGLS FCover data (Sect. 2.1) at the model spatial resolution. As a benchmark for
total evaporation we used the ‘Derived Optimal Linear Combination Evapotranspiration’ version 3 (DOLCEv3), which is a
linear combination of estimates from ERAS5-land, GLEAM v3.5a and v3.5b and FLUXCOM-RSMETEO that was regionally
weighted based on the performance in reproducing FLUXNET tower evaporation observations (Hobeichi et al., 2021). The
associated uncertainty estimate is spatially and temporally varying based on the gridded evaporation and flux tower observa-
tions (Hobeichi et al., 2018). This dataset was selected because it is intended to better capture evaporation temporal variations
compared to previous DOLCE versions (v1 and v2) and was, therefore, found suitable for evaluating the effects of the modified
temporal and spatial variability of vegetation on evaporation (Hobeichi et al., 2021). Daily evaporation and associated uncer-
tainty at a 0.25° resolution was used for 1999-2018 and was here interpolated using conservative interpolation (Schulzweida,
2022) to the model spatial resolution.

Model near-surface soil moisture (SMy) (0-7 cm) was compared to the combined active-passive ESA-CCI soil moisture
product (ESA-CCI SM v06.1), which is generated from satellite-based active and passive microwave products that are com-
bined using the absolute values and dynamic range of the modeled soil moisture of the top 10 cm soil layer from the Global
Land Data Assimilation System (GLDAS)-Noah LSM (Liu et al., 2012; Dorigo et al., 2017; Gruber et al., 2017). This dataset
provides near-surface (~0-5 cm) soil moisture at a daily resolution and a 0.25° grid. Here we used the combined active-passive
product interpolated using conservative interpolation (Schulzweida, 2022) to the model spatial resolution (~75x75 km) for
1999-2018 (European Space Agency, 2022). The uncertainty estimates for ESA-CCI SM were also considered as they were
provided with the data product and based on error variance of the data used to generate the product (Dorigo et al., 2017).
ESA-CCI SM contains spatial and temporal gaps due to densely vegetated areas (tropical forests) and snow coverage. Here
only grid cells with a temporal coverage larger than 60% were used, and, as a consequence, model performance metrics for

SM were only calculated for these grid cells.
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2.5.3 Evaluation metrics

The hourly model output was first averaged to monthly values, based on which then annual means, monthly climatology, and
inter-annual anomalies were calculated. To differentiate the seasons (June, July and August: JJA; September, October and
November: SON; December, January and February: DJF; March, April and May: MAM), the monthly values were averaged
to seasonal means, and inter-annual seasonal anomalies were calculated. For the evaluation of £ and SMg with respect to
reference data, we used the Pearson correlation coefficients r of the inter-annual monthly and seasonal anomalies. To calculate
r of the inter-annual monthly and seasonal anomalies, the anomalies were detrended assuming a linear trend. Detrending was
not applied for the effects of the modified LC, as the inter-annually varying LC mostly influenced the trend. In addition, we
quantified the effects of the improved vegetation variability with the Root Mean Squared Error (RMSE). For Ct and £ RMSE
we used monthly values, while for SMg we used standardized inter-annual anomalies. Model SM; and reference ESA-CCI SM
cannot be compared directly in absolute terms due to the different representative soil layers and the imposed dynamic range
from the GLDAS-Noah model (Liu et al., 2012), and so potentially resulting in different temporal variability (Sect. 2.5.2). To
overcome this limitation, we standardized the inter-annual anomalies for model and reference SMy by dividing the monthly
SM, with the climatological standard deviation.

To test the significance of the » and RMSE differences between the experiments we used a bootstrap, in which 1000 data
samples were randomly created by resampling the data of model 1 and model 2 with replacement for each timestep. We tested
the null hypothesis that the » or RMSE of model 1 and model 2 with respect to the reference data are not significantly different

from each other at the 10% significance level.

3 Results
3.1 Land cover inter-annual variability effects

The inter-annually varying land cover from ESA-CCI in experiment IALC resulted in a shift in mean evaporation components
(i.e. By, B, and E;) compared to the CTR experiment (Fig. 5). The last five years of the simulations (2014-2019) are con-
sidered, because the effects of the inter-annually varying land cover mostly emerge in this period. In the Southern Amazon,
where Ay on average reduced from 0.64 to 0.57 in IALC compared to CTR (Fig. 3), the mean E} reduced by 3% from 633 to
615 mm year—! and E; reduced by 6% from 384 to 363 mm year !, while E increased by 17% from 156 to 183 mm year .
In this region, the total evaporation reduced only by 1% from 1174 to 1162 mm year ! in IALC compared to CTR, because the
reductions in E} and F; were partially compensated by increased Fy. The reduced E in IALC is closer to the the DOLCEV3 E,
which is in this region 1160 mm year~'. We also found the evaporation compensation effect in Lapland, where Ay increased
from 0.24 to 0.30, and Central Asia, where Ay, increased from 0.66 to 0.71 (Fig. 3). In Lapland and in Central Asia E increased
with 2% and 0.1%, respectively, moving closer to the DOLCEv3 E (Fig. 5b; Table S2). In contrast with the small changes in

FE, the individual E-fluxes changed considerably in these two cases (Fig. 5d,f,h).
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The changes in E; and E also induced changes in soil moisture, because E extracts water exclusively from the near-surface
soil layer (SMy), while E} originates mostly from deeper soil layers (SMg,). However, we observed only marginal differences
between mean SMy and SMg;, in TALC compared to CTR (Fig. 6), except for the Southern Amazon SMj. Here, the increased
E in the Southern Amazon reduced the SM; by 2%, as more near-surface soil moisture was extracted (Fig. 6b). Individual
evaporation fluxes influence the timing of total evaporation and soil moisture differently. However, the overall minor magnitude
of changes in total E and SMj in IALC compared to CTR led to marginal changes in RMSE and pearson correlation coefficients

with respect to the reference data in the three highlighted cases (Table S3, Fig. S1-S3).
3.2 Leaf Area Index inter-annual variability effects

The inclusion of inter-annual LAIT variability in IAKS (Fig. 4) generally led to an increased anomaly standard deviation (i.e.
variability) of F/ (Fig. 7a,b). This effect is mostly dominated by F; (Fig. 7d), which, in the model, is linearly related to LAI (Eq.
(1)). Figure 7d and h show that the variability in F; and E; were mostly increased in semiarid regions such as the Great Plains
region of the US, Central Asia and Southern Africa, with a stronger effect for E than for E;. In contrast, the Fy variability
was reduced with the enhanced LAI variability in these semiarid regions, but was increased in more temperate regions such as
in Europe, the Eastern US and the La Plata Basin in South America (Fig. 7e,f). While the E; anomaly variability considerably
increased in IAKS compared to IALC in semiarid regions, the anomaly variability in subsurface soil moisture (SMyy,), that acts
as the main source of E}, reduced in these regions (Fig. 8c,d). On the other hand, the anomaly variability of SM; increased
(Fig. 8a,b), while the E variability reduced.

Figure 9 shows that pearson correlation coefficient (r) of anomaly E with respect to DOLCEvV3 increased in IAKS compared
to IALC in 85% of the land area in which the r was significantly different in IAKS compared to IALC. Consistently, the r of
anomaly SM; with respect to ESA-CCI SM also improved in 85% of the significantly changing land area. For both E and SM

r increased mostly in semiarid regions with predominantly low vegetation (Fig. 3).
3.3 Vegetation specific effective vegetation cover parameterization effects

The observed relationship of LAI and FCover in Fig. 10 is broadly consistent with the shape of the exponential functions with
the vegetation specific k, with RMSEs between 0.018 and 0.053 for the individual vegetation types. All optimized LAI-FCover
relations are characterized by k-values that are with 0.351-0.458 consistently lower than the original k=0.5, which has been
used as constant default value in most HTESSEL applications so far (Alessandri et al., 2017; Boussetta et al., 2021). We found
that the k-values for low vegetation types (0.438-0.458) are higher than for high vegetation types (0.351-0.396), except for
tundra regions (0.375) (Fig. 10 and Table S3). These findings are in line with our expectations, as leaf organization of low
vegetation is more regular (larger k) than leaf organization of high vegetation, where leaves are found more on top of each
other (smaller k) (Chen et al., 2005, 2021).

The vegetation specific Cog parameterization (IAKV) generally reduced the k-values compared to the £=0.5 setup (IAKS),
and as a consequence the associated vegetation densities ¢y 1, and ¢, g also decreased (Eqs. (8) and (9)). On average, the global

mean Ceg reduced from 0.21 in TAKS to 0.19 in IAKV (Fig. 11). The reduced Cog considerably reduced the RMSE with
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respect to the FCover data in IAKV compared to IAKS (Fig. 12), as expected from the parameterization optimization presented
in Fig. 10. The RMSE reduced the most over the boreal and tropical forests, with an average RMSE reduction from 0.12 to 0.06
for evergreen needleleaf trees, and from 0.05 to 0.03 for evergreen broadleaf trees. On the other hand, the differences in regions
with predominantly low vegetation were smaller because the fitted k-value was closer to the original k=0.5, with an average
RMSE reduction from 0.06 in IAKS to 0.05 in IAKV for crops, and from 0.04 to 0.03 for short grass. For low vegetation, the
effects were not consistent throughout the seasons, with RMSE increasing at high latitudes in JJA (Fig. 12d). Here the Ceg in
TAKS was smaller than the CGLS FCover and is further reduced in IAKYV, increasing the RMSE. This was likely caused by a
poor fit for short grass at LAI>2 (Fig. 10b) and tundra at LAI>1 (Fig. 10g).

The reduced model Cg in IAKV compared to IAKS led to a shift in individual evaporation fluxes. On average, Fy increased
and F} and E; reduced, while the total £ was not much affected (Fig. S6). These shifts led to changes in the temporal
distribution of the evaporation. Figure 13 shows quite mixed results of the vegetation specific Cog parameterization on the
model £ RMSE with respect to DOLCEv3. The RMSE consistently reduced during summer months in temperate regions such
as in Europe, Eastern US and Eastern China (JJA), and in South-Eastern Brazil and Southern Africa (DJF). On the other hand,
the results for tropical and boreal regions were less consistent throughout the seasons (Fig. 13). The effects of the vegetation
specific Cer on SMg RMSE with respect to ESA-CCI SM show consistent RMSE reductions in the JJA period for Canada and
South-Eastern Brazil, and in the DJF period for the Sahel (Fig. 14). Consistent with the C.g RMSE increase in boreal regions
in JJA (Fig. 12), the Pearson correlation coefficient for monthly anomaly E with respect to DOLCEv3 E significantly reduced
in these regions in IAKV compared to IAKS, while other regions were not much affected (Fig. S14). On the other hand, the
correlation of monthly anomaly SM with respect to ESA-CCI SM did not considerably change (Fig. S14).

3.4 Combined effects of land cover, Leaf Area Index, and effective vegetation cover

The results presented in Sect.3.2 demonstrate that the inter-annually varying LAI in experiment IAKS considerably improved
the correlation of E and SM with respect to reference data. On the other hand, the annually varying LC and vegetation specific
Ces affected correlations merely to a minor degree (Sects.3.1 and 3.3). Here, we further elaborate on the effects of combining
the enhanced variability in LC, LAI and Cg on correlation of £ and SM.

Figure 15 shows that the F correlation improved in 68 % (JJA) and 54 % (DJF) of the land area in which the r significantly
changed in IAKV compared to CTR. Significant reduction of r is found over boreal regions, which is related to the effects of
the effective vegetation cover parameterization, as discussed in Sect. 3.3 and Fig. S14. Figures 15b and d show that the SMg
correlation consistently and significantly improved in 83 % (JJA) and 76 % (DIJF) of the land area in which the 7 significantly
changed in IAKV compared to CTR. The F and SMg correlations got consistently stronger during dry periods in regions
with a semiarid climate and predominantly low vegetation (Figs. 3 and 15). For example, in North-Eastern Brazil during the
dry JJA season, the correlation coefficient for E increased from r=0.79 in CTR to 0.84 in IAKV with respect to DOLCEv3
and for SM from r=0.57 to 0.67 with respect to ESA-CCI SM. Similarly, in Western India during the dry DJF season, the
correlation coefficient for E increased from r=0.78 to 0.85, and for SMg from r=0.45 to 0.73. To further explore the effects

in these semiarid regions, we zoom in to North-Eastern Brazil for the 2010-2013 period (Fig. 16). This period is characterized
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by positive LAI and Cgr anomalies in JJA 2011 and a negative LAI and Ceg anomalies in JJA 2012 (Fig. 16a,b). The negative
LAI and Ceg anomalies in 2012 characterize a dry period in which the negative £ anomaly was magnified in IAKV compared
to CTR (Fig. 16c). During this dry period, E; reduced, while Ey increased. This is consistent with the soil moisture response
presented in Fig. 16d, as the SM, reduced (due to more E;) and the SMy, increased (due to less E}) during the 2012 dry period.
Opposite effects were found for the 2011 period with positive LAI and Ceg anomalies. So in this specific case, the variability
in E; and SMg anomalies was enhanced in IAKV compared to CTR, while the variability in Fy5 and SMg}, anomalies was
dampened. This is consistent with the results presented in Figs. 7 and 8, in which the effect of the inter-annually varying LAI
on the variability of E and SM are presented.

The opposing effects of the enhanced LAI variability on anomaly F; and SMg}, can be explained by a negative feedback
between vegetation and soil moisture schematized on the right side in Fig. 17a. During dry periods, the soil moisture reduces;
this lower soil water availability can result in vegetation water stress; consequently leading to lower vegetation activity in terms
of transpiration and primary production, which is reflected, for example, in the typical dry season browning of grass species
in low-vegetation regions and in the model represented by negative LAI and C.¢ anomalies (Fig. 16a,b). As transpiration is
reduced (Fig. 16¢), the negative sub-surface soil moisture anomaly is similarly reduced, because less water is extracted (Fig.
16d). On the other hand, the enhanced vegetation variability activated a positive feedback between anomaly vegetation activity
and anomaly SM, as illustrated on the left side of Fig. 17a. Reduced vegetation activity is reflected in the model by a reduced
Cest and an increased bare soil fraction (Eq. (7)), which leads to an increased Es, (Fig. 16b), and, as a consequence, less SMg
during a dry period as long as soil moisture is available (Fig. 16d).

Figures 17b and c show that the positive feedback between Eg and SMj, as introduced by the improved vegetation vari-
ability, is the strongest over semiarid regions with low vegetation, while the negative feedback between E; and SMgy, is more
pronounced for temperate regions with deciduous vegetation and crops, where the inter-annual LAI variability is larger (Fig.
4).

4 Discussion
4.1 Synthesis and implications

The results presented in Sect. 3.4 indicate overall improvements of correlation coefficients of £ and SMg with all three aspects
of vegetation variability implemented. We attribute these effects primarily to the implementation of inter-annually varying LAI,
as the effects of the LC variability and vegetation specific Cogr on £ and SM were smaller (Sects. 3.1 and 3.3). The pronounced
improvements in SMg and E correlation in semiarid regions (Fig. 15) are directly related to the feedback mechanisms typical
of water-limited regions that were activated by the vegetation variability. Regions where the positive feedback is strong (Fig.
17b) coincide with the regions that exhibit a strengthening of the correlations. In the model setup with seasonally varying LAI
only (experiments CTR and IALC), the feedbacks in Fig. 17 are not represented because the interaction between SM and LAI
is activated by the inter-annually varying LAIL In particular, the interactions between LAI, C.g and bare soil cover are only

captured if model Cog is exponentially related to LAI (Sect. 2.2.3). This finding complements the arguments from previous

12



370

375

380

385

390

395

400

studies for using the exponential LAI-C.g relation instead of the lookup table C.g in HTESSEL (Alessandri et al., 2017,
Johannsen et al., 2019; Nogueira et al., 2020, 2021).

Recent studies also applied data assimilation methods to integrate satellite-based LAI in LSMs. For example, Rahman et al.
(2022) found improved anomaly correlations of transpiration in many areas when integrating satellite based LAI in the LSM
called Noah-MP (Noah Multi-Parameterization), with largest effects in the regions where £ and SM; anomaly correlations
consistently improved in our results (Fig. 9). However, this study also found limited sensitivity of model surface and root zone
soil moisture when only LAI assimilation was applied (Rahman et al., 2022). Similarly, Albergel et al. (2017) concluded that
LALI assimilation only affected deeper SM. In contrast, our results showed considerable changes of near-surface soil moisture
when integrating CGLS LAI, which can be explained by the interplay between LAI, effective vegetation cover, soil evaporation
and near-surface soil moisture schematized in Fig. 17, which apparently differs from the interplay in Noah-MP (Rahman et al.,
2022) and ISBA (Albergel et al., 2017).

The vegetation specific effective vegetation cover parameterization presented in Sect. 3.3 generally resulted in an improved
match of model Ce and CGLS FCover (Fig. 12), which was expected because the FCover data was used for the estimation
of the exponential coefficient k£ based on least squares minimization (Sect. 2.3.3). CGLS FCover explicitly represents the
fraction of green vegetation cover, and, therefore, matches the model actively transpiring vegetation fraction C.g. However,
also the non-green vegetated area cover affects the atmosphere by e.g. modifying albedo and roughness lengths, which is not
considered in the model, as non-green vegetation is represented as bare soil. This is a limitation for the present implementation
of the vegetation specific effective vegetation cover parameterization. The results presented in Fig. 13 showed both increased
and reduced RMSE for E with respect to the reference data in IJAKV compared to IAKS. Consistent reductions of &Z RMSE for
in Europe and Eastern US in the JJA period were found. These regions coincide with regions with a high density of FLUXNET
tower observations used for generation of the DOLCEv3 FE (Hobeichi et al., 2021). The lack of tower observations in the
Tropics, the Sahel, South Eastern Asia and at high latitudes may potentially explain the mixed RMSE results in these regions
presented in Fig. 13. For high latitudes (e.g. Northern Canada and Eastern Siberia) the RMSE for both E as C.g increased and
the pearson correlation reduced (Fig. S14) in IAKV compared to IAKS for the JJA period. This might be at least in part related
to the poor fit of the parameterization for high LAI values for short grass and tundra, as explained in Sect. 3.3 (Fig. 10).

The inter-annually varying land cover locally affected the model £ and SM as expected, with reduced (increased) F driven
by corresponding reductions (increases) in high vegetation cover fraction (Fig. 5 and 6). However, the effects on £ and SM
are likely underestimated due to the HTESSEL land cover structure in which the dominant vegetation type and cover fraction
are used, and vegetation mixing within high or low vegetation types is not represented (Fig. 1). With this, only major changes
in the ESA-CCI vegetation types and fractions are captured by the model. In IALC we evaluated the effects of inter-annually
varying LC individually, but for internal consistency LAI and LC inter-annual variations should ideally be used together as they
are interdependent. The local effects of the inter-annually varying land cover on the total E were considerably smaller than on
the individual E fluxes (Fig. 5). The reduced (increased) E; and E;, were compensated for by increased (reduced) F. This
compensation is related to the Ct parameterization (Eq. (6)), and also to the offline setup, which does not allow for couplings

with the atmosphere. Reduced Ay in the Amazon (Fig. 3), led to a reduced C.g and an increased bare soil fraction (Eq. (4)-
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(7)), and, therefore, reduced E; and Ej;, and increased Ej, in order to fulfill the atmospheric evaporation demand defined by
405 the prescribed atmospheric forcing. Similarly, the on average reduced Ceg with the vegetation specific Ceg parameterization
(Fig. 11) introduced in experiment IAKYV, led to a shift in annual mean individual E-fluxes, with increased E and reduced Ey

and E; (Fig. S6).
It is important to note that the partitioning of evaporation into the three individual components E¢, Es and F; in the model
remains problematic to compare with observations. There is wide-spread consensus that, globally averaged, transpiration is the
410 largest land evaporation flux component, followed by soil evaporation and interception evaporation (Miralles et al., 2011; Wei
et al., 2017; Nelson et al., 2020). However, estimates of the average global E; contribution to total terrestrial evaporation are
subject to major uncertainties, with the global E contribution quantified in the range of 35-80 % (Schlesinger and Jasechko,
2014; Coenders-Gerrits et al., 2014). The global mean modelled partitioning of evaporation in our study is on the low end of
these estimates with 39 % F, 38 % Es and 20% E; in CTR and 38 % Ei, 41 % Eg and 20 % Ej;, in IAKV (the values do not
415 add to 100 % due to open water evaporation). Despite the consistent improvements in anomaly correlation coefficients of E
and SM; found in IAKV compared to CTR (Fig. 15), the apparently low contribution of E to total £ needs further evaluation,

which was out of scope in this study.
4.2 Methodological limitations

Our model experiments were performed in an offline mode with prescribed atmospheric forcing, which allowed us to analyse

420 individual hydrological processes in detail. However, the fixed atmospheric model input considerably constrains changes of
model surface fluxes. Moreover, the ERAS forcing used here is based on a LSM that does not represent land cover and
vegetation variability, which is partially corrected for by data assimilation of observations (Hersbach et al., 2020; Nogueira
et al., 2021). The potential mismatch between our LSM and the ERAS atmospheric forcing may also have influenced the
observed model effects. Another possible limitation is the absence of re-calibration of model parameters, such as roughness

425 lengths and minimum stomatal resistances. Fixed model parameters were originally calibrated using the lookup table Ceg
parameterization, MODIS LAI and GLCC LC, and have not been adjusted for the three new model scenarios tested here
(IALC, TAKS and IAKYV). This was also emphasized by Johannsen et al. (2019), Nogueira et al. (2020, 2021) and Boussetta
et al. (2021) who concluded that model vegetation changes should be implemented in an integral context and re-calibration of
model parameters is needed.

430 This study emphasizes the importance of realistic representation of vegetation variability for modelling land surface-atmosphere
interactions. However, for further applications it is needed to explore how the vegetation variability influences atmospheric vari-
ables in a coupled model setup. The availability of reliable reference data is therefore fundamental to properly understand and
model the processes of relevance for land surface and the interaction with atmosphere. Here, the evaluation of model perfor-
mance was limited to total evaporation and near-surface soil moisture. The evaluated performances of model £ and SM; need

435 to be interpreted in a careful way, bearing in mind the uncertainties. For total evaporation we used the DOLCEv3 evaporation
data that merges FLUXNET tower observations with evaporation from FLUXCOM-RSMETEO, GLEAM v3.5a and v3.5b

and ERAS5-land, which all include very specific model assumptions on vegetation representations. Although these data are
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considered suitable for time series and trend analyses, the associated uncertainty estimates are large (Hobeichi et al., 2021)
(Fig. 16). Figure 16c shows that the DOLCEv3 inter-annual variability is systematically smaller than the modeled variabil-
ity. This limited inter-annual variability in DOLCEV3 could be at least in part related to the combination of several products,
because the averaging based on FLUXNET towers in-avoidably dampens the anomalies, reducing the inter-annual variability.
Evaluation of the modeled near-surface soil moisture was limited by missing data due to dense forests or snow cover, and the
lack of information of the representative soil depth. While the ESA-CCI combined active/passive SM product was generated
using the absolute values and the dynamic range of GLDAS-Noah soil moisture, preserving the dynamics and trends of the
original retrievals (Liu et al., 2012), it is important to note that during drydowns the soil moisture dynamics can also be im-
pacted to some extent, as highlighted by Raoult et al. (2022). However, we still find the ESA-CCI SM the best suited globally
available reference data for our study, because it is a direct product of remote sensing observations, without directly blending

land surface model dynamics as done for DOLCEv3.

5 Conclusions

This study aimed to address the limitations of state-of-the-art land surface models in representing spatial and temporal veg-
etation dynamics. We evaluated the effects of improving the representation of land cover and vegetation variability based
on satellite observational products in the HTESSEL land surface model. Specifically, we directly integrated satellite based
inter-annually varying land cover, and seasonally and inter-annually varying LAI. In addition, we formulated and integrated
an effective vegetation cover parameterization that can distinguish between different vegetation types. The effects of these
three implementations were analysed for soil moisture and evaporation in offline experiments forced with ERAS atmospheric
forcing.

The inter-annually varying land cover locally altered the model evaporation and soil moisture. In regions with major land
cover changes, such as the Amazon, the model evaporation fluxes and soil moisture responded consistently, capturing the
effects of increased or decreased high or low vegetation cover. The inter-annually varying LAI led to significant improvements
of the correlation coefficients computed with the available reference data of near-surface soil moisture and evaporation. This
was specifically true in semiarid regions with predominantly low vegetation, during the dry season. The inter-annually varying
LAI and effective vegetation cover allow for an adequate representation of soil moisture-evaporation feedback by activating the
couplings with vegetation during vegetation-water-stressed periods (Fig. 17). From these results, we conclude that it is essential
to realistically represent inter-annual variability of LAI, and to include the exponential relation between LAI and effective
vegetation cover to correctly capture land-atmospheric feedbacks during droughts in HTESSEL. The developments of the
effective vegetation cover parameterization considerably improved the spatial and temporal variability of the model effective
vegetation cover, and regionally reduced the model errors of evaporation and near-surface soil moisture. Overall, our results
emphasize the need for representing spatial and temporal vegetation variability in LSMs used for climate reanalyses and near-

term climate predictions. In climate predictions, we obviously cannot rely on satellite retrievals, and, therefore, the development
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and validation of dynamical or statistical models able to reliably predict vegetation dynamics, from leaf to ecosystem scales,

remains an important challenge for the future in the land surface modelling community.
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Table 1. Details of model experiments

Experiment Land cover Leaf Area Index Effective vegetation cover
CTR ESA-CCI fixed CGLS climatology k=0.5

IALC ESA-CCI inter-annual CGLS climatology k=0.5

TIAKS ESA-CCI inter-annual CGLS inter-annual k=0.5

[AKV ESA-CCI inter-annual CGLS inter-annual k vegetation specific
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Figure 1. Vegetation representation in a grid cell with example vegetation types and cover fractions. (a) Grid cell vegetation type and cover
fraction based on land cover dataset. (b) HTESSEL dominant low and high vegetation type (771, and T%) and cover fraction (A, and Ag). (c)
HTESSEL effective vegetation cover with Ceg,1, and Ceg, 1 the effective low and high vegetation cover fraction, C the bare soil fraction,

and Ceg = Cogr,1. + Cesr, 1, With the arrows indicating the temporal variability of Ceg as discussed in Sect. 2.2.3.
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Figure 2. (a) Model low (71,) and (b) high (7%) dominant vegetation types in 1999 based on
and high vegetation type in percent of the total land points with plain colors indicating that the

compared to 1999 and hatched colors that the vegetation replaces another type in 2018 compared

i
High vegetation types

ESA-CCI land cover. (c) Changes in low
vegetation type has been replaced in 2018
to 1999. Note that low and high vegetation

are treated separately and do not replace each other. E stands for evergreen, D for deciduous, N for needleleaf, and B for broadleaf
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Figure 3. (a) Model low (A1) and (b) high (Am) vegetation cover fraction in 1999 and absolute difference in (c) Ay, and (d) An between

2018 and 1999 (2018—1999) based on ESA-CCI land cover. Blue (red) indicates an increased (reduced) cover in 2018. The black boxes
highlight the three regions Southern Amazon, Lapland and Central Asia that are further analyzed in Sect. 3.1.
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Figure 4. Standard deviation (std) of monthly inter-annual anomaly CGLS LAI for 1999-2018 as implemented in experiment IAKS (Table
1).
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Figure 5. Annual mean evaporation fluxes (2014-2018) in experiment CTR with (a) total evaporation (F), (c) transpiration (F), (e) soil
evaporation (FEs) and (g) interception evaporation (Ej;), and the relative difference (A,.)) between annual mean evaporation fluxes in experi-
ments IJALC and CTR ((IALC—CTR)/CTR) for (b) E, (d) E, (f) Es and (h) Ej. Blue (red) indicates an increased (reduced) flux. Grey land
areas indicate regions with annual mean E-fluxes < 0.1 mm year*. The boxes highlight the three regions Southern Amazon, Lapland and
Central Asia with major land cover changes (Fig. 3). Results with respect to DOLCEvV3 E are presented in Fig. S1. See Table 1 for details of

the experiments.
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Figure 6. Annual mean soil moisture (2014-2018) (SM) in experiment CTR with (a) near-surface soil moisture (SMs) and (c) subsurface
soil moisture (SMy,), and the relative difference (A,e1) between annual mean SM in experiments IALC and CTR (IALC—CTR)/CTR) for
(b) SM; and (d) SMgp,. Blue (red) indicates an increased (reduced) soil moisture. Grey land areas indicate regions with annual mean SM <
0.01 m® m™3. The boxes highlight the three regions Southern Amazon, Lapland and Central Asia with major land cover changes (Fig. 3).

See Table 1 for details of the experiments.
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Figure 7. Standard deviation (std) of anomaly evaporation fluxes in experiment IALC with (a) total evaporation (E), (c) transpiration (E}),
(e) soil evaporation (Es) and (g) interception evaporation (E;), and the relative difference (A1) between the anomaly E std in experiments
TAKS and IALC ((IAK5S—IALC)/IALC) for (b) E, (d) Et, (f) E5 and (h) E;. Blue (red) indicates an increased (reduced) std. See Table 1 for

details of the experiments.
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Figure 8. Standard deviation (std) of anomaly soil moisture (SM) in experiment IALC with (a) near-surface soil moisture (SMs), and
(c) subsurface soil moisture (SMgp), and the relative difference (Aye) between the anomaly SM std in experiments TAKS and TALC
((TAK5—TALC)/TALC) for (b) SMs and (d) SMgp,. Blue (red) indicates an increased (reduced) variability. See Table 1 for details of the

experiments.
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Figure 9. Pearson correlation difference (Ar) between experiments IALC and IAKS5 (IAK5—TALC) for (a) monthly anomaly total evapo-
ration (E) with respect to DOLCEv3 evaporation and (b) monthly anomaly near-surface soil moisture (SMs) with respect to ESA-CCI SM.
Blue (red) indicates an increased (reduced) correlation in IAKS compared to IALC, white colors indicate small and/or insignificant Ar, and

grey indicates no data points. See Table 1 for details of the experiments. Similar figures for seasonal anomalies are presented in Fig. S4-5.
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Figure 10. (a — j) LAI vs FCover for a subsample (5000) of the selected points used for the least squares optimization for all vegetation
types with in red the optimized LAI-FCover relation (Eq. 10) and in lightblue the k=0.5 relation, with RMSE values of the data points with
respect to the curve. The colors indicate the point density with purple a low density and yellow a high density. (k) The optimized LAI-FCover

relation for all vegetation types. E stands for evergreen, D for deciduous, N for needleleaf, and B for broadleaf. Values of £ and RMSE are

also presented in Table S3.
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Figure 11. (a) Mean monthly model effective vegetation cover (Ceg) in experiment IAKS and (b) the absolute difference between IAKV
and TAKS (IAKV—TAKS5) mean monthly Ceg, red (blue) indicates a reduced (increased) Cegr in IAKV compared to IAKS. Details of model

experiments in Table 1.
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Figure 12. Root mean squared error (RMSE) of model seasonal Ceg in experiment IAKS with respect to CGLS FCover for DJF (a) and JJA
(c), with red indicating a larger RMSE. The difference between RMSE in IAKS and IAKV (IAKV—IAKS) for DJF (b) and JJA (d) with blue
(red) indicating a reduced (increased) RMSE, and white colors indicate small and/or insignificant ARMSE. See Table 1 for details of the

experiments. Similar figures for monthly values and all the seasons are presented in Fig. S8-9.
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Figure 13. Root mean squared error (RMSE) of model seasonal E in experiment IAKS with respect to DOLCEv3 F for DJF (a) and JJA
(c), with red indicating a larger RMSE. The difference between RMSE in IAKS5 and IAKV (IAKV—IAKS) for DJF (b) and JJA (d) with blue
(red) indicating a reduced (increased) RMSE, and white colors indicate small and/or insignificant ARMSE. See Table 1 for details of the

experiments. Similar figures for monthly values and all the seasons are presented in Fig. S10-11.
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Figure 14. Root mean squared error (RMSE) of model standardized inter-annual seasonal anomaly SM; in experiment IAKS with respect to
ESA-CCI SM for DJF (a) and JJA (c). The difference between RMSE in IAKS5 and IAKV (IAKV—IAKS5) for DJF (b) and JJA (d) with blue
(red) indicating a reduced (increased) RMSE, white colors indicate small and/or insignificant ARMSE, and grey indicates no data points.

See Table 1 for details of the experiments. Similar figures for monthly values and all the seasons are presented in Fig. S12-13.
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Figure 15. Pearson correlation coefficient difference (Ar) between experiment IAKS and IAKV (IAKV—IAKS) for (a,c) seasonal anomaly
total evaporation (£) with respect to DOLCEv3 evaporation for DJF and JJA and (b,d) seasonal anomaly near-surface soil moisture (SMs)
with respect to ESA-CCI SM for DJF and JJA. Blue (red) indicates an increased (reduced) correlation in IAKV compared to IAKS, white

colors indicate small and/or insignificant Ar, and grey indicates no data points. The red box is highlighted in Fig. 16. See Table 1 for details
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of the experiments. Similar figures for all the seasons and monthly anomalies are presented in Fig. S17-19.
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Figure 16. Timeseries of the North-Eastern Brazil case highlighted in Fig. 15 for (a) LAI anomalies, (b) Effective vegetation cover (Ces)
anomalies with in black the CGLS FCover data as a reference, (c) Evaporation anomalies with E total evaporation, F; transpiration, Fs soil
evaporation and Ej interception evaporation, and in black DOLCEv3 F as a reference, and (d) Soil moisture standardized anomalies with
SMs near-surface soil moisture and SMgp, subsurface soil moisture, and in black ESA-CCI SM as a reference. Dashed lines in (¢) and (d)
represent experiment CTR and solid lines IAKV. The shading in (c) and (d) represents the uncertainty associated with the reference data. For

this case 71,=Short grass, Ti=Deciduous broadleaf trees, A;,=0.84 and Ax=0.16.
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Figure 17. (a) Processes contributing to the anomaly vegetation-soil moisture feedback mechanisms as activated with the improved vegetation
variability in IAKV compared to CTR. Upward (downward) arrows indicate positive (negative) change in the involved variables. Positive
(blue) arrows indicate positive feedback and negative (yellow) arrows indicate negative feedback. +/- refer to the resulting positive/negative
feedback loop relative to the sign of the change of the involved variables. The strength of the feedbacks (b,c) is quantified as the absolute

correlation between anomaly A Es and ASMj (b), and AE; and ASMgy, (c), with A representing the difference between CTR and IAKV
(IAKV—-CTR).
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