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Abstract. The Voellmy rheology has been widely used for simulating snow avalanches and also for rock avalanches. Recently,

a modified version of this rheology was proposed. While the conventional version of Voellmy’s rheology uses the sum of

Coulomb friction and a velocity-dependent friction term, the modified version assigns the two terms to different regimes

of velocity. The software MinVoellmy presented here provides the first numerical implementation of the modified rheology

in a two-dimensional, depth-averaged model. It consists of MATLAB and Python classes, where simplicity and parsimony5

were the design goals. In contrast to the majority of the models in this field, MinVoellmy uses a Cartesian coordinate system

with the thickness of the fluid measured vertically and the velocity averaged vertically instead of perpendicularly to the bed.

Furthermore, MinVoellmy implements a simple upstream scheme, which turns out to be sufficient for rheologies of the Voellmy

type. Numerical tests reveal that the modified Voellmy rheology reproduces the empirical relation between runout length, height

drop, and volume of large rock avalanches fairly well. Furthermore, there seems to be a large potential for further research on10

hummocky deposit morphologies and longitudinal striations.

1 Introduction

Modeling of rapid mass movements was pushed strongly by the ideas of Savage and Hutter (1989), who extended the shallow-

water equations towards granular media. The shallow-water equations provide a two-dimensional, depth-averaged description

of flow processes with a free surface. In their original form, the shallow-water equations assume that the bed and the free fluid15

surface are almost horizontal. However, this is not the case for typical scenarios of granular flow. In order to overcome this

limitation, the Savage–Hutter model provides an extension towards thin layers on gently curved surfaces. Beyond the general

formalism, the Savage–Hutter model also includes an approximation for the stresses arising from internal deformation of a

medium with a given angle of internal friction.

The idea behind the Savage–Hutter model is adopted by almost all two-dimensional continuum models of granular flow over20

a given topography. Existing models differ mainly concerning rheology, coordinate system and approach to reduce numerical

diffusion. An overview over some of the available models is given by McDougall (2017).
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In the context of snow and rock avalanches, the rheology proposed by Voellmy (1955) is widely used. It assumes a shear

stress of

τ = µσ+
ρg

ξ
v2. (1)25

at the bed. The first term describes Coulomb friction with a coefficient µ where σ is the normal stress. The second term was

adopted from the respective relation for turbulent flow of water in open channels with a rough bed, where ρ, g, and v are

density, gravity, and vertically averaged velocity, respectively. The parameter ξ refers to the roughness of the bed. As detailed

by Salm (1993), Eq. (1) does not imply turbulent flow in the sense of a complete mixing of the granular medium, which would

be incompatible with the preservation of stratigraphy often found in deposits of rock avalanches (Dufresne et al., 2016). The30

second term in Eq. (1) can be interpreted as the result of converting kinetic energy of translation parallel to the bed into random

particle motion (see also Hergarten, 2023c).

As discussed by Hergarten (2023c), Voellmy’s rheology cannot predict the long runout typically observed for large rock

avalanches without further assumptions. In a nutshell, long runout requires an effective coefficient of friction, τσ , that is much

lower than typical Coulomb friction coefficients µ. However, τσ ≥ µ for Voellmy’s rheology (Eq. 1), which makes it incompat-35

ible with long runout unless artificially low friction coefficients µ are assumed for large rock avalanches.

Hergarten (2023c) proposed a modification of Voellmy’s rheology to overcome this limitation. Instead of adding the two

contributions in Eq. (1), a transition between two distinct regimes of movement in the form

τ =

 µσ v < vc

ρg
ξ v

2
for

v ≥ vc

(2)

was assumed. While a given constant crossover velocity vc is the simplest idea, Hergarten (2023c) also developed a model for40

the dependence of vc on the thickness h of the layer. This model was obtained by reinterpreting the random kinetic energy

(RKE) model (Buser and Bartelt, 2009; Bartelt and Buser, 2010), which describes the supply of kinetic energy of random

particle motion and its consumption. Introducing some simplifying assumptions, the relation

vc ∝ 3
√
ξh (3)

was obtained. This approach turned out to predict the scaling relation between volume and runout length of rock avalanches45

better than the version with constant vc and is therefore used in the following.

Concerning the implementation in numerical models, numerical diffusion is typically the most serious problem. Numerical

diffusion causes a progressive smoothing of sharp fronts and an artificial damping of waves. In the context of granular media,

smoothing of fronts is the major problem.

Lagrangian methods are the straightforward approach to avoid numerical diffusion. In contrast to Eulerian methods, they use50

a coordinate system moving with the particles. In general, however, Lagrangian methods are complicated. There seem to be

only two Lagrangian models in this field. While the model DAN3D (McDougall, 2006) implements the concept of smoothed-

particle hydrodynamics, which is much simpler than a classical Lagrangian approach, the model AvaFrame com1DFA (Tonnel
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et al., 2023) additionally uses a grid in order to avoid problems at low particle densities. In turn, the vast majority of the

available models uses the Eulerian approach with a fixed coordinate system.55

The total variation diminishing non-oscillatory central differencing (TVD-NOC) scheme introduced by Nessyahu and Tad-

mor (1990) turned out to be powerful in reducing numerical diffusion without introducing strong artificial oscillations. It is

implemented in several models, e.g., the comprehensive model r.avaflow (Mergili et al., 2017). In turn, however, it will be

shown in Sect. 5.2 that numerical diffusion is not a huge problem in combination with rheologies of the Voellmy type. Practi-

cally, even the simple upstream scheme works reasonably well here, which allows for simple and lightweight implementations.60

The simplest form of the Savage–Hutter model refers to a channel and uses a coordinate system aligned to the bed with

the x-coordinate in the principal flow direction. Using a curvilinear coordinate system in this spirit on an arbitrary topography

is, however, not feasible. Therefore, simpler approaches are typically preferred. The model RAMMS (Christen et al., 2010)

widely used in practical applications uses a coordinate system with the x- and y-coordinates aligned to the Cartesian axes, but

locally inclined to become parallel to the topography. However, this coordinate system does not only involve a profile curvature65

along the axes, but is also non-orthogonal. The limitations arising form these properties can be overcome by introducing more

or less complicated correction terms in the equations (Fischer et al., 2012).

As an alternative, some models use a Cartesian coordinate system (Bouchut and Westdickenberg, 2004; Denlinger and

Iverson, 2004; Hergarten and Robl, 2015; Rauter and Tuković, 2018). Here the challenge is that the velocity at the bed must be

parallel to the bed. The approach of Hergarten and Robl (2015) was even simplified in such a way that a solver for the original70

shallow-water equations could be used. In turn, however, only the balance of the horizontal components of the momentum was

considered, which introduces a serious limitation for scenarios with a strong profile curvature.

In the following, some kind of minimum implementation of the modified Voellmy rheology (Eqs. 2 and 3) will be developed.

The model uses a Cartesian coordinate system in combination with an approximation to the driving acceleration by gravity. It

is designed for simple applications in research, but may also be useful in teaching since the code can be fully understood with75

limited knowledge about numerics and is short enough to be transferred to different programming languages easily.

In turn, it is not intended to compete with comprehensive models such as r.avaflow (Mergili et al., 2017), which even includes

direct coupling to a geographic information system and options for multi-phase flow (Pudasaini and Mergili, 2019). Even more

important, it should not be used for operational hazard assessment. The model RAMMS widely used in this context has not

only a much longer history of continuous development, but also includes estimates of its model parameters based on a large80

number of studies, which are essential for real-world applications.

2 Coordinates and governing equations

The model MinVoellmy presented in this paper uses Cartesian coordinates with the topography of the bed b(x,y) as illustrated

in Fig. 1a. The time-dependent model variables are the thickness of the mobile layer h(x,y, t) and the velocity vector v(x,y, t).

As in all models based on the theory developed by Savage and Hutter (1989), v is the component of the depth-averaged velocity85

parallel to the bed.
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Figure 1. Definition of the model variables in 2-D (only in the x-z plane) for (a) the Cartesian approach used here and (b) for a coordinate

system aligned to the bed as proposed by Savage and Hutter (1989).

Using Cartesian coordinates circumvents several problems arising from non-orthogonal or curvilinear coordinate systems

aligned to the topography. In turn, the treatment of the velocity is more complicated. The condition that v(x,y, t) must be

parallel to the bed requires

v ·n= 0 (4)90

with the normal vector

n= cosβ

(
−∇b
1

)
, (5)

where ∇b is the two-dimensional gradient of the bed and β the slope angle (tanβ = |∇b|). While this relation would allow

for reducing the velocity vector to two components in the equations, it is kept as a three-component vector here, as already

proposed by Rauter and Tuković (2018). As a major difference, however, the thickness is not measured normal to the bed, but95

vertically (Fig. 1).

As illustrated in Fig. 2, considering the vertical thickness also avoids geometrical problems with the thickness normal to the

bed. Since the orange lines are not parallel if the bed is curved, an exact balance of mass and momentum must take the curvature

into account. Bouchut and Westdickenberg (2004) developed such an approach for general topographies and general coordinate

systems (including Cartesian coordinates) without introducing additional approximations to the Savage–Hutter model. The red100

lines, however, illustrate that each approach with the thickness normal to the bed is geometrically limited. Here, the thickness

normal to the bed is greater than the radius of curvature of the bed, which causes an intersection of the lines. In this case, it is

not possible to define the thickness normal to the bed consistently.

Since the Savage–Hutter model is an approximation for thin layers and the problem does not occur if the fluid layer is

sufficiently thin, it may be considered irrelevant. However, as pointed out by Hutter et al. (2005), the Savage–Hutter model is105

often applied to situations that are formally outside the range of validity of the assumptions, but still yields reasonable results.

In this sense, circumventing geometrical problems for thick layers by considering the vertical thickness may be useful.

In sum, however, considering the vertical thickness is a tradeoff. It simplifies the balance of mass and momentum (Sect. 2.1)

and avoids geometrical problems. In turn, we will see in Sect. 2.2 that it requires an approximation for the acceleration by
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Figure 2. Different ways to define the thickness. Blue lines describe the definition of h as the vertical thickness proposed in this study.

Orange and red lines describe the thickness normal to the bed. The normal thickness becomes inconsistent if the lines intersect (red lines).

gravity, so that it is not fully consistent with the original Savage–Hutter approximation unless the fluid surface is either parallel110

to the bed or horizontal.

2.1 The balance of mass and momentum

As in all depth-averaged models, the mass balance is taken into account by balancing the fluxes into and out of volumes

aligned in the same direction as h is measured (gray areas in Fig. 1). Assuming an incompressible fluid, the mass balance can

be replaced by a volumetric balance in which the (constant) density ρ does not appear. The balance equation can be written as115

an advection equation for the thickness h,

∂h

∂t
+
∂(vxh)

∂x
+
∂(vyh)

∂y
= 0. (6)

Since the volumes are vertical in the approach proposed here, the second and third terms in Eq. (6) refer to horizontal advection

with the velocities vx and vy. The balance equation is the same as for the original shallow-water equations for an incompressible

fluid (e.g., Vreugdenhil, 1994).120

The momentum balance can also be written as an advection equation in the form

∂(hv)

∂t
+
∂(vx(hv))

∂x
+
∂(vy(hv))

∂y
= h

(
a− f v

|v|
+ cn

)
. (7)

The advection term at the left-hand side is basically the same as Eq. (6), but for the depth-integrated momentum per unit mass

hv instead of the thickness h. It is identical to the respective terms in the original shallow-water equations (e.g., Vreugdenhil,

1994). However, v is not approximately horizontal (as required for the original shallow-water equations) and the coordinate125

system is not aligned to the bed (as in the original Savage–Hutter model). Therefore, hv must be treated as a three-component

vector, and Eq. (7) consists of three scalar equations instead of two equations in the original shallow-water equations and in

the Savage–Hutter model.

In contrast to Eq. (6), Eq. (7) has a nonzero source term at the right-hand side, which describes the total depth-integrated

acceleration. While the left-hand side of Eq. (7) is practically the same in all depth-averaged models, the right-hand side is130

model-specific. In the approach proposed here, the total acceleration is separated into three parts. The first term, a, is the
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Figure 3. Directions of velocities and accelerations for different situations. Only situations with the fluid surface parallel to the bed are

considered for a 2-D geometry (x-z plane). The symbols refer to the terms v, a, −f v
|v| , and cn at the right-hand side of Eq. (7).

gravitational acceleration parallel to the bed. Its computation is basically the same as in the original Savage–Hutter model and

will be explained in Sect. 2.2. As illustrated in Fig. 3, a always points downslope with respect to the fluid surface.

The second term is the frictional deceleration. Its direction is always opposite to the velocity. Since v
|v| is a unit vector, f is

the absolute value of the deceleration, which depends on the assumed rheology.135

In contrast to the first two terms, which are parallel to the bed, the third term (cn) is normal to the bed. It describes the

centripetal acceleration required to keep the velocity parallel to the bed. This term is not immediately needed in models with

a coordinate system aligned to the bed, in which the two-component velocity vector is parallel to the bed by definition. In

such models, the centripetal acceleration is only used for computing the dynamic contribution to Coulomb friction via the

normal stress at the bed. In some models, such as the original version of RAMMS, this contribution is even neglected. Other140

approaches (e.g., Fischer et al., 2012) compute c from the local curvature. However, the concept proposed in this paper uses a

simpler approach, which will be presented in Sect. 3.2.

2.2 The gravitational acceleration

Since the expression for a is typically derived in a bed-parallel coordinate system, its computation in Cartesian coordinates is

briefly recapitulated in the following. The main idea stems from the Navier–Stokes equations for an inviscid fluid, where145

ρa=−∇p+ ρ

 0
0
−g

 (8)

with the fluid pressure p.

The central approximation of the original shallow-water equations is that a is horizontal and constant along vertical columns,

which results in hydrostatic vertical pressure profiles. Similarly, the Savage–Hutter model assumes that a is parallel to the bed

and constant along columns normal to the bed. The same is assumed for the Cartesian version proposed here, except that the150

columns are vertical instead of normal to the bed (Fig. 1). So the first condition to be met is a ·n= 0 with the normal vector

n defined in Eq. (5), which implies

∇p ·n=−ρg cosβ. (9)
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As a second condition, p= 0 at the free surface s= b+h. Then, ∇p must be normal to the surface, and thus

∇p= λ

(
−∇s
1

)
(10)155

with an unknown factor λ. Inserting this relation into Eq. (9) yields

λ=− ρg

1+∇s · ∇b
. (11)

Since a and thus also∇p are vertically constant, p increases linearly downward from the surface (p= 0). Then the pressure at

the bed is

pb =∇p ·

 0
0
−h

=
ρgh

1+∇s · ∇b
(12)160

and the bed-parallel acceleration

a=
g

1+∇s · ∇b

(
−∇s
1

)
+

 0
0
−g

=− g

1+∇s · ∇b

(
∇s
∇s · ∇b

)
=− pb

ρh

(
∇s
∇s · ∇b

)
. (13)

As a central property, the absolute value of the acceleration is

|a|= g
|∇b|√

1+ |∇b|2
= g sinβ (14)

if the free surface is parallel to the bed (∇s=∇b) and zero if the free surface is horizontal (∇s= 0).165

Figure 4 shows the 1-D version of Eq. (13) for slope angles β = 15◦ and β = 45◦, where the angle φ describes the slope of

the free surface (Fig. 1). As a striking property, a singularity occurs at φ=−75◦ for β = 15◦ and at φ=−45◦ for β = 45◦. It

occurs if the denominator in Eq. (12) approaches zero, which is the case if the free surface is normal to the bed (φ= β− 90◦).

The pressure pb grows towards infinity then and even becomes negative after passing the singularity, which is unrealistic. The

respective range corresponds to the dashed lines in Fig. 4, which show a positive (downslope) acceleration for an uphill-facing170

front (φ < 0◦).

One might argue that this situation is far outside the scope of the theory proposed by Savage and Hutter (1989) and that the

occurrence of the singularity is irrelevant. Concerning numerical simulations, however, it is a big advantage if the solution is

still well-defined beyond the range of the approximations made. At this point, the widely used formulation in a local coordinate

system is better than the Cartesian version. If the thickness h is measured perpendicular to the bed, there is no singularity, but175

just |a| →∞ for |∇h| →∞. The allowed range for φ in Fig. 4 would be φ ∈ (β− 90◦,β+90◦) instead of (−90◦,90◦),
which means that the dashed line segments left of the singularity exist no longer. In turn, the allowed range of φ includes the

dash-dotted line segments.

In turn, passing the singularity in the Cartesian version causes an unrealistic behavior. If an uphill-facing front (φ < 0◦)

becomes steeper, there is an increasing outward acceleration (a < 0) at first. At a certain steepness, however, the acceleration180
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Figure 4. Acceleration by gravity with the original pressure at the bed (Eq. 13) and with the modified pressure (Eq. 17). The angle φ describes

the slope of the free surface s (Fig. 1). Negative values of φ correspond to an inclination opposite to the bed. The bed-parallel acceleration a

is ±|a| with a positive sign downslope and a negative sign upslope. The dashed lines illustrate the unrealistic range for the pressure derived

from Eq. (13), and the dash-dotted lines the respective parts of the curves in a coordinate system aligned to the bed.

changes its direction (a > 0), causing the material to pile up rapidly. So passing the singularity needs to be inhibited technically,

e.g., by imposing a positive lower limit dmin to the denominator in Eq. (12),

pb =
ρgh

max(1+∇s · ∇b,dmin)
. (15)

However, the maximum acceleration at a downhill-facing front would be limited even for φ→ 90◦. So there is an asymmetry

in the acceleration in the form that uphill-facing fronts will typically cause a higher acceleration than downhill-facing fronts.185

As a consequence, a small-scale roughness of the free surface will cause an uphill acceleration in total. This issue will be

investigated numerically in Sect. 5.1.

In order to overcome this strong limitation, the model MinVoellmy uses a simplified expression for the pressure at the bed,

which assumes that the free surface is parallel to the bed. So∇s is replaced by∇b in Eq. (12), and thus

pb =
ρgh

1+ |∇b|2
= ρghcos2β. (16)190

This approximation can be interpreted as the hydrostatic pressure caused by the normal component of gravity, g cosβ, for a

layer of a thickness of hcosβ (perpendicular to the bed). The acceleration (Eq. 13) simplifies to

a=−g cos2β

(
∇s
∇s · ∇b

)
(17)

then.
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This modification transfers the good properties of the original approach in a slope-aligned coordinate system to a Cartesian195

coordinate system. In particular, a is linear in∇s at constant∇b. This linearity ensures that a small-scale roughness of the free

surface causes no acceleration in total and that a horizontal surface (∇s= 0) is stable.

In turn, however, the curves of the two expressions for the acceleration (Eqs. 13 and 17) are not tangential to each other

at φ= β, but cross each other with different slopes. Thus, Eq. (17) is not a first-order approximation to Eq. (13) concerning

the difference φ−β for φ≈ β. The acceleration is predicted correctly if the free surface is parallel to the bed, but the effect200

of an inclination of the free surface relative to the bed is overestimated. It will be shown that this overestimation has a minor

effect on avalanche fronts even on steep slopes. It may, however, have a stronger effect on the tails of avalanches and on the

propagation of waves at the free surface. There might be options to achieve a better approximation for φ≈ β preserving the

good properties of the equation. For the sake of simplicity and parsimony, however, the simple approximation is used in the

following.205

2.3 Friction

The friction term in Eq. (7) refers to the acceleration of a vertical column. Here it has to be taken into account that the shear

stress τ at the bed acts on the inclined bed area, which is locally by a factor of 1
cosβ greater than the horizontal area. Then the

deceleration is

f =
τ

ρhcosβ
(18)210

with the shear stress τ from Eq. (2). For v ≥ vc, we obtain

f =
g

ξhcosβ
|v|2 (19)

without further assumptions. In the range of Coulomb friction (v < vc), however, the normal stress at the bed must be specified.

For simplicity, effects of internal deformation of the granular medium (typically expressed in terms of the so-called earth pres-

sure coefficients) are neglected in the following. If the friction arising from the centripetal acceleration is also also neglected,215

the normal stress σ is given by the pressure at the bed pb, which leads to

f = µ
pb

ρhcosβ
. (20)

The increase in friction due to the centripetal acceleration c (Eq. 7) can easily be included in the form

f = µ

(
pb

ρhcosβ
+ c

)
= µ(g cosβ+ c) (21)

in combination with the modified pressure at the bed (Eq. 16). On concave profiles, however, f may even become negative.220

In this situation, the mobile material would detach from the bed, which is not captured by models of this type. Since an

acceleration by friction is unrealistic, negative values of f should be replaced by 0, and thus

f =

 µmax(g cosβ+ c,0) v < vc

g
ξhcosβ |v|

2
for

v ≥ vc

. (22)
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3 Numerical implementation

The numerical implementation uses a regular grid with a constant spacing δx in the x-direction and δy in the y-direction. The225

variables are the thickness h and the depth-integrated momentum per unit mass hv as a three-component vector. Both variables

are considered at the nodes (x,y).

3.1 Mass balance

The mass balance (Eq. 6) is an advection equation without source terms. An explicit Euler scheme is used in combination with

an upstream discretization. The question why this simple scheme is sufficient for the Voellmy rheology considered here will230

be addressed in Sect. 5.2. Applying the explicit Euler scheme to Eq. (6) yields

h(t+ δt) = h(t)− δt
(
∂(vxh(t))

∂x
+
∂(vyh(t))

∂y

)
(23)

First, the values vx and vy are computed at the nodes from hv and h. Then the values of vx are interpolated linearly to the points

(x± δx
2 ,y). Depending on the sign of this velocity, h at either of the nodes (the upstream point) is adopted to (x± δx

2 ,y), and

a central difference quotient is used for the x-derivative at (x,y). The same procedure is applied to the y-derivative.235

3.2 Momentum balance

The momentum balance (Eq. 7) is separated into several steps.

Step 1: advection

The first step is basically the same as for h, except that the result is not (hv)(t+ δt), but an intermediate value

(hv)′ = (hv)(t)− δt
(
∂(vx(hv)(t))

∂x
+
∂(vy(hv)(t))

∂y

)
. (24)240

Step 2: centripetal acceleration

The second step addresses the last term at the right-hand side of Eq. (7) and computes a second intermediate value

(hv)′′ = (hv)′+ δthcn. (25)

The centripetal acceleration c is obtained from the condition that v must be parallel to the bed ((hv)′′ ·n= 0), which yields

δthc=−(hv)′ ·n. (26)245

Since the centripetal acceleration should not change the absolute value of the velocity, (hv)′′ is then rescaled in such a way

that |(hv)′′|= |(hv)′|.
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Step 3: gravitational acceleration

This step generates the next intermediate values

(hv)′′′ = (hv)′′+ δtha. (27)250

The gravitational acceleration a parallel to the bed (Eq. 13 or 17) requires the gradient of the free surface s= b+h. In order

to avoid checkerboard problems, one-sided difference quotients are used, although central difference quotients would yield a

better accuracy theoretically. If central difference quotients were used, a checkerboard pattern with one value of s at the black

fields of a checkerboard and another value at the red fields would yield no acceleration and thus be stable. One-sided difference

quotients in the direction of steepest increase (or least steep descent) in s turned out to be most robust.255

Step 4: friction

The final step has the form

(hv)(t+ δt) = (hv)′′′− δthf v

|v|
. (28)

Since friction is opposite to the velocity, (hv)(t+ δt) is obtained by rescaling (hv)′′′.

For v < vc, the amount in hv consumed by friction is δthµmax(g cosβ+ c,0) according to Eq. (22). If this amount exceeds260

the actual amount |(hv)′′′|, it is assumed that the movement stops. Accordingly, the length of the vector (hv)(t+ δt) is

|(hv)(t+ δt)|=max(|(hv)′′′| − δthµmax(g cosβ+ c,0) ,0) , (29)

where the outer maximum function takes the stopping criterion into account.

For v ≥ vc, we have to take into account that friction depends on velocity. Since f →∞ for h→ 0 according to Eq. (22), an

implicit scheme is used here in order to avoid an additional limitation to δt. This means that v in Eq. (22) is expressed in terms265

of (hv)(t+ δt), which yields

|(hv)(t+ δt)|= |(hv)′′′| − gδt

ξh2 cosβ
|(hv)(t+ δt)|2. (30)

This is a quadratic equation in |(hv)(t+ δt)|. It is solved by

|(hv)(t+ δt)|=
√
γ2 +2γ|(hv)′′′| − γ (31)

with270

γ =
ξh2 cosβ

2gδt
. (32)

4 Software description

At present, MATLAB and Python implementations of MinVoellmy are available under the GNU General Public License. None

of them requires specific packages, except for NumPy for the Python version. Each version contains separate classes for the
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one- and two dimensional versions. The implementation is minimalistic. The classes contain a constructor and a method step275

for performing a forward time step, but neither methods for input/output nor graphics components.

The constructor requires six (1-D) or seven (2-D) mandatory arguments:

– Two arrays b and h for the bedrock elevation b and the initial thickness h.

– The grid spacing dx and dy (only for the 2-D version).

– The physical parameters µ (mu), ξ (xi), and vc (vc). The latter describes the crossover velocity at a thickness h= 1 m,280

and the actual value of vc is computed from Eq. (3). Values vc ≤ 0 switch to the conventional Voellmy rheology. These

three parameters may be either scalar values or arrays.

Further optional arguments are:

– A minimum thickness hmin (hmin). It is assumed that material can move only if h > hmin (default = 0). In order to

increase efficiency, the 2-D version restricts the computation to a rectangle around the active region in each time step.285

– The minimum value dmin (dmin) for the denominator in Eq. (15) in case the original expression for the pressure is used.

The simplified expression (Eq. 16) is used for dmin = 0, which is strongly recommended (default = 0).

– A logical value cent to define whether the effect of the centripetal acceleration on Coulomb friction is taken into

account (default = true).

– The gravitational acceleration g (g) (default = 9.81).290

The method step for the forward time step updates the thickness h and the Cartesian components uh, vh (only in the 2-D

version), and wh of the momentum vector hv. The time increment δt (dt) is the only mandatory parameter. Optionally, an

upper limit cfl for the Courant number

C =
|vx|δt
δx

+
|vy|δt
δy

(33)

can be defined. In this case, δt is reduced automatically if C > cfl, and the reduced value of δt is returned. This option can be295

used for adjusting δt dynamically to the velocity. According to the Courant–Friedrichs–Lewy (CFL) criterion,C > 1 makes the

explicit scheme unstable. Setting cfl to a sufficiently small value, e.g., 0.5, avoids instability of the advection terms. However,

the CFL criterion does not capture the acceleration and friction terms, so that δt must not be too large even when using the

optional argument cfl. In particular, the transition in friction at vc may require quite small time increments δt.

5 Numerical tests300

In this section, several tests addressing the fundamental properties of the modified rheology and the numerical approach are

presented. Unless stated explicity, the parameter values µ= 0.75, ξ = 250 ms−2, and vc = 5 ms−1 (at a thickness of h= 1 m)

are used.
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5.1 The modified pressure

The first numerical test refers to the modification applied to the pressure at the bed in Sect. 2.2. The scenario is a pile of 100 m305

width and 50 m height placed on a slope with β = 30◦. In order to point out the differences between the approximations for

the pressure (Eqs. 15 and 16) more clearly, it is assumed that the material is fluidized from the beginning (µ= 0, vc = 0). The

simulations are performed on a rather fine grid with δx= 1 m and a time increment δt= 10−3 s.

A simulation with a coordinate system aligned to the bed is used as a reference. Technically, g in the acceleration term has to

be multiplied by cosβ here, and ∇b has to be set to zero. In turn, an additional downslope acceleration g sinβ has to be taken310

into account.

As shown in Fig. 5, the different simulations start similarly with some wave-like structures downslope of the crest, owing to

the opposite directions of the acceleration at the crest. For the scenarios with the original pressure and small lower limits dmin

of the denominator in Eq. (15), these waves propagate uphill rapidly. The pile even moves uphill in total for dmin ≤ 0.1, which

is completely unrealistic. This artifact was already discussed in Sect. 2.2.315

In turn, the modified pressure (Eq. 16) overestimates the acceleration at the steep downslope front. As a consequence,

spreading of the downslope front is stronger than in the reference scenario. The overall shape is, however, similar for t≥ 4 s.

Due to the faster spreading, the layer is slightly thinner with the modified pressure, resulting in a lower velocity. So the lead

over the reference scenario decreases through time.

The scenario with a strong limitation of the denominator (dmin = 1) also stays close to the reference scenario for some time.320

However, the tail persists, while the front is too slow. These results confirm the theoretical arguments given in Sect. 2.2 that the

asymmetry in the acceleration term causes artifacts. The version with the original pressure appears to be unsuitable even with

the strong limitation of the denominator. In turn, the version with the modified pressure works well, except for the spreading

of the downslope front being too fast in the beginning.

5.2 Numerical diffusion325

Numerical diffusion is typically the most challenging problem in computational fluid dynamics. In order to investigate the

effect of numerical diffusion, the movement of a body of granular material moving down a straight slope with a given slope

angle β is considered. Let us focus on steady-state solutions in the sense that the entire body moves at a constant velocity

v0 ≥ vc without changing its shape. Then the driving acceleration |a| must be balanced by friction at each point, so

|a|= f =
g

ξhcosβ
v20 (34)330

according to Eq. (19). The simplest solution is an infinite layer with a constant thickness h0. Then the surface is parallel to the

bed, and the acceleration is |a|= g sinβ (Eq. 14) for both pressure models, so that Eq. (34) yields

h0 =
v20

ξ cosβ sinβ
. (35)
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Figure 5. Collapse of a granular pile on a slope with β = 30◦. The colored curves refer to the original pressure with different lower limits

(Eq. 15), and the black line to the modified pressure (Eq. 16). The gray-shaded area shows the result of a simulation with a coordinate system

aligned to the slope as a reference. Curves are shifted vertically, and labels at the z-axis refer to the first and last plot.
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Although this solution does not describe a front moving downslope, it helps to write Eq. (34) in a more convenient form,

|a|= g sinβ
h0
h
. (36)335

In combination with the modified pressure (Eq. 17), the acceleration is

|a|= g cos2β

(
− ∂s
∂x

)√
1+

(
∂b

∂x

)2

= g cosβ

(
− ∂s
∂x

)
= g cosβ

(
tanβ− ∂h

∂x

)
, (37)

which leads to the differential equation

∂h

∂x
= tanβ

(
1− h0

h

)
. (38)

This equation can be solved analytically in the form x(h) instead of h(x). It is recognized by computing the derivative that the340

solution is

x=
h+h0 ln

(
1− h

h0

)
tanβ

+ const. (39)

This analytical solution is the reference for the numerical test. It describes a front that becomes vertical (∂h∂x →∞) for h→ 0,

while h→ h0 for x→−∞. It is plotted as a blue line without markers in Fig. 6 for h0 = 10 m.

For the numerical representation, it is assumed that h= h0 and |hv|= h0v0 at the left-hand boundary. This leads to a front345

propagating with the velocity v0 (parallel to the bed). Propagation is simulated over a horizontal distance of 10 km in order to

approach the steady-state shape for δx= 1 m and δx= 10 m. In order to minimize the effect of δt, the small value δt= 10−3 s

is still used here.

As expected, the deviation from the analytical solution increases with increasing grid spacing. The artificial widening of

the front is, however, limited to a few times δx. More important, this widening is limited in time. An initially sharp front is350

widened rapidly, but width and shape stabilize soon.

This behavior arises from a specific property of Voellmy-type rheologies. The frictional acceleration (Eq. 19) increases with

decreasing thickness. So material running ahead of the front is decelerated and thus overrun by the front. As a consequence, the

shape of the front predicted by Eq. (39) is stable. The simple upstream scheme introduces numerical diffusion and widens the

front, but the stability of the front counteracts this process. This is the reason why numerical diffusion is not a serious problem355

in combination with Voellmy-type rheologies, in contrast to many other applications of the shallow-water equations.

For completeness, Fig. 6 also shows the results obtained for the original pressure (Eq. 13) and for the model with a coordinate

system parallel to the bed. For the latter, the results are also transferred to the Cartesian coordinate system with h measured

vertically. The analytical solution is the same for both versions. Using Eq. (13) instead of Eq. (17) for the acceleration yields

the differential equation360

∂h

∂x
=

tanβ
(
1− h0

h

)
1− sin2β h0

h

, (40)
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Figure 6. Front of a layer with a vertical thickness h0 = 10 m after traveling a horizontal distance of 10 km. Curves without markers refer

to the analytical solutions. Markers refer to the nodes of the numerical solutions with δx= 1 m and δx= 10 m. All curves are centered

horizontally in such a way that the mean thickness over an interval from −250 m to 250 m is h0
2

.

which can be solved in the form

x=
h+h0 cos

2β ln
(
1− h

h0

)
tanβ

+ const. (41)

While the solution is similar to Eq. (39), the respective front is steeper than with the modified pressure and even overhanging in

the Cartesian coordinate system used here. The numerical solution with the coordinate system aligned to the bed approximates365

the front better than in Cartesian coordinates, in particular if the slope is steep. This result is not surprising since the front is

normal to the bed at the bottom, while the Cartesian version is limited by a vertical front.

Overall, however, the differences between all versions are rather small. In combination with the findings of the previous

section, this finding justifies the major approximations introduced in the model MinVoellmy. First, the modified pressure

provides a reasonable approximation and makes a treatment in Cartesian coordinates with the thickness measured vertically370

feasible. Second, the simple upstream scheme for the advection terms works reasonably well in combination with the Voellmy

rheology.
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(b) Conventional Voellmy rheology
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Figure 7. Snapshots of a 1-D simulation for the modified rheology (a) with µ= 0.75 and for the conventional Voellmy rheology (b) with

Coulomb friction reduced by a factor of 10 (µ= 0.075). Orange areas indicate v < vc for the modified rheology (a) and that the Coulomb

friction term is greater than the v2 friction term for the conventional rheology (b). Blue areas correspond to the opposite situation and black

areas are at rest. The triangles depict the center of mass and the front. Curves are shifted vertically, and labels at the z-axis refer to the first

and last plot.

5.3 Comparison to the conventional Voellmy rheology

Figure 7 shows the results for a slope with β = 45◦ combined with a horizontal plane. The source area is a segment of an ellipse

with an aspect ratio of 4:1 and a vertical wall at the upper edge at a height of 1900 m above the runout plane. Grid spacing375

is δx= 10 m and time increment δt= 0.01 s. In combination with the modified pressure, which is also used in the following

examples, the Cartesian approach remains stable, although the applicability of the Savage–Hutter theory to the thick detached

body is not given here, regardless of the rheology and the numerical scheme.

For the scenario with the conventional Voellmy rheology, the Coulomb friction term has to be reduced by a factor of 10 (so

µ= 0.075) in order to achieve a similar runout length. The two versions differ strongly already during the phase of mobilization.380

Owing to the artificially reduced coefficient of friction µ, the body is mobilized much faster in the conventional scenario than

with the modified rheology. In order to avoid the fast mobilization, Aaron and Hungr (2016) extended the model DAN3D

by considering a more or less rigid block during the first phase of movement. This might not be necessary for the modified

rheology. However, it should be kept in mind that we are outside the range of applicability of the Savage–Hutter theory here.

So the mobilization seems to be more realistic with the modified rheology, but is not necessarily physically correct.385
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The thickness overshoots at the lower edge of the detachment area. This overshooting is inevitable at a sharp kink in topog-

raphy. Due to the finite acceleration, the absolute value of the velocity changes only gradually across the kink. Thus, the abrupt

change in flow direction at the kink causes an abrupt drop in the the horizontal component of the velocity. Conservation of

mass requires an increase in vertical thickness h, which causes the overshooting. This effect is, however, neither unique to the

approach used here nor a serious problem.390

Further differences between the two versions occur during the runout in the horizontal plane. For the modified rheology,

friction increases instantaneously when the velocity drops below vc, and movement stops soon. As a consequence, a large part

of the mass comes to rest within a narrow time span between t= 80 s and t= 100 s. This region expands towards both sides

and is bounded by two narrow ranges with Coulomb friction. The material upstream of this region piles up, which results in a

hill in the deposits.395

In turn, there is a rather thin layer propagating with little friction, which finally dominates the runout length. Despite the

difference in µ, the maximum runout length is even bigger than for the scenario with the conventional Voellmy rheology, while

the distance traveled by the center of mass is similar. This result confirms the findings of Hergarten (2023c) that the modified

Voellmy rheology allows for a long runout without assuming an artificially low coefficient of friction µ.

5.4 Two-dimensional simulations400

This section mainly addresses the effect of the orientation of the grid in 2-D. Starting point is the situation considered in the

previous section, but extended into the y-direction by an ellipsoidal volume with an aspect ratio of 4:1:1. For this scenario, the

total detached volume is V = 0.1 km3. In addition, a smaller volume of V = 0.02 km3 and a larger volume of V = 0.5 km3

are considered, all with the same aspect ratio and the same height of 1900 m above the horizontal plane. Grid spacing is

δx= δy = 10 m. The time increment is δt= 0.1 s with an additional upper limit C ≤ 0.25 for the Courant number (Eq. 33).405

All simulations were run over a total time span of 500 s.

Figure 8 shows the final deposits of the three volumes for a slope aligned to the coordinate axes and for a slope aligned

to the diagonal line in the x-y plane. The small-scale topography of the deposits depends on the orientation of the slope. In

particular, striations occur if the velocity is parallel to one of the coordinate axes. Since the principal flow direction is parallel

to the x-axis for the axis-parallel scenario, this effect is stronger here than for the diagonal setup.410

As already recognized in Sect. 5.3, the formation of hummocky deposit morphologies arises from the discontinuity in friction

at vc. This discontinuity also allows for the formation of striations since the governing equations do not include transverse

diffusion of momentum. Owing to the advective characteristics of Eq. (7), different flow lines are in principle decoupled. So

the velocity may differ among parallel flow lines without any effect. However, transverse numerical diffusion results in an

exchange of momentum between different flow lines if the velocity is not parallel to any of the coordinate axes. This effect is415

apparently strong enough to suppress the formation of striations.

The occurrence of longitudinal striations is not unrealistic (e.g., Shreve, 1966; Pietrek et al., 2020), and the modified Voellmy

rheology may open a door towards understanding their origin. However, proceeding in this direction requires an extension of
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Figure 8. Deposits obtained from volumes of V = 0.5 km3, V = 0.1 km3, and V = 0.02 km3 with axis-parallel and diagonal orientations.

Only deposits with a thickness h≥ 0.1 m are shown. The red lines are the outlines of the detachment area at the slope, which is almost

circular in the x-y plane. The close-ups illustrate the partly hummocky topography and striations.

the model by transverse diffusion of momentum due to particle collisions in order to find out whether the tendency towards

forming striations is strong enough to overcome the diffusion of momentum.420

The overall shape of the deposits is, however, not affected strongly by the orientation of the grid. This visual impression from

Fig. 8 is confirmed by the profiles plotted in Fig. 9. Overall, these results suggest that there is no need to align the coordinate

system to the principal orientation of the slope when simulating real-world scenarios since the local topography will override

effects of the orientation.

5.5 Fahrboeschung ratios425

Explaining the long runout of large rock avalanches was the main goal of developing the modified Voellmy rheology. The

relation between runout and volume is often expressed in terms of the fahrboeschung ratio H
L , also called Heim’s ratio, where

H is the total height drop and L the maximum horizontal runout length. Both properties are measured from the upper edge of

the detached volume. Scheidegger (1973) found a power-law relation

H

L
∝ V −α (42)430

with α= 0.16, which was confirmed later by Legros (2002).

The dashed lines in Fig. 10 show the relation obtained numerically with the volumes from the previous section extended to

V = 0.001 km3, 0.002 km3, 0.005 km3, 0.01 km3, . . . , 0.5 km3. While the power-law relation between volume and Heim’s

ratio is reproduced qualitatively well for V ≥ 0.01 km3, the effect of volume on Heim’s ratio is overestimated. Fitting power

laws yields α= 0.25 for the 2-D version and even α= 0.31 for the 1-D version.435
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Figure 9. Profiles across the deposits shown in Fig. 8. The profiles were obtained by integrating the height above the bed along the direction

perpendicular to the respective profile, which can also be interpreted as volume per profile length. Solid lines refer to the axis-parallel

alignment of the slope and dashed lines to the diagonal alignment.
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This finding is in line with the results of Hergarten (2023c), who considered the same rheology in a lumped-mass model and

found a strong influence of the absolute height drop H . While larger volumes tend to have a larger height drop in nature, the

resulting increase in L is weaker than the increase inH . So Heim’s ratio increases with increasingH . In order to take this effect

into account, the solid lines in Fig. 10 describe the same scenarios as before, but withH ∝ V 0.09 as found empirically by Legros

(2002). The factor of proportionality was chosen to keep H = 1900 m from the previous simulations for V = 0.1 km3, which440

yields a range from H = 1255 m for V = 0.001 km3 to H = 2338 m for V = 1 km3. In contrast to the previous simulations,

V = 1 km3 is now possible without the detachment area reaching the foot of the slope.

Including the correlation of H and V reduces the exponent α considerably. For the 2-D version, α= 0.20 is obtained, which

is still higher than observed in nature. The residual deviation can at least partly be attributed to the spatial scaling assumed

here. For simplicity, the detached volume was assumed to scale isotropically (so with V
1
3 in each direction). As explained by445

Hergarten (2023c), however, the thickness should be the primary control on runout rather than V itself. Larsen et al. (2010)

found the relation V ∝A1.40 between volume and area, which means that increase in thickness is weaker than V
1
3 in reality.

Since there are several dependencies beyond this scaling relation, the value α= 0.20 seems to be good enough for a first test.

Overall, these findings confirm the results obtained by Hergarten (2023c) for a lumped mass and suggest that the 2-D scenario

without lateral confinement yields similar scaling properties as the simple 1-D lumped-mass model.450

6 Conclusions

In this study, a simple and lightweight numerical implementation of the modified Voellmy rheology proposed by Hergarten

(2023c) was presented. The simplicity of the implementation arises from two features. First, a fully Cartesian description

is used, where the thickness of the mobile layer is measured vertically instead of perpendicularly to the bed. This concept

harmonizes well with a simplified expression for the pressure at the bed. As a second feature, a simple upstream scheme is455

used for the advection terms. While upstream schemes typically suffer from numerical diffusion, it was shown that numerical

diffusion is not a serious problem in combination with Voellmy-type rheologies.

The results obtained from the numerical tests confirm the findings of Hergarten (2023c) for the simple lumped-mass model.

Furthermore, the modified Voellmy rheology may open doors towards understanding hummocky deposit morphologies and

longitudinal striations. In view of the simplicity of the numerical implementation, these preliminary results are promising.460

In turn, however, the purpose of the recent implementation must be kept in mind. The MinVoellmy software is lightweight,

but minimalistic. It does not offer any user interface or methods for importing and exporting data. So it cannot be operated

without programming some parts in MATLAB or Python, which limits its field to research and teaching. It is also not designed

to compete with comprehensive models such as r.avaflow, which offer additional options such as multi-phase flow.

In particular, the recent implementation is not designed for operational hazard assessment. This restriction is not only owing465

to the short time span of development and limited testing, but mainly to the parameter values. The parameters µ and ξ of the

modified Voellmy rheology are similar to those of the conventional Voellmy rheology in their meaning, but their numerical

values are not the same. So calibrations of other models, such as the extensively tested parameter values from the widely
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used model RAMMS, cannot be transferred to the modified rheology directly. Furthermore, knowledge about the additional

parameter vc is still limited.470

Code and data availability. All codes are available in a Zenodo repository at https://doi.org/10.5281/zenodo.10304665 (Hergarten, 2023b)

and can be redistributed under the GNU General Public License. This repository also contains data obtained from the numerical simulations.

Interested users are advised to download the most recent version of the MinVoellmy software from http://hergarten.at/minvoellmy (Hergarten,

2023a).
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Rauter, M. and Tuković, Ž.: A finite area scheme for shallow granular flows on three-dimensional surfaces, Comput. Fluids, 166, 184–199,

https://doi.org/10.1016/j.compfluid.2018.02.017, 2018.520

Salm, B.: Flow, flow transition and runout distances of flowing avalanches, Ann. Glaciol., 18, 221–226,

https://doi.org/10.3189/S0260305500011551, 1993.

Savage, S. B. and Hutter, K.: The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177–215,

https://doi.org/10.1017/S0022112089000340, 1989.

Scheidegger, A. E.: On the prediction of the reach and velocity of catastrophic landslides, Rock Mech., 5, 231–236,525

https://doi.org/10.1007/BF01301796, 1973.

Shreve, R. L.: Sherman Landslide, Alaska, Science, 154, 1639–1642, https://doi.org/10.1126/science.154.3757.1639, 1966.

Tonnel, M., Wirbel, A., Oesterle, F., and Fischer, J.-T.: AvaFrame com1DFA (v1.3): a thickness-integrated computational avalanche module

– theory, numerics, and testing, Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, 2023.

Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweiz. Bauzeitung, 73, 212–217, https://doi.org/10.5169/seals-61891, 1955.530

Vreugdenhil, C. B.: Numerical Methods for Shallow-Water Flow, Springer, Berlin, Heidelberg, New York, https://doi.org/10.1007/978-94-

015-8354-1, 1994.

24

https://doi.org/10.1029/2019JE006255
https://doi.org/10.1029/2019JF005204
https://doi.org/10.1016/j.compfluid.2018.02.017
https://doi.org/10.3189/S0260305500011551
https://doi.org/10.1017/S0022112089000340
https://doi.org/10.1007/BF01301796
https://doi.org/10.1126/science.154.3757.1639
https://doi.org/10.5194/gmd-16-7013-2023
https://doi.org/10.5169/seals-61891
https://doi.org/10.1007/978-94-015-8354-1
https://doi.org/10.1007/978-94-015-8354-1
https://doi.org/10.1007/978-94-015-8354-1

