Supplementary information

OH, HO₂, and RO₂ radical chemistry in a rural forest environment: Measurements, model comparisons, and evidence of a missing radical sink

- 5 Brandon Bottorff¹, Michelle M. Lew^{1a}, Youngjun Woo¹, Pamela Rickly^{2b}, Matthew D. Rollings^{3c}, Benjamin Demming^{3d}, Daniel C. Anderson^{4e}, Ezra Wood⁴, Hariprasad D. Alwe^{5f}, Dylan B. Millet⁵, Andrew Weinheimer⁶, Geoff Tyndall⁶, John Ortega⁶, Sebastien Dusanter⁷, Thierry Leonardis⁷, James Flynn⁸, Matt Erickson⁸, Sergio Alvarez⁸, Jean C. Rivera-Rios^{9g}, Joshua D. Shutter^{9h}, Frank Keutsch⁹, Detlev Helmig¹⁰, Wei Wang¹⁰, Hannah M. Allen¹¹, Steven Bertman¹², and Philip S. Stevens^{1,2}
- ¹ Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
 ² O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN 47405, USA
 ³Department of Chemistry, University of Massachusetts, Amherst, MA, 01003, USA
 ⁴Department of Chemistry, Drexel University, Philadelphia, PA, 19104, USA
 ⁵Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, Saint Paul, MN, 55108, USA
- ⁶National Center for Atmospheric Research, Boulder, CO, 80305, USA
 ⁷IMT Nord Europe, Institut Mines- Télécom, Univ. Lille, Center for Energy and Enivronment, F-59000 Lille, France
 ⁸Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, 77004, USA
 ⁹Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
 ¹⁰Boulder A.I.R. LLC, Boulder, CO 80305, USA
- 20 ¹¹Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA ¹²Institute of the Environment and Sustainability, Western Michigan University, Kalamazoo, MI, 49008, USA
 - ^a now at: California Air Resources Board, Sacramento, CA, USA
 - ^b now at: Colorado Department of Public Health and Environment, Denver, CO, USA
- ^c now at: Dept. of Chemistry, University of California, Berkeley CA, USA
 ^d now at: Dept. of Chemistry, Smith College, Northampton MA, USA
 ^e now at: GESTAR II, University of Maryland Baltimore County, Baltimore, MD, USA
 ^f now at: Forschungszentrum Jülich, Institute of Energy and Climate Research, Troposphere (IEK-8), Jülich, Germany
 ^g now at: School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
 ^h now at: Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN USA

Correspondence to: Brandon Bottorff (brapbott@indiana.edu); Philip S. Stevens (pstevens@indiana.edu)

Text S1: In order to determine the relative accuracy of the LIF and ECHAMP radical measurements, on July 25^{th} the ECHAMP sampled from the IU calibration source. For this comparison, isoprene was added to the humidified air, producing 50% HO₂ and 50% isoprene-RO₂. Two data points were collected: 1: Calibration source = 335 ppt HO₂ + isoprene RO₂, RH = 33%, ECHAMP

- 35 measured 326 ppt, 2. Calibration source = 314 ppt HO₂ + isoprene RO₂, RH = 31%, ECHAMP measured 309 ppt. One reason for this excellent agreement (within 3%) is that the largest source of uncertainty for the calibration gas concentration - the product of the UV lamp actinic flux and the irradiation time ("Ft") - was tied to readings from ECHAMP as it was determined by the measurement of O₃ in the ECHAMP background channel when sampling dry zero air (Kundu et al., 2019). The Licor 6262 H₂O measurements used for the IU calibration source also agreed with the water vapor mixing ratios determined using the
- 40 ECHAMP RH/T probe within 5%.

Table S1: Measured compounds used as model constraints within RACM and respective measurement sources (CU: University of Colorado, UH: University of Houston, NE: IMT Nord Europe, UM: University of Minnesota, HU: Harvard University, NCAR: National Center for Atmospheric Research, SUNY: University at Albany)

RACM	Grouped	Sauraa	RACM	Grouped	Source	
input	compounds	Source	input	compounds	Source	
H2	hydrogen	Calc.	NO	nitrous oxide	NCAR	
O3	ozone	CU	NO2	nitric oxide	NCAR	
CO	carbon monoxide	UH	HONO	nitrous acid	SUNY	
SO2	sulfur dioxide	UH	ISO	isoprene	UM	
H2O	water vapor	UH	MVK	methylvinylketone	UM	
CH4	methane	Calc.	MACR	methacrolein	UM/NE	
ETH	ethane	NE	API	monoterpenes	UM	
ПС3	propane, n-butane,	NE	BALD	benzaldehyde	UM	
псз	isobutane	INE	ACD	acetaldehyde	UM	
	isopentane, n-		ACT	acetone	UM	
	pentane, n-		HCHO	formaldehyde	HU/NE	
	heptane,		ALD	propanal, butanal	NE	
HC5	dimethylbutane, 2-	NE	GLY	glyoxal	NE	
	methylpentane, 3-					
	methylpentane, n-					
HC8	ethyne, nonane	NE	MGLY	methylglyoxal	NE	
ETE	ethene	NE	BEN	benzene	UM	
OLI	trans-2-butene	NE		toluene,		
OLT	propene, 1-butene	NE	TOL	ethylbenzene, 2-	UM/NE	
	1 1 '			ethyltoluene		
DIEN	butadiene	NE	XYP/XYM	m,p-xylene	NE	
MEK	methylethylketone	NE	XYO	o-xylene	NE	

MCM Designation	Measured Constraint	MCM Designation	Measured Constraint	
Univers	ity of Houston	IMT Nord Europe		
Т	temperature	НСНО	formaldehyde	
RH	relative humidity	C2H2	ethyne	
Р	pressure	C2H4	ethene	
j(NO ₂)	photolysis rate constant	C2H6	ethane	
SO2	sulfur dioxide	C3H6	propene	
CO	carbon monoxide	C3H8	propane	
		NC4H10	n-butane	
Universi	ity of Colorado	IC4H10	isobutane	
03	ozone	BUT1ENE	1-butene	
		TBUT2ENE	trans-2-butene	
National Center fo	or Atmospheric Research	C4H6	1,3-butadiene	
NO	nitric oxide	M22C4	2,2-dimethylbutane	
NO2	nitrogen dioxide	M3PE	3-methylpentane	
	e	M2PE	2-methylpentane	
Universi	ty of Minnesota	NC5H12	n-pentane	
C5H8	isoprene	IC5H12	isopentane	
APINENE	monoterpenes	NC6H14	hexane	
CH3CHO	acetaldehyde	NC7H17	n-heptane	
CH3COCH3	acetone	NC9H20	nonane	
BENZENE	benzene	MEK	methyl ethyl ketone	
СНЗОН	methanol	MGLYOX	methylglyoxal	
TOLUENE	toluene	C2H5CHO	propanal	
MVK	methyl vinyl ketone	C3H7CHO	butanal	
MACR	methacrolein	BENZAL	benzaldehyde	
		EBENZ	ethylbenzene	
Harva	rd University	TM135B	mesitylene	
НСНО	formaldehyde	OETHTOL	2-ethyltoluene	
		OXYL	o-xylene	
	SUNY	MXYL	m-xylenes	
HONO	nitrous acid	STYRENE	styrene	

Table S2: Model constraints, their designation within MCM, and respective measurement sources.

Figure S1: Conversion efficiencies of HO₂ to OH (black open circles) and isoprene RO₂ to OH (red triangles) as a function of the NO
 concentration inside the sampling cell. The measured values were obtained from calibrations performed before and during the campaign. The vertical dashed line indicates the NO concentration used for HO₂ measurements.

Figure S2: Correlation plots of modeled radical concentrations (MCM-3.3.1) against measurements of a) OH (circles), b) HO₂ (triangles),
 and c) XO₂ (squares). Filled symbols denote nighttime and open symbols indicate measurements made during the day. The dashed purple line indicates a 1:1 correlation and the red lines show measurement vs. model regressions of the data weighted by both the precision of the measurements and the uncertainty of the model concentrations.

55 Figure S3: Radical budgets for a) OH, b) HO₂, c) isoprene-RO₂, and d) total RO_x radical budget from the RACM2-ACC model with added loss mechanisms for HO₂ and isoprene RO₂. Shades of blue represent reactions that produce OH, and shades of red represent loss rates, including reactions that propagate to RO₂ or HO₂. Percentages represent the relative initiation or termination rates of each respective process in the morning (06:30: to 14:00) and during the evening (14:00 to 21:00) which are indicated by the vertical dashed lines.

60

Figure S4: Diurnal average of the measured (IU-TOHLM instrument) and modeled total OH reactivity at the top of the tower during PROPHET-AMOS. Modeled reactivity is largely based on measured species that are used as constraints in the model but also includes contributions from unmeasured oxidation products in the MCM 3.3.1 model.

65

References

Kundu, S., Deming, B. L., Lew, M. M., Bottorff, B. P., Rickly, P., Stevens, P. S., Dusanter, S., Sklaveniti, S., Leonardis, T., Locoge, N., and Wood, E. C.: Peroxy radical measurements by ethane – nitric oxide chemical amplification and laserinduced fluorescence during the IRRONIC field campaign in a forest in Indiana, Atmos. Chem. Phys., 19, 9563-9579, https://doi.org/10.5194/acp-19-9563-2019, 2019.

70