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Abstract. The chemical composition of aerosol particles is a key parameter for human health and climate effects. Single-

particle mass spectrometry (SPMS) has evolved to a mature technology with unique chemical coverage and the capability to 15 

analyze the distribution of aerosol components in the particle ensemble in real-time. With the fully automated characterization 

of the chemical profile of the aerosol particles, selective real-time monitoring of air quality could be performed e.g. for urgent 

risk assessments due to particularly harmful pollutants. For aerosol particle classification, mostly unsupervised clustering 

algorithms (ART-2a, K-means and their derivatives) are used, which require manual post-processing. In this work, we focus 

on supervised algorithms to tackle the problem of automatic classification of large amounts of aerosol particle data. Supervised 20 

learning requires data with labels to train a predictive model. Therefore, we created a labeled benchmark dataset containing 

~24,000 particles with eight different coarse categories that were highly abundant at a measurement in summer in Central 

Europe: Elemental Carbon (EC), Organic Carbon and Elemental Carbon (OC-EC), Potassium-rich (K-rich), Calcium-rich 

(Ca-rich), Iron-rich (Fe-rich), Vanadium-rich (V-rich), Magnesium-rich (Mg-rich) and Sodium-rich (Na-rich). Using the 

chemical features of particles, the performance of the following classical supervised algorithms was tested: K-nearest 25 

neighbors, support vector machine, decision tree, random forest and multi-layer perceptron. This work shows that despite the 

entrenched position of unsupervised clustering algorithms in the field, the use of supervised algorithms has the potential to 

replace the manual step of clustering algorithms in many applications, where real-time data analysis is essential. For the 

classification of the eight classes, the prediction accuracy of several supervised algorithms exceeded 97 %. The trained model 

was used to classify ~49,000 particles from a blind dataset in 0.2 seconds, taking into account also a class of “unclassified” 30 

particles. The predictions are highly consistent with the results obtained in a previous study using ART-2a. 
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1 Introduction 

In recent years, chemical aerosol particle analysis has received great attention from scientific communities and authorities, for 

its relevance for climate change, environmental pollution, and human health. However, particulate matter (PM) pollution 

control and management remain a huge challenge due to the complex physicochemical properties, sources and evolution of 35 

aerosol particles. An important indicator of air quality is the concentration of suspended particles in the air (usually particle 

mass via PM 10 or PM 2.5). Particles from different sources and with different chemical compositions are expected to cause 

various negative health effects (Dall’Osto and Harrison, 2006; Harrison and Yin, 2000; Maynard, 2004). A prolific method to 

obtain the size and chemical signatures of individual aerosol particles in real-time is single-particle mass spectrometry (SPMS) 

(Passig and Zimmermann, 2021; Pratt and Prather, 2012; Schade et al., 2019). From the particle’s flight time between two 40 

laser beams, its size and velocity are derived and the proper time to trigger a laser shot for laser desorption/ionization (LDI) of 

the respective particle is calculated. After LDI decomposition, both positive and negative ions are separated by their mass. The 

resulting mass spectra are plots of the signal intensity versus the mass-to-charge ratio (m/z) of the ions (Anderson et al., 2005; 

Murphy, 2007) and can be understood as high-dimensional vectors. Since the aerosol particles from different sources can carry 

unique chemical characteristics and often retain these characteristics also after long-range transport (Dall’Osto and Harrison, 45 

2006), the identification and classification of SPMS data can help to improve the understanding of regional PM and provide 

decision makers with the necessary information to determine effective control methods. Widely used classification methods 

in the SPMS community are unsupervised clustering algorithms, which require manual post-processing e.g. to select and re-

merge resulting clusters. The primary target of this study is to develop alternative methods to perform automatic classification 

in order to achieve real-time monitoring of air quality, such as supervised learning methods which have been successfully used 50 

in various domains for complex data classification. Furthermore, the supervised data classification allows a rapid classification 

of the vast majority of “common” particles in ambient air, at a work place environment or in an air quality screening setup. 

Among the reduced residual particle ensemble, rare particles, which might be indicators for specific sources or for potential 

hazard, can be identified more easily by matching with library spectra of hazardous particles. 

2 Related works 55 

2.1 Mass spectra classification with unsupervised learning 

Unsupervised learning clustering algorithms are commonly used for the classification of mass spectra. The classification is 

based on geometric relationships between the spectral vector and different cluster centers. Samples (i.e. mass spectra) 

belonging to a certain cluster would be more similar than samples classified to other clusters. K-means (MacQueen, 1967) 

requires the user to set in advance the number of clusters K to be classified. Setting the optimal K value is a major challenge, 60 

even though there are some techniques to help determine the relatively appropriate value, such as the “elbow” method and the 

“gap” statistic (Tibshirani et al., 2001). The ART-2a algorithm (Carpenter et al., 1991) was applied by (Song et al., 1999) to 
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classify SPMS data. A parameter called “vigilance” is key to control the generated number of clusters. If the Cosine Similarity 

between a new sample (i.e. mass spectrum) and its nearest cluster center is greater than or equal to the preset “vigilance” value, 

it will be assigned to this cluster, with the position of its center shifted towards the new cluster member according to the 65 

“learning rate”. If a new sample does not have enough similarity to all existing cluster centers, it will become a new cluster by 

itself. It is this dynamic network characteristic that allows ART-2a to discover new categories in the data without disturbing 

existing ones. 

In the field of SPMS data analysis, Healy et al. (2010, 2012) and Arndt et al. (2021) used the K-means algorithm in two rounds, 

to classify 558,740, 1.75 million and ~800,000 collected particles, respectively. First, these particles were pre-classified into 70 

50, 80 and 80 different clusters, and subsequently, using the K-means algorithm again, these clusters were merged into 14, 15 

and 33 different classes, respectively. Zelenyuk et al. (2006) added a distance threshold when using K-means to determine if 

a new sample should be classified into any of the existing clusters, based on the same philosophy as the “vigilance” parameter 

used in the ART-2a algorithm. Dall’Osto & Harrison, (2006) used ART-2a to classify 128,290 particles into 490 clusters, then 

selected the particles from the top 200 clusters for analysis (the remaining particles were discarded) and reduced the total 75 

number of clusters by remerging similar clusters to five main clusters. In the same way, Dall’Osto and Harrison, (2012); 

Dall’Osto et al., (2013) and Li et al., (2014) classified the 153,595, 1,35 million and 510,341 particles with ART-2a and 

manually selected and re-combined the generated clusters into 15, 10 and 5 clusters, respectively. Passig et al. (2022) applied 

a novel approach where individual particles are analyzed simultaneously by two different ionization techniques, i.e. by the 

classical LDI process (metals, salts, elements, EC, OC) as well as by laser desorption / resonance-enhanced multi photon 80 

ionization (LD-REMPI). This combination allows the single particle- detection of health relevant organic trace chemicals, in 

particular, carcinogenic polycyclic aromatic hydrocarbons (PAH). This complicates the situation, as particles may be either 

clustered according to the LDI data or by the LD-REMPI MS PAH fingerprint. The authors focused on the PAH fingerprint 

and classified 4,412 PAH-containing particles into 733 clusters, and then merged the first 300 clusters into 10 PAH classes, 

which included ~85 % of all particles and could be associated with different sources. From the above studies, it can be noted 85 

that the number of clusters generated by clustering algorithms is usually much larger than their final number after selecting 

and re-merging. Generally, the more clusters are proposed, the higher the accuracy of the final results obtained after manual 

post-processing. However, due to the large number of clusters the manual workload is high. 

Other cluster algorithms applied with aerosol particle classification use hierarchical clustering that creates a hierarchical 

clustering tree by calculating the distance between mass spectra (Murphy et al., 2003; Rebotier and Prather, 2007). Still others 90 

use density-based clustering algorithms such as DBSCAN (Ester et al., 1996) and OPTICS (Ankerst et al., 1999) to classify 

the aerosol particles. The advantage of these algorithms is that they can divide regions with high enough density and find any 

shapes of clusters and noise in the data. For example, if the data has a non-spherical distribution, the effect of using K-means 

will be greatly reduced. In this case, density-based algorithms would yield better results. Zhou et al. (2006) compared the 

performance of the classification of SPMS data with both ART-2a and DBSCAN, and Zhao et al. (2008) suggested to join 95 
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them. Reitz et al. (2016) used the results of OPTICS to set the number of classes needed for fuzzy c-means clustering to better 

process SPMS data. 

The benefits of unsupervised learning are obvious: Their structures are relatively simple and the number of parameters that 

need to be tuned is small. Furthermore, through manual post-processing, the classification is a safe and conservative procedure 

where unknown particle classes and novel features are not easily overlooked. The discovery of new particle classes can help 100 

to update the database for the training of supervised learning models. However, unsupervised methods also have the following 

disadvantages: 1) They require manual post-processing. 2) Mass spectra within a cluster may not exactly match each other 

chemically, even though they mathematically belong to that cluster (Murphy et al., 2003). 3) It's not easy to analyze the effect 

of different parameters on the results. Therefore, the same parameter configurations of ART-2a (vigilance, learning rate, 

number of iterations) were used and considered as "standard values" in some studies. In contrast, supervised learning shows 105 

improvements in those aspects. 

2.2 Supervised learning 

Supervised machine learning and deep learning algorithms have achieved tremendous success in many fields. In particular, 

neural network-based methods have revolutionized image processing by allowing machines to learn complex patterns and 

representations directly from the data. These techniques could also help to identify patterns in large SPMS datasets. Supervised 110 

learning requires a high-quality, balanced, and standardized dataset; imbalanced (biased) datasets will distort the performance 

(Bishop, 2006). Each sample in the dataset has a set of features and a classification label i.e. the classification results are known 

a priori. Supervised algorithms learn the features to obtain a trained model, which can predict unlearned data automatically 

and does not require any manual post-processing. In this work, we tested the performance of several classical supervised 

algorithms for SPMS data classification. A brief description of the basic principles of the selected algorithms is given below. 115 

The performance of automatic classification of SPMS data will be described in Section 4.2 and Section 4.3. 

K-nearest neighbors (K-NN) is a simple classification method without training. It determines the K nearest neighbors of the 

new sample by calculating the distance between the new sample and each sample in the dataset, and classifies the new sample 

according to the most dominant category (label) among these K nearest neighbors (Segaran, 2007). K-NN has similarity with 

clustering algorithms in that it is also distance-based. 120 

Support vector machine (SVM) is a generalized linear classifier designed for binary classification problems. Its decision 

boundary is the maximum-margin hyperplane of the samples, which means that the distance to the hyperplane of the data point 

closest to the hyperplane should be maximum (Awad and Khanna, 2015). The decision boundary can be extended from linear 

to nonlinear using different kernel functions (Noble, 2006). Multiple classification tasks are achieved by building multiple 

decision boundaries in an orderly manner using standard binary SVMs, usually based on one of two strategies of constructing 125 

classifiers: One-vs-All or One-vs-One (Li et al., 2005). 

Decision tree (DT) is a non-parametric classification method with well-traceable decisions (Mitchell, 1997). DT starts from 

the root node and assigns each sample to one of its children nodes (leaves) and their leaves according to trained threshold 
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values of certain parameters (features) forming an if-then tree structure of hierarchical parent-child relationships (Ge and 

Wong, 2008). 130 

Random forest (RF) (Breiman, 2001) is a classifier consisting of multiple DTs (“forest”) that are not associated with each 

other. A new sample is judged separately by each DT in the forest. Compared to a single DT model, a RF consisting of a large 

number of unrelated DTs will produce more reliable predictions and be less prone to overfitting. Christopoulos et al. (2018) 

used RF for the classification of SPMS data of soil probes. The model was trained with 110 independent DTs, and for the 

classification of four classes (secondary organic aerosol, mineral dust, fertile soil and biological aerosols), a classification 135 

model with an accuracy of over 90 % was obtained. 

Multi-layer perceptron (MLP) is a fully connected neural network consisting of an input layer, one or more hidden layers, 

and an output layer. Each neuron (node) carries an activation function, and the nodes in adjacent layers are connected by 

weighted edges (weights). Using fewer hidden layers makes the model less capable of learning features; more hidden layers, 

however, do not always lead to improved performance and usually increase the computational load (Ramchoun et al., 2016). 140 

The learning process consists of forward and backward propagation. Forward propagation is the process of computing the 

output of each node using the activation function and weights. The loss is then calculated by the difference between the output 

value obtained from forward propagation and the actual value from the label. Backward propagation trains the neural network 

by computing the partial deviations (gradients) of each node in the opposite direction based on the loss function. These 

gradients are then fed to an optimization method to update the weights in the network in order to minimize the loss function 145 

(Ettaouil and Ghanou, 2009). In simple terms, backward propagation is like guiding the model to fix the mistakes it made 

during forward propagation. 

With all the presented supervised algorithms, fast fully automated classification of large amounts of SPMS data is feasible. 

However, whether to apply supervised or unsupervised learning will depend on the application scenario, bearing in mind the 

following challenges of supervised learning algorithms: 1) The process of creating a labeled dataset can be very time-150 

consuming and expensive; publicly available labeled datasets are lacking. 2) Disambiguation: Some mass numbers have 

multiple meanings in different situations, and often these mass peaks play a key role in classification, which makes pattern 

recognition more difficult, for example, m/z = 24 represents Mg+ or C2
+; m/z = 39 represents K+, NaO+ or C3H3

+; m/z = 51 

represents V+ or C4H3
+; m/z = 56 represents Fe+, CaO+ or C3H4O+, etc. 3) Classes that are not present in the training data cannot 

be identified. 155 

In this study, we demonstrate the capabilities of supervised algorithms to automatically classify aerosol particles. We created 

a benchmark dataset with ~24,000 mass spectra. This dataset might serve as a resource for the development of new, efficient 

and accurate classification methods. We implemented and tested the performance of different algorithms for aerosol particle 

classification using their chemical compositions, i.e. positive and negative spectra. Our results provide researchers with an 

overview of the applicability of supervised machine learning algorithms to the classification of SPMS data and also provide a 160 

basis for selecting appropriate algorithms. Prediction results from blind data show that the proposed use of supervised learning 

is particularly well-suited for real-time specific particle detection. 
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3 Methodologies 

3.1 Sampling site and equipment 

To investigate the composition and possible sources of aerosol particles, especially emissions from ships, in the urban area of 165 

the coastal city of Rostock, Germany, a single-particle mass spectrometer was deployed from 26 June to 02 July 2018. The 

sampling site was on the roof of a laboratory building at the University of Rostock, which is located in the southern part of the 

city (54°04’41.5’’N, 12°06’30.6’’E, about 35 meters above sea level). About 10 km to the north of the sampling site is the 

harbor of Rostock, and about 40 km to the north of the sampling site is the main shipping route. The town is remote from other 

large towns and industries, located at the sea in an agricultural region with forests. The SPMS instrument is a bipolar time-of-170 

flight mass spectrometer (ATOF-MS) with an aerodynamic lens and an optical sizing unit, partially based on the design of Li 

et al., (2011). Briefly, for velocimetric particle sizing, two continuous wave lasers with a wavelength of 532 nm, ellipsoidal 

mirrors, and photomultipliers are employed. Due to this wavelength (532 nm) of the two continuous wave lasers of the sizing 

unit, the lower boundary of measurable particle sizes is approx. 150-200 nm. With the SPMS instrument, particle of sizes up 

to 2,5 µm can be measured. The compact mass spectrometer in Z-TOF geometry (Pratt and Prather, 2012), is equipped with a 175 

248.3 nm KrF excimer ionization laser. This wavelength is well suited for resonance-enhanced laser desorption/ionization 

(LDI) of iron and other transition metals (Passig et al., 2020), e.g. for the analysis of ship exhaust particles in ambient air 

(Passig et al., 2021). The optical setup was modified and optimized to achieve a hit rate of about 50% (#mass spectra/sized 

particles). The lens (f = 200 mm) is brought to an off-focus position of 7 mm relative to the particle beam, resulting in a spot 

size of 150 x 300 µm and an intensity of 5 GW cm-2 at 6 mJ pulse energy (Passig et al., 2021; Schade et al., 2019). To analyze 180 

a sufficient number of particles, a multi-stage virtual impactor was used (Model 4240, MSP Corp., USA). From the 300 L min−1 

intake airflow, particles were concentrated into 1 L min−1 carrier gas stream (6 x 4 mm conducting tube), from which 

0.1 L min−1 entered the SPMS instrument after a transfer time of few seconds. Monodisperse polystyrene particles were used 

for the size calibration of inlet and soot particles for the mass calibration of the mass spectrometer. No corrections were made 

for size-dependent or type-dependent detection efficiencies (Shen et al., 2019). During the campaign, 162.288 of the 290.144 185 

particles detected by the SPMS instrument featured at least four significant peaks in their mass spectrum and were analyzed 

with respect to their chemical composition. From the mass spectra, 240 possible mass peaks (120 for each of the negative and 

positive ions) were considered and each peak corresponds to a different mass-to-charge ratio (m/z). 

3.2 Dataset 

For image data, even untrained personnel can perform data annotation work (i.e. labeling the correct class affiliation) quickly 190 

and accurately. For SPMS data, considerable expertise is required from the annotators, which increases the difficulty of 

creating the dataset. To the best of our knowledge, there is no publicly available dataset of labeled atmospheric aerosol 

particles. To test the performance of supervised algorithms for SPMS data classification, we built our own labeled dataset. In 

the process of manual labeling, we determined and labeled the particles based often on the highest ion peaks in the mass 
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spectra, and applied the nomenclature of particle classes used corresponding to other sources (Ault et al., 2009; Dall’Osto and 195 

Harrison, 2006; Spencer et al., 2006). We divided the data from this campaign into two parts, one for labeling, one for 

verification (“blind data”), as we did not note a severe time-dependence of the composition of the eight chosen classes during 

the whole measurement campaign. The data from four days (June 26-29) containing a total of 110,390 particles were used for 

labeling. We selected and manually labeled 24,030 individual aerosol particle mass spectra from this part of data. Detailed 

information on the eight classes and their subclasses as well as the labeling rules and the number of samples are listed in 200 

Table 1 and Table 2. In Fig. 1, typical mass spectra of the eight aerosol particle classes are displayed. In the second part, we 

used all data from two consecutive days (June 30 to July 1) with 49,097 particles in total as “blind data”, unrelated to the first 

part. In summary, the first part of the data is labeled data used to evaluate supervised learning algorithms, and subsequently, 

those trained models were used to automatically classify mass spectra from the second part of the data obtaining the temporal 

distribution of particle classes over a two-day period. The following is a description of the eight coarse particle classes used in 205 

this work. 

 

 

Figure 1: Representative mass spectra of aerosol particles, attributed to one of eight classes of our labeled dataset. The positive and 

negative mass spectra are normalized separately according to their highest ion peaks. The highlighted ion signals are the signature 210 
peaks to distinguish different particles. 

 

Elemental Carbon (EC) signatures in particle mass spectra often result from any combustion source, but engines emit 

particularly high numbers. This type of particles is predominantly observed in most SPMS studies (Ault et al., 2009; Dall’Osto 
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and Harrison, 2006; Healy et al., 2010; Li et al., 2014; Toner et al., 2006). A mass spectrum will be labeled as belonging to 215 

the EC class when the entire mass spectrum is dominated by the EC signal and all other ion signals are weak. 

Organic carbon and elemental carbon (OC-EC) particle sources are often associated with biomass burning due to incomplete 

combustion. Other important emission sources are vehicles, ships, coal combustion, cooking, etc. (Furutani et al., 2011; Healy 

et al., 2010; Li et al., 2014; Moffet et al., 2008; Shen et al., 2019). Xiao et al. (2018) have demonstrated that fuel combustion 

emissions produce more EC and OC-EC than pure OC particles. In addition to incomplete combustion, OC tends to adhere to 220 

EC, forming further OC-EC particles. Therefore, during labeling, pure OC particles were treated as a subclass of the OC-EC 

class. 

 

Table 1: Overview of the eight classes in the created dataset. The ion markers used to label the mass spectra are summarized from 

various SPMS lab and field studies. The ions in the positive ions column are not the only signals contained in the positive mass 225 
spectrum but significant to differentiate them. The ions in the negative ions column are the ions that may be contained in that class. 

Classes Sub-classes Possible 

sources 

Positive ions Negative ions References 

EC - Traffic, 

Biomass 

burning 

𝐸𝐶: 12𝑛 𝐶𝑛
+ 𝐸𝐶: 12𝑛 𝐶𝑛

−;  𝑠𝑢𝑙𝑓𝑎𝑡𝑒: [𝑆𝑂3]−80 , 
[𝑆𝑂4]−96 , [𝐻𝑆𝑂4]−97 ; 

𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠 𝑛𝑜 𝑛𝑒𝑔. 𝑠𝑖𝑔𝑛𝑎𝑙 

1, 2, 3, 4, 5 

OC-EC OC, 

OC-EC, 
OC-amine 

Biomass 

burning, 
Traffic, 

Shipping 

𝑂𝐶: [𝐶2𝐻3]+27 , [𝐶3𝐻]+37 , [𝐶3𝐻3]+39 ,  
[𝐶3𝐻7]+43 , [𝐶4𝐻3]+51 , [𝐶5𝐻3]+63 , 
[𝐶6𝐻5]+77 ;  𝐸𝐶; 

𝑎𝑚𝑖𝑛𝑒: [𝑁𝐻3]+17 , [𝑁𝐻4]+18 , [𝑁𝑂]+30  

𝐸𝐶;  𝑠𝑢𝑙𝑓𝑎𝑡𝑒;  
𝑛𝑖𝑡𝑟𝑎𝑡𝑒: [𝑁𝑂2]−46 , [𝑁𝑂3]−62  

 

1, 2, 5, 6, 7 

K-rich K-EC, 

K-OC-EC, 
K-dominant, 

K-Cl, K-CN 

Biomass 

burning 
𝐾+39/41

;  𝐸𝐶;  𝑂𝐶;  𝑎𝑚𝑖𝑛𝑒 𝑛𝑖𝑡𝑟𝑎𝑡𝑒;  𝑠𝑢𝑙𝑓𝑎𝑡𝑒;  𝐶𝑙−;
35/37

 

𝑜𝑟𝑔𝑎𝑛𝑜𝑛𝑖𝑡𝑟𝑜𝑔𝑒𝑛 (𝐶𝑁): [𝐶𝑁]−26 , 
[𝐶𝑁𝑂]−42  

1, 4, 5, 8, 9, 

10, 11, 12 

Ca-rich Ca-EC, 
Ca-Nit, 

Ca-Na-Fe 

Lubrication oil 
from traffic or 

shipping,  

Dust 

𝐶𝑎+40 , [𝐶𝑎𝑂]+56 , [𝐶𝑎𝑂𝐻]+57 , [𝐶𝑎𝐶𝑙]+75 , 
[𝐶𝑎2𝑂]+96  

𝑛𝑖𝑡𝑟𝑎𝑡𝑒;  𝑠𝑢𝑙𝑓𝑎𝑡𝑒;  𝐶𝑁; 𝐶𝑙−;
35/37

 

𝐸𝐶;  𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒: [𝑃𝑂2]−63 , [𝑃𝑂3]−79 , 
[𝑃𝑂4]−95  

1, 2, 5, 6, 7, 
8, 9, 13, 14 

Fe-rich Fe-Nit, 

Fe-EC, 

Fe-dominant 

Traffic, 

Shipping, 

Industry 

𝐹𝑒+54/56/57
, [𝐹𝑒𝑂𝐻]+73  𝑛𝑖𝑡𝑟𝑎𝑡𝑒;  𝑠𝑢𝑙𝑓𝑎𝑡𝑒; 𝐸𝐶;  

𝑂−16 ;  [𝑂𝐻]−17 ;  𝐶𝑁; 𝐶𝑙−;
35/37

 

1, 5, 15, 16, 

17, 18, 19, 

20 

V-rich freshly and 

aged emitted  

Shipping 𝑉+51 ,  [𝑉𝑂]+67 ; 𝐹𝑒+54/56
;  𝑁𝑖+58/60

 𝑠𝑢𝑙𝑓𝑎𝑡𝑒;  𝑛𝑖𝑡𝑟𝑎𝑡𝑒;  𝐸𝐶;  
𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠 𝑛𝑜 𝑛𝑒𝑔. 𝑠𝑖𝑔𝑛𝑎𝑙 

2, 3, 4, 14, 

17, 20, 21 

Mg-rich - Sea Salt 𝑀𝑔+24 , [𝑀𝑔𝑂𝐻]+41 ;  𝑁𝑎+23 ;  

𝐶𝑎+40 , [𝐶𝑎𝑂𝐻]+57  

𝐶𝑙−35/37
;  𝑛𝑖𝑡𝑟𝑎𝑡𝑒;  𝑠𝑢𝑙𝑓𝑎𝑡𝑒;  

𝑂−16 ;  [𝑂𝐻]−17 ; 𝐶𝑁 

1, 22 

 

Na-rich - Sea Salt 𝑁𝑎+23 , [𝑁𝑎𝑂]+39 , [𝑁𝑎2]+46 , [𝑁𝑎2𝑂]+62 ,  

[𝑁𝑎2𝑂𝐻]+63 , [𝑁𝑎2𝐶𝑙]+81/83
 

𝐶𝑙−35/37
;  [𝑁𝑎𝐶𝑙]−59/61

, 

[𝑁𝑎𝐶𝑙2]−93/95
;  𝑛𝑖𝑡𝑟𝑎𝑡𝑒;  𝑠𝑢𝑙𝑓𝑎𝑡𝑒; 

𝑂−16 ;  [𝑂𝐻]−17 ; 𝐶𝑁 

1, 4, 5, 7, 

12, 14 

The reference numbers in the table are from the following publications: 1 (Dall’Osto and Harrison, 2006), 2 (Toner et al., 2006), 3 (Ault 

et al., 2009), 4 (Healy et al., 2010), 5 (Li et al., 2014), 6 (Dall’Osto and Harrison, 2012), 7 (Shen et al., 2019), 8 (Healy et al., 2012), 9 (Moffet 

et al., 2008), 10 (Liu et al., 2000), 11 (Li et al., 2003), 12 (Köllner et al., 2017), 13 (Shields et al., 2007), 14 (Passig et al., 2021), 15 (Arndt et al., 

2021), 16 (Dall’Osto et al., 2016), 17 (Furutani et al., 2011), 18 (Passig et al., 2020), 19 (Gross et al., 2000), 20 (Passig et al., 2022), 21 (Liu et 230 
al., 2017), 22 (Zhou et al., 2006) 
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 235 

Table 2: Overview of the dataset. First column lists the total number (#) and percentage (%) of samples in the entire dataset and in 

each of the divided parts: training, validation and test set. The following columns represent the number and percentage of samples 

for the different classes. 

Dataset #; % EC OC-EC K-rich Ca-rich Fe-rich V-rich Mg-rich Na-rich 

Total 24030; 100 % 4671; 19 % 4000; 17 % 3998; 17 % 1365; 6 % 1729; 7 % 3879; 16 % 540; 2 % 3848; 16 % 

Training 14418; 60 % 2803; 19 % 2375; 16 % 2404; 17 % 816;   6 % 1080; 7 % 2321; 16 % 349; 2 % 2270; 16 % 

Validation 4806;   20 % 916;   19 % 812;   17 % 766;   16 % 269;   6 % 338;   7 % 777;   16 % 100; 2 % 828;   17 % 

Test 4806;   20 % 952;   20 % 813;   17 % 828;   17 % 280;   6 % 311;   6 % 781;   16 % 91;   2 % 750;   16 % 

 

Potassium-rich (K-rich) particles have been identified in many studies as suitable tracers for both anthropogenic and natural 240 

biomass burning. In this study, the following subcategories are all assigned to the K-rich class: K-EC-OC particles were 

attributed to peat combustion (Healy et al., 2010) and are characterized by positive ion mass spectra containing high signals 

of potassium and sodium, as well as carbon and hydrocarbon fragment ions. K-EC particles might mainly come from local 

traffic emissions and are often attributed to fossil fuel combustion (Dall’Osto and Harrison, 2006; Li et al., 2014). Wood 

combustion particles exhibit a dominant signal of K+, and we named this class K-dominant (Healy et al., 2010). K-Cl particles 245 

were reported as a biomass combustion product and can also be attributed to cigarette smoke (Dall’Osto and Harrison, 2006). 

Potassium and chlorine are initially combined or present in the liquid of vegetation (Li et al., 2003; Liu et al., 2000). K-CN 

particles are also typical for biomass combustion (Dall’Osto & Harrison, 2012b; Köllner et al., 2017), where CN represents 

the organo-nitrogen. The peak at m/z = 39 may be the organic fragment C3H3
+ when it is not much more intense than the other 

major hydrocarbon ion peaks. Potassium usually shows a more intense peak in the mass spectrum than carbon cluster ions 250 

(Dall’Osto and Harrison, 2012; Li et al., 2014), so this is one of the bases for distinguishing between OC-EC and K-rich classes 

when labeling. 

Calcium-rich (Ca-rich). Various studies (Dall’Osto et al., 2013; Dall’Osto and Harrison, 2012; Moffet et al., 2008; Passig et 

al., 2021; Shields et al., 2007; Toner et al., 2006) have demonstrated that most soot particles from engines show calcium 

characteristics from lubricant additives, potentially coming from emissions from vehicle traffic or ships. In addition, calcium 255 

signal with silicon, silicon oxide or titanium dioxide are also evident in soil dust particles (Dall’Osto et al., 2016; Dall’Osto 

and Harrison, 2006; Li et al., 2014; Shen et al., 2019). 

Iron-rich (Fe-rich) signatures are often combined with EC from anthropogenic combustion sources but may also be associated 

with wear and tear of brake pads from traffic (Gross et al., 2000), may arise from biomass combustion (Chang-Graham et al., 

2011; Furutani et al., 2011) or industrial emissions (Arndt et al., 2021; Li et al., 2014). Note that the resonant ionization of Fe 260 

at 248 nm laser wavelength increases the Fe signals compared to studies using other laser wavelength (Passig et al., 2020). 

Vanadium-rich (V-rich) particles have a distinctive mass spectrum with peaks at V+ and VO+, and the combination of peaks 

associated with the transition metals vanadium, iron and nickel is a well-documented signature of residual fuel combustion 

particles from ship emissions (Ault et al., 2009; Furutani et al., 2011; Healy et al., 2010; Xiao et al., 2018). Some studies (Ault 

et al., 2009; Liu et al., 2017; Passig et al., 2021) discuss the differences in mass spectra of particles emitted from ships with 265 
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different degrees of aging, such as the predominance of sulfate as the negative signal in freshly emitted particles. As the 

distance to the source increases, aged particles exhibit stronger nitrate or no negative spectral signal (Passig et al., 2021). V-

rich particles sometimes also show Ca+ ions attributable to lubricant additives, as well as small signals from EC and OC (Passig 

et al., 2021; Toner et al., 2006). If the positive mass spectra contain a V-Fe-Ni combination and their signals are not the highest 

ion peaks, based on the difference in amplitude between these peaks and the highest ion peak we determined, whether these 270 

mass spectra should be labeled as belonging to the V-rich class. For example, we labeled some mass spectra as V-rich class, 

when they contain EC, OC, Ca+ or Na+ as the highest ion peaks and also have a certain intensity of the combined V-Fe-Ni 

signals. 

Magnesium-rich (Mg-rich) particles are considered to originate from sea salt (Dall’Osto and Harrison, 2006; Zhou et al., 

2006). The positive mass spectrum contains mainly cations such as Mg+, Na+, MgOH+, Ca+, CaOH+, etc. The negative mass 275 

spectrum contains, O-, OH-, Cl-, CN, nitrate, sulfate, etc. 

Sodium-rich (Na-rich) particles are also thought to be derived from sea salt in many studies (Dall’Osto & Harrison, 2006; 

Healy et al., 2010; Köllner et al., 2017; L. Li et al., 2014; Shen et al., 2019). The positive signal may contain Na+, Mg+, NaO+, 

Na2
+, Na2O+, Na2OH+ or Na2Cl+. The negative signal contains O-, OH-, Cl-, nitrate, sulfate, NaCl- and NaCl2

+, etc. 

3.3 Mass spectra classification with supervised learning 280 

To train the various models, we mapped the negative and positive mass spectra onto a 240-dimensional vector X. Before 

mapping, both mass spectra were normalized by their maximum peaks, respectively. Each vector element Xi (i = 1…240) 

corresponds to a different mass-to-charge ratio (m/z = -120…+120), which is referred to as a “learning feature” and will be 

fed into the model as an input variable. In this work, we used only the chemical composition of the particles as learning features 

to train the classification model. Therefore, the sizes of the particles have no effect on the classification results. Fig. 2 illustrates 285 

the mapping of a mass spectrum to a vector and the workflow of classification. 

We randomly divided the 24,030 labeled mass spectra into three independent parts: training, validation and test set, in a ratio 

of 6:2:2 in terms of the number of samples, see Table 2. The training set is used to train the model parameters. The validation 

set is used to check the state of the model during training, such as if the model is overfitting. In general, the training and 

validation sets are directly and indirectly involved in the training and tuning process and obviously do not reflect the actual 290 

capability of the model. Therefore, the model quality is evaluated using a test set. The training step is repeated until a model 

is obtained that performs satisfactorily in all three datasets. The experiments were performed with the following configurations: 

Windows 10, NVIDIA GeForce RTX 3090 graphics card, 3.2GHz Intel Core i9-12900K processor, and 64GB DDR3 RAM. 

We used Python 3.10 and the scikit-learn library to train K-NN, SVM, DT and RF models and a machine learning framework 

PyTorch to train the neural network-based MLP model, taking advantage of GPU-accelerated computing. The Python-based 295 

libraries are open-source and cost-free. For tuning the parameters, we used a grid search strategy, which selects the best-

performing combination of parameters as the final parameters of the model by looping over all predefined parameter values in 

the grid. Table 3 lists the optimal parameters for each algorithm. A detailed description and discussion of the main parameters 
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to be set by the user for the different algorithms can be found elsewhere (Awad and Khanna, 2015; Bishop, 2006; Mitchell, 

1997). 300 

 

 

Figure 2: Schematic diagram of the classification for SPMS data, from left to right: a) normalized mass spectra; b) each mass 

spectrum is mapped onto a 240-dimensional vector, whose elements are the learning features for model training; c) and d) different 

classification algorithms and resulting classes applied in this study. 305 

 

Table 3: List of optimal parameters for training different models as resulting from a grid-search strategy. 

Method Parameters Training time (sec) 

K-nearest neighbors number of neighbors: 5 

weight function: uniform 

algorithm used to compute the nearest neighbors: auto 

~0 

Support vector machine multi-class classification strategy:  

one-vs-one 

kernel: radial basis function 

0.6 

Decision tree function to measure the quality of a split: gini 

depth of the tree: none (unlimited) 

0.4 

Random forest function to measure the quality of a split: gini 

depth of the tree: none (unlimited) 

number of trees in the forest: 110 

2.0 

Multi-layer perceptron number of hidden layers: 2 

size of hidden layer: 512 

learning rate: 0.001 

number of iterations: 200 

batch size: 1024 

activation function: relu 

loss function: cross entropy loss 

solver for weight optimization: adam 

dropout rate: 0.5 

31.9 (GPU) 

 

457.3 (CPU) 
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4 Results 

4.1 Metrics 

Metrics are quantitative indicators to evaluate the performance of models. One evaluation metric can only reflect part of the 310 

model’s performance, so different evaluation metrics might be selected for different application scenarios. The evaluation 

metrics used in this paper are overall accuracy (OA), precision, recall and F1-Score. 

Overall accuracy (OA), also called prediction rate, is the most used evaluation metric, as it presents the ratio of correctly 

classified samples to the total number of samples. However, in the case of imbalanced datasets, this metric has a serious 

drawback, since classes with large numbers of samples will affect OA the most. 315 

Recall and Precision are both fundamental metrics in case of imbalanced datasets. A trade-off between them usually requires 

optimizing one or the other depending on the application scenario. Recall states how many of all samples of class A are actually 

predicted as belonging to it. Precision states what percentage of samples predicted to belong to class A actually belongs to 

class A. The purpose of this work is to build a predictive model for automatic monitoring of individual particles, where the 

goal is to detect all aerosol particles of interest with both high recall and high accuracy are important. 320 

F1-Score is the harmonic mean of recall and precision. Because they have a reciprocal relationship, optimizing one comes at 

the cost of the other. Therefore, a model to be both sensitive (high recall) and precise can be found using F1-Score. 

Confusion matrix is a visualization tool, which compares the predicted labels with the actual labels of all given classes. In our 

case of classifying mass spectra into one of eight classes, the confusion matrix is a 8 x 8 matrix with 64 elements, where the 

rows of the matrix refer to the actual labels and the columns refer to the predicted labels. The element in the i-th row and j-th 325 

column of the matrix indicate the number of samples actually labeled as class i and being predicted as class j (i, j = 1…8), with 

1: EC, 2: OC-EC, 3: K-rich, 4: Ca-rich, 5: Fe-rich, 6: V-rich, 7: Mg-rich, and 8: Na-rich. Therefore, the elements in the 

diagonal of the matrix (i = j) correspond to the number of correctly predicted samples; all remaining entries (i ≠ j) are the 

numbers of incorrect predictions. For normalization, the matrix elements in each row are divided by the total number of 

predictions in that row and presented as percentage values, and finally, the normalized confusion matrix can be displayed by 330 

a heat map to visualize the percentage values, see Fig. 3. 

4.2 Performance evaluation 

For the five investigated supervised classification algorithms, the optimized models performed well, with OA, recall, precision 

and F1-Score all above 94 % (some even above 97 %) for the 4,806 particle samples in the test set, see Table 4. The 

classification is performed fully automated, does not require any post-processing, and takes negligible time. In Fig. 3 the 335 

normalized confusion matrixes for each algorithm are displayed. It is observed that the K-NN and DT models have the lowest 

rates in all evaluation metrics and show significant misclassification for several classes. K-NN is less sensitive to subtle 

differences among the mass spectra. The DT model is prone to overfitting during training and has insufficient generalization 

ability, while the performance of RF is significantly improved by using multiple DTs. RF, SVM and MLP all performed well 
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and their evaluation metrics are similar. Studying the confusion matrices, some classes are obviously not as well identified as 340 

others. In the sequel, possible explanations are given, which may provide directions to improve our future work. 

 

Table 4: Overall accuracy, recall, precision and F1-Score comparison 

Method OA Recall Precision F1-Score Time 

Test set: 4806 particles 

K-nearest neighbors 95.3 94.5 94.1 94.3 0.2 

Support vector machine 97.8 97.9 97.2 97.5 0.3 

Decision tree 96.5 96.4 96.6 96.5 0.002 

Random forest 97.6 97.4 97.5 97.5 0.1 

Multi-layer perceptron 97.6 97.7 97.6 97.7 0.02 

 

 345 

 

Figure 3: Normalized confusion matrix. The numbers in the main diagonal correspond to the prediction accuracy of each class. All 

other entries indicate prediction errors e.g. the (2, 1) element in (a) indicates that 4.3 % of OC-EC particles were incorrectly predicted 

as EC particles. 
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 350 

Figure 4: The mass spectra in each column are easily confused with each other. The actual label is noted in the upper right corner 

on each mass spectrum. 

 

EC vs OC-EC. The (1, 2) and (2, 1) elements in the confusion matrix show that the particles from EC class and OC-EC class 

are occasionally misclassified. The mass spectra of EC particles are dominated by the EC signals, all other peaks being small. 355 

However, when other peaks become stronger (e.g. OC), EC will be no longer dominant in the mass spectrum, even though the 

highest peak may remain an EC peak, and such a spectrum should no longer be assigned to the EC class. But delineating cases 

when the EC peaks will cease to be dominant is not easy to define. This might be illustrated by the two very similar mass 

spectra in Fig. 4 (a) and (b), whose highest and dominant peaks are clearly EC signals. The only difference is that the relative 

intensity of the 30NO+ ion peak in the mass spectrum in Fig. 4 (b) is stronger than that in Fig. 4 (a). The mass spectrum (a) is 360 

labeled as EC class and the mass spectrum (b) is labeled as OC-EC. It is difficult to set the threshold of e.g. 30NO+ that separates 

them, even for humans. 

OC-EC vs K-rich. The peak at m/z = 39 can be either the signature signal K+ of the K-rich class or the C3H3
+ ion which is 

common for the OC class. When the model encounters a K-EC-OC mass spectrum and an OC-EC mass spectrum, it sometimes 

predicts incorrectly (see Fig. 4 (c) and (d)). 365 

Fe-rich vs V-rich. Spectra of these two classes were sometimes predicted incorrectly due to difficulties to set a threshold value 

to separate them, similar to the EC and OC-EC classes. V-rich particles contain a combination of V-Fe-Ni ions, with the Fe 

ion being sometimes the highest peak in the mass spectrum. Similarly, the highest ion peak of most mass spectra in the Fe-

rich class is also from the Fe ion, and Fe-rich particles may also have very weak V+ and Ni+ signals. Two examples are shown 

in Fig. 4 (e) and (f). 370 

39K vs 40Ca and 23Na vs 24Mg. The marker peaks of the classes K-rich and Ca-rich as well as Na-rich and Mg-rich are separated 

by just one m/z (39 vs. 40 and 23 vs. 24, respectively). Therefore, these pairs of classes are prone to misinterpretations by the 

algorithms. K-NN, which is distance-based for classification, has a significantly higher error rate in identifying such small 

differences between the spectra than the other four investigated algorithms. In some studies (Strehl et al., 2000; Zhong, 2005), 

researchers have noticed that Euclidean Distances are not well suited for the analysis of high-dimensional sparse data. Our 375 
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experimental results validate this argument and clearly demonstrate that distance-based K-NN is less efficient than others in 

classifying high-dimensional SPMS data. 

 

 

4.3 Prediction of blind data  380 

The objective of this study is to provide a basis for real-time monitoring of air quality through the automatic classification of 

SPMS data. Apparently, since there are much more types of aerosol particles in the air than the eight coarse classes described 

above, we expect the model to be able to distinguish particles that do not belong to the eight classes. One of the drawbacks of 

supervised learning algorithms, however, is that they generally cannot identify classes other than those present in the training 

data. As a solution, we use the predicted probability of the model to set a threshold value. Predicted probabilities below this 385 

threshold are assigned to an additional class “unclassified”. By subsequently investigating the mass spectra in the class 

“unclassified”, we can later add newly discovered classes of interest to our dataset, to continuously expand the diversity of our 

dataset. 

 

 390 

Figure 5: Time distribution of aerosol particle classes predicted by the MLP model for data collected at the measurement site from 

30 June to 1 July. The vertical axes of the plot above and below show the absolute and relative numbers of particles in every 10 

minutes, respectively. 

 

As an example, the MLP algorithm uses the SoftMax function to compute the probability that the samples belong to different 395 

classes. Since the variables used in the SoftMax function are derived from the trained weights, the contingency caused by a 
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winner-takes-all statistical approach (as for RF and SVM) can be considerably reduced. Therefore, the MLP model was chosen 

to predict the class assignments of the “blind data” comprising two consecutive days (48 hours) of continuous measurements 

with 49,097 particles. Mass spectra with a predicted probability of less than 70 % were assigned to the “unclassified” class. 

Fig. 5 displays the resulting temporal distribution of the aerosol particle classes automatically predicted by MLP within only 400 

0.2 seconds. 

The class distribution over time shows a significant increase in the percentage of V-rich particles in the air around 14:00 and 

19:00 on 30 June and around 12:00 and 14:00 on 1 July. A previous study (Passig et al., 2021), examining the same 

measurement data using the ART-2a algorithm, had found similar transients of V-rich particles in these time intervals and 

attributed them to ship passages. This consensus of our results proves the reliability of MLP supervised learning predictions. 405 

Applying the trained models to predict data from other measurement campaigns at different locations or different weather 

conditions and possibly different SPMS instruments, we still have to face a common problem in machine learning, which is to 

recognize data from different sources than used for training the model. This is often described as unsatisfying robustness. 

Models trained with data from a single measurement do not generalize (robust) well and are more sensitive to variations of 

characteristics features of data from different sources. The most straightforward way to improve the robustness of models is 410 

to expand the labeled dataset, e.g. using combined data from different sources to train the model. 

5 Conclusions 

In this study, new concepts for the automated classification of SPMS-analyzed aerosol particles using supervised learning 

methods were described and the method’s performance was evaluated on behalf of a dataset from a week-long summer 

campaign in close vicinity to the Baltic Sea. Confronted with a lack of publicly available datasets of well-characterized 415 

classified air-transported aerosol particles, we relied on mass spectra from published studies and expert knowledge to create a 

dataset containing ~24,000 labeled mass spectra, each attributed to one of eight aerosol particle classes. As a result of this 

time-consuming process, a well-characterized benchmark dataset of considerable size is now available for further SPMS 

studies and liable to be publicly accessible, to open it up for further extensions. We used this dataset to train five models 

popular for machine learning applications and compared their performance. All models performed well, with classification 420 

accuracies of up to 97.8 %. In addition, we overcome the shortcoming that supervised learning cannot identify classes not 

present in the training data. Based on a predicted probability of class assignment, mass spectra are classified to an additional 

class of “unclassified” signature, liable to be later verified by an unsupervised, expert-supported algorithm. Finally, a neural 

network-based MLP algorithm was used to automatically predict the “blind data” to acquire the temporal distribution of aerosol 

particles, which makes it feasible to classify the measured data in real-time. Several advantages of using supervised algorithms 425 

compared to unsupervised clustering algorithms could be proved. Besides the fact that - once a model is trained - the 

classification becomes fully automated with processing times to classify tens of thousands of particles in less than a second, 

the predictions are quantifiable through several evaluation metrics. 
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Supervised learning and unsupervised learning are two main categories of machine learning, and they differ based on the type 

of input data and the problem they are solving. For the classification of aerosol spectra obtained by an SPMS instrument, time 430 

for supervised learning is spent on dataset creation, as labeled datasets are expensive and time-consuming to obtain. On the 

other hand, unsupervised clustering algorithms require time for post-processing, but this aspect could be advantageous for 

discovering new particle classes, which is a limitation of all supervised learning algorithms. Overall, supervised learning shows 

immense potential for real-time classification of SPMS data, particularly for the automatic detection of specific particle classes. 

Our future work will involve expanding and diversifying our dataset, as well as applying advanced and highly selective deep 435 

learning algorithms to enhance the generalization of the classification models. This work, on the one hand, is a step towards 

rapid on-line classification of aerosols (mass or source fractions) and towards future quantification routines using a 

parametrization with data from AMS (Aerodyne Aerosol Mass Spectrometry) and other quantitative technologies. On the other 

hand, rapid classification of common particles reduces the remaining dataset and enables target searches for hazard indicators 

(i.e. toxicants, airborne pathogens, explosives, drugs, industrial chemicals) and thus supports the SPMS application in the field 440 

of hazard and air quality monitoring. 
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