
1 
 

Answers to Specific Comments: 

Section 2: The previous work should be highly summarized rather than listed one by one. I recommend that the 

summary of related work be concluded in the introduction. 

Thank you for this comment and the recommendation. We are sorry to be not in full agreement with it. The 

intension of Section 2 was to give the reader a clearer understanding of the principles and various implementations 

of task-specific unsupervised learning used to classify sources of aerosols by providing a comprehensive review 

of the approaches and classification results published in previous studies.  

We reviewed five different unsupervised learning algorithms (k-means, ART-2a and density-based clustering 

algorithms like DBSCAN and OPTICS), which were applied to SPMS data classification in the past. We belief 

that it would be interesting to briefly read about the main principles and differences between those approaches.  

If these approaches were to summarize, we’d say that they are all characterized by the need of extra manual post-

processing. 

 

 

Some parts in Section 2, e.g., the description of different algorithms, should be elaborated in the methodology. 

The authors should better organize the structure of the manuscript. 

We kindly disagree with that view. After having presented in Section 2 the foundations of five approaches of 

supervised learning algorithms generally applicable to SPMS data classification, in Section 3 we focus on our 

specific problem and describe the task-related methodology and important implementation steps of applying these 

supervised learning algorithms to our data.  

 

 

Lines 71–73: Please rewrite the sentence. The numbers are presented misleadingly. 

We agree. For clarification, the sentences were rewritten as follows:  

 

In the field of SPMS data analysis, Arndt et al. (2021) and Healy et al. (2010, 2012) used the K-means algorithm 

in two rounds, to classify 558,740, 1.75 million and ~800,000 collected particles, respectively. First, these particles 

were pre-classified into 50, 80 and 80 different clusters, and subsequently, using the K-means algorithm again, 

these clusters were merged into 14, 15 and 33 different classes, respectively. 

 

 

Line 175: Please add more details about the SPMS measurement and analysis, e.g., sensitivity, calibration, 

uncertainty, software, etc. 

Since the first reviewer made the same suggestion, please allow us to use the same answer here. 

 

The SPMS instrument is a bipolar time-of-flight mass spectrometer (ATOF-MS) with an aerodynamic lens and an 

optical sizing unit. Detailed descriptions of its functionality can be found in (L. Li et al., 2011) and (Zhou et al., 

2016). Briefly, for velocimetric particle sizing, two continuous wave lasers with a wavelength of 532 nm, 

ellipsoidal mirrors, and photomultipliers are employed. The compact mass spectrometer in Z-TOF geometry (Pratt 

and Prather, 2012), is equipped with a 248.3 nm KrF excimer ionization laser. This wavelength is well suited for 

resonance-enhanced laser desorption/ionization (LDI) of iron and other transition metals (Passig et al., 2020) , e.g. 
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for the analysis of ship exhaust particles in ambient air (Passig et al., 2021). The optical setup was optimized to 

achieve a hit rate of about 50% (#mass spectra/sized particles). The lens (f = 200 mm) is brought to an off-focus 

position of 7 mm relative to the particle beam, resulting in a spot size of 150 x 300 µm and an intensity of 5 GW 

cm-2 at 6 mJ pulse energy (Passig et al., 2020; Schade et al., 2019). From the 300 L min−1 intake airflow, particles 

were concentrated into 1 L min−1 carrier gas stream (6 x 4 mm conducting tube), from which 0.1 L min−1 entered 

the SPMS instrument after a transfer time of few seconds. Monodisperse polystyrene particles were used for the 

size calibration of inlet and soot particles for the mass calibration of the mass spectrometer. No corrections were 

made for size-dependent or type-dependent detection efficiencies (Shen et al., 2019). 

(will be added in Lines 173-177) 

 

 

SPMS also gives the particle size information. Could the authors provide more results about the particle size 

measurement? Will the particle size affect the automatic classification results? 

Due to the wavelength (532 nm) of the two continuous wave lasers of the sizing unit, the lower boundary of 

measurable particle sizes is approx. 150-200 nm. With the SPMS instrument, particle of sizes up to 2,5 µm can be 

measured. 

(will be added in Lines 173-177 of the manuscript) 

 

In this work, we used only the chemical composition of the particles as learning features to train the classification 

model. Therefore, the sizes of the particles have no effect on the classification results.  

(will be added in Line 275 of the manuscript) 

 

 

Line 188: How do authors divide the data into two parts for labeling and verification? Are there any criteria, 

or are they just random?  

Since the first reviewer asked the same question, please allow us to use a similar answer here. 

 

SPMS data were recorded from 26 June to 02 July, 2018, with only 2 hours of measurement on 02 July, hence 

roughly 7 days in total. For simplicity, we arbitrarily chose the data from 26 June to 30 June to create the 

benchmark dataset and for training and the 30-31 June data for testing (blind data), as we did not note a severe 

time-dependence of the composition of the 8 chosen classes during the whole measurement campaign. 

(will be added in Line 189 of the manuscript) 

 

 

If the data are derived from the same sampling site, which means these particles probably have similar 

composition, is it reasonable to divide the data into different parts and use the “blind data” for verification? 

We regard this as reasonable and proper practice. If measurement from a different sampling site were chosen are 

chosen as blind test data, this could be problematic, since to recognize data from different sources is still a common 

problem in machine learning. The professional term of this problem is robustness. That is, for verification, the data 

used for training and (blind) testing should have the same source (environment, measurement sampling site). One 
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way to improve robustness is to expand the labeled dataset with data from different sources to be used to train the 

model. 

 

 

Line 350: The authors mentioned the signal of K+ and the signal of C3H3+ at the same m/z position, which 

brought some uncertainty to the prediction. Is it possible to distinguish these ions at the same m/z position in 

SPMS?  

With pre-processed, quantized and normalized mass spectra, as we use them for labeling, ions at the same m/z 

position would not be directly distinguishable. A distinction could be based on the combination of the chemical 

composition (“the peak pattern” as the intensity of all other peaks in the mass spectrum), the particle size and the 

abundance (probability of occurrence). 

 

 

Could the authors estimate the uncertainties of applying the method used in this study to analyzing the SPMS 

data from other sites with different aerosol compositions? 

This is subject of our current investigations. First results have been published recently, see (Wang et al., IEEE 

Sensors Letters 2023), made public in https://ieeexplore.ieee.org/document/10251644 (Early Access): In this study 

we created a new labeled dataset (37,406 particles within 13 classes). An overall classification accuracy of over 

90% was achieved using a neural network based algorithm. (The accuracy is lower than that in this paper, but more 

particle classes were recognized). 

 

 

Section 4.2: Since the optimized models with the five algorithms all performed well, which algorithm would the 

authors recommend in the future work?  

We have already discussed the reasons for choosing MLPs in the text (please look at the following copy from the 

text). Furthermore, in our current research we found that neural network based algorithms like MLP perform better 

on a wider range of datasets from different seasons, sampling sites etc., i.e. the NN based algorithms are more 

robust. (This will be added to the manuscript.) 

 

Advantages of MLP and major drawbacks of the other investigated algorithms were already summarized in the 

text and are repeated here. 

From Lines 349-352 

It is observed that the K-NN and DT models have the lowest rates in all evaluation metrics and show significant 

misclassification for several classes. K-NN is less sensitive to subtle differences among the mass spectra. The DT 

model is prone to overfitting during training and has insufficient generalization ability, while the performance of 

RF is significantly improved by using multiple DTs. 

 

From Lines 358-364 

39K vs 40Ca and 23Na vs 24Mg. The marker peaks of the classes K-rich and Ca-rich as well as Na-rich and Mg-rich 

are separated by just one m/z (39 vs. 40 and 23 vs. 24, respectively). Therefore, these pairs of classes are prone to 

misinterpretations by the algorithms. K-NN, which is distance-based for classification, has a significantly higher 
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error rate in identifying such small differences between the spectra than the other four investigated algorithms. In 

some studies (Strehl et al., 2000; Zhong, 2005), researchers have noticed that Euclidean Distances are not well 

suited for the analysis of high-dimensional sparse data. Our experimental results validate this argument and clearly 

demonstrate that distance-based K-NN is less efficient than others in classifying high-dimensional SPMS data. 

 

From Lines 382-386 

As an example, the MLP algorithm uses the SoftMax function to compute the probability that the samples belong 

to different classes. Since the variables used in the SoftMax function are derived from the trained weights, the 

contingency caused by a winner-takes-all statistical approach (as for RF and SVM) can be considerably reduced. 

Therefore, the MLP model was chosen to predict the class assignments of the “blind data” comprising two 

consecutive days (48 hours) of continuous measurements with 49,097 particles. 

 

 

Now the prediction accuracy of supervised algorithms exceeded 97%. Will the accuracy still be perfect when 

the approaches are used for analyzing other datasets?  

This question again refers to the robustness of supervised ML algorithms. If we want the trained model to perform 

well across different datasets, we have to keep expanding the set of labeled data.  

(This notion will be added to the manuscript.) 

 

 

How would the aerosol sources impact the prediction results?  

The particle classes predicted by supervised learning depend on the classes contained in the training dataset, i.e., 

classes other than in the training dataset cannot be recognized, see line 157. 

 

 

The authors should add more discussion on the uncertainty of the method, and the feasibility of application in 

other areas. 

Differences in measurement campaigns (SPMS instruments, sampling locations, weather conditions, etc.) lead to 

differences in data (mass spectra) from one measurement to another, even for particles of the same class. Models 

trained with data from a single measurement do not generalize well and are more sensitive to differences in the 

characteristics of data from different sources. Therefore, we need to expand our labeled dataset in future work. 

Through that, the generalization of the trained models will become stronger and stronger. In one of our current 

studies (In: Proceedings of the Joint TAP & SE conference, Gothenburg, to be published in Oct. 2023) we show 

that the robustness of a model trained using two merged independent datasets from different measurement 

campaigns is substantially improved and outperforms a model trained separately using one of the two datasets. 

(will be added to the manuscript.) 

 


