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Abstract. Observations collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate 

(MOSAiC) provide an annual cycle of the vertical thermodynamic and kinematic structure of the atmospheric 

boundary layer (ABL) in the central Arctic. A self-organizing map (SOM) analysis conducted using radiosonde 

observations shows a range in the Arctic ABL vertical structure from very shallow and stable, with a strong surface-15 
based virtual potential temperature (θv) inversion, to deep and near-neutral, with a weak elevated θv inversion. Profile 

observations from the DataHawk2 uncrewed aircraft system between 23 March and 26 July 2020 largely sampled the 

same profile structures, which can be further analyzed to provide unique insight into the turbulent characteristics of 

the ABL. The patterns identified by the SOM allowed for the derivation of criteria to categorize stability within and 

just above the ABL, which reveals that the Arctic ABL is stable and near-neutral with similar frequencies. In 20 
conjunction with observations from additional measurement platforms, including a 10 m meteorological tower, 

ceilometer, and microwave radiometer, the radiosonde observations provide insight into the relationships between 

atmospheric stability and a variety of atmospheric thermodynamic and kinematic features. The average ABL height 

was found to be 150 m, and ABL height increases with decreasing stability. A low-level jet was observed in 76% of 

the radiosondes, with an average height of 401 m and an average speed of 11.5 m s-1. At least one temperature inversion 25 
below 5 km was observed in 99.7% of the radiosondes, with an average base height of 260 m and an average intensity 

of 4.8 °C. The only cases without a temperature inversion were those with weak stability aloft. Clouds were observed 

within the 30 minutes preceding radiosonde launch 64% of the time. These were typically low clouds, and high clouds 

largely coincide with a stable ABL. The amount of atmospheric moisture present increases with decreasing stability.  

1 Introduction 30 

The atmospheric boundary layer (ABL) is the turbulent lowest part of the atmosphere that is directly influenced by 

the earth’s surface (Stull, 1988; Marsik et al., 1995). Its structure dictates the transfer of energy, moisture, and 

momentum between the Earth’s surface and the overlying atmosphere (Brooks et al., 2017). A lack of detailed 

understanding of ABL structure over Arctic sea ice results from a historical shortage of the necessary in situ 

measurements. This study utilizes newly available high temporal and vertical spatial resolution atmospheric 35 
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observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC; Shupe et al. 

2020) to analyze the lower atmospheric structure over the full annual cycle in the central Arctic, focusing on statistical 

quantities relating to the ABL, low-level jets, temperature inversions, and atmospheric moisture. 

Previous studies have concluded that the Arctic ABL is typically stably stratified, having minimal turbulence, with 

height less than 200 m, and often less than 50 m (Esau and Sorokina, 2010). However, the ABL over the Arctic Ocean 40 
can also be well-mixed (Esau and Sorokina, 2010; Persson et al., 2002). In summer, surface turbulent heat fluxes are 

generally quite small (Brooks et al., 2017) because the surface temperature is locked to the melting point of ice, so 

turbulent fluxes do not respond directly to changes in surface radiative forcing (Brooks et al. 2017; Persson 2012). 

Instead, turbulent fluxes are largely controlled by horizontal advection, either as a response to clouds (Brooks et al., 

2017) or when air flows from over open water to over sea ice (Tjernström, 2005), which has been observed to produce 45 
a shallow stable ABL (Cheng-Ying et al., 2011). 

One source of ABL turbulence is a low-level jet (LLJ), which is a local maximum in the wind speed profile below 1.5 

km (Tuononen et al., 2015) that is at least 2 m s-1 greater than wind speed minima above and below (Stull, 1988). LLJs 

are common in the central Arctic and produce strong wind shear in the layer below the jet core, causing turbulent 

mixing in the ABL (Banta, 2008) and subsequently may lead to weakening of stability. LLJs have been shown to 50 
primarily form under conditions of baroclinicity (either near the ice edge (Brümmer & Thiemann, 2002) or due to the 

passing of a transient cyclone (Jakobson et al., 2013)), or inertial oscillations (which can be induced when stable 

stratification returns after the passing of a storm (Andreas et al., 2010a; Jakobson et al., 2013)). A previous study 

conducted on LLJs in the central Arctic between 25 April to 31 August of 2007 found a mean LLJ core speed of 7.1 

m s-1, LLJ core altitude typically between 100 and 500 m, and LLJ depth usually between 400 and 600 m (Jakobson 55 
et al., 2013). Jakobson et al. (2013) also found the faster LLJs to have the jet core located inside the ABL. A similar 

analysis of LLJs during MOSAiC found LLJs to be present more than 40% of the time, with typical height below 400 

m and speed between 6 and 14 m s-1 (Lopez-Garcia et al., 2022).  

Surface-based and low-level temperature inversions (TIs) are also common in the central Arctic, and are correlated to 

ABL stability. TIs have been shown to contribute to Arctic amplification (Serreze and Francis, 2006; Serreze and 60 
Barry, 2011; Bintanja et al., 2011; Lesins et al., 2012; Gilson et al., 2018; Previdi et al., 2021) by dynamically 

decoupling the surface from the free atmosphere, so that surface heat flux perturbations cannot easily spread through 

the troposphere, and warming is concentrated near the surface (Lesins et al., 2012). Near-surface TIs also impact 

Arctic aerosol characteristics including the destruction of boundary layer ozone at the onset of polar sunrise and the 

transport of Arctic haze (Kahl, 1990), and contribute to the formation of fog during Arctic summer (Gilson et al., 65 
2018). In Arctic winter, TIs form due to longwave cooling of the surface under predominantly clear-sky conditions 

while in Arctic summer, TIs typically originate from advection and subsidence processes, though ice and snow melt 

can also contribute to the formation of surface-based TIs (Gilson et al., 2018). Previous studies conducted over 

Greenland and along the Alaskan Arctic found there to be at least one TI 85-99.2% of the time, which had base height 

up to about 300m, depth between 225 and 850 m, and intensity of 1.6 to 11 °C (Gilson et al., 2018; Kahl, 1990). 70 
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Arctic ABL structure is highly dependent on atmospheric moisture, particularly clouds containing liquid water, which 

have a warming influence on the surface most of the year when compared to clear-sky conditions (Brooks et al., 2017; 

Shupe and Intrieri, 2004). In the Arctic winter, a lack of open water evaporation leads to persistent periods of clear 

skies or thin high clouds, though low-level clouds are possible during stormy conditions (Brooks et al. 2017; Persson 75 
et al., 2002). In the Arctic summer, the ABL is often capped with low level stratiform clouds (Tjernström et al., 2012), 

which form as a result of ample moisture available during the melt season. Observations of clouds over Ny-Ålesund, 

Svalbard reveal that about 40% of the lowest cloud base heights are located between 0.5 and 1 km AGL, with clouds 

observed 75% of the time (Asutosh et al., 2021), and cloud observations from six Arctic observatories found an annual 

cloud occurrence of 58 – 83% (dominated by low clouds), with the highest and lowest cloud frequencies in fall and 80 
winter, respectively (Shupe et al., 2011a; Shupe et al., 2011b). 

 

The atmospheric features discussed above all interact with the surface energy budget, which impacts sea ice thickness 

and extent. Thus, to properly represent the central Arctic in weather and climate models, the frequency and 

characteristics of these features must be documented. While previous work does reveal some important information 85 
about the Arctic ABL features and processes, most in situ observations have either been brief, located near the coast, 

or have only included measurements of a subset of important atmospheric features. Particularly lacking have been 

observations of atmospheric properties during the winter, as few previous field campaigns have gathered wintertime 

Arctic observations (e.g., the Surface Heat Budget of the Arctic Ocean (SHEBA) project; Uttal et al., 2002). MOSAiC 

obtained the necessary data from the central Arctic ice pack, between September 2019 and October 2020, to analyze 90 
atmospheric thermodynamic and kinematic features related to the ABL above the sea ice pack, from deep in the pack 

ice to near the marginal ice zone. 

 

The questions guiding this study are as follows: what are the different ABL structures and stability regimes present in 

the central Arctic, and how do these differ by season? Additionally, what are the relationships between ABL stability 95 
and other relevant atmospheric features, including LLJs, TIs and atmospheric moisture? We hypothesize that each of 

the previously stated atmospheric features are prevalent throughout an entire year in the central Arctic, and ABL 

stability directly relates to the characteristics of these features. 

To determine ABL structure and identify important thermodynamic and kinematic features in the Arctic ABL, we 

primarily use profile data from radiosondes launched at least four times per day throughout the MOSAiC year. A self-100 
organizing map (SOM) analysis is conducted with the radiosonde profiles to objectively identify the different ABL 

structures that occur in the central Arctic, and their relative frequencies during the MOSAiC year. Additionally, 

profiles collected by the DataHawk2 (DH2) uncrewed aircraft system (UAS) from March – July of 2020 (de Boer et 

al., 2022) are mapped to the SOM to identify which ABL structures were sampled by the DH2, as the DH2 

observations can be further evaluated for a higher resolution perspective of these structures. For each radiosonde and 105 
UAS profile, we determine ABL stability. From the radiosondes, we identify additional characteristics of the ABL, 

LLJs and TIs. This is supplemented with information about near-surface atmospheric state and atmospheric moisture 
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from additional measurement platforms discussed in Sect. 2.1. Then, we provide statistics on the various atmospheric 

characteristics as a function of the stability regime. The results provide an annual cycle of the central Arctic ABL 

structure and relevant features. 110 

2 Methods 

2.1 Observational data from MOSAiC 

Data used in this study were collected during MOSAiC, a year-long icebreaker-based expedition lasting from 

September 2019 through October 2020, in which the Research Vessel Polarstern (Alfred-Wegener-Institut Helmholtz-

Zentrum für Polar- und Meeresforschung, 2017) was frozen into the central Arctic Ocean sea ice pack, and was set to 115 
drift passively across the central Arctic for the entire year. However, between 17 May and 18 June, between 31 July 

and 21 August, and between 21 September and 1 October 2020, it was necessary for the Polarstern to travel under its 

own power. During the MOSAiC year, many measurements were taken to observe the atmosphere (Shupe et al. 2022), 

sea ice (Nicolaus et al. 2022), and ocean (Rabe et al. 2022), with the result being the most comprehensive observations 

of the central Arctic climate system to date. These measurements span all seasons, as well as both far from and close 120 
to the sea ice edge, as the Polarstern essentially followed one ice floe for its annual life cycle (only relocating to a 

new ice floe for the final two months of the expedition).  

For this study, we primarily use profile data from the balloon-borne Vaisala RS41 radiosondes, which were launched 

from the helicopter deck of the Polarstern (~12 m above sea level) at least four times per day (every 6 hours), typically 

at 05:00, 11:00, 17:00, and 23:00 UTC (Maturilli et al., 2021). We use the level 2 radiosonde product (Maturilli et al., 125 
2021) for this analysis, as the level 2 radiosonde data are found to be more reliable in the lower troposphere than the 

level 3 radiosonde data (Maturilli et al., 2022).  Figure 1 shows the location of each radiosonde launch throughout the 

MOSAiC year. From the radiosondes, we utilize measurements of temperature, pressure, relative humidity, and wind 

speed and direction, as well as derived measurements of virtual potential temperature (θv) and absolute humidity up 

to 5 km. The radiosondes ascend at a rate of approximately 5 m s-1, sampling with a frequency of 1 Hz, which results 130 
in measurements about every 5 m throughout the ascent. Additional profile data comes from the DH2 (Jozef et al., 

2021), a battery powered fixed-wing UAS (1.1 m wingspan, 1.8 kg weight, 40 min endurance; Hamilton et al. (2022)), 

which was operated between 23 March and 26 July 2020 (de Boer et al., 2022). From the DH2, we utilize 

measurements of temperature, pressure, and relative humidity, as well as derived measurements of θv up to 1 km in 

clear-sky conditions, or cloud base height if lower than 1 km. The locations of DH2 profiles are also marked in Fig. 135 
1.  
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Figure 1. Map of the central Arctic showing the location of each radiosonde launch, color coded by date. Circular 
symbols indicate when the Polarstern was passively drifting, and star symbols indicate when the Polarstern was 
travelling under its own power. Black stars indicate the locations of DataHawk2 flights. 140 

In addition to the profile data provided by the radiosondes and DH2, we utilize observations from a few other 

measurement platforms which add to the overall picture of the ABL at the time of each radiosonde launch. 

Atmospheric observations of wind speed at 2 m above the surface, as well as a derivation of bulk friction velocity (u∗), 

come from a 10 m meteorological tower (hereafter called the met tower; Cox et al., 2023) located on the sea ice near 

the Polarstern (Cox et al., submitted), and provide information about near-surface turbulence at the time of each 145 
radiosonde launch.  

Information on cloud cover comes from a Vaisala Ceilometer CL31 (ARM user facility, 2019a), which measures 

atmospheric backscatter and cloud base height (CBH), and allows us to determine the altitude and frequency of clouds 

at and before radiosonde launch. Additionally, precipitable water vapor (PWV) and liquid water path (LWP) come 

from the MWRRET Value-added Product (ARM user facility, 2019b) which derives PWV and LWP from ARM 2-150 
channel microwave radiometer measured brightness temperatures. PWV and LWP derivations and uncertainties are 
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discussed in Turner et al. (2007) and Cadeddu et al. (2103) respectively. Both the ceilometer and microwave 

radiometer were located on the P-deck of the Polarstern (depicted in Fig. 3 of Shupe et al. 2022), which is 

approximately 20 m above sea level, and could occasionally be above a layer of shallow fog. Table 1 lists the 

instrument name and uncertainty for each of the observational variables used in this study. 155 

Table 1: Instrument name and uncertainty for each variable used in this study. 

Platform  Variable  Instrumentation Uncertainty  

Radiosonde Pressure  
 
 
 
Vaisala RS41-SGP 
 

1.0 hPa (> 100 hPa),  
0.6 hPa (< 100 hPa) 

Temperature 0.3 °C (< 16 km) 
0.4 °C (> 16 km) 

Relative Humidity 4 % 

Wind speed 0.15 m s-1 

Wind Direction 2 ° 

DataHawk2 Pressure  
 
Vaisala RSS421 
 

0.4 hPa 

Temperature 0.1 °C 

Relative Humidity 2 %  

Met tower 2 m wind speed Metek uSonic-Cage MP sonic 
anemometer 

0.3 m s-1 

Bulk friction velocity (u∗) Derived from Vaisala 
HMT337/PTU307, Metek uSonic-3 
Cage MP, and ARM's Eppley 
Precision Infrared Radiometer 
(following Andreas et al. (2010b)) 

4.4 % (estimated random 
error, 10 min) and 
6% (bias) 

Ceilometer Cloud base height Vaisala CL31 5 m 

Microwave 
radiometer 

Precipitable water vapor ARM 2-channel microwave 
radiometer 

0.5 mm 

Liquid water path 30 g m-2 

 

2.2 Deriving quantities from observational data 

Before the radiosonde profiles were analyzed, radiosonde measurements were corrected to account for the local “heat 

island” resulting from the presence of the Polarstern. This local source of heat resulted in the frequent occurrence of 160 
elevated temperatures near the launch point, resulting in inconsistencies in the observed temperatures in the lowermost 

part of the atmosphere. This phenomenon can be recognized by an artificial temperature structure indicative of a 

convective layer in the lowest radiosonde measurements, which we know is unlikely (Tjernström et al., 2004; Brooks 

et al., 2017). Thus, if this “convective layer” was present, then the lowest radiosonde measurements were visually 

compared to measurements from the met tower to identify when temperature values were anomalously warm. This 165 
was identifiable when the tower measurements interpolated upward, given their observed slope, did not match up with 

the lowest radiosonde measurement. The first credible value of the radiosonde measurements was found when the 

tower measurements interpolated upward would line up with the observed radiosonde measurement, or in the case of 
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a temperature offset between the tower and radiosonde, would have the same slope. All data at the altitudes below this 

first credible value were removed. This helps in also removing faulty wind measurements that occur as a result of flow 170 
distortion around the ship (Berry et al., 2001), and the radiosonde motion induced by the initial unraveling of the string 

that connects the radiosonde to the balloon. 

An additional disruption of the radiosonde measurements sometimes occurred because of the passage of the balloon 

through the ship’s exhaust plume. When it was unambiguous that the radiosonde passed through the ship’s plume 

(evident by a sharp increase and subsequent decrease in temperature, typically by ~0.5-1°C over a vertical distance of 175 
~10-30 m, identified visually), these values were replaced by values resulting from interpolation between the closest 

credible values above and below the anomalous measurements, which were identified as the last point just before the 

increase and the first point just after the decrease in temperature values, to acquire a continuous profile of reliable 

temperatures. Lastly, we determined that 92% of profiles have credible measurements as low as 35 m AGL. To allow 

for a consistent bottom height for our ABL analysis, we only consider profiles in which there is a good measurement 180 
at 35 m. This altitude is a compromise between removing too much low altitude data or removing too many radiosonde 

profiles from analysis. After removing all profiles in which there is not trustworthy data as low as 35 m, we retain 

1377 MOSAiC radiosonde profiles for analysis. 

ABL height from each radiosonde profile was determined using a bulk Richardson number (Rib) based approach in 

which the top of the ABL was identified as the first altitude in which Rib exceeds a critical value of 0.5 and remains 185 
above the critical value for at least 20 consecutive meters (Jozef et al., 2022). The methodology for calculating the Rib 

profile used to identify ABL height follows that described in Jozef et al. (2022) and Jozef et al. (submitted). Once 

ABL height was identified, we determined the vertical gradient in virtual potential temperature (dθv/dz) and horizontal 

wind speed (dV/dz) between 35 m and the top of the ABL for each radiosonde.  

LLJs were identified from each radiosonde, where there was a maximum in the wind speed that was at least 2 m s-1 190 
greater than the wind speed minima above and below (Stull, 1988). As described in Tuononen et al. (2015), only 

situations in which both the wind speed maximum (the LLJ core) and the minimum above the core were both below 

1.5  km were identified as LLJs. Following methods described in Jozef et al. (submitted), if an LLJ was found, we 

identified the LLJ core altitude as the altitude of the maximum in the wind speed, and the LLJ speed as the wind speed 

at that altitude (Jakobson et al., 2013). Additionally, we identified the LLJ top as the altitude of the minimum in the 195 
wind speed profile above the LLJ. The altitude difference between the LLJ core and top is then the LLJ depth 

(Jakobson et al., 2013; Jozef et al., submitted). Our analysis differs from that by Lopez-Garcia et al. (2022) as they 

only considered LLJs in which the jet core speed was at least 25% faster than the wind speed minimum above the jet 

core, whereas we do not include this criterion, and thus our analysis also includes LLJs which occur in ubiquitously 

high wind speed environments. 200 

TI layers were identified using a profile of temperature gradient (dT/dz) for each radiosonde case. Using methods 

described in Jozef et al. (submitted), the dT/dz profile was calculated, and a TI layer was identified where dT/dz 

exceeds a threshold of 0.65 °C (100 m)-1 for at least 25 m. If dT/dz goes below the threshold for less than 100 m 
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between two TI layers, then this is all considered the same TI layer (Kahl, 1990; Gilson et al., 2018). TI depth is the 

vertical distance between the TI bottom and top, and the intensity of the TI is the difference between the temperatures 205 
at the TI bottom and top (Gilson et al., 2018).  

Moisture characteristics associated with each radiosonde are identified using measurements within the 30 minutes 

preceding radiosonde launch. Thus, CBH, LWP, and PWV are taken as the average within that 30 minute interval. 

We use this 30 minute interval, as this is a long enough time for the presence of the cloud and atmospheric moisture 

to impact atmospheric stability and structure close to the surface. Mixing ratio at ABL height is derived from the 210 
radiosonde profile.   

Any other point measurements associated with each radiosonde (2 m wind speed and u∗) are calculated as the average 

over a period of 5 minutes before to 5 minutes after radiosonde launch, as described in Jozef et al. (submitted). The 

variables described in this section will hereafter collectively be called “composite variables.”  

2.3 Self-organizing map analysis 215 

To determine the range of lower atmospheric structures which occur in the central Arctic, as observed during 

MOSAiC, we applied a self-organizing map (SOM) analysis. The SOM analysis is an artificial neural network 

approach that objectively identifies a user selected number of patterns in a training data set (Kohonen, 2001). The 

result of this analysis is a two-dimensional array called a SOM, in which similar patterns are grouped so that the 

squared difference between the training data and the patterns present in the SOM are minimized (Dice and Cassano, 220 
2022). In the SOM, the patterns which are most similar to each other are located adjacently in the two-dimensional 

array, and conversely the most different patterns are on opposite sides of the SOM (Dice and Cassano, 2022; Cassano 

et al., 2016). In this study, the SOM was trained with the dθv/dz profile for each of the 1377 MOSAiC radiosonde 

observations, using the SOM-PAK software (http://www.cis.hut.fi/research/som-research), the details of which are 

described by Kohonen et al. (1996). While we also tried training the SOM with θv anomaly profiles, the SOM trained 225 
with dθv/dz profiles best differentiated the various stability regimes present in the observations, by distinctly 

highlighting stable versus well-mixed layers. 

A SOM is an unsupervised neural network algorithm, but the user must specify the size of the resulting two-

dimensional array (the number and orientation of patterns; Cassano et al., 2015) before the training begins. For this 

analysis, we evaluated SOMs with size and orientation of 5x4 (20 patterns) to 7x5 (35 patterns), and in the end found 230 
that a 6x5 SOM (30 patterns) best displayed the range of dθv/dz structures present in the 1377 MOSAiC profiles. The 

SOM algorithm applies an iterative process to identify the 30 patterns that span the full range of profile types in the 

training data. Once these 30 patterns have been defined by the algorithm, each individual radiosonde profile is 

“mapped” to the SOM (Dice and Cassano, 2022; Cassano et al., 2016). This is done by associating each individual 

profile to a single SOM pattern by finding the SOM pattern that has the least squared difference when compared to 235 
the radiosonde profile.  
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Before applying the SOM algorithm, the radiosonde profiles were interpolated to a consistent vertical grid of 5 m 

spacing between 35 m and 1000 m. The maximum altitude of 1000 m was chosen because it includes the full depth of 

the ABL in every case and also allows for diagnosing stability immediately above the ABL. A linear interpolation was 

used for temperature, relative humidity, and wind speed, and pressure was interpolated with the hypsometric equation. 240 
After interpolation, wind direction was calculated using the interpolated values of zonal and meridional wind speed. 

Additionally, θv every 5 m was calculated using the interpolated values of temperature, relative humidity, and pressure. 

Then, profiles of dθv/dz in K (100 m)-1 were calculated, resulting in values of dθv/dz at 37.5 m, 42.5 m, 47.5 m, and 

so on, with the last value being at 997.5 m. It is these profiles of dθv/dz which were used to train the SOM.  

Figure 2 shows the 30 SOM patterns of dθv/dz, as well as each individual radiosonde profile mapped to the SOM. The 245 
observations that map to a given SOM pattern are referred to as the best matching units (BMUs; Dice and Cassano, 

2022) for that pattern. Using the list of BMUs, the frequency of occurrence of each pattern, annually or seasonally, 

can be determined to analyze the ABL structure at different times of year. Seasonal analysis in this paper is carried 

out by grouping observations during September, October, and November as fall; December, January, and February as 

winter; March, April, and May as spring; and June, July, and August as summer.   250 
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Figure 2. The 30 SOM patterns resulting from training with 1377 MOSAiC dθv/dz profiles. On each subplot, the 
black line is the SOM defined profile of dθv/dz. Individual radiosonde profiles of dθv/dz mapped to each pattern are 
shown in green. The 10th and 90th percentiles (pink) and the 25th and 75th percentiles (light blue) are shown for all 
radiosonde data that maps to each pattern. The mean dθv/dz profile is shown in dark blue and the median dθv/dz profile 
is shown in red for each pattern. The bold number in the upper lefthand corner of each subplot is the number of that 255 
pattern (1 through 30), and the number in the upper center of each subplot is the number of radiosonde profiles which 
map to that pattern.  

Next, DH2 profiles were mapped to the SOM by determining the SOM pattern with the least squared difference when 

compared to the DH2 profile, above 35 m. While some DH2 profiles extend to nearly 1 km altitude, many of them do 

not extend that high (if the CBH was lower than 1 km, or other operational limitations prevented the DH2 from making 260 
a full profile), so in some cases the DH2 did not sample stability aloft and can only be attributed to a SOM pattern 

based on the low altitude measurements. Mapping the DH2 profiles to the SOM reveals which ABL patterns were 

sampled by the DH2 to understand if the more limited sampling abilities of the DH2 were able to capture the range of 

ABL structures present. This analysis also documents the range of ABL depth and stability sampled by the DH2 in 

order to facilitate future research utilizing the unique measurements (e.g., turbulence) of the DH2.   265 
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2.4 Stability regime analysis  

To more easily visualize the ABL structures represented by the SOM, profiles of θv anomaly are shown for each SOM 

pattern (Fig. 3). The θv anomalies were calculated as differences from θv at 1 km. Anomalies are shown to remove the 

large annual range of θv that would otherwise be present in the data while preserving the profile shape, which defines 

the stability and ABL height (Stull, 1988). Thus, the average θv anomaly profile for all radiosondes that map to each 270 
SOM pattern is shown in Fig. 3. The 30 SOM patterns reveal the range of stability regimes present in the observations, 

from strongly stable to near-neutral. 

Twelve stability regimes have been defined based on the near-surface stability within the ABL as well as the stability 

between the top of the ABL and 1 km (Table 2). These stability regime definitions are based on the range of ABL 

profiles seen in the SOM (Fig. 3) and were applied to each SOM pattern (using the average of all radiosonde profiles 275 
mapped to a given SOM pattern) as well as to individual radiosonde profiles. The stability regime definitions allow 

us to explore the frequency, both annually and seasonally, of different stability types and how ABL, LLJ, TI and 

atmospheric moisture vary with stability. The stability regime definitions can be applied to datasets from other regions 

allowing for comparison of the MOSAiC results to ABL stability elsewhere (Dice et al., in prep). 

The first step in identifying stability regime is to smooth some of the noise in the original dθv/dz profiles. Since our 280 
stability criteria in part depend on near-surface dθv/dz, within the ABL, and some observations have an ABL height 

as low as 50 m, we first include a measurement of dθv/dz over 15 m between 35 m (lowest point of the profile) and 

50 m. For values at and above 50 m, dθv/dz is calculated across 30 m intervals in steps of 5 m and attributed to the 

center altitude of Δz (i.e., 35-65 m, 40-70 m, 45-75 m and so on, resulting in a dθv/dz profile with values at 42.5 m, 

50 m, 55 m, 60 m AGL, and so on). 285 

The thresholds used to define each stability regime are based on the range of stability patterns identified in the SOM 

(Fig. 2) as well as a similar SOM-based analysis of ABL profiles in Antarctica (Dice et al., in prep). Table 2 shows 

the thresholds associated with each stability regime, and how they are applied. The first step for stability regime 

identification is to identify the near-surface stability using the dθv/dz value at 42.5 m, as this value is representative 

of stability within the ABL. The possible near-surface regimes are strongly stable (SS), moderately stable (MS), 290 
weakly stable (WS) and near-neutral (NN). To differentiate between stable cases (SS, MS, or WS) and near-neutral 

cases (NN), we use a threshold of 0.5 K (100 m)-1, where if dθv/dz below 50 m is less than the threshold, it is considered 

NN, and if it is greater than or equal to the threshold, it is stable. This threshold was chosen, as it equates to the 

threshold of 0.2 K over 40 m used to discern a stable versus neutral ABL in Jozef et al. (2022). Additional thresholds 

were derived to differentiate SS, MS, and WS. While a range of thresholds were tested, the ones listed in Table 2 were 295 
determined to best discern meaningful differences in near-surface θv inversion strength for both the MOSAiC data 

presented here as well as radiosonde profiles at several sites in Antarctica (work currently in preparation for 

publication). 
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The second step for stability regime identification is only applied to cases with a near-surface regime of WS or NN 

and is carried out to differentiate weakly stable or near-neutral cases (both considered relatively well-mixed) that are 300 
very shallow, from those that are deeper. We make this distinction because we hypothesize that there are different 

processes that would lead to a shallow versus deep well-mixed layer. Thus, if ABL height is less than 125 m, we 

consider this a very shallow mixed (VSM) case. This threshold of 125 m was chosen, as there is a cluster of SOM 

patterns with near-surface regime of WS or NN that have ABL height less than 125 m, and a jump in height before 

the next cluster of SOM patterns with ABL height above 125 m. 305 

Lastly, stability aloft is determined. This step is only applied to VSM, WS, and NN cases, as we only address stability 

aloft if it is more stable than the near-surface stability regime. For SS and MS cases, the profile is at its most stable 

near the surface, and transitions to the free atmosphere above the ABL, so stability aloft does not provide additional 

information. Using the maximum in the dθv/dz profile above the ABL, but below 1 km, the same thresholds as were 

applied to identify the near-surface regime are also applied to identify stability aloft, where the options are strongly 310 
stable aloft (SSA), moderately stable aloft (MSA), and weakly stable aloft (WSA). All of the resulting options for 

stability regime are listed in Table 2. These regimes are color coded with the colors that will be used to discern each 

regime for the remainder of the paper.  

Table 2: Thresholds used to differentiate between stability regime, where the various near-surface regimes are SS 
(strongly stable), MS (moderately stable), VSM (very shallow mixed), WS (weakly stable) and NN (near-neutral), 315 
and the various stabilities aloft are SSA (strongly stable aloft), MSA (moderately stable aloft), and WSA (weakly 
stable aloft).  

dθv/dz at 
42.5 m AGL ABL Height Max. dθv/dz 

above ABL Stability Regime Abbreviation 

≥ 5 K (100 m)-1 - - Strongly Stable SS 
≥ 1.75 K (100 m)-1 

< 5 K (100 m)-1 - - Moderately Stable MS 

< 1.75 K (100 m)-1 < 125 m 

≥ 5 K (100 m)-1 Very Shallow Mixed – 
Strongly Stable Aloft VSM-SSA 

≥ 1.75 K (100 m)-1 

< 5 K (100 m)-1 
Very Shallow Mixed – 

Moderately Stable Aloft VSM-MSA 

< 1.75 K (100 m)-1 Very Shallow Mixed – 
Weakly Stable Aloft VSM-WSA 

≥ 0.5 K (100 m)-1 

< 1.75 K (100 m)-1 

≥ 125 m 

≥ 5 K (100 m)-1 Weakly Stable –  
Strongly Stable Aloft WS-SSA 

≥ 1.75 K (100 m)-1 

< 5 K (100 m)-1 
Weakly Stable –  

Moderately Stable Aloft WS-MSA 

< 1.75 K (100 m)-1 Weakly Stable WS 

< 0.5 K (100 m)-1 

≥ 5 K (100 m)-1 Near-Neutral –  
Strongly Stable Aloft NN-SSA 

≥ 1.75 K (100 m)-1 

< 5 K (100 m)-1 
Near-Neutral –  

Moderately Stable Aloft NN-MSA 

≥ 0.5 K (100 m)-1 

< 1.75 K (100 m)-1 
Near-Neutral –  

Weakly Stable Aloft NN-WSA 

< 0.5 K (100 m)-1 Near-Neutral NN 
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3 Results and discussion 

3.1 Range of vertical ABL structure  320 

The θv anomaly profiles for each SOM pattern, shown in Fig. 3, reveal the annual range of ABL stability and height 

in the central Arctic during the MOSAiC year. The average dθv/dz profile for each SOM pattern is also shown in Fig. 

3, calculated as described in Sect. 2.4, along with the corresponding stability regime identified for each SOM pattern. 

Three stability regimes listed in Table 2 (VSM-WSA, WS, and NN) are not represented by a SOM pattern, since 

VSM-WSA and WS occur infrequently, and NN was never observed in an individual profile. The SOM shows the 325 
continuum of ABL vertical structure, with each pattern having a smooth transition to those adjacent, such that similar 

types of ABL structure are situated in the same section of the SOM. The patterns with stronger stability are located 

on the right half of the SOM, with the θv inversion at or near the surface (SS and MS cases) in the upper right of the 

SOM, and the θv inversion becoming more elevated moving to the lower right of the SOM (VSM cases). The weaker 

stability and near-neutral patterns are located on the left half of the SOM, with decreasing stability and increasing 330 
depth of the well-mixed layer, moving from the bottom left (largely WS) to the top left (largely NN) of the SOM. 

Thus, the ABL during MOSAiC revealed by the SOM spanned from very shallow and stable, with a strong surface-

based θv inversion, to deep and near-neutral, with a weak elevated θv inversion.  
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Figure 3. Profiles of mean virtual potential temperature (θv) anomaly (orange line, bottom x-axis) for all radiosonde 
profiles mapped to each SOM pattern. Profiles of mean virtual potential temperature gradient (dθv/dz) for all 335 
radiosonde profiles (magenta line) and SOM-defined dθv/dz profiles (black line) (top x-axis). Vertical and horizontal 
black lines in each subplot indicate the various thresholds used to determine stability regime, following the “Lines 
Key,” and the horizontal red line in each subplot is the average ABL height for that pattern. The bold number in the 
upper lefthand corner of each subplot is the number of that pattern (1 through 30), the number in the upper center of 
each subplot is the number of radiosonde profiles which map to that pattern, and the letters in the upper righthand 340 
corner of each subplot indicates that pattern’s stability regime. Stability regime is also indicated by the color of the 
border for each subplot, following the colors given in the “Stability Regime Key”. 

The seasonal breakdown of SOM pattern frequency is displayed in Fig. 4, which shows, for each SOM pattern, the 

frequency of cases which occurred in a given season. For example, 27% of all radiosondes that map to pattern 1 

occurred in the fall (Fig. 4a). Observations in the fall most heavily contribute to the SOM patterns in the center and 345 
left of the grid (patterns 2, 8, 15, 20, and 22), as greater than 40% of all profiles in each of these patterns are 

observations that occurred in the fall. These are largely patterns with well-mixed near-surface layer, with moderate to 
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strong stability aloft. Observations in the winter most heavily contribute to the SOM patterns in the far right and the 

bottom of the grid (patterns 5, 6, 12, 18, and 23 to 30). For each of these patterns, greater than 35% (and greater than 

50% for some patterns) of observations occurred in the winter. These are largely patterns with a surface based θv 350 
inversion, or a shallow well-mixed layer capped by a strong θv inversion. 

Observations in the spring are more evenly distributed among all SOM patterns than any other season, as no SOM 

pattern contains greater than 36% of the total observations. The least common SOM patterns for spring are in the 

upper right of the grid (patterns 4, 6, and 18), which all have θv inversion down to at least 35 m (the lowest 

measurement altitude). Lastly, observations in summer most heavily contribute to two SOM patterns in the upper right 355 
of the grid (patterns 4 and 17), which each contain 55% of the annual observations. Pattern 4 is particularly interesting, 

as there is an elevated region of enhanced stability around 600 m AGL, which must be explained by unique processes 

occurring primarily in summer, perhaps a low fog layer and additional elevated cloud layer. Two patterns on the left 

side of the SOM (7 and 21) are also dominated by summer observations, as they each contain at least 39% of the 

annual observations. The annual frequencies of the SOM patterns are demonstrated with Supplementary Fig. S1, which 360 
shows that annual frequencies are quite variable from one pattern to the next, with the SOM pattern with the highest 

frequency only accounting for 9.4% of MOSAiC observations (pattern 15). As 13 of the SOM patterns depict strong, 

moderate, or weak near-surface stability, this shows that the ABL in the Arctic is often stable (Esau and Sorokina, 

2010). However, as 10 of the SOM patterns depict near-neutral near-surface stability (the remaining seven patterns 

depicted are VSM profiles), this presents a new finding that a near-neutral ABL is perhaps more prevalent than 365 
previously known, disagreeing with Esau and Sorokina (2010), which found the Arctic ABL to be stably stratified 70 

– 100% of the time. 
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Figure 4. Grid plots following the same layout as the SOM indicating the number (upper middle of each subplot) and 
frequency (lower middle of each subplot) of radiosonde profiles that map to each pattern during (a) fall, (b) winter, 370 
(c) spring, and (d) summer. The greyscale color bar corresponds to the percent of cases in each pattern, where darker 
grey signifies a higher percent of cases. The bold number in the upper lefthand corner of each subplot is the number 
of that pattern (1 through 30), the number in the upper center of each subplot is the number of radiosonde profiles 
which map to that pattern, and the letters in the upper righthand corner of each subplot indicates that pattern’s stability 
regime. Stability regime is also indicated by the color of the border for each subplot, following the colors given in the 375 
“Stability Regime Key”. 

DH2 profiles mapped to the SOM (Supplementary Fig. S2a) show that all but four SOM patterns (8, 19, 28, and 29) 

were sampled by the DH2. Thus, we have DH2 data covering nearly all the ABL vertical θv structures observed 

throughout MOSAiC. Supplementary Fig. S2b-c shows the frequencies each SOM pattern observed by the DH2, as 

well as by the radiosondes during the time of DH2 deployment (23 March – 26 July 2020). These results reveal that, 380 
while the DH2 did sample nearly all ABL structures represented by the SOM, the frequencies of these regimes sampled 

by the two measurement platforms are different, and this can likely be attributed to the DH2 sampling limitations.  
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To understand the influence of mechanical mixing on stability, we compare wind speed profiles and LLJ 

characteristics for each pattern (Fig. 5). As Fig. 5 depicts average wind speed profiles for all radiosondes in each SOM 

pattern, and LLJ core height varies for each case, an LLJ does not always appear in the average wind speed profile. 385 
While the LLJ height was similar across all SOM patterns (i.e., roughly 400 m AGL), the higher ABL heights of the 

weaker stability patterns (WS and NN; on the left side of the SOM) placed the LLJ closer to the ABL top than for the 

stronger stability patterns with lower ABL heights (SS, MS and VSM; on the right side of the SOM). Thus the LLJ is 

more closely coupled to the ABL in the weak stability cases when the LLJ core is closer to the top of the ABL. 

Additionally, the LLJ speeds, 2 m wind speeds, and overall wind speed profiles have greater values for the patterns 390 
on the left half of the SOM (mean LLJ speed of 12.3 m s-1 and mean 2 m wind speed of 5.3 m s-1), compared to the 

right half (mean LLJ speed of 9.7 m s-1 and mean 2 m wind speed of 3.3 m s-1). This supports the previous finding that 

faster wind speeds work to weaken stability in the ABL through mechanical generation of turbulence (Banta, 2008). 

Lastly, while some of the LLJ characteristics between the left and right halves of the SOM are different, the frequencies 

of LLJs throughout all SOM patterns are similar, with all SOM patterns showing that an LLJ was present for 67% – 395 
84% of all observations mapped to that pattern, with a median LLJ frequency of 76%.  
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Figure 5. Profiles of mean virtual potential temperature (θv) anomaly profiles (orange line, bottom x-axis) for all 
radiosonde profiles mapped to each SOM pattern. Profiles of mean wind speed for all radiosonde profiles (light blue 
line, top x-axis). The horizontal red line in each subplot is the average ABL height, with the red error bar indicating 
the 25th and 75th percentiles of ABL height. The horizontal blue line in each subplot is the average LLJ core height, 400 
with the vertically oriented error bar indicating the 25th and 75th percentiles of LLJ core height. The vertical blue line 
in each subplot is the average LLJ speed, with the horizontally oriented error bar indicating the 25th and 75th percentiles 
of LLJ speed. Each subplot also has written the frequency of LLJs and average 2 m wind speed. The bold number in 
the upper lefthand corner of each subplot is the number of that pattern (1 through 30), the number in the upper center 
of each subplot is the number of radiosonde profiles which map to that pattern, and the letters in the upper righthand 405 
corner of each subplot indicates that pattern’s stability regime. Stability regime is also indicated by the color of the 
border for each subplot, following the colors given in the “Stability Regime Key”. 

3.2 Frequency of stability regimes  

The analysis below transitions from the SOM-based perspective in the previous section to focus on stability regimes 

(as defined by Table 2) based on each individual radiosonde profile. The annual and seasonal frequency of each 410 
stability regime is shown in Fig. 6a. For the stability regime frequencies shown in Fig. 6 and subsequent figures, the 

regimes are organized from strongest to weakest near-surface stability going from left to right (where VSM is 
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considered more stable than WS due to a shallower ABL), and within a given near-surface regime, the aloft regimes 

are also organized such that stability decreases from left to right.  

Annually, the stability regime which occurred with the highest frequency is NN-SSA followed by VSM-SSA. In 415 
decreasing order, MS, SS, and NN-MSA, also occurred with high frequency. VSM-MSA occurred with moderate 

frequency, and VSM-WSA, NN-WSA, and all WS regimes were relatively infrequent. The high frequency of regimes 

with either moderate or strong stability near the surface, or a well-mixed ABL with strong stability aloft, suggests that 

the central Arctic lower atmosphere trends towards being strongly stable, but sometimes the near-surface atmosphere 

can become well-mixed due to the generation of turbulence. In fall, the strongest stability regimes (SS and MS) were 420 
less frequent, while NN was more frequent, which could be due to a combination of the thinner sea ice resulting in 

more upward heat transfer from the ocean to the atmosphere, and a higher frequency of low-level liquid-bearing clouds 

(Shupe et al., 2011a; Shupe et al., 2011b), which both weaken ABL stability. Of all seasons, the winter stability regime 

frequency distribution is most different from the annual results. Winter had a higher frequency of the strongest stability 

regimes (SS, MS, and VSM-SSA), and the NN regime was dominated by NN-SSA. Thus, there is a clear dominance 425 
of stronger stability in winter compared to other seasons due to the lack of solar radiation, which allows for longwave 

cooling of the surface, resulting in strong stability near the surface. In spring, the relative frequencies of stability 

regime exactly match the pattern that is seen annually. Lastly, in summer, the relative frequencies of SS, MS, VSM-

SSA, VSM-MSA, NN-SSA, and NN-MSA were similar, which suggests that the forcing mechanisms of each of these 

regimes occurred with similar frequency, or that certain regimes may occur under a range of forcing mechanisms such 430 
that one stability regime doesn’t heavily dominate over the others.  

When comparing the frequencies of the various stability regimes observed by the DH2 to those observed by the 

radiosondes during the time period in which the DH2 was deployed (Fig. 6b), we see that the DH2 observed similar 

relative frequencies as did the radiosondes. The primary difference is that the DH2 appears to have observed much 

lower frequencies of the various near-neutral regimes with stability aloft, and a higher frequency of purely near-neutral 435 
(where the radiosonde did not observe any purely NN cases). Thus, even though the operational scope of the DH2 was 

more limited, compared to that of the radiosondes, the DH2 was still largely able to capture the relative frequencies 

of stability regimes between the end of May and the end of July. However, we also demonstrate a limitation of the 

DH2 observations, which is that because the DH2 was not always able to be deployed up to a full 1 km if weather or 

other operational obstacles interfered, then the DH2 sometimes did not capture the stability aloft, which is why we see 440 
instances of NN observed by the DH2, but not by the radiosondes.  

https://doi.org/10.5194/egusphere-2023-780
Preprint. Discussion started: 26 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 20 

 

Figure 6. (a) Frequency distribution showing the percent of radiosonde profiles in each stability regime, annually and 
seasonally. For the seasonal sections, the percent shown is with respect to the total number of radiosonde profiles in 
that season. The numbers along the top of the plot, above each bar, indicate the total number of radiosonde profiles of 445 
that stability regime and season.  (b) Frequency distribution showing the percent of radiosonde (blue) and DataHawk2 
(orange) profiles in each stability regime, during the time period in which the DataHawk2 was operated (23 March – 
26 July 2020), with respect to the total number of radiosonde or DataHawk2 profiles in that time period. The numbers 
along the top of the plot, above each bar, indicate the total number of radiosonde and DataHawk2 profiles of that 
stability regime during the time period the DataHawk2 was flown. 450 

3.3 Variability of atmospheric state as a function of stability regime 

3.3.1 Atmospheric boundary layer 

Here, we characterize the structure and stability of the ABL by the ABL height, change in θv over the depth of the 

ABL (dθv/dz), horizontal wind shear over the depth of the ABL (dV/dz), average Rib within the ABL, and bulk u∗. 

The annual range of values of each of these variables for each stability regime is shown in Fig. 7. Supplementary Fig. 455 
S3 indicates when there is a statistically significant difference at the 5 % significance level between the mean values 

of each variable between all pairs of stability regimes, using a two-tailed t-test when degrees of freedom (df) ≤ 100, 

and a two-tailed z-test when df > 100.  
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The annual mean and median of ABL height observed (Fig. 7a) were 150 m and 118 m respectively, which agrees 

with Esau and Sorokina (2010). There is an increase in ABL height as stability decreases. A marked increase in ABL 460 
height separates the shallower SS, MS, and the VSM regimes with the deeper WS and NN regimes. This noticeable 

difference is in part a product of how we define the VSM regime, which requires an ABL height of 125 m or less, 

however the fact that we see this drastic increase also supports the choice of this threshold. Thus, ABL height increases 

as stability weakens, supporting the well-recognized notion that the turbulent processes that weaken stability in the 

ABL also work to deepen the ABL (Stull, 1988). Additionally, we find that within the near-surface regimes that have 465 
specified stability aloft (VSM, WS, and NN), the ABL heights are similar, regardless of stability aloft, though ABL 

height does slightly increase as stability aloft decreases within each of these near-surface regimes.  

dθv/dz and dV/dz within the ABL tell us about the two components of Rib, buoyancy and shear respectively, which 

are the processes controlling turbulence. dθv/dz responds to both heating from below (or cooling from above), as well 

as mechanical mixing. There is a notable difference in dθv/dz between SS and MS (values largely above average), and 470 
all other regimes, with SS having the largest dθv/dz value, consistent with a stable ABL. These two regimes also had 

the highest amounts (also largely above average) of wind shear (dV/dz) within the ABL (Fig. 7c), which suggests that 

for these observations, static stability suppressed turbulence (though did not completely eliminate it), so the ABL 

remained stable despite high amounts of wind shear. Significant differences in dθv/dz and dV/dz between most pairs 

of stability regimes (Fig. S3a) reveal that the buoyant and mechanical processes that generate or suppress turbulence 475 
are distinct for each regime, which supports the idea that how we defined the regimes is physically meaningful. 

Additionally, the dV/dz results suggest that when stability is weaker, winds vary less with height due to greater mixing, 

which is a common behavior of winds within the ABL (Wallace and Hobbs, 2006). 

Rib is an indication of the likelihood of turbulence to form in a laminar atmosphere, with a lower Rib value indicative 

of a greater probability of turbulence. Rib within the ABL had higher values for SS and MS than the rest of the regimes, 480 
which supports the expectation that there is less turbulence within a more strongly stable ABL. However, 

Supplementary Fig. S3b shows that there is little significant difference between mean Rib from the various stability 

regimes. This is likely resulting from the wide range of values for SS and MS Rib, much of which overlap with the Rib 

values from all other regimes. Thus, we conclude that the near-surface atmosphere is essentially always turbulent 

(however minimally in the stronger stability cases), but we need to look at u∗ to fully understand the difference in 485 
turbulence between the various regimes. 

The Arctic environment is often characterized by turbulence. To identify turbulent periods we use bulk u∗, where a 

greater u∗ value indicates more turbulence. Figure 7e shows that u∗ and thus turbulence increases with decreasing 

stability. This is supported by Supplementary Fig. S3b, which shows that u∗ is largely significantly different across 

regimes, except for within the various NN regimes. As u∗ was measured from the met tower independent from the 490 
radiosondes, the strong trend in u∗ versus stability regime again shows that the stability regime criteria and definitions 

applied to the radiosondes were well-chosen. The fact that u∗ values for SS and MS are relatively low, while wind 

shear values are relatively high, supports the conclusion that static stability is largely impacting the strength of 
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turbulence for these regimes. Lastly, within the VSM, WS, and NN regimes, u∗ decreases with weakened stability 

aloft, which suggests that it takes more mechanically generated turbulence to mix out the near-surface layer when 495 
stability aloft is greater.  

Figure 7. Box and whisker plots showing the range of (a) ABL height, (b) virtual potential temperature gradient over 
the depth of the ABL, (c) wind speed gradient over the depth of the ABL, (d) average Rib within the ABL, and (e) 
bulk u∗ from the meteorological tower for each stability regime over the entire year. The center line of each box is the 500 
median, and the outer edges of the boxes are the upper and lower quartiles. The whiskers show the range of values 
within 1.5 times the interquartile range from the top or bottom of the box, and outliers are shown with hollow circles. 
Asterisks are included at the mean, 10th percentile, and 90th percentile. Horizontal dotted black lines show the annual 
mean (light dotted) and median (heavy dotted) values of each variable. The number of cases in each stability regime 
are given along the top of the figure.  505 

3.3.2 Low-level jets 

LLJs are common in the Arctic, as demonstrated by Supplementary Fig. S4, which shows that annually, 76% of 

radiosondes observations contained an LLJ, with a similar overall frequency when separated by season. There was a 

similar frequency of LLJs for all stability regimes, of least about 70%, highlighting the fact that an LLJ can both be a 

cause and an effect of stability (the only exception is the WS regime which had an annual LLJ frequency of about 510 
45% due to the fact that some of the WS cases had high wind speeds throughout the entire profile). For a well-mixed 

or weakly stable ABL, LLJs often contribute to the creation of the mechanical turbulence that mixes the ABL (Banta 

et al., 2003). For more strongly stable ABLs, an LLJ can be an effect of the strong stability if the above atmosphere 

becomes decoupled from the surface. Annually, the stronger stability regimes (SS, MS, and VSM) were dominated 

by slow (speed ≤ 10 m s-1) and moderate (10 m s-1 < LLJ speed ≤ 20 m s-1) LLJs, and the weaker stability regimes 515 
(WS and NN) were dominated by moderate and fast (LLJ speed > 20 m s-1) LLJs. The seasonal LLJ frequencies per 

regime were largely similar to the annual frequencies. However, in winter the frequency of slow LLJs was less than 

the annual results, and in summer the frequency of slow LLJs was more than the annual results, for most stability 

regimes.  

LLJs interact with the ABL, and thus the LLJ characteristics may help to explain the different stability regimes. Here 520 
we tested LLJ core height, vertical distance between the LLJ core height and ABL height, and LLJ depth and speed. 
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The annual range of values of each of these LLJ variables for each stability regime is shown in Fig. 8 (refer to 

Supplementary Fig. S5 for corresponding significance testing). The annual mean and median of LLJ core height were 

401 and 318 m respectively, and the annual mean and median of LLJ depth were 428 and 366 m. This LLJ core height 

is consistent with the findings of Jakobson et al. (2013), but the LLJ depth is slightly less than was found in Jakobson 525 
et al. (2013). Interestingly, there does not appear to be much difference in LLJ core height (Fig. 8a) or LLJ depth (Fig. 

8c) for the various stability regimes, which is supported by the fact that there are no two stability regimes for which 

these variables are significantly different (Fig. S5a and S5b).  

SS, MS, and the VSM regimes largely had LLJs which were situated above the ABL (Fig. 8b), with a mean distance 

of 290 to 329 m. The WS and NN regimes, which also had faster LLJs (Fig. 8d), largely had LLJs which were situated 530 
much closer to the ABL (mean distance of 73 to 214 m), and in the case of WS, had a median value of the LLJ core 

height being within the ABL. This finding that a faster LLJ is more likely to have its core within the ABL agrees with 

the findings of Jakobson et al. (2013). The greater difference between ABL height and LLJ height in the case of SS, 

MS, and the VSM regimes suggests decoupling between the relatively stable ABL and the LLJ, which is consistent 

with inertial oscillations (Jakobson et al., 2013; Blackadar 1957). The smaller difference between ABL height and 535 
LLJ height for the WS and NN regimes suggests greater coupling between the well-mixed ABL and the LLJ, so inertial 

oscillations are unlikely to be the formation mechanism, and rather baroclinicity is the more probable cause. The 

similarity in LLJ core height across the different stability regimes also supports these two different formation 

mechanisms.  

The strongest relationship is between LLJ speed and stability regime, supported by Fig. S5b which shows a large 540 
number of regime pairs that are significantly different from each other. The annual mean and median of LLJ speed 

were 11.5 and 10.8 m s-1 respectively which is greater than the average LLJ speed found in Jakobson et al. (2013). 

There is a step change increase in LLJ speed from SS, MS, and the VSM regimes to the WS and NN regimes, which 

suggests that LLJ speeds differentiate between stronger and weaker stability ABLs, where faster speeds produce 

weaker stability ABLs. Figure S5b shows that there is a significant difference in LLJ speed when comparing the 545 
stronger stability regimes to the weaker stability regimes, but not much significant difference between regimes with 

similar stability. Within each near-surface regime that has various aloft categories (VSM, WS, and NN), LLJ speed 

was slower for weaker stability aloft. This supports the hypothesis that when stability above the ABL is greater, more 

mechanical turbulence is required to mix out the near-surface layer. Alternatively, stronger stability aloft could be 

associated with stronger LLJs due to differences in LLJ forcing mechanisms.  550 

The annual frequency, height, and speed of LLJs found in this study exceed those found in Lopez-Garcia et al. (2022). 

This is likely because faster LLJs, which typically occur at a slightly higher altitude, may not have a jet core speed 

that is at least 25% faster than the wind speed minimum above the LLJ core, and such cases were not considered in 

Lopez-Garcia et al. (2022). However, the LLJs identified here can still be important, because even if the wind speeds 

are fast throughout the entire profile up to 1.5 km (for example, during a storm), a LLJ can still work to produce excess 555 
turbulence in the ABL, and thus should not be ignored.  
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Figure 8. Box and whisker plots showing the range of (a) LLJ core height, (b) the difference between the LLJ core 
height and ABL height, where a negative value indicates an LLJ core below the ABL top, (c) LLJ depth, and (d) LLJ 
speed, for each stability regime over the entire year. The center line of each box is the median, and the outer ranges 560 
of the boxes are the upper and lower quartiles. The whiskers show the range of values within 1.5 times the interquartile 
range from the top or bottom of the box, and outliers are shown with hollow circles. Asterisks are included at the 
mean, 10th percentile, and 90th percentile. Horizontal dotted black lines show the annual mean (light dotted) and 
median (heavy dotted) values of each variable. The number of cases in each stability regime are written along the top 
of the figure.  565 

3.3.3 Temperature inversions 

TIs are also common in the central Arctic, as demonstrated by Supplementary Fig. S6, which shows that annually, 

99.7% of radiosondes observed at least one TI below 5 km, which is a greater frequency than was found in Gilson et 

al. (2018), but roughly in agreement with the findings of Kahl (1990). The only regimes that had TIs less than 100% 

of the time were VSM-MSA, WS, and NN-WSA, which are the three regimes with weak stability aloft, and when a 570 
TI was present for these regimes, it was most often a weak TI (TI intensity ≤ 5 °C), with no cases of a strong TIs (TI 

intensity > 10 °C). Annually and seasonally, only SS and MS, as well as VSM, WS, and NN with strong stability aloft 

had instances of strong TIs. The regimes with moderate and weak stability aloft only had instances of moderate (5 °C 

< TI intensity ≤ 10 °C) and weak TIs. This is expected, as our definition of stability regimes is in part dependent on 

TI intensity. In winter, the highest frequency of strong TIs was observed across regimes, followed by spring. In fall 575 
and summer, the TI intensity was largely weak or moderate.  

TIs contribute to ABL formation, and thus the TI base height, vertical distance between the TI base height and ABL 

height, and TI depth and intensity may help to explain the different stability regimes. The lowest altitude TI most 

directly interacts with the surface, and thus the aforementioned TI characteristics are shown only for the lowest altitude 

TI. The annual range of values of each of these TI variables for each stability regime is shown in Fig. 9 (refer to 580 
Supplementary Fig. S7 for corresponding significance testing). The mean and median TI base height were 260 and 

142 m, respectively, which agrees with the findings of Gilson et al. (2018). Increasing TI base height is correlated 
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with decreasing stability. When the regimes with weak stability aloft did have a TI, they had a much higher base 

altitude than TIs for all other regimes (Fig. 9a). As the base of a TI is often located at or near the top of the ABL, and 

we also saw increasing ABL height with decreased stability, this makes sense. However, the large jump in TI altitude 585 
for all regimes with weak stability aloft shows that TI altitude is not always the best method for determining ABL 

height, which agrees with Jozef et al. (2022). This is further supported by the difference between TI base height and 

ABL height (Fig. 9b) which shows that the TI base was just below the ABL height for SS, MS, and WS-SSA (mean 

difference of -7 m), and largely well above the ABL height for VSM-WSA, WS, and NN-WSA (mean difference of 

1336 m), with the overall annual mean value across all regimes being 111 m. In the cases with weak stability aloft, 590 
the TI being well above the ABL suggests that there is a greater potential for the exchange of momentum, heat, and 

moisture between the ABL and the free atmosphere. The annual mean and median of TI depth were 215 and 180 m 

respectively which agrees more closely with Gilson et al. (2018) than Kahl (1990). TI depth (Fig. 9c) decreases with 

decreasing near surface stability, and within each near-surface regime (VSM, WS, and NN), as stability aloft 

decreases.  595 

The annual mean and median values of TI intensity were 4.8 and 4.3 °C respectively, which is greater than the TI 

intensity described in Gilson et al. (2018), but similar to the results of Kahl (1990). TI intensity (Fig. 9d) was largely 

similar for SS, MS, VSM-SSA, WS-SSA, and NN-SSA (mean intensity of 5.3 to 6.8 °C), with the SS regime having 

the strongest intensity TIs (mean of 6.8 °C). Within each near-surface regime with categories for stability aloft (VSM, 

WS, and NN), TI intensity decreases with decreasing stability aloft, similar to the trend in TI depth, suggesting that 600 
TI intensity and depth are positively correlated. However, this relationship between TI intensity and stability regime 

is in part a result of how we define the stability regimes, since temperature goes into the calculation of θv and thus, 

dθv/dz is partly a function of TI intensity.  
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 605 
 
Figure 9. Box and whisker plots showing the range of (a) TI base height, (b) the difference between the TI base height 
and ABL height, where a negative value indicates a TI base below the ABL top, (c) TI depth, and (d) TI intensity for 
the lowest TI below 5 km, for each stability regime over the entire year. The center line of each box is the median, 
and the outer ranges of the boxes are the upper and lower quartiles. The whiskers show the range of values within 1.5 610 
times the interquartile range from the top or bottom of the box, and outliers are shown with hollow circles. Asterisks 
are included at the mean, 10th percentile, and 90th percentile. Horizontal dotted black lines show the annual mean (light 
dotted) and median (heavy dotted) values of each variable. The number of cases in each stability regime are written 
along the top of the figure.  
 615 
3.3.4 Atmospheric moisture 

Properties of clouds and moisture can impact stability due to their radiative effect and ability to decouple below-cloud 

layers from the atmosphere above. Thus, cloud frequency differs by stability regime, as seen in Fig. 10a which shows 

the frequency distribution of whether clouds were present within 30 minutes before each radiosonde launch, depending 

on stability regime and season, differentiated into the first cloud laying being a low cloud (CBH ≤ 2 km), mid-level 620 
cloud (2 km < CBH ≤ 6.1 km), or high cloud (CBH > 6.1 km). Figure 10a also shows the total frequency of clouds 

observed annually and seasonally, which reveals that clouds were observed to be present during 64% of radiosonde 

launches (a lower frequency than found in Asutosh et al. (2021) but within the frequency range found in Shupe et al. 

(2011b)), the majority of which were low clouds (78% of clouds observed were low clouds), with the highest seasonal 

frequency of clouds during fall (78%) and the lowest seasonal frequency of clouds during spring (52%). This is likely 625 
due to the increased moisture flux from the ocean into the atmosphere, and enhanced moist air advection, which is 

possible when the ice is thinner and less concentrated in fall versus in spring when the ice is at its thickest. This finding 

agrees with Shupe et al. (2011b) on the season with highest cloud frequency, but disagrees on the season with lowest 

cloud frequency (Shupe et al. (2011b) found the lowest cloud frequency in winter). 

Annually, SS had the lowest frequency of cases in which there were clouds within 30 minutes of radiosonde launch, 630 
followed by MS, and the WS regimes. The NN regimes had the highest frequency of cases with clouds, followed by 

the VSM regimes, with NN-WSA (the least stable of all regimes) having the highest percent of cases with clouds 

present. This suggests that the VSM and NN regimes largely occur in the presence of clouds, so are driven by the 
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radiative signature of clouds, whereas SS, MS, and the WS can be forced more heavily by other mechanisms. Low 

clouds dominate the cloud type for all regimes, but for some regimes, mid-level and high clouds were present in some 635 
cases. SS had the most instances of high clouds, with the frequency of mid-level and high clouds generally decreasing 

with decreased stability. When there were clouds, VSM-WSA and NN-WSA only occurred when low clouds were 

present. Thus, low clouds dominate for the weakest stability regimes because low clouds create more downwelling 

longwave radiation which favors weaker stability and may result in an ABL that is well-mixed up to the cloud base, 

while other regimes have mid-level and high clouds as well. 640 

These annual patterns in cloud frequency as a function of stability are largely reflected seasonally as well, however 

there are some differences. In fall, there was a higher frequency of clouds for all regimes except SS. In winter, VSM-

MSA, WS-MSA and WS only occurred in the presence of clouds. The latter two also had LLJs 100% of the time, 

which suggests that these regimes only occurred in high wind, cloudy situations, indicative of a storm, in winter. 

However, this may be coincidental, as the sample size of these regimes is small. In spring, the patterns are similar to 645 
the annual patterns, but there was a lower frequency of clouds for all regimes except VSM-WSA and NN-WSA. In 

summer, the primary difference is that there was a higher frequency of clouds for SS and MS regimes, and a lower 

frequency for the NN regimes. Thus, in summer, cloudy conditions were more conducive to a stronger stability, and 

less conducive to neutral ABL, which was not true for the rest of the year.  

Some additional variables can give further insight into the influence of atmospheric moisture on stability. These are 650 
the base height of the lowest cloud layer, mixing ratio at the ABL top, LWP, and PWV. The annual range of values 

of each of these moisture variables for each stability regime is shown in Fig. 10b-e (refer to Supplementary Fig. S8 

for corresponding significance testing). 

The annual mean and median of CBH of the lowest cloud layer were 1278 and 575 m, respectively (Fig. 10b), which 

agrees with the findings of Asutosh et al. (2021). CBH was similar for all stability regimes, except SS, MS, and WS, 655 
which all had higher cloud bases. However, Fig. S8a shows that CBH for SS and MS regimes are significantly different 

than that for most other regimes, but the CBH for WS is not significantly different from the others. Thus, higher cloud 

base can contribute to SS and MS, but there are further contributing factors that differentiate the other regimes from 

each other. Mixing ratio at ABL height (Fig. 10c), LWP (Fig. 10d), and PWV (Fig. 10e) all tell a similar story in that 

the median values of these variables were the smallest for SS and increase with decreasing stability of the near-surface 660 
atmosphere. They also increase with decreasing stability aloft, within the different near-surface regimes. Thus, 

increased levels of moisture in the atmosphere can contribute both to weakening stability of the near-surface 

atmosphere, and the atmosphere aloft.  
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Figure 10. Top: (a) Annual and seasonal frequency distribution showing the percent of radiosonde profiles in each 665 
stability regime with clouds present within 30 minutes before radiosonde launch, separated into low (CBH ≤ 2 km), 
mid-level (2 km < CBH ≤ 6.1 km), and high (CBH > 6.1 km) clouds. For the seasonal sections, the percent shown is 
with respect to the total number of radiosonde profiles in that season. The numbers along the top of the plot, above 
each bar, indicate the total number of radiosonde profiles of that stability regime and season. The horizontal dotted 
black lines in each section indicate the overall frequency of clouds when considering all radiosonde observations 670 
annually, and per season. Bottom: Box and whisker plots showing the (b) first CBH, (c) mixing ratio at ABL height, 
(d) LWP, and (e) the PWV within 30 minutes before radiosonde launch, for each stability regime over the entire year. 
The center line of each box is the median, and the outer ranges of the boxes are the upper and lower quartiles. The 
whiskers show the range of values within 1.5 times the interquartile range from the top or bottom of the box, and 
outliers are shown with hollow circles. Asterisks are included at the mean, 10th percentile, and 90th percentile. 675 
Horizontal dotted black lines show the annual mean (light dotted) and median (heavy dotted) values of each variable. 
The number of cases in each stability regime are written along the top of the figure.  

4 Summary and conclusions 

The work presented in this paper provides an annual cycle of the vertical structure of the ABL and statistics about key 

thermodynamic and kinematic features of the central Arctic lower atmosphere in the context of stability regime, using 680 
data from the MOSAiC expedition. The patterns shown in Fig. 3 represent the range of θv structures observed over 

the annual cycle during MOSAiC, as revealed by the SOM, which highlights that near-surface stability spanned from 
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strongly stable with a surface-based temperature inversion, to near-neutral in which θv was approximately constant 

with altitude. Stability aloft, but below 1 km, was always stable, ranging from strong to weak stability. Wind speed 

profiles with corresponding LLJ characteristics (Fig. 5), when presented in the context of the SOM patterns reveal that 685 
LLJs core height was typically more distant from the ABL height, and thus the LLJ was likely decoupled from the 

ABL, for SS, MS, and VSM regimes. The WS and NN regimes correspond to faster wind speeds throughout the 

profile, supporting the fact that faster wind speeds work to weaken stability in the ABL through mechanical generation 

of turbulence. The DH2 was able to observe all but four of the SOM patterns (Fig. S2a), but the frequencies of the 

different patterns sampled by the DH2 differ from those sampled by the radiosondes due to the operational limitations 690 
of the DH2 (Fig. S2b-c).  

When grouping the radiosonde profiles by stability regime, NN-SSA was the most frequent regime, and the least 

common regimes were those with weak stability aloft (VSM-WSA, WS, and NN-WSA; Fig. 6a).  The prominence of 

a near-neutral atmosphere (37% of profiles had near-surface stability of NN) over the sea ice contradicts previous 

findings which state that the Arctic ABL is almost always stable (Esau and Sorokina, 2010). The high frequency of 695 
regimes with either strong or moderate stability near the surface (13% of profiles were SS and 14% were MS), or a 

well-mixed ABL with strong stability aloft (18% of profiles were VSM-SSA, 5% were WS-SSA, and 22% were NN-

SSA), suggests that the central Arctic lower atmosphere is inclined to be strongly stable somewhere in the lowest 1 

km, but the height of this strongly stable layer can become elevated, separated from the surface by a well-mixed layer, 

when turbulence is generated. We also found that the DH2 was largely able to capture the relative frequencies of the 700 
various stability regimes, aside from overrepresenting the amount of purely NN cases, and underrepresenting the 

amount of NN cases with enhanced stability aloft (Fig. 6b). 

The average ABL height during MOSAiC was 150 m, and ABL height increases with decreasing stability (Fig. 7a). 

While strong wind shear was often present in the ABL, in many cases, the strong static stability dominated keeping 

the ABL stable (Fig. 7b-c). When the atmosphere aloft is very stable, there must be higher amounts of turbulence to 705 
mix out the near-surface layer, than if there is weaker stability aloft (Fig. 7e). An LLJ was observed in 76% of the 

radiosondes (Fig. S4), with an average height of 401 m and an average speed of 11.5 m s-1 (Fig. 8a and 8d). For the 

stronger stability cases (SS, MS, and VSM), LLJs were situated an average of 311 m above the ABL (Fig. 8b), 

suggesting decoupling between the ABL and the LLJ, consistent with inertial oscillations. For the weaker stability 

cases (WS and NN), LLJs were situated an average of 172 m above the ABL (Fig. 8b), suggesting greater coupling 710 
between the ABL and the LLJ, so inertial oscillations are less likely, and rather baroclinicity is the more probable 

formation mechanism. These weaker stability cases had significantly faster LLJ speeds than the stronger stability 

cases, and thus LLJ speed is the primary LLJ characteristic driving stability.  

A TI was observed in 99.7% of the radiosondes (Fig. S6), with an average base height of 260 m and an average 

intensity of 4.8 °C (Fig. 9a,d). In most cases of weak stability aloft, the turbulent ABL is coupled with the laminar 715 
layer above the ABL and below the TI base, allowing for the transfer of momentum, heat, and moisture between the 

two layers. TI base height increases as stability decreases, and TI intensity and depth both decrease as stability 
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decreases (Fig. 9). For some regimes (VSM-WSA, WS, and NN-WSA) there were large differences between TI base 

height and ABL height indicating that TI height is not always reliable as an ABL height detection metric.  

Clouds were observed within 30 minutes before radiosonde launch 64% of the time (Fig. 10a). Low clouds (CBH ≤ 720 
2 km) dominate the clouds that are observed in the central Arctic (78% of clouds observed were low clouds), with 

mid-level or high clouds never observed with VSM-WSA or NN-WSA regimes. The highest frequency of cloud cover 

within 30 minutes before radiosonde launch was observed with the NN regimes, followed by the VSM regimes. SS, 

followed by MS and the WS regimes, had the lowest frequency of cloud cover within 30 minutes before launch. 

Weaker stability regimes are less likely to form in the presence of high clouds, whereas a stronger stability ABL can 725 
be decoupled from a high cloud layer above. CBH was on average 1278 m (Fig. 10b) but can be much higher for SS 

and MS regimes. The amount of atmospheric moisture generally increases with decreasing stability, so elevated 

moisture levels contribute to the weakening of the ABL, likely through changes in downwelling longwave radiation.  

One limitation of this study is that stability regimes are based on radiosonde profiles starting at 35 m, since 

measurements below this are often unreliable, so differences in stability below this height are neglected (and 730 
potentially important). A complementary paper (Jozef et al., in prep) addresses the impact of atmospheric radiative 

and mechanical forcings on ABL stability and how these relationships vary by season, with a focus on the peculiarities 

of summer processes, and thus such results are not addressed in this work. Future work will be conducted to determine 

how well the observed results are represented by weather and climate models. Thus, we hope that these findings serve 

to help inform the improvement of parameterizations of the central Arctic in weather and climate models. 735 
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