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Abstract. The acquisition of seismic exploration data in remote locations presents several logistic and economic criticalities. 

Carpet layouts, with irregular distribution of sources and/or receivers, facilitate seismic acquisition operations in hard-to-

access areas. A very convenient approach is to deploy nodal receivers on a regular grid and to locate sources only in 

accessible locations, creating irregular source-receiver layout. Processing workflows require then to be updated to properly 

handle irregular acquisition geometries. Surface-wave analysis, that is standardly applied to retrieve near-surface velocity 10 

models, requires fine-tuning to be successfully applied to the data sets from carpet recording. Here, we applied three surface-

wave techniques, namely wavelength/depth method, laterally constrained inversion, and surface-wave tomography to a 3-D 

large-scale test data set, which was acquired in a hard-rock site using carpet recording approach. The wavelength-depth is a 

data transformation method that is based on a relationship between skin-depth and surface-wave wavelength and provides 

both S- and P-wave velocity (𝑉𝑠  and 𝑉𝑝) models. We used the Poisson’s ratios estimated through the wavelength-depth 15 

method to constrain the laterally constrained inversion and surface-wave tomography, and retrieve both 𝑉𝑠 and 𝑉𝑝 also from 

these methods. The pseudo 3-D 𝑉𝑠 and 𝑉𝑝 models were obtained down to 140 m depth over approximately 900 × 1500 m2 

area. The estimated models from the methods match the geological information available for the site. Less than 6% 

difference was observed between the estimated 𝑉𝑠  models from the three methods, whereas this value was 7.1% for the 

retrieved 𝑉𝑝  models. The methods were critically compared in terms of resolution and efficiency.   20 

1 Introduction 

To address the challenges of seismic data acquisition in remote areas, such as foothills and forests, we can apply the so-

called carpet recording, in which the nodal receivers are deployed on a regular grid and the source locations are only limited 

to reachable locations such as the access roads (Lys et al., 2018). The carpet recording approach creates an irregular source-

receiver outline that raises the necessity to evaluate, verify and test the seismic processing workflow. Here, we focus on the 25 

application of surface-wave methods to the data recorded through a carpet recording scheme with the purpose of near-surface 

velocity model estimations. These velocity models can be used for engineering purposes or as input in the exploration 

processing workflow to improve static corrections and groundroll removal. 
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Surface-wave methods are powerful tools for subsurface characterization. Most of these methods process the data to extract 

the surface-wave dispersion curve (DC) from seismic records and invert these DCs to estimate the velocity models. Since the 30 

energy decay of surface-wave wavefield in depth depends on their wavelength, the investigation depth of surface-wave 

methods is related to the maximum recovered wavelength and can be considerably variable, ranging from a few meters (e.g., 

Xia et al., 2002; Feng et al., 2004; Comina et al., 2011; Pan et al., 2018) to several tens of meters (e.g., Mordret et al., 2014; 

Da col et al., 2019) or even to a few kilometers (e.g., Ritzwoller and Levshin, 1998; Kennet and Yoshizawa, 2002; Fang et 

al., 2015). The estimated models from surface-wave techniques can be used in many applications such as near-surface site 35 

characterization (Lai, 1998; Xia, 2014;Foti et al., 2015), static corrections (Mari, 1984; Roy et al., 2010), and ground roll 

prediction and damping (Blonk and Herman, 1994; Ernst et al., 2002; Halliday et al., 2010).  

Different methods can be adopted for extracting DCs from the seismic records and inverting them (see for instance 

Papadopoulou (2021) for a thorough review of the different processing techniques and characteristics of the estimated DCs). 

The retrieval of a velocity model from the DC can be based on simple data transformations or on model optimization 40 

approaches with different inversion strategies. According to the chosen workflow the computational cost and model 

resolution may vary and identifying the optimal approach for the analysis is an important task. Here, we compare three 

different methods (wavelength/depth data transform, laterally constrained inversion, and surface-wave tomography) and 

apply them to a large-scale test data set acquired with carpet recording method. 

Regardless of the type of the surface-wave technique, since DCs are known to have lower sensitivity to P-wave velocity (𝑉𝑝) 45 

compared to S-wave velocity (𝑉𝑠), most surface-wave methods focus on 𝑉𝑠 estimation, and they require a priori Poisson’s 

ratio or 𝑉𝑝 for the inversion stage. Recently, a data transformation method based on the so-called wavelength-depth (W/D) 

relationship was developed to estimate both 𝑉𝑠 and 𝑉𝑝 models (Khosro Anjom et al., 2019). The W/D relationship is obtained 

by computing wavelength - depth couples corresponding to equal phase-velocity of surface-waves and time-average 𝑉𝑠 and 

represents the skin depth of surface-waves (Socco et al., 2017). Once estimated, the W/D relationship can be used to directly 50 

estimate the time-average 𝑉𝑠 from DCs. Socco and Comina (2017) showed with synthetic tests and tests on real data that the 

W/D relationship is highly sensitive to Poisson’s ratio, and it can be used to estimate time-average 𝑉𝑝. Khosro Anjom et al. 

(2019) developed a data-driven W/D workflow that directly estimates interval 𝑉𝑠 and 𝑉𝑝 models from the DCs and is valid for 

sites with significant lateral variations. The method also provides the Poisson’s ratio, which can be used a priori in other 

surface-wave methods, such as laterally constrained inversion (LCI) and surface-wave tomography (SWT).  55 

The earliest applications of LCI were on resistivity data (Auken and Christiensen, 2004; Wisén et al., 2005; Auken et al., 

2005). The first successful application of the LCI to surface-waves was performed by Wisén and Christiansen (2005). In 

LCI, several multi-channel DCs available along a line or over an area are associated with local relevant 1D models and 

inverted simultaneously. The parameters of the 1D models are connected laterally and vertically through a set of constraints, 

whose strength controls the variations between model parameters in adjacent model points (Boiero and Socco 2010). As a 60 

result, consistent and smooth estimated pseudo 2-D or 3-D models are usually obtained from the LCI applications.  
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In the context of earthquake seismology, SWT is a well-stablished method for 𝑉𝑠 reconstruction of the crust and upper mantle 

(Wespestad et al., 2019; Bao et al., 2015; Boiero, 2009; Yao et al., 2008; Shapiro et al., 2005). Recently, a few authors 

showed the application of SWT for near-surface characterization, using active (Da Col et al., 2019; Socco et al., 2014; 

Khosro Anjom et al., 2021) and passive data (Badal et al., 2013; Picozzi et al., 2009; Colombero et al., 2022). 65 

In the literature, DC estimation methods are usually categorized into multi-channel and two-station methods, even though 

there are no theoretical and significant technical differences between the two approaches (Papadopoulou, 2021). The multi-

channel technique is the most common approach, in which the recordings from an array of receivers (in 2-D scheme) go 

through a wavefield transform (e.g., f-k, f-v and τ-p) and the DC is picked on the spectrum as the local maxima within the 

frequency band of surface-waves. The multi-channel processing stage is repeated to estimate DCs at different locations, 70 

which are then inverted individually (e.g., fast simulated annealing of Beaty et al., 2002) or simultaneously (e.g., LCI of 

Socco et al., 2009) to estimate the 𝑉𝑠 model. For SWT, DC are estimated using the two-station processing method, in which 

the receiver couples aligned with sources are considered to estimate many path-averaged DCs that are later inverted using a 

tomographic scheme to estimate directly (Boschi and Ekstrom, 2002; Fang et al., 2015; Boiero, 2009; Socco et al., 2014; 

Karimpour et al., 2022) or indirectly (Yoshizawa and Kennett, 2004; Shapiro and Ritzwoller, 2002; Yao et al., 2008) the 𝑉𝑠 75 

model. 

Here, we show the application of the three surface-wave methods, (W/D, LCI, and SWT), to estimate both 𝑉𝑠 and 𝑉𝑝 models. 

The first two methods are based on multichannel DCs, whereas the latter relies on the DCs from two-station method. We 

apply the methods to a challenging test data set that was acquired in a hard-rock site using carpet recording technique. The 

irregular source-receiver outline of carpet recording limits the use of conventional multi-channel processing methods. 80 

Conversely, the irregular combination of source-receiver is favorable for the estimation of many two-station DCs with 

different azimuthal angles, providing high data coverage and uniform azimuthal distribution of the paths that is to SWT’s 

advantage.  

In this paper, we first introduce the site and describe the acquired data. Then, we explain the multi-channel and two-station 

DC estimation processing techniques. Then, we briefly describe the W/D, LCI and SWT velocity model estimation methods 85 

and show their application to the data set. We use the W/D method to estimate the a priori Poisson’s ratio required by LCI 

and SWT methods, which we then employ to transform their 𝑉𝑠 results into 𝑉𝑝.  Finally, we compare the estimated models 

and the obtained resolution from the application of each method and compare the methods from an efficiency point of view. 

2 Site description and field data set 

The location is a limestone quarry in the province of Aurignac in the south of France (Fig. 1a). In Fig. 1b, we show the 90 

satellite view of the site superimposed with the elevation map of the area. From north-west to south-east, a significant natural 

(outside the pits) and human-made elevation (inside the pits) contrast is present, which can cause highly scattered surface-

waves. In Fig. 1c, we show the geological map of the area from the website of French geological survey (BRGM). The 
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central, eastern, and northern part of the site are characterized by stiff formations belonging to Thanetian and Sparnecian 

stages, primarily composed of stiff limestone and marl. In the western zone, recent loose deposits are present (Ypresian), 95 

creating a significant lateral variation between the east and west portions of the site. The very dense limestone with dolomite 

layers from Danian stage is outcropping in the north, outside of the investigated area, and is expected to be reached in 

shallow subsurface in the investigated zone. 

 

Figure 1: (a) Google map showing the location of the site (© Google Map). (b) Satellite view of the site obtained superimposed with the 100 
elevation map of the area (© Google Earth). (c) The geological map of the area obtained from French geological Survey (© BRGM - 

www.infoterre.brgm.fr). 

The seismic campaign was conducted inside and outside the two open mining pits to test the carpet recording technique in a 

hard rock site and provide an exploration data set to be used for testing different processing approaches. 918 receivers were 

deployed on a regular grid (area of 1.7 km × 1 km), and several source points (1077) were considered along the access roads, 105 

resulting in a 3-D large-scale acquisition layout. Two Birdwagen Mark IV off-road equipped with 24-ton vibrator were used 

as the source. The vibration included a sweep of 24 s (3 to 110 Hz) with 5 second listening time. The data were collected in 

real-time using the RT2 wireless system. In this study, we considered a portion of the data that were collected outside the 

mining pits. The full description of the acquisition parameters corresponding to this portion of the data is given in Table 1. 

 110 
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Table 1: Acquisition parameters of the data set for outside the mining pits. 115 

Receivers Sources Number of 

receivers 

Number 

of shots 

Sampling rate 

(ms) 

Recording 

time window 

(s) 

5 Hz 

vertical 

geophones 

Vibroseis 

truck 

581 

(spacing 25 

and 50 m) 

533 

(irregular 

layout) 

2 5 

 

 

To minimize the effect of elevation contrasts (Fig. 1b), we split the data into two sub data sets (north and south), each 

corresponding to an area with relatively flat topography. In Fig. 2, we show the acquisition layout, where different colors are 

used for each sub data set. 120 

 

Figure 2: The satellite view of the Aurignac site (© Google Earth) superimposed with the acquisition layout. The data divided into two 

sub data sets shown with different colors, each within relatively flat area. The recordings from the highlighted shot (green circle) are 

plotted in Fig. 3. 

In Fig. 3, we show the first 2 s of the recordings from the highlighted source in Fig. 2 in offset domain; only 20 % of the 125 

traces are shown for better visualization. The data exhibits a low signal-to-noise ratio as expected for hard rock sites. 
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Figure 3: An example seismogram from the north zone of the Aurignac site. The shot location is highlighted with a green circle in Fig. 2.  

3 Surface-wave processing of 3-D data 

3.1 Multi-channel DCs  130 

Multi-channel dispersion analysis is usually performed by selecting recordings from multiple inline receivers with a source 

and performing domain transform (i.e., 𝑓 − 𝑣, 𝑓 − 𝑘, 𝜏 − 𝑝, etc.). Nevertheless, this approach can lead to inconsistencies in 

the estimated DCs when the technique is applied to 3-D data sets with irregular source-receiver geometry at sites with 

significant lateral variations. In Fig. 4, we show two examples of DC estimation from the field data set for the same location 

using recordings from two linear receiver arrays. The estimated DCs for the location shown as green × in Fig. 4b are on 135 

average more than 15% different. The main reason for this inconsistency is the impact of lateral variations and the entirely 

different surface-wave propagation path along the two arrays.   

 

Figure 4: Two example DC estimations for the same location using two different receiver arrays. (a) The two receiver arrays and aligned 

shots. The middle of both arrays is coincident and shown with the green ×. (b) The estimated DCs for the location of the green × in a 140 

using the two arrays’ records. 
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To minimize the impact of lateral variability on the DC estimation of the 3-D data, we consider the recordings from receiver 

spread over an area (Wang et al., 2015; Xia et al., 2009; Park, 2019). For each DC estimation, we select the receivers inside a 

square area (window) and consider the sources within a certain distance from the center of the square. We use the phase-shift 145 

method (Park et al., 1998) to estimate the f-v spectrum. We stack the spectra corresponding to the recordings of the same 

receivers but from different source locations to increase the signal-to-noise ratio (Neducza, 2007). Then, the fundamental 

mode is picked as the maxima on the spectrum and is assigned to the center of the receiver spread. We slide the window by 

one inter receiver spacing to estimate DCs corresponding to different locations of the site.  

For the field data, we considered a window of 100 × 100 m2 to select the receiver and sources within 250 m of the center of 150 

the square.  In Fig. 5, we show an example DC picking for the north zone. In Fig. 5a, the 9 selected receivers inside the 

square are shown in blue, and the selected shots are plotted in green asterisks. In Fig. 5b, we show the computed spectrum 

and the picked DC. Overall, we estimated 545 DCs for northern and southern zones shown in Fig. 5c.  

 

  155 

Figure 5: Multi-channel DC estimation from the field data. (a) An example geometry of the selected receivers and sources for DC 

estimation in the northern zone. (b) The computed spectrum and estimated DC from the recordings of the receivers shown in (a). (c) All 

the estimated DCs for the north and south zones. 

3.2 Two-station DCs 

The two-station DCs are estimated applying interferometry to the recordings from receiver couples aligned with a source, 160 

assuming straight ray approximation. We use the algorithm developed by Da Col (2019) and modified by Khosro Anjom et 

al. (2021). First, an automatic search is performed to find the receiver couples aligned with the source at each azimuth angle, 



8 

 

considering 1° tolerance for the deviation from a straight path. Given the scale of the site, we consider the propagation path 

as occurring over a plain area, and we neglect the great-circle approximation. Then, the traces are narrow band filtered at 

various frequencies, using zero-phase Gaussian filters and the filtered traces of the receiver couples are cross-correlated and 165 

assembled to form the cross-multiplication matrix. We use a 3rd order spline interpolator to convert the cross-multiplication 

matrix to the frequency-velocity domain. We stack the cross-multiplication matrices computed from the records of the same 

two stations but different sources, to increase the signal-to-noise ratio. Finally, at each frequency, the phase-velocity is 

picked as the maximum of the cross-multiplication matrix. To avoid cycle skipping, we use, as reference, the closest 

multichannel DC, and we automatically pick maxima closest to the reference DCs. To minimize the contamination of the 170 

fundamental mode by higher surface-wave modes, we damp the higher mode data using the muting strategy of Khosro 

Anjom et al. (2019).  

We applied the two-station DC estimation method to the data from the north of the site only (blue markers in Fig. 2). We 

performed an automatic search of the receiver couples aligned with sources within 250 m offset, which resulted in 4710 

possible receiver couples and source settings. We used the local DCs from the multi-channel analysis (Fig. 5c) as references 175 

to locate the correct trend of the path-averaged fundamental mode DCs. We discarded noisy or inconsistent cross-

multiplication matrices and in total, 1301 path-averaged DCs were estimated. In Fig. 6a and b, we show the estimated path-

averaged DCs and the observed azimuthal illumination. The data show uniform coverage with most paths showing angles 

between 0° to 40° and 140° to 180° angles. The uniform coverage mitigates the directionality of the tomographic inversion 

toward dominant directions (Khosro Anjom et al., 2021). 180 

 

Figure 6: (a) The estimated path-averaged DCs corresponding to northern part of the site. (b) The obtained azimuthal illumination with the 

numbers around the great circle showing the angles and other circles representing the obtained coverage. 

In Fig. 7a to f, we show the data coverage within different wavelength ranges, where the color scale shows the path-average 

phase-velocity. The data exhibit very high coverage for wavelengths between 40 to 220 m, beyond which it decreases 185 

substantially.  
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Figure 7: Pseudo-slices of the estimated path-averaged DCs from the north of the site shown within the wavelength ranges: (a) 0 to 40 m. 

(b) 40 to 80 m. (c) 80 to 120 m. (d) 120 to 160 m. (e) 160 to 220 m. (f) 220 to 280 m. 

4 Velocity model estimation 190 

4.1 W/D data transform 

The only inputs of the W/D method are the estimated multi-channel DCs. The method, as described in Khosro Anjom et al. 

(2021), is composed of four main steps: (i) The clustering of DCs, (ii) the selection of a reference DC for each cluster and 

the estimation of the corresponding time-average 𝑉𝑠 velocity model, (iii) the W/D relationship and apparent Poisson’s ratio 

estimation for the reference DC of each cluster, and (iv) the direct transformation of the DCs into time-average and then 195 

interval 𝑉𝑠 and 𝑉𝑝 models.  

Since the same W/D relationship is applied to different DCs to transform them into velocity models, to apply the method at 

sites with significant lateral variations, the DCs must be clustered into more homogenous sets, and one W/D relationship 

should be estimated and applied separately to each cluster of DCs. We use the hierarchical clustering algorithm developed by 

Khosro Anjom et al (2017) to cluster the DCs.  200 

For each cluster, a reference DC and its corresponding time-average 𝑉𝑠 model is needed to estimate the W/D relationship. 

The reference DC is selected based on the quality control proposed by Karimpour (2018). The time-average velocity at a 

given depth z is the weighted average velocity from the surface to the considered depth, for which the one-way time is equal 

to the one-way time of the layered velocity model to the same depth, and can be directly computed from the layered velocity 

model as: 205 
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where ℎ and 𝑛 are the layers thickness and the number of layers down to the depth of z. The time-average velocity is used in 

many applications, ranging from static correction of the reflection data to seismic hazard analysis where the time average 

velocity down to 30m of depth, the so called 𝑉𝑠30 , is used as a proxy for seismic response classification. To estimate the 

required time-average 𝑉𝑠 model, we invert the reference DC using an optimized Monte Carlo inversion (Socco and Boiero, 210 

2008). The density has a minor impact on the surface-waves velocity (Xia et al., 1999; Foti and Strobbia, 2002) and is 

defined a priori based on the geological information about the site. The 𝑉𝑠, the Poisson’s ratio, and the thicknesses are 

randomly sampled within the boundaries of a wide uniform model space. Then, the synthetic DCs corresponding to each 

model are computed and compared with the experimental DC. The algorithm uses the scaling properties of DCs to create an 

optimal model space based on the initial model space: before computing the misfit with the experimental DC, the synthetic 215 

DCs of the random models are shifted as close as possible to the experimental DC; then, the scaling factor is obtained from 

the DC shift and is used to scale the models. These scaling steps, which are performed in a fully automatic manner, highly 

optimize the model space sampling that is focused on low misfit regions and reduce the number of required simulations. 

Unlike deterministic inversions that result in a single output, the Monte Carlo inversion leads to a set of possible solutions. 

The best fitting models are selected according to a one-tailed Fisher test, imposing a certain level of confidence. Then, the 220 

selected 𝑉𝑠  models are transformed to time-average 𝑉𝑠  models. The values of the selected time-average 𝑉𝑠  models are 

averaged at each depth to obtain a unique time-average 𝑉𝑠 model corresponding to the reference DC. Next, we estimate the 

W/D relationship that consists of the pairs of wavelength and depth values for which the phase velocity of the DC and the 

time-average 𝑉𝑠 of the Monte Carlo solution have the same value. Comprehensive synthetic and real data analyses have been 

performed by Socco et al. (2017), Khosro Anjom et al. (2019), and Khosro Anjom (2021) to show the high sensitivity of the 225 

W/D relationship to Poisson’s ratio. We use the method of Socco and Comina (2017) to estimate from the experimental W/D 

relationship an apparent Poisson’s ratio that relates the time-average 𝑉𝑠 and time-average 𝑉𝑝: First, we generate synthetic 

DCs corresponding to the estimated 𝑉𝑠  model from the Monte Carlo inversion and different Poisson’s ratios. Then, we 

consider these DCs and the time-average 𝑉𝑠 to retrieve synthetic W/D relationships that are each corresponding to a specific 

Poisson’s ratio value. Next, we deduce an apparent Poisson’s ratio at each depth by comparing the experimental W/D 230 

relationship with the synthetic ones.  

We use the estimated experimental W/D relationship to directly transform all DCs of the cluster into time-average 𝑉𝑠  

models. Then, we transform the estimated time-average 𝑉𝑠  models into time-average 𝑉𝑝  through the estimated apparent 

Poisson’s ratio. The time-average velocities can be transformed to interval velocities using a Dix-type equation. To mitigate 

the effect of noise in the data, we use the regularized Dix-type formulation proposed by Khosro Anjom (2019) to transform 235 
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the time-average 𝑉𝑠 and 𝑉𝑝 models to interval 𝑉𝑠 and 𝑉𝑝. Finally, we assemble all the estimated models from the clusters to 

build a pseudo 2-D/3-D model.  

4.2 LCI 

The method's inputs are the multi-channel DCs and the initial models at the location of the local DCs. An initial model 

defined as the thickness, density, Poisson’s ratio, and 𝑉𝑠, is set for each cluster of DCs. The thickness and 𝑉𝑠 are  based on the 240 

Monte Carlo inversions of reference multi-channel DCs in section 4.1. The Poisson’s ratio is selected based on the W/D 

analysis. We use information from the site to define the densities of the model. 

The inversion method is a deterministic least-square inversion based on Auken and Christiansen (2004), which was 

developed by Boiero (2009) and modified by Khosro Anjom (2021) to support parallel computing. At each iteration the 𝑉𝑠 

and thicknesses are updated, and the Poisson’s ratio and density are fixed a priori. All the DCs are inverted simultaneously 245 

for a set of 1D models that are tied by lateral constraints between parameters of neighboring models. The constraints act as 

spatial regularization, and their strength is defined to avoid both overfitting and over smoothing. Week lateral constraints or 

lack of lateral constraints can create unrealistic lateral changes in the final model, whereas too strong constraints can result in 

an oversmoothed model, masking the sharp lateral variations in the site. We use the data misfit as an indicator for choosing 

the level of constraints: the inversion with the highest level of constraint that does not impact the DC misfit compared to 250 

unconstrained inversion is selected. A thorough description of the method is available in Boiero (2009) and Socco et al. 

(2009) and the strategy for constraints selection is provided in Boiero and Socco (2010).  

 

4.3 SWT 

The inputs of the tomographic inversion are the path-averaged DCs from two-station method and the initial model. The 255 

parameters of the initial model are the thickness, 𝑉𝑠, Poisson's ratio, and density. The model points are defined with equal 

distances in X and Y directions. The distance of the model points depends on the required resolution and also the data 

coverage (i.e., path-averaged DCs). The parameters of the initial model are selected the same as the initial model of the LCI 

(section 4.2).   

We use the tomographic inversion algorithm developed by Boiero (2009) and modified by Khosro Anjom et al. (2021). An 260 

essential part of the tomographic inversion is the computation of synthetic path-averaged DCs corresponding to the observed 

ones. We compute the path-averaged DCs, assuming a straight ray path approximation between the two receivers, and as 

reciprocal of the average slowness along the paths discretized over the model grid. The phase velocities at the location of the 

discretized paths are computed by bi-linear interpolation of the phase velocities from local DCs corresponding to the 

adjacent model points (Boiero, 2009).  265 
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Similar to the LCI algorithm, a damped least-least square method is used to iteratively update the model until the minimum 

misfit between synthetic and observed DCs is reached. The only parameter that updates in the inversion is 𝑉𝑠, while the 

others are fixed a priori. The method allows the implementation of lateral constraints. We consider the same criteria 

explained in section 4.2 to select the optimal constraint level. In contrast with the other two methods, the SWT method is 

applied to the northern data set only due to computational capacity restrictions that will be explained in the discussion in 270 

section 7. 

5. Results 

5.1. W/D data transform 

The clustering of all the estimated DCs generated two clusters. In Fig. 8a, we show the estimated DCs with the color scale 

based on the clustering of the DCs in Fig. 8b. The DCs of the western cluster (cluster A, shown in blue in Fig. 8a) present 275 

lower phase-velocities compared to the eastern DCs (cluster B, shown in green in Fig. 8a).   

 

Figure 8: Clustering of the multi-channel DCs. (a) The estimated DCs. (b) The spatial view of the estimated DCs and obtained clusters. 

In Fig. 9 and 10, we show the steps of estimating the reference W/D relationship and apparent Poisson’s ratio for the 

reference DCs of cluster A and B. We considered variable Poisson’s ratios between 0.1 and 0.45 for the Monte Carlo 280 

inversion. Based on the information from the site, we considered density of 2000 kg/m3 for the first layer and constant 

density of 2200 kg/m3 for the other layers. We imposed a 0.001 level of confidence for the Fisher test to accept the best-

fitting models among 1,000,000 sampled models. In Fig. 9b and c, as well as Fig. 10b and c, we show the estimated 𝑉𝑠 and 

time-average 𝑉𝑠 models for cluster A and B, respectively. In Fig. 9b and Fig. 10b, we also show the boundaries of the 𝑉𝑠  

model space for the Monte Carlo inversion. Due to the application of the scale properties, the selected models can be scaled 285 

to outside of the original boundaries of the model space (Socco and Boiero, 2008). The estimated W/D relationship for 

cluster A and B are shown in Fig. 9d and 10d, whereas the obtained apparent Poisson’s ratios are provided in Fig. 9e and 

10e. In Fig. 9d and e, as well as Fig. 10d and e, we also show the uncertainty associated to the reference W/D and to the 

apparent Poisson’s ratio of the clusters, which was obtained based on the method of Khosro Anjom et al. (2019). 
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For both clusters, the W/D relationship and apparent Poisson’s ratio were not available for the first 20 m due to the lack of 290 

short wavelength data in the experimental DCs. The investigation depth of 128 m was reached for cluster A, whereas this 

value was increased to 140 m for cluster B. 

 

Figure 9: The steps of estimating the reference W/D relationship and apparent Poisson’s ratio for cluster A. (a) The reference DC with the 

phase-velocity and uncertainty and the synthetic accepted DCs from the Monte Carlo inversion. (b) The accepted 𝑉𝑠 models from the 295 

Monte Carlo inversion, where the black lines show the initial boundaries of the model space. (c) The accepted time-average 𝑉𝑠  models 

from the Monte Carlo inversion. In black, the reference time-average 𝑉𝑠. (d) Estimated reference W/D relationship. The colored W/D 

relationships are the synthetic ones, each with constant Poisson’s ratio, used for apparent Poisson’s ratio estimation. (e) The estimated 

reference apparent Poisson’s ratio. 

 300 

Figure 10: The steps of estimating the reference W/D relationship and apparent Poisson’s ratio for cluster B. (a) The reference DC with 

the phase-velocity and uncertainty and the synthetic accepted DCs from the Monte Carlo inversion. (b) The accepted 𝑉𝑠  models from the 

Monte Carlo inversion, where the black lines show the initial boundaries of the model space. (c) The accepted time-average 𝑉𝑠 models 

from the Monte Carlo inversion. In black, the reference time-average 𝑉𝑠. (d) Estimated reference W/D relationship. The colored W/D 

relationships are the synthetic ones, each with constant Poisson’s ratio, used for apparent Poisson’s ratio estimation. (e) The estimated 305 
reference apparent Poisson’s ratio. 
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The estimated DCs from the two clusters were transformed to interval 𝑉𝑠  and 𝑉𝑝  models using the reference W/D 

relationships and apparent Poisson’s ratios (Fig 9d and e, and Fig 10d and e). In Fig. 11, we show several horizontal slices of 

the estimated 𝑉𝑠 model averaged over the depth intervals indicated on top of each plot. Similarly, in Fig. 12, we show the 

horizontal slices of the estimated 𝑉𝑝 averaged over the same depth intervals. Both models show a sharp velocity transition 310 

between the east and west side of the area in the shallow depths above 65 m (Fig. 11a, b and c and Fig. 12a, b and c). This 

contrast is created by the transition from the high-velocity limestone and marl formations in the east to loose materials in the 

west characterized by lower velocity. Below, 110 m (Fig. 11e and f, and Fig. 12e and f) the contrast disappears, reaching the 

high-velocity formation probably from the Danian stage.  

 315 

Figure 11: The estimated 𝑉𝑠 model using the W/D method. (a to f) The horizontal slices at different depth intervals indicated on top of 

each plot.  
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Figure 12: The estimated 𝑉𝑝 model using the W/D method. (a to f) The horizontal slices at different depth intervals indicated on top of 

each plot. 320 

5.2. LCI  

We defined an initial model composed of 9 layers overlying half-space with constant thicknesses of 15 m, except for the first 

layer which was set at 20 m, giving an investigation depth of about 140 m. We assigned the Poisson’s ratios of the model 

based on the results of the W/D analysis: using the estimated 𝑉𝑠 and 𝑉𝑝 models at the reference location of each cluster (Fig. 

13a and b), we obtained the Poisson’s ratios, shown in Fig. 13c and d (in blue), corresponding to cluster A and cluster B, 325 

respectively. Since the Poisson’s ratios are assumed invariant within each cluster, we used all estimated 𝑉𝑠 and 𝑉𝑝 models of 

the clusters from the W/D method to obtain an uncertainty for the estimated Poisson’s ratios at each depth. The horizontal 

error bars in Fig. 13c and d show the standard deviation of the estimated Poisson’s ratios. We averaged and extrapolated the 

values of the Poisson’s ratio to match them with the layers of the LCI model (red lines in Fig. 13c and d). Based on the 

clustering analysis of the W/D method (Fig. 8b) and location of the LCI model points, we assigned the appropriate Poisson’s 330 

ratio to each 1D model. We defined a constant density of 2200 kg/m3, except for the first layer (2000 kg/m3) based on the 

geological formations in the area. 
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Figure 13: Poisson’s ratio estimation for the cluster A and B. (a and b) The estimated 𝑉𝑠  and 𝑉𝑝  models corresponding to the reference 

DC of Clusters A and B. (c and d) In blue, the estimated Poisson’s ratio for the cluster A and B. In red, the averaged and extrapolated 335 

Poisson’s ratio corresponding to the layers of LCI and SWT. 

 

We performed an unconstrained and several laterally constrained inversions to find the optimal level of constraints according 

to the strategy described in Boiero and Socco (2010). We chose a lateral constraint on 𝑉𝑠 equal to 50 m/s, that was the 

highest level of constraints that did not significantly impact the inversion's residual misfit.  In Fig. 14, we show the 340 

horizontal slices of the estimated 𝑉𝑠 model at various depths. Even though the inversion is laterally constrained, the algorithm 

was able to depict a sharp transition between the east and west (Fig. 14a to c), which is in line with the results of the W/D 

method (Fig 11a to c). The LCI model below 87.5 m shows high velocities with insignificant variations between east and 

west. 
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 345 

Figure 14: The estimated 𝑉𝑠 model using the LCI method. (a to f) The horizontal slices at different depths indicated on top of each figure. 

5.3 SWT 

Given the high data coverage from the estimated path-averaged DCs (Fig. 7), we defined a dense model grid on the 

considered northern zone, composed of 300 1D models, aiming at obtaining high resolution model. We used the same initial 

models defined for the LCI (section 5.2).  350 

In Fig. 15, we show the estimated 𝑉𝑠 at the different layers, which is in correspondence of the depth intervals defined for the 

estimated 𝑉𝑠 of W/D method (Fig. 11). We chose a lateral constraint of 𝑉𝑠 equal to 50 m/s, that was the highest level of 

constraints that did not significantly impact the inversion's residual misfit. Similar to the estimated model from W/D and 

LCI, the estimate model from SWT shows a significant velocity contrast between the east and west. Nevertheless, this 

contrast is smoother than the other two models. The model shows high velocities with no significant lateral variation below 355 

110 m of depth, an indication of reaching the high-velocity limestone/marl formation from the Danian stage (Fig. 1c).  
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Figure 15: The estimated 𝑉𝑠 model for the north of the site using the SWT method. (a to f) The horizontal slices at different layers 

indicated on top of each figure. 

7 Discussion 360 

We showed the application of three surface-wave methods for 𝑉𝑠 model estimation, out of which, the W/D and LCI methods 

provided the velocity models at the location of DCs, both in the northern zone (174 locations) and southern zone (371 

locations). The W/D method provided the 𝑉𝑝 model and the reference Poisson’s ratios used in LCI and SWT. The SWT was 

applied only to the northern zone, which provided the 𝑉𝑠 models at 300 defined model points. Here, we further evaluate the 

results of the three methods in terms of vertical resolution, spatial resolution, differences of the estimated models and 365 

computational efficiency of each method. 

In Fig. 16, we show the wavelength distribution of the estimated multi-channel DCs in blue that shows dense data sampling 

up to 300 m of wavelength, suggesting good vertical resolution also in deeper portions. These DCs were obtained from the 

recordings of receivers spread over a square window of 100 ×100 m2. The receiver window was shifted by one receiver 

spacing (50 m in the north and 25 m in the south). Neglecting the smoothing effect of superimposed receiver windows, the 370 

shifting distance can be considered as the spatial resolution of the multi-channel DC data.  
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Figure 16: Comparison between the wavelength distributions of the multichannel and two-station dispersion data. (Top) The distribution 

of the wavelength shown separately for each estimated DC. (Bottom) The histogram showing the wavelength distribution of all DCs 

within 20 m wavelength bins. 375 

In Fig. 16, in grey, we also show the wavelength distribution of the estimated two-station DCs. Even though the total number 

of DCs from two-station analysis (1301) is far more than multi-channel ones (545), the large wavelength datapoints (>120 

m) are sparser than the ones obtained with the multi-channel method (top plot in Fig. 16), mainly due to low signal-to-noise 

ratio of the cross-multiplication matrices at low frequencies. This shows that multi-channel DC analysis provides greater 

investigation depth compared to the two-station method. To mitigate the lack of investigation depth of SWT, we employed 380 

the wavelength-based weighting developed by Khosro Anjom et al. (2021), to increase the score of large-wavelength data 

points in the tomographic inversion, aiming at enhancing the resolution at depth. We performed a checkerboard test to 

evaluate horizontal and vertical resolution of the SWT. We perturbed the estimated 𝑉𝑠 model from SWT method (Fig. 15) by 

8% negatively and positively which alternated every two layers (Fig. 17a and b). In Fig. 17c to f, we show the results of the 

inversion at various layers. The 50 × 50 m2 perturbations were well-recovered up to depth of 50 m (Fig. 17c and d), 385 

providing similar spatial resolution compared to LCI and W/D methods. The resolution slightly decreases towards the 

deepest portion of the model (Fig. 17e and f), especially in the northern part where long-wavelength data are lacking (Fig. 

13f).  
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Figure 17: Checkerboard test. (a) The pattern 1 used to perturb 𝑽𝒔  of layer 1, 2, 5, 6, and 9. (b) The pattern used to perturb 𝑽𝒔 of layer 3, 390 
4, 7, and 8. (c) 0 to 20 m. (d) 35 to 50 m. (e) 80 to 95 m. (f) 125 to 140 m. 

The application of the W/D method to the data set provided both 𝑉𝑠 and 𝑉𝑝 models. We considered the estimated Poisson’s 

ratio of the two clusters as prior information in the reference model of the LCI and SWT methods. Now, we use the same 

Poisson’s ratios to transform the 𝑉𝑠 results of these two methods to 𝑉𝑝 models. We also linearly interpolate the 𝑉𝑠 and 𝑉𝑝 

results from all three methods to obtain the velocity models at common voxels of 10 ×10 × 0.1 m3 within x, y, and z (depth) 395 

directions, respectively. In Fig. 18, we compare the retrieved pseudo 3-D 𝑉𝑠 and 𝑉𝑝 models from the three methods at various 

iso-surfaces. Very similar trend of variations for 𝑉𝑠 (left panels) and 𝑉𝑝 (right panels) are obtained from the application of the 

methods, and they all depict a significant variation between the east and west side of the site. 
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Figure 18: Iso-surfaces of the estimated 𝑉𝑠 models (left panel) and 𝑉𝑝  models (right panels) using: (a) W/D, (b) LCI, and (c) SWT 400 

methods. The sections are at plains x= 600 m, y =0, and 400 m, and depth = 70, and 125 m. 

To compare the estimated models from each method quantitatively, we compute the difference between estimated 𝑉𝑠 and 𝑉𝑝 

of every two methods separately, as:  
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where  i , j , and k are the indices of the voxels in x, y, and z (depth) directions, respectively, and V is the velocity. In Fig. 405 

19, we show the boxplots of the differences compartmentalized within different depth intervals. The differences are 

computed for depths between 20 and 140 m, except for the 𝑉𝑠 comparison of the LCI and SWT (Fig. 19e), which also 
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includes the first 20 m. This is due to the lack of short wavelength data for the W/D method. The significant registered 

differences (red “+”) are mainly caused by the methods’ different parameterization in depth: the W/D method provided 

continuous velocities in depth (every 10 cm), while the SWT and LCI provided layered models; although we defined similar 410 

reference models for the LCI and SWT methods, the LCI was set to also update the thicknesses at each iteration, leading to 

different parameterization in depth compared to SWT; in addition, the W/D and LCI took as input multi-channel DCs and 

provided velocity models at their locations, whereas the SWT considered path-averaged DCs and resulted in velocity models 

in defined model point locations. 

  415 

Figure 19: The box plot showing the difference between the 𝑉𝑠 (left panel) and 𝑉𝑝 (right panel) models obtained from the three methods 

computed using equation (2). The box plot is defined by three lines showing the 25th percentile, median and 75th percentile of the residual’s 

distribution, and whisker lines extending from the box’s edges up to 1.5 times the distance between the edges of the box. The rest of the 

data are considered as outliers and are shown with “+”. The box plots show the differences between the models obtained from: (a) W/D 

and LCI, (b) W/D and SWT, and (c) LCI and SWT. 420 
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The difference between the estimated 𝑉𝑠 and 𝑉𝑝 from W/D and LCI methods are small and uniform within different depth 

ranges (Fig. 19a). Nevertheless, for the deepest layers, over-estimation of the 𝑉𝑝 from the LCI method is registered compared 

to the 𝑉𝑝 from W/D technique (right panel in Fig. 19a). The differences are increased in depth when the 𝑉𝑠 and 𝑉𝑝 of the W/D 

and SWT methods are compared (Fig. 19b). The differences obtained for the estimated 𝑉𝑠 from the LCI and SWT methods 

(Fig. 19c) are very similar to the ones observed for the 𝑉𝑝, since the 𝑉𝑝 models of both methods were obtained from the 425 

estimated 𝑉𝑠 and same a priori Poisson’s ratios; the differences are mainly less than 5%. 

We compute the total differences between the estimated models of every two methods as: 
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where  m , n , and q  are the overall number of voxels in z (depth), x, and y directions, respectively. In Table 2, we report 

the values of the total differences obtained by comparing the models from the three methods. 430 

 

Table 2: The total difference between the estimated 𝑽𝒔 and 𝑽𝒑 models obtained from the application of W/D, LCI, and SWT 

methods. 

Total difference 
tot (𝑉𝑠) tot (𝑉𝑝) 

W/D vs. LCI 3.3% 4.67% 

W/D vs. SWT 6% 7.06% 

LCI vs. SWT 4.74% 4.52% 

In Table 3, we provide the approximated computational costs for each part of the three methods. The most time-consuming 

step of all methods is the DC estimation, which also involves expert user intervention. Compared to W/D and LCI, the SWT 435 

usually requires more DCs to reach adequate data coverage for the tomographic inversion. We estimated 1301 DCs for SWT 

applied to the north of the site, whereas only 174 DCs were estimated for the application of the W/D and LCI methods to the 

same zone. The W/D relationship and Poisson’s ratio estimation is a common stage for all three methods. The inversion 

running times (for LCI and SWT) given in Table 3 are for a single inversion trial using 10 CPU cores. Usually, in addition to 

an unconstrained inversion, several constrained inversions are performed to reach a satisfactory model in scheme of SWT 440 

and LCI methods, whereas the W/D method can be applied faster and is efficient for processing large-scale data sets. It is 

noteworthy to mention that the SWT was limited to the northern zone due to computational limitations. The tomographic 

inversion with 1301 DCs and 300 model points was performed by a workstation equipped with 128 GB of memory and a 10-

core CPU. The simultaneous inversion of both zones with at least twice the number of DCs and model points would have 

required exponentially higher memory and computational capabilities that our workstations could not provide. We could 445 
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have under sampled the DCs and reduced the number of model points in order to invert both zones together, but we decided 

to maintain the resolution of the tomographic inversion by focusing to the northern zone only. 

 

 

Table 3: The approximated computational costs for each method. 450 

  Processing (DC 

estimation) 

W/D relationship 

and Poisson’s ratio 

estimation 

Model estimation 

W/D 1 min/DC 24 hrs 5 s/1D model 

LCI 1 min/DC 24 hrs 5 hrs 

SWT 1 min/DC 24 hrs 48 hrs 

 

In Fig. 20, we show the geological map superimposed with the satellite view of the area and with the horizontal slice of the 

estimated 𝑉𝑝 model from W/D corresponding to the depth between 35-50 m. The two diagonal and vertical faults at the 

north-west of the investigated area separate the east from the west. In the region between the two faults, a gap within the 

estimated model from the W/D method is observed: the scattering and complex propagation of surface-waves that passes 455 

through these discontinuities resulted in inconsistencies in the spectrum and prevented the estimation of reliable DCs. The 

west of the area is characterized by loose formation from recent deposits (outcrop 5 in Fig. 20). The rest of the region is 

known for stiffer materials, composed of limestone and marl. The estimated 𝑉𝑝 also shows a higher velocity in the eastern 

region. The fastest 𝑉𝑝 is registered in the correspondence of the Sparnecian formation (outcrop 4 in Fig. 20). The high-

velocity formation from the Danian stage that is outcropping outside of the investigated area, is probably reached below the 460 

depth of 110 m as all 𝑉𝑠 models from the three methods show very high velocity with minor lateral variations below this 

depth (Fig. 11e and f, Fig. 14e and f, and Fig. 15e and f). 
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Figure 20:  The geological map of the site, obtained from French Geological Survey (© BRGM - www.infoterre.brgm.fr), superimposed 

with the area's satellite view (© Google Earth) and the estimated 𝑉𝑝 corresponding to depth 35-50 m using the W/D method. 465 

The application of the calibrated multi-channel (W/D and LCI) and two-station (SWT) methods showed promising results 

for the processing of the carpet recorded data. All three methods depicted a contrast between the limestone rich area in the 

east and loose material in the west, which are corroborated by the geological information. Given the site is an open-cast 

limestone mining site, the estimated models can offer valuable insights for strategizing the expansion and excavation of the 

quarry in the investigated zone to support the nearby cement production facility. 470 

8 Conclusions 

We showed the application of three surface-wave methods, W/D, LCI, and SWT, to a large-scale test data set acquired by 

carpet recording approach and from a stiff site for the purpose of estimating 𝑉𝑠 and 𝑉𝑝 models. The fine tuned multi-channel 

W/D and LCI methods showed potential in the processing of the seismic data from carpet recording technique. Also, the 

irregular source-receiver outline in scheme of carpet recording provided high DC coverage within two-station method, 475 

facilitating high-resolution tomographic inversion. The W/D and LCI methods were applied to both zones outside the mining 

pits, whereas SWT application was limited to the north of the site. We used the W/D method to estimate a priori Poisson’s 

ratios required for the LCI and SWT methods. The estimated 𝑉𝑠 and 𝑉𝑝 models from the three methods were less than 6% and 

7.1% different, respectively. The retrieved lateral variation by the methods showed good similarity with the geological 

information available for the site. The most time-consuming part of the methods are the DC pickings, especially for the SWT 480 

method which requires more DC to reach an adequate data coverage compared to the other two methods. As a result, the 

automation of DC picking can be viewed as an important milestone in the industrialization of the surface-wave methods, 

facilitating their swift application to data sets even larger than the one used in this study. 
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