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Abstract. Soil water availability is an essential prerequisite for vegetation functioning. Vegetation takes up water from varying 12 

soil depths depending on the characteristics of their rooting system and soil moisture availability across depth. The depth of 13 

vegetation water uptake  is largely unknown across large spatial scales as a consequence of sparse ground measurements. At 14 

the same time, emerging satellite-derived observations of vegetation functioning, surface soil moisture and terrestrial water 15 

storage, present an opportunity to assess the depth of vegetation water uptake globally. In this study, we characterise vegetation 16 

functioning through the Near-Infrared Reflectance of Vegetation (NIRv), and compare its relation to (i) near-surface soil 17 

moisture from ESA-CCI and (ii) total water storage from GRACE at the monthly time scale during the growing season. The 18 

relationships are quantified through partial correlations to mitigate the influence of confounding factors such as energy-related 19 

variables. We find that vegetation functioning is generally more strongly related to near-surface soil moisture, particularly in 20 

semi-arid regions and areas with low tree cover. In contrast, in regions with high tree cover and in arid regions, the correlation 21 

with terrestrial water storage is comparable to or even higher than with near-surface soil moisture, indicating that trees can and 22 

do make use of their deeper rooting systems to access deeper soil moisture, similar to vegetation in arid regions. In line with 23 

this, an attribution analysis that examines the relative importance of these soil water storages for vegetation reveals that they 24 

are controlled by (i) water availability influenced by the climate and (ii) vegetation type reflecting adaptation of ecosystems 25 

to local water resources. Next to variations in space, the vegetation water uptake depth also varies in time. During dry periods, 26 

the relative importance of terrestrial water storage increases, highlighting the relevance of deeper water resources during rain-27 

scarce periods. Overall, the synergistic exploitation of state-of-the-art satellite data products to disentangle the relevance of 28 

near-surface vs. terrestrial water storage for vegetation functioning can inform the representation of vegetation-water 29 

interactions in land surface models to support more accurate climate change projections. 30 
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1. Introduction 31 

The regulation of water, energy, and biogeochemical cycling between land and atmosphere is primarily dependent on 32 

vegetation. In addition, global vegetation provides essential ecosystem services such as food production and uptake of some 33 

of the anthropogenic carbon dioxide emissions (Keenan & Williams, 2018). Vegetation growth depends on nutrient, water and 34 

energy availability. As a result, on a global scale, there are regions with energy or water limited vegetation functioning (Orth, 35 

2021). In energy-limited regions, the functioning of vegetation is controlled by radiation and temperature, as they often lack 36 

sunny and warm conditions but have ample soil moisture. In contrast, soil moisture becomes critical for vegetation growth in 37 

water-limited regions. Plant photosynthesis involves opening the stomata for the uptake of CO2, while at the same time water 38 

is lost through transpiration. However, in water-limited conditions, plants can reduce the stomatal opening to avoid water loss, 39 

leading to a decrease in photosynthesis. Hence, variations in soil moisture are likely to affect vegetation functioning in water-40 

limited conditions. Moreover, climate change has led to an expanded water limitation on vegetation (Denissen et al., 2022) 41 

and increased vegetation sensitivity to soil moisture (Li et al., 2022). For these reasons, it is essential to better understand the 42 

dependence of vegetation functioning on soil moisture to comprehend their coping mechanisms during drought to predict the 43 

future of global water, energy, and carbon cycles. 44 

 45 

Plants extract water from varying soil depths based on the positioning of their roots and the availability of soil moisture. In 46 

general, the plant water uptake depth further differs spatially across different climate regimes and vegetation types, and 47 

temporally between seasons. Vegetation in arid regions is more susceptible to fluctuations in near-surface soil moisture 48 

compared to vegetation in humid regions (Xie et al., 2019). Grasses, which generally have shorter roots than trees and shrubs, 49 

are more reliant on near-surface moisture than deeper moisture (Schenk & Jackson, 2002). Further, root water uptake profiles 50 

vary within individual plant types according to above-ground biomass and age, with larger and older trees having deeper roots 51 

capable of extracting water from deeper soil layers (Schenk & Jackson, 2002; Tao et al., 2021). Additionally, within similar 52 

climate regimes, plant water uptake varies across topographic positions. Upland and lowland roots tend to be shallower, making 53 

vegetation more reliant on near-surface soil moisture, while roots go deeper in steep terrain between these landscapes to access 54 

both surface and deep moisture (Fan et al., 2017).   55 

 56 

Though spatial variations of plant water uptake depths across vegetation types and climate regimes, and temporal shift during 57 

dry-months, are widely studied at point scale, inadequate deep soil moisture records pose a major obstacle to study vegetation 58 

root water uptake at a global scale. Microwave remote sensing allows to infer near-surface soil moisture dynamics globally. 59 

However, such data may not fully represent root-zone soil moisture as microwaves can only propagate through the top few 60 

centimetres in soil (Capehart & Carlson, 1997). Land surface models provide an alternative source of global soil moisture data 61 

across depths, but they are subject to uncertainties arising from meteorological data, inaccurate knowledge of soil and 62 

vegetation characteristics, and the representation of complex processes such as photosynthesis, infiltration, and evaporation 63 
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(Koster et al., 2009; Seneviratne et al., 2010). Hence, some studies have employed reanalysis-based soil moisture estimates, 64 

to investigate the relationship between vegetation and soil moisture at the  globa l(Li et al., 2021; Miguez-Macho & Fan, 2021);  65 

but those are likely to be impacted by model assumptions affecting soil moisture dynamics, particularly for deeper layers where 66 

less observational constraints are available. Thus, studying vegetation interactions with the entire water column, including 67 

near-surface and deep soil moisture, at a global scale using exclusively observation-based dataset is imperative to enhance the 68 

understanding of relevance of near-surface and deep soil moisture for vegetation functioning.  69 

 70 

The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides total water storage 71 

(TWS) anomalies observations at the global scale and offers a unique opportunity to investigate the relationship between 72 

vegetation and the total water column. Furthermore, the inter-annual carbon dioxide growth rate in the atmosphere has been 73 

found to be well correlated with the total water storage anomalies on a global scale, underlining the relevance of total water 74 

column for vegetation functioning (Humphrey et al., 2018). The TWS captures not only soil water but also snow and ice, 75 

canopy water, surface water, and groundwater. TWS anomalies can be used to estimate the variation of overall water 76 

availability (near-surface + deep soil moisture) for vegetation under (i) snow-free conditions, and assuming that (ii) water 77 

storage variations in lakes or groundwater are negligible at the monthly time scale, (iii) and canopy water storage is much 78 

smaller than soil water storage and hence also negligible.  79 

 80 

This study focuses on understanding the relevance of near-surface vs. total water storage for vegetation functioning on a global 81 

scale using observation-based datasets, thereby inferring vegetation’s large-scale water uptake depth from observation-based 82 

datasets. For this purpose, we utilise TWS and near-surface soil moisture and correlate them with vegetation functioning, 83 

represented by Near-Infrared Reflectance of Vegetation (NIRv). In particular, we analyse (1) what is the relevance of near-84 

surface soil moisture vs. the terrestrial water storage for vegetation functioning?, (2) how does the importance of near-surface 85 

soil moisture vs. terrestrial water storage change during dry months? and (3) how do climatic, vegetation, and topographic 86 

characteristics explain the variability in the relevance of near-surface vs. terrestrial water storage for vegetation functioning? 87 

2. Data and Methodology 88 

     Table 1: Table summarising all the datasets.  89 

Datasets Variables Source 
Spatial 

Resolution 
References 

Vegetation 

Functioning 

Near Infrared 

Reflectance of 

Vegetation (NIRv) 

MODIS/MOD13C1 

v061 
0.05 degree (Badgley et al., 2017) 

Solar Induced 

Chlorophyll 

Fluorescence (SIF) 

GOME-2 0.5 degree (Köhler et al., 2015) 
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Soil Water 

Storage 

Near-surface soil 

moisture (SSM) 
ESA-CCI v04.4 0.25 degree (Dorigo et al., 2017) 

Total Water Storage 

(TWS) Anomalies 
GRACE 0.5 degree 

(Landerer & Swenson, 

2012) 

Meteorological 

Air Temperature (Ta) 

ERA-5  0.25 degree (Hersbach et al., 2020) Precipitation (P) 

Net Radiation (Rn)  

Vegetation and 

Land cover class 

Tree cover fraction VFC5KYR 0.05 degree 
(Hansen,  Matthew & Song,  

Xiao-Peng, 2018) 

Land cover data ESA-CCI 0.05 degree 

ESA. Land Cover CCI 

Product User Guide Version 

2. Tech. Rep. (2017) 

Topographical 

data 

Elevation 
Earthenv 1 km (Amatulli et al., 2018) 

Slope 

Soil data 
Fraction of sand 

FAO 0.05 degree (Reynolds et al., 2000) 
Fraction of clay 

Irrigation 
Percentage of Irrigated 

area 
HID 5 arcmin (Siebert et al., 2015) 

 90 

2.1 Data 91 

2.1.1 Vegetation Functioning: 92 

In our study, vegetation functioning is characterised by satellite measurements of Near-Infrared Reflectance of vegetation 93 

(NIRv) and Solar Induced Fluorescence (SIF) (Table 1). NIRv is the product of near-infrared reflectance and the normalised 94 

difference vegetation index (NDVI) and represents the vegetation structure and vegetation greenness (Badgley et al., 2017). 95 

The NIRv data is available at a high spatial resolution of 0.05°, and the original 16-day data was aggregated to the monthly 96 

NIRv data. SIF is directly related to the photosynthetic activity of plants because the excess energy from sunlight, that triggers 97 

the light reaction during photosynthesis, is dissipated by leaf as chlorophyll fluorescence (Mohammed et al., 2019). SIF data 98 

is derived from the Global Ozone Monitoring Experiment (GOME-2), because GOME-2 provides relatively reliable data over 99 

a long period (2007-2018). The 0.5° spatial and 16-day temporal resolution SIF data is processed into monthly data as described 100 

by (Köhler et al., 2015).  101 

 102 

The high spatial resolution of NIRv allows for a detailed study of the correlation of vegetation functioning with soil water 103 

availability. Therefore, we performed the main analyses using NIRv data. However, SIF is more sensitive to drought stress 104 

than NIRv (Qiu et al., 2022). Therefore, we perform additional analyses with SIF to show that the relationships hold for a 105 

different and more direct indicator of vegetation functioning. 106 
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2.1.2 Soil Water Storage 107 

This study includes two different measures of soil water availability. The near-surface soil moisture (SSM) provides an 108 

estimate of water availability in the top layer of the soil, while the Terrestrial Water Storage (TWS) Anomaly provides an 109 

estimate of the overall water column of the soil. The SSM data is derived from the European Space Agency (ESA) Climate 110 

Change Initiative Program (CCI), which combines active and passive satellite microwave measurements to provide reliable 111 

estimates of SSM (Dorigo et al., 2017). The ESA CCI soil moisture data, at a daily temporal resolution, was aggregated to 112 

monthly temporal resolution. The TWS Anomaly data is derived from the GRACE mission, which measures changes in the 113 

Earth’s gravity field (Landerer & Swenson, 2012). Here, we use the JPL-Mascons product of TWS Anomalies which is 114 

available at a 0.5° spatial and monthly temporal resolution. 115 

2.1.3 Meteorological Data 116 

Employed climate variables include monthly air temperature (Ta), precipitation (P), and net radiation (Rn) from the ERA5 117 

reanalysis products at a 0.25° spatial resolution. The aridity index is calculated from the ratio between the long-term mean Rn 118 

(mm y-1) (1 MJ/sq.m/day = 0.408 mm/day) and P (mm y-1) for each grid cell (Budyko, 1974). In addition, the mean and 119 

standard deviation of the climate variables are calculated and incorporated in the attribution analysis (Section 2.2.3).  120 

2.1.4 Vegetation, soil, and topography data  121 

To evaluate the resulting correlation of vegetation functioning and water storages with respect to vegetation characteristics, 122 

we employ the tree cover fraction data from the AVHRR vegetation continuous fields products (VCF5KYR, 123 

https://lpdaac.usgs.gov/products/vcf5kyrv001/) (Hansen,  Matthew & Song,  Xiao-Peng, 2018). For this purpose, the mean of 124 

tree cover fraction for the years between 2007 and 2016 is calculated.  125 

 126 

Topographical variables such as elevation and slope are incorporated along with other climatological variables to determine 127 

the relative contribution of different variables to the correlation between vegetation functioning and water storage. Topographic 128 

data at a 5 km resolution were downloaded from the EarthEnv. These data are calculated based on the 250 m GMTED dataset, 129 

and compared against the 90 m SRTM 4.1 dev dataset. The data were resampled to a coarser resolution of 5 km using various 130 

aggregation techniques, details of which are in (Amatulli et al., 2018). Furthermore for each grid cell, the fraction of sand and 131 

clay in soil (Reynolds et al., 2000) along with the percentage of irrigated area (Siebert et al., 2015) were considered in 132 

attribution analysis.  133 

 134 
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2.2 Methodology  135 

2.2.1 Data pre-processing 136 

A flowchart of the data pre-processing and analyses is presented in Figure S1. The time period of analysis is from 2007 to 137 

2018 constrained by the concurrent availability of all involved datasets. All the analyses were performed in monthly temporal 138 

resolution and at 0.05° spatial resolution (for NIRv) and 0.5° spatial resolution (for SIF). The SSM and TWS data were initially 139 

available at 0.25° and 0.5° resolution, but were disaggregated or aggregated to 0.05° or 0.5° degrees , depending on the spatial 140 

resolution of the analysis performed, based on the assumption that the soil water storage anomalies are representative over 141 

larger areas. Also the meteorological data and vegetation, soil, and topographic data were resampled into the same resolution. 142 

After aggregating all the datasets to 0.05° resolution, the monthly anomalies were calculated by subtracting the long term mean 143 

monthly cycle and by removing linear trends. A SIF threshold was applied in each grid cell to filter out non-growing season 144 

data. For this purpose, we filtered out all the months from 2007-2018 when the mean-monthly SIF value was below the 145 

threshold of 0.2 mW/m2/sr/nm. We apply an additional temperature threshold (Ta > 5◦C) to remove the months with frozen 146 

soil and snow cover, similar to (Li et al., 2021). Last, all months with missing soil water storage or vegetation functioning 147 

records were excluded.  148 

2.2.2 Calculate the relevance of near-surface (SSM) soil moisture and terrestrial water storage (TWS) for vegetation 149 

functioning  150 

We calculated the spearman correlation between vegetation functioning (NIRv) and soil water storages (SSM and TWS) for 151 

each grid cell during growing season months when observations for at least 40 months were available. In addition to soil 152 

moisture, also air temperature (Ta) and net radiation (Rn) affect the vegetation functioning. To focus exclusively on the effects 153 

of water availability on vegetation functioning, we corrected for the confounding effects of Ta and Rn, by computing the partial 154 

correlation between NIRv and water storages while controlling for Ta and Rn. Since we focus on understanding the role of soil 155 

moisture on vegetation functioning, which is primarily critical in water-limited conditions, we removed the grids cells with 156 

insignificant (p <0.05) and negative partial correlations from our analysis. Such negative partial correlations may hint at 157 

vegetation’s converse effect on soil moisture (when increasing vegetation activity depletes the soil moisture) and a negative 158 

correlation could occur in the grid cells where water limits vegetation productivity through oxygen limitation (Ohta et al., 159 

2014).  160 

 161 

To analyse how the importance of SSM and TWS changes during dry months, we selected the months with the lowest 10% 162 

SSM for each grid cell. The partial correlations between NIRv and water storages, r(NIRv~SSM) and r(NIRv~TWS) were 163 

calculated separately for dry months. To focus on vegetation response to similar extent of dryness spatially, only grid cells 164 

with greater than 100 monthly observations were considered for the dry months analysis. In addition, only the grid cells which 165 

had significant partial correlation in growing season months were included for the dry months analysis.  166 
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 167 

After computing the partial correlations, we grouped the grid cells by aridity and tree cover or land cover classes and calculated 168 

the mean correlation, for each aridity-tree cover class with sufficient number of observations for both growing season and dry 169 

months. This allowed us to analyse the evolution of correlations and the difference between the partial correlation across aridity 170 

and vegetation classes. 171 

 172 

Moreover, to test the robustness of the results, we did additional correlation analyses, for which we correlated the SIF (instead 173 

of NIRv) with SSM and TWS. The analyses with SIF were performed at a spatial resolution of 0.5°, at which SIF data was 174 

available.  175 

2.2.3 Attribution Analysis 176 

We used a random forest model to understand the spatial variability in the relevance of SSM versus TWS for NIRv. Random 177 

forest is a nonparametric based regression algorithm which does not require any statistical assumptions on the predictor and 178 

target variables which makes it particularly useful for detecting the nonlinear relationship (Breiman, 2001). Given potential 179 

nonlinear impacts of various factors (climate, soil types, vegetation) on the relationship between moisture storages and 180 

vegetation functioning, this study employed the random forest method to assess the relative contributions of these variables. 181 

 182 

In our study, 13 predictors were included in the random forest model based on their potential physical relevance to the target 183 

variable, which is the difference in correlation between SSM and TWS with NIRv in growing season months. These predictors 184 

included mean and standard deviation of climate variables (Ta, Rn, and P), aridity index, topographical variables (elevation and 185 

slope), vegetation variable (tree cover), soil-related variables (fraction of clay and sand), and percentage of irrigated areas for 186 

each grid cell. We calculated the mean and standard deviation of the climate variables only during the growing months (the 187 

months with SIFmean-monthly < 0.2 mW/m2/sr/nm were excluded).  Furthermore, only the grid cells having significant and positive 188 

partial correlation between NIRv and SSM as well as NIRv and TWS during growing season-months were included in the 189 

random forest analysis. For training a random forest model, we used the “xgboost” package in R (Chen & Guestrin, 2016).  190 

 191 

We further incorporate SHAP (SHapley Additive exPlanations) values for interpreting the predictions of the random forest 192 

model (Lundberg et al., 2020). The SHAP value for a feature is the average difference in prediction of the model when that 193 

feature is included compared to when it is excluded, over all possible combinations of features. By calculating SHAP values 194 

for each feature in the model, we identified which features were most important in explaining the spatial variability in the 195 

relevance of SSM versus TWS. For calculating the SHAP values, we employed “SHAPforxgboost” package in R.  196 
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3. Results and Discussion 197 

3.1 Coupling of vegetation functioning with surface soil moisture and total water storage in the growing season  198 

      199 

Figure 1: Coupling strength between vegetation functioning (NIRv) and (a) near-surface soil moisture (SSM), and (b) total water 200 
storage (TWS) during the growing season months. Monthly anomalies of all variables are used to calculate the partial correlation. 201 
(c) Difference between (a) and (b). The purple colour in (c) indicates the greater partial correlation of NIRv with SSM compared to 202 
the partial correlation of NIRv with TWS while orange colour indicates the opposite. Grid cells with significant (p < 0.05) and 203 
positive relationships for both correlations (a) and (b) are shown in (c) with blueish and orange colours. Light grey colour indicates 204 
insignificant and/or negative partial correlations between NIRv and water storage. 205 

The partial correlation of NIRv with near-surface soil moisture varies globally during growing-season months (Figure 1a). 206 

NIRv demonstrates stronger correlation with near-surface soil moisture within semi-arid climates, Central North America, 207 

https://doi.org/10.5194/egusphere-2023-770
Preprint. Discussion started: 8 May 2023
c© Author(s) 2023. CC BY 4.0 License.



9 

 

South America, regions in South Africa and Australia. The correlation is stronger in Southern Europe and the Mediterranean 208 

region compared to central and Northern Europe. The correlation gradient from the hot and dry Mediterranean region to wet 209 

and cold Northern Europe corresponds to the gradient of water-limited ecosystems to energy-limited ecosystems obtained in 210 

other studies (Denissen et al., 2022; Teuling et al., 2009).  211 

 212 

The global correlation of NIRv with TWS follows a similar pattern as with SSM (Figure 1b) in growing-season months. The 213 

correlation of NIRv with TWS is higher in drier central northern America and Australia compared to other regions. The 214 

similarities in the correlation of NIRv with SSM and TWS are expected because the monthly anomalies of SSM and TWS are 215 

highly correlated during growing season months in most of our study area (Figure S2).  216 

 217 

The difference between the partial correlation of NIRv with SSM and TWS (Figure 1c) indicates that the NIRv correlates 218 

stronger with TWS in Western America, Southern Europe, and arid regions of Australia compared to other regions globally 219 

during growing-season months. In South America and Southern Africa, however, the NIRv shows a stronger correlation with 220 

SSM. It is difficult to determine which soil water storage (SSM or TWS) is more critical for vegetation, because the near-221 

surface soil moisture is included in the measurements of TWS, and both datasets have very different noise levels. 222 

 223 

 224 

Figure 2: Summarising the coupling strengths of vegetation functioning (NIRv) with (a) near-surface soil moisture (SSM) and (b) 225 

terrestrial water storage (TWS) in the growing season-months across climate (aridity index) and vegetation regimes (fraction of tree 226 

cover). (c) shows the difference between (a) and (b). Numbers within the boxes denote the number of grid cells for each aridity-tree 227 

cover class. Aridity-tree cover classes containing less than 1000 grid cells are shown in grey. The colour bar indicates a mean partial 228 

correlation for each class. Only grid cells with significant (p < 0.05) and positive relationships are considered.  229 

 230 

Next, we analyse the partial correlation between NIRv and soil water storages across different aridity and tree cover fraction 231 

classes during growing season months. For this, we group the grid cells into different aridity and tree cover fraction classes 232 

and then compute mean partial correlation for each class with more than 1000 grid cells. We find that the partial correlation of 233 

NIRv with SSM (Figure 2a) increases with increasing aridity for aridity index 0.5 – 4. This can be attributed to the 234 
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intensification of water stress on vegetation under increasingly arid conditions, resulting in a stronger correlation between 235 

NIRv and SSM. However, for a further increase in aridity (4-8), the strength of the correlation of NIRv with SSM declines. 236 

This is due to a low soil moisture availability and low temporal variability under extremely arid conditions (Figure S7). The 237 

pattern of increasing correlation along aridity index is also observed in the partial correlation between NIRv and TWS. (Figure 238 

2b).  239 

 240 

Furthermore, the correlation of NIRv with SSM decreases for higher tree cover fractions (Figure 2a). However, such a gradient 241 

along tree cover fraction is less pronounced in the partial correlation of the NIRv with TWS (Figure 2b). This overall depicts 242 

that the coupling of vegetation functioning with SSM is generally higher for non-forested areas compared to forested areas 243 

while this gradient is less pronounced in the case of TWS.   244 

 245 

It is difficult to conclude which soil moisture storage (SSM or TWS) is more important for a certain aridity-vegetation class 246 

because it inherently includes the difference in noise levels associated with SSM and TWS. However, we can compare the 247 

evolution of the gradient along tree cover or aridity index and assert how the relevance of SSM and TWS changes with varying 248 

tree cover or aridity index. Taking this into account, we find that NIRv correlates more strongly with near-surface soil moisture 249 

compared to terrestrial water storage in semi-arid regions with low tree cover (Figure 2c), suggesting that the vegetation 250 

preferentially takes up water from SSM whenever available to meet its transpiration demand. This might be due to lower 251 

energy expenditure on root water uptake, abundant nutrients and reduced chance of root water logging in the near-surface soil 252 

moisture (Andrew Feldman et al., 2022; Schenk & Jackson, 2002; Tao et al., 2021). Conversely, the correlation between the 253 

NIRv and TWS in arid areas (AI 4-8)  and regions with a high fraction of tree cover is equivalent to or greater than that of 254 

SSM, suggesting that trees can utilise their extensive root systems to access deeper soil moisture, as observed in arid vegetation. 255 

This is consistent with previous studies reporting that the vegetation dependence on sub-surface soil moisture is higher in arid 256 

and seasonal-arid climates (Miguez-Macho & Fan, 2021). 257 

 258 

Note that while our analysis focuses on regions with water-controlled vegetation as denoted by significantly positive 259 

correlations between NIRv and the considered soil water storages, some of these grid cells are located in comparatively wet 260 

climate regimes with aridity index values between 0.5 and 1 (Figure 2). This highlights the relevance of non-climatic factors 261 

such as soil and vegetation types or topography in determining vegetation-water relationships in addition to the climate regime. 262 

Next to this, in Figure 2c it seems that the relevance of terrestrial water storage is comparatively higher in wet climate (aridity 263 

0.5-1) than in transitional climate regimes (aridity 1-2) as shown with the smaller correlation differences. This, however, is 264 

probably not the case and simply a reflection of reduced variability in surface soil moisture (Figure S7). 265 

 266 

To ascertain that our results are not impacted by outliers, we analysed the heatmaps with 10th and 90th percentile correlation 267 

values for each aridity-vegetation class, instead of the mean correlation value (Figure S3). This shows consistent patterns of 268 
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the partial correlation of NIRv with soil water storages as in Figure 2 and indicates that the gradients with tree cover and 269 

aridity are valid throughout the entire dataset.  270 

3.2 Coupling of vegetation functioning with surface soil moisture and total water storage in dry months  271 

The correlation between NIRv and soil water storage increases during dry months (Figure 3a,b) compared to growing season 272 

months (Figure 2a,b). This increase is consistent for both SSM and TWS and across all tree cover fractions and aridity classes. 273 

This is because the water limitation on vegetation increases in dry months and so does the vegetation’s sensitivity to the 274 

moisture. During the dry months, the correlation with near-surface soil moisture tends to rise, but the correlation with terrestrial 275 

water storage increases even more significantly (Figure 3c). This hints the relevance of deeper water resources during periods 276 

of scarce rainfall. The partial correlation maps (Figure S4) also reveal that NIRv's correlation with TWS increases more than 277 

its correlation with SSM for most grid cells. 278 

 279 

 280 

Figure 3: Similar to Figure 2, but only considering the 10% driest months in each grid cell.  281 

During dry months, the number of analysed grid cells (Figure 3) is lower compared to all growing season months (Figure 2). 282 

We performed a reanalysis of the correlation patterns within aridity-tree cover classes by selecting only those grid cells that 283 

displayed significant and positive partial correlation between NIRv and soil water storages during both the dry months and the 284 

growing season months. The results demonstrate that the previously observed patterns remain valid, thereby eliminating the 285 

impact of the differing numbers of grid cells analysed. (Figure S5). 286 

 287 
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3.3 Climate, vegetation, and topographic controls on the relevance of surface soil moisture vs. total water storage on 288 

vegetation 289 

 290 

Figure 4: (a) Global feature importance based on the mean absolute magnitude of the SHAP values. The higher the mean SHAP 291 
values, the greater the predictor’s relevance. (b-d) Evaluation of SHAP values (=contributions to the correlation difference 292 
illustrated in Figure 1c) against predictor values for the 3 most relevant predictors mean temperature during the growing season 293 
months (mean Ta), tree cover fraction (TC), and variability of temperature during the growing season months (sd Ta). The colour 294 
indicates the density of data points. For plotting (b), (c) and (d), only 10 percent random samples of the whole dataset are utilised.  295 

We use a random forest model to understand the spatial variability in the relevance of SSM versus TWS for NIRv. The model 296 

was trained with 13 climatic, vegetation, and topographic predictors against the target variable which is the difference of the 297 

partial correlations of NIRv with SSM and TWS during growing season-months (R2 = 0.64, see methods section 2.2.3). The 298 

mean absolute SHAP value plot shows that the climate variables (mean and standard deviation of Ta) and tree cover are most 299 

important variables for explaining the spatial variability in the relative importance of SSM vs. TWS for vegetation functioning 300 
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(Figure 4a). This overall highlights that the relative importance of SSM vs. TWS for the vegetation is broadly controlled by 301 

climate, influencing water availability and vegetation type, reflecting the local adaptation of ecosystem (Stocker et al., 2023).  302 

The relative importance of SSM and TWS varies non-linearly with the mean growing season temperature (Figure 4b). TWS 303 

tends to be more crucial for vegetation functioning in areas with low (approximately below 20°C) or high (above 27°C) 304 

growing season temperatures, while SSM has greater importance in regions with moderate growing season air temperatures. 305 

One possible explanation for this trend is that high temperatures induce a strong atmospheric water demand that dries near-306 

surface soil layers, which leads vegetation to increase water extraction from deep soils. In contrast, SSM is more available 307 

during growing seasons characterised by moderate temperatures. Regions that experience relatively cold growing season 308 

temperatures exhibit stronger temperature and weather variability that may contribute to longer dry periods and, thus, 309 

emphasises the importance of deeper soil moisture for vegetation functioning. However, it should be noted that our findings 310 

regarding the relevance of TWS at high temperatures must be interpreted with caution due to the exclusion of most tropical 311 

forest regions from our analysis (Figure S6). As a result, most warm regions are dry, and there are only a few hot and wet 312 

regions included in our training data. 313 

 314 

In addition to mean growing season Ta, tree cover fraction is an important factor in determining the relevance of SSM and 315 

TWS for vegetation functioning (Figure 4c). Regions with a high tree cover are more dependent on TWS, as trees generally 316 

have deeper root systems that allow them to adjust water uptake between different depths (Tao et al., 2021). Grasslands on the 317 

other hand have shallow roots that are more susceptible to surface soil moisture variations (Yang et al., 2014). 318 

 319 

Not only the mean of the growing season temperature, but also its variability is crucial for explaining the significance of SSM 320 

and TWS for vegetation functioning (Figure 4d). A higher temporal variability in temperature increases the importance of 321 

TWS for vegetation. This is because atmospheric water demand scales with temperature. Hence, higher variability in 322 

temperature implies more peaks in related atmospheric water demand which is a stronger incentive for plants to access deeper 323 

water storages which are more often available to meet the vegetation´s transpiration demand.  324 

 325 

Figure S8 illustrates the effect of the other six important predictors on the model output. Apart from climatological parameters 326 

(mean P, variability in Rn, and P, and aridity index ), elevation and slope explain part of the variability in the relevance of SSM 327 

vs. TWS for NIRv. Although the reasons for increasing relevance of TWS for vegetation functioning at higher elevation remain 328 

unclear, it may be due to elevation’s strong correlation with other climatic variables such as Ta and P. 329 

3.4 Robustness Tests 330 

Although NIRv can largely reflect vegetation functioning (Badgley et al., 2017), we repeat our analysis with SIF, which is an 331 

alternative and independent indicator for vegetation functioning and shows a near-linear relationship with gross primary 332 
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productivity at the ecosystem level (Guanter et al., 2012). However, SIF is only available at a coarse resolution of 0.5 degree. 333 

The partial correlations, r(SIF~SSM) and r(SIF~TWS) largely agree with the pattern of r(NIRv~SSM) and r(NIRv~TWS) 334 

across varying aridity index and tree cover classes (Figure S9). This suggests that our overall conclusion on the relevance of 335 

SSM or TWS for vegetation functioning is robust across different indicators of vegetation productivity.  336 

 337 

The partial correlation of NIRv with TWS is confounded by the presence of SSM within TWS, which makes it  challenging to 338 

determine the relative importance of SSM and TWS for vegetation functioning. To address this issue, we re-calculated the 339 

partial correlation of NIRv with TWS while additionally controlling for SSM (next to Ta and Rn) during growing season 340 

months. With this additional control variable, we observed fewer grid cells with positive and significant correlations compared 341 

to the analysis without controlling for SSM. Additionally, the magnitude of the partial correlation of NIRv with TWS slightly 342 

decreased in most grid cells when controlling for SSM (Figure S10). Nevertheless, we still observed the decreasing relevance 343 

of SSM and increasing relevance of TWS along an increasing tree cover fraction. Similar gradient across the aridity index is 344 

also observed in this analysis controlling for SSM. Thus, we conclude that our findings  hold even after controlling for the 345 

effect of SSM in TWS . 346 

4. Summary and Conclusions 347 

In this study we compare the relevance of near-surface soil moisture and of terrestrial water storage for vegetation functioning 348 

across the globe. We find that in semi-arid regions and regions with low tree cover, vegetation preferentially utilises the water 349 

from shallow soil, which is related to continuous availability of near-surface water availability and lack of deep rooting systems 350 

respectively. By contrast, in mostly forested regions and in relatively dry climate regimes, the correlation with terrestrial water 351 

storage is comparable or higher than with near-surface soil moisture, indicating that trees and vegetation in arid regions use 352 

their deep root systems to access deeper soil moisture. 353 

  354 

We also find that vegetation’s preferential water uptake depth changes over time. During particularly dry months, the relative 355 

importance of terrestrial water storage is higher, highlighting the importance of deep water resources during periods of low 356 

soil water availability. This is in line with previous studies showing changes in vegetation’s water uptake depth during drought 357 

periods at small spatial scales where accessing water in deeper soil layers helps plants to alleviate water stress and maintain 358 

transpiration (Migliavacca et al., 2009; Tao et al., 2021). 359 

 360 

Furthermore, we show that the spatial variability of the importance of near-surface soil moisture vs. terrestrial water storage 361 

for vegetation functioning is influenced by temperature and the fraction of tree cover. This emphasises the role of climate in 362 

determining shallow vs. deep soil water resources, and the role of vegetation in adapting to different soil water availability 363 

patterns.  364 
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Vegetation functioning and soil water storages are generally coupled in both directions, i.e. while soil moisture availability 365 

affects vegetation functioning (positive coupling), this in turn also affects soil moisture through transpiration (negative 366 

coupling). As our study focuses on water-controlled vegetation we only consider positive couplings and filter out grid cells 367 

with negative correlations. Future research may consider the relevance of soil moisture across depths for the positive coupling 368 

regions.  369 

 370 

Overall, our analysis illustrates that satellite-based data can be used for belowground analysis at large spatial scales thanks to 371 

the fact that satellite retrievals can assess soil water storage dynamics across depths and because vegetation in water-controlled 372 

areas can be used as an indicator of soil water dynamics. Such novel ways to improve our understanding of belowground water 373 

dynamics is necessary and valuable as respective in-situ observations are scarce and of limited representativeness for larger 374 

areas, particularly given the typical spatial heterogeneity of soils and vegetation. Our results can further inform a better 375 

representation of belowground processes in global models in order to support more accurate projections of future changes in 376 

climate, water resources, and ecosystem services.  377 

Data availability 378 

The monthly SIF data is available from https://www.gfz-potsdam.de/sektion/fernerkundungund- 379 

geoinformatik/projekte/global-monitoring-of-vegetation-fluorescence-globfluo/daten.The NIRv was calculated from the red 380 

and near-infrared reflectance obtained from the MOD13C1 v006 product (https://lpdaac.usgs.gov/products/mod13c1v061/). 381 

The ESA-CCI soil moisture can be accessed through https://esa-soilmoisture-cci.org/ and Terrestrial Water Storage Anomaly 382 

data can be accessed through https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACGRFO_MASCON_CRI_GRID_RL06_V2. 383 

The ERA5 climate variables are available from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 . Tree 384 

cover fraction data is available from the AVHRR vegetation continuous fields products  385 

https://lpdaac.usgs.gov/products/vcf5kyrv001/, land cover data is available from https://www.esa-landcover-cci.org/, and 386 

topographic data is available via https://www.earthenv.org/topography. Similarly, the irrigation fraction data could be accessed 387 

from https://mygeohub.org/publications/8 . 388 
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