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Abstract. Soil water availability is an essential prerequisite for vegetation functioning. Vegetation takes up water from varying 14 

soil depths depending on the characteristics of their rooting system and soil moisture availability across depth. The depth of 15 

vegetation water uptake is largely unknown across large spatial scales as a consequence of sparse ground measurements. At 16 

the same time, emerging satellite-derived observations of vegetation functioning, surface soil moisture and terrestrial water 17 

storage, present an opportunity to assess the depth of vegetation water uptake globally. In this study, we characterise vegetation 18 

functioning through the Near-Infrared Reflectance of Vegetation (NIRv), and compare its relation to (i) near-surface soil 19 

moisture from ESA-CCI and (ii) total water storage from GRACE at the monthly time scale during the growing season. The 20 

relationships are quantified through partial correlations to mitigate the influence of confounding factors such as energy and 21 

other water-related variables. We find that vegetation functioning is generally more strongly related to near-surface soil 22 

moisture, particularly in semi-arid regions and areas with low tree cover. In contrast, in regions with high tree cover and in 23 

arid regions, the correlation with terrestrial water storage is comparable to or even higher than with near-surface soil moisture, 24 

indicating that trees can and do make use of their deeper rooting systems to access deeper soil moisture, similar to vegetation 25 

in arid regions. At the same time we note that this comparison is hampered by different noise levels in these satellite data 26 

streams. In line with this, an attribution analysis that examines the relative importance of these soil water storages for vegetation 27 

reveals that they are controlled by (i) water availability influenced by the climate and (ii) vegetation type reflecting adaptation 28 

of ecosystems to local water resources. Next to variations in space, the vegetation water uptake depth also varies in time. 29 

During dry periods, the relative importance of terrestrial water storage increases, highlighting the relevance of deeper water 30 

resources during rain-scarce periods. Overall, the synergistic exploitation of state-of-the-art satellite data products to 31 
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disentangle the relevance of near-surface vs. terrestrial water storage for vegetation functioning can inform the representation 32 

of vegetation-water interactions in land surface models to support more accurate climate change projections. 33 

1. Introduction 34 

The regulation of water, energy, and biogeochemical cycling between land and atmosphere is primarily dependent on 35 

vegetation. In addition, global vegetation provides essential ecosystem services such as food production and uptake of some 36 

of the anthropogenic carbon dioxide emissions (Keenan and Williams, 2018). Vegetation growth depends on nutrient, water 37 

and energy availability. As a result, on a global scale, there are regions with energy or water limited vegetation functioning 38 

(Orth, 2021). In energy-limited regions, the functioning of vegetation is controlled by radiation and temperature, as they often 39 

lack sunny and warm conditions but have ample soil moisture. In contrast, soil moisture becomes critical for vegetation growth 40 

in water-limited regions. Plant photosynthesis involves opening the stomata for the uptake of CO2, while at the same time 41 

water is lost through transpiration. However, in water-limited conditions, plants can reduce the stomatal opening to avoid water 42 

loss, leading to a decrease in photosynthesis. Hence, variations in soil moisture are likely to affect vegetation functioning in 43 

water-limited conditions. Moreover, climate change has led to an expanded water limitation on vegetation (Denissen et al., 44 

2022) and increased vegetation sensitivity to soil moisture (Li et al., 2022). For these reasons, it is essential to better understand 45 

the dependence of vegetation functioning on soil moisture to comprehend their coping mechanisms during drought to predict 46 

the future of global water, energy, and carbon cycles. 47 

 48 

Plants extract water from varying soil depths based on the positioning of their roots and the availability of soil moisture and 49 

nutrients. In general, the plant water uptake depth further differs spatially across different climate regimes and vegetation 50 

types, and temporally between seasons. Vegetation in arid regions is more susceptible to fluctuations in near-surface soil 51 

moisture compared to vegetation in humid regions (Xie et al., 2019). Grasses, which generally have shorter roots than trees 52 

and shrubs, are more reliant on near-surface moisture than deeper moisture (Schenk and Jackson, 2002). Further, root water 53 

uptake profiles vary within individual plant types according to above-ground biomass and age, with larger and older trees 54 

having deeper roots capable of extracting water from deeper soil layers (Schenk and Jackson, 2002; Tao et al., 2021). 55 

Additionally, within similar climate regimes, plant water uptake varies across topographic positions. Upland and lowland roots 56 

tend to be shallower, making vegetation more reliant on near-surface soil moisture, while roots go deeper in steep terrain 57 

between these landscapes to access both surface and deep moisture (Fan et al., 2017).   58 

 59 

Though spatial variations of plant water uptake depths across vegetation types and climate regimes, and temporal shift during 60 

dry-months, are widely studied at point scale, inadequate deep soil moisture records pose a major obstacle to study vegetation 61 

root water uptake at a global scale. Microwave remote sensing allows to infer near-surface soil moisture dynamics globally.. 62 

While microwaves penetrate only the top few centimeters and do not cover the entire soil moisture profile, they represent 63 
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larger depths of moisture variation, providing valuable insights into root zone soil moisture (Feldman et al., 2023) .Land 64 

surface models provide an alternative source of global soil moisture data across depths, but they are subject to uncertainties 65 

arising from meteorological data, inaccurate knowledge of soil and vegetation characteristics, and the representation of 66 

complex processes such as photosynthesis, infiltration, and evaporation (Koster et al., 2009; Seneviratne et al., 2010). Hence, 67 

some studies have employed reanalysis-based soil moisture estimates, to investigate the relationship between vegetation and 68 

soil moisture at the  global scale ((Li et al., 2021; Miguez-Macho and Fan, 2021);  but those are likely to be impacted by model 69 

assumptions affecting soil moisture dynamics, particularly for deeper layers where less observational constraints are available. 70 

Thus, studying vegetation interactions with the entire water column, including near-surface and deep soil moisture, at a global 71 

scale using exclusively observation-based dataset is imperative to enhance the understanding of relevance of near-surface and 72 

deep soil moisture for vegetation functioning.  73 

 74 

The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides total water storage 75 

(TWS) anomalies observations at the global scale. The TWS captures not only soil water but also snow and ice, canopy water, 76 

surface water and groundwater. Its depth of representation is therefore difficult to physically quantify, and that is why we 77 

studies TWS anomalies. Nevertheless, they seem to be related to variations of overall water availability (near-surface + deep 78 

soil moisture) for vegetation (Yang et al., 2014). The inter-annual carbon dioxide growth rate in the atmosphere, for example, 79 

has been found to be well correlated with the total water storage anomalies on a global scale, indicating the relevance of total 80 

water column for vegetation functioning (Humphrey et al., 2018).  In this study, we assume that TWS anomalies can be used 81 

to estimate the variation of overall water availability (near-surface + deep soil moisture) for vegetation under (i) snow-free 82 

conditions, and assuming that (ii) water storage variations in lakes or groundwater are negligible at the monthly time scale, 83 

(iii) and canopy water storage is much smaller than soil water storage and hence also negligible.This study focuses on 84 

understanding the relevance of near-surface vs. total water storage for vegetation functioning on a global scale using 85 

observation-based datasets, thereby inferring vegetation’s large-scale water uptake depth from observation-based datasets. For 86 

this purpose, we utilise TWS and near-surface soil moisture and correlate them with vegetation functioning, represented by 87 

Near-Infrared Reflectance of Vegetation (NIRv). In particular, we analyse (1) what is the relevance of near-surface soil 88 

moisture vs. the terrestrial water storage for vegetation functioning?, (2) how does the importance of near-surface soil moisture 89 

vs. terrestrial water storage change during dry months? and (3) how do climatic, vegetation, and topographic characteristics 90 

explain the variability in the relevance of near-surface vs. terrestrial water storage for vegetation functioning? 91 

2. Data and Methodology 92 

     Table 1: Table summarising all the datasets.  93 
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Datasets Variables Source Spatial 

Resolutio

n 

Temporal 

Resolution 

Temporal 

Coverage 

References 

Vegetation 

Functioning 

Near Infrared 

Reflectance of 

Vegetation 

(NIRv) 

MODIS/MOD

13C1 v061 

0.05 

degree 

 16 daily  2000 - present (Badgley et al., 

2017) 

Solar Induced 

Chlorophyll 

Fluorescence 

(SIF) 

GOME-2 0.5 

degree 

 16 daily 2007  - 2018 (Köhler et al., 

2015) 

Soil Water 

Storage 

Near-surface 

soil moisture 

(SSM) 

ESA-CCI 

v04.4 

0.25 

degree 

 Daily 1978 - 2022 (Dorigo et al., 

2017) 

Total Water 

Storage 

(TWS) 

Anomalies 

GRACE 0.5 

degree 

 Monthly  2002 - present (Landerer and 

Swenson, 2012) 

Meteorological Air 

Temperature 

(Ta) 

ERA-5  0.25degre

e 

Hourly 1940 - present (Hersbach et al., 

2020) 

Precipitation 

(P) 

Net Radiation 

(Rn)  

Dew point 

Temperature 

(Td) 

Climatological Aridity Index Global Aridity 

Index and 

Potential 

Evapotranspira

tion Database - 

Version 3 

30 arc 

seconds 

Static 1970-2000 (Zomer et al., 

2022) 
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Vegetation and 

Land cover 

class 

Tree cover 

fraction 

VFC5KYR 0.05 

degree 

 1982 - 2016 (Hansen,  

Matthew and 

Song,  Xiao-

Peng, 2018) 

Land cover 

data 

ESA-CCI 300 m  Yearly  1992 - 2018 ESA. Land 

Cover CCI 

Product User 

Guide Version 

2. Tech. Rep. 

(2017) 

Topographical 

data 

Elevation Earthenv 1 km Static  (Amatulli et al., 

2018) 

Slope 

Soil data Fraction of 

sand 

FAO 0.05 

degree 

 Static  (Reynolds et al., 

2000) 

Fraction of 

clay 

Irrigation Percentage of 

Irrigated area 

HID 5 arcmin Yearly 1990 - 2005 (Siebert et al., 

2015) 

 94 

2.1 Data 95 

2.1.1 Vegetation Functioning: 96 

In our study, vegetation functioning is characterised by satellite measurements of Near-Infrared Reflectance of vegetation 97 

(NIRv) and Solar Induced Fluorescence (SIF) (Table 1). NIRv is the product of near-infrared reflectance and the normalised 98 

difference vegetation index (NDVI) and represents the vegetation structure and vegetation greenness (Badgley et al., 2017). 99 

The NIRv data is available at a high spatial resolution of 0.05°, and the original 16-day data was aggregated to the monthly 100 

NIRv data. SIF is directly related to the photosynthetic activity of plants because the excess energy from sunlight, that triggers 101 

the light reaction during photosynthesis, is dissipated by leaf as chlorophyll fluorescence (Mohammed et al., 2019). SIF data 102 

is derived from the Global Ozone Monitoring Experiment (GOME-2), because GOME-2 provides relatively reliable data over 103 

a long period (2007-2018). The 0.5° spatial and 16-day temporal resolution SIF data is processed into monthly data as described 104 

by (Köhler et al., 2015).  105 

 106 
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The high spatial resolution of NIRv allows for a detailed study of the correlation of vegetation functioning with soil water 107 

availability. Therefore, we performed the main analyses using NIRv data. However, SIF is more sensitive to drought stress 108 

than NIRv (Qiu et al., 2022). Therefore, we perform additional analyses with SIF to show that the relationships hold for a 109 

different and more direct indicator of vegetation functioning. 110 

2.1.2 Soil Water Storage 111 

This study includes two different measures of soil water availability. The near-surface soil moisture (SSM) provides an 112 

estimate of water availability in the top layer of the soil, while the Terrestrial Water Storage (TWS) Anomaly provides an 113 

estimate of the overall water column of the soil. The SSM data is derived from the European Space Agency (ESA) Climate 114 

Change Initiative Program (CCI), which combines active and passive satellite microwave measurements to provide reliable 115 

estimates of SSM (Dorigo et al., 2017). The ESA CCI soil moisture data, at a daily temporal resolution, was aggregated to 116 

monthly temporal resolution. The TWS Anomaly data is derived from the GRACE mission, which measures changes in the 117 

Earth’s gravity field (Landerer and Swenson, 2012). Here, we use the JPL-Mascons product of TWS Anomalies which is 118 

available at a 0.5° spatial and monthly temporal resolution(Watkins et al., 2015) 119 

2.1.3 Meteorological Data 120 

Employed climate variables include monthly air temperature(Ta), 2m dew point temperature (Td), precipitation (P), and net 121 

radiation (Rn) from the ERA5 reanalysis products at a 0.25° spatial resolution. The vapor pressure deficit (vpd) is calculated 122 

from Ta and Td.  Further, the aridity index is calculated from the ratio between the long-term mean Rn (mm y-1) (1 MJ/sq.m/day 123 

= 0.408 mm/day) and P (mm y-1) for each grid cell (Budyko, 1974). We opted for this formulation as it offers a direct estimation 124 

of aridity and water (energy) constraints on vegetation. This eliminates the necessity to navigate through various formulations 125 

utilized for calculating potential evapotranspiration. However, we conducted additional validations of our results using the 126 

Global Aridity Index dataset (Zomer et al., 2022)based upon the FAO Penman-Monteith Reference Evapotranspiration 127 

equation. The use of the Global Aridity Index did not change the results of our study (Section 3.4). In addition, the mean and 128 

standard deviation of the climate variables are calculated and incorporated in the attribution analysis (Section 2.2.3).  129 

2.1.4 Vegetation, soil, and topography data  130 

To evaluate the resulting correlation of vegetation functioning and water storages with respect to vegetation characteristics, 131 

we employ the tree cover fraction data from the AVHRR vegetation continuous fields products (VCF5KYR, 132 

https://lpdaac.usgs.gov/products/vcf5kyrv001/) (Hansen,  Matthew and Song,  Xiao-Peng, 2018). For this purpose, the mean 133 

of tree cover fraction for the years between 2007 and 2016 is calculated.  134 

Topographical variables such as elevation and slope are incorporated along with other meteorological variables to determine 135 

the relative contribution of different variables to the correlation between vegetation functioning and water storage. Topographic 136 

data at a 5 km resolution were downloaded from the EarthEnv. These data are calculated based on the 250 m GMTED dataset 137 
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and compared against the 90 m SRTM 4.1 dev dataset. The data were resampled to a coarser resolution of 5 km using various 138 

aggregation techniques, details of which are in (Amatulli et al., 2018). Furthermore, for each grid cell, the fraction of sand and 139 

clay in soil (Reynolds et al., 2000) along with the percentage of irrigated area (Siebert et al., 2015) were considered in 140 

attribution analysis.  141 

 142 

2.2 Methodology  143 

2.2.1 Data pre-processing 144 

A flowchart of the data pre-processing and analyses is presented in Figure S1. The time period of analysis is from 2007 to 145 

2018 constrained by the concurrent availability of all involved datasets. All the analyses were performed in monthly temporal 146 

resolution and at 0.05° spatial resolution (for NIRv) and 0.5° spatial resolution (for SIF). The SSM and TWS data were initially 147 

available at 0.25° and 0.5° resolution, but were disaggregated or aggregated to 0.05° or 0.5° degrees, depending on the spatial 148 

resolution of the analysis performed, based on the assumption that the soil water storage anomalies are representative over 149 

larger areas. Also, the meteorological data and vegetation, soil, and topographic data were resampled into the same resolution. 150 

After aggregating all the datasets to 0.05° resolution, the monthly anomalies were calculated by subtracting the long term mean 151 

monthly cycle and by removing linear trends. A SIF threshold was applied in each grid cell to filter out non-growing season 152 

data. For this purpose, we filtered out all the months from 2007-2018 when the mean-monthly SIF value was below the 153 

threshold of 0.2 mW/m2/sr/nm. We apply an additional temperature threshold (Ta > 5◦C) to remove the months with frozen 154 

soil and snow cover, similar to (Li et al., 2021). Last, all months with missing soil water storage or vegetation functioning 155 

records were excluded.  156 

2.2.2 Calculate the relevance of near-surface (SSM) soil moisture and terrestrial water storage (TWS) for vegetation 157 

functioning  158 

We calculated the Spearman correlation between vegetation functioning (NIRv) and soil water storages (SSM and TWS) for 159 

each grid cell during growing season months when observations for at least 40 months were available. The cutoff of 40 months 160 

was implemented to guarantee a substantial number of observations for growing-season months in each grid cell. This 161 

consideration assumes that the minimum number of growing-season months varies from 3 to 4 months per year globally. In 162 

addition to soil moisture, also air temperature (Ta) and net radiation (Rn) affect the vegetation functioning. Moreover, SSM 163 

(soil moisture) and TWS (total water storage) demonstrate a notable correlation, as illustrated in Figure S2, signifying the 164 

presence of mutual information. To exclusively examine the individual impacts of each water storage variable on vegetation 165 

functioning and disentangle mutual information from other water variables, we accounted for confounding effects. This 166 

entailed computing the partial correlation between NIRv and water storages (SSM or TWS), while controlling for Ta, Rn, and 167 

the other water storage variable (TWS or SSM). Since we focus on understanding the role of soil moisture on vegetation 168 

functioning, which is primarily critical in water-limited conditions, we removed the grids cells with negative partial 169 
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correlations from our analysis. Such negative partial correlations may hint at vegetation’s converse effect on soil moisture 170 

(when increasing vegetation activity depletes the soil moisture) and a negative correlation could occur in the grid cells where 171 

water limits vegetation productivity through oxygen limitation (Ohta et al., 2014).  172 

 173 

It is important to note that we chose not to apply a significance criterion in analyzing the partial correlation between NIRv and 174 

water storages. When controlling for both water storage (TWS or SSM) and energy variables (Ta and Rn) in the partial 175 

correlation (NIRv~SSM or TWS), a limited number of grid cells demonstrate significant correlation globally, given the high 176 

correlation between SSM and TWS (Figure S2). This poses challenges for drawing global inferences on vegetation water 177 

uptake. However, our overarching goal is to discern variations in the partial correlation of NIRv with water storages across 178 

differing climate-vegetation gradients and how it changes from the growing season to dry months, rather than confirming 179 

specific statistical thresholds. For this, we want to maintain a sufficient amount of grid cells necessary for making global 180 

inferences. However, to ensure that our results are not affected by the significance criterion, we conducted additional analyses 181 

considering only grid cells with a significant partial correlation (though a very small number compared to the total grid cells 182 

available for each AI-TC class globally), as described in section 3.4. 183 

 184 

The impact of all pre-processing steps on the number of grid cells included in this study is illustrated in Figure S3. Generally, 185 

our filtering procedures enable us to concentrate primarily on water-limited regions, as they effectively remove a substantial 186 

number of grid cells from the wet regions globally. 187 

To analyse how the importance of SSM and TWS changes during dry months, we specifically selected the months characterized 188 

by the lowest 10% SSM for each grid cell, representing the driest conditions within the growing-season months.The partial 189 

correlations between NIRv and water storages, r(NIRv~SSM) and r(NIRv~TWS) were calculated separately for dry months. 190 

To focus on vegetation response to similar extent of dryness spatially, only grid cells with greater than 100 monthly 191 

observations were considered for the dry months analysis. In addition, only the grid cells which had positive partial correlation 192 

in growing season months were included for the dry months analysis.  193 

 194 

After computing the partial correlations, we grouped the grid cells by aridity and tree cover classes, which allowed us to 195 

analyse the evolution of correlations and the difference between the partial correlation across aridity-tree cover classes. 196 

Afterwards, we employed bootstrapping with 1000 repetitions to compute the bootstrap means and confidence interval using 197 

a full bootstrapping methodology (resampling with replacement from the original data) for each aridity-tree cover class with 198 

sufficient number of observations for both growing season and dry months. . 199 

 200 

Moreover, to test the robustness of the results, we did additional partial correlation analyses, for which we correlated the SIF 201 

(instead of NIRv) with SSM and TWS. The analyses with SIF were performed at a spatial resolution of 0.5°, at which SIF data 202 

was available. 203 
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2.2.3 Attribution Analysis 204 

We used a random forest model to understand the spatial variability in the relevance of SSM versus TWS for NIRv. Random 205 

forest is a nonparametric based regression algorithm which does not require any statistical assumptions on the predictor and 206 

target variables which makes it particularly useful for detecting the nonlinear relationship (Breiman, 2001). Given potential 207 

nonlinear impacts of various factors (climate, soil types, vegetation) on the relationship between moisture storages and 208 

vegetation functioning, this study employed the random forest method to assess the relative contributions of these variables. 209 

 210 

In our study, 15 predictors were included in the random forest model based on their potential physical relevance to the target 211 

variable, which is the difference in correlation between SSM and TWS with NIRv in growing season months. These predictors 212 

included mean and standard deviation of climate variables (Ta, Rn, P and vpd), aridity index, topographical variables (elevation 213 

and slope), vegetation variable (tree cover), soil-related variables (fraction of clay and sand), and percentage of irrigated areas 214 

for each grid cell. We calculated the mean and standard deviation of the climate variables only during the growing-season 215 

months, as determined for the subsequent partial correlation analysis..  Furthermore, only the grid cells exhibiting positive 216 

partial correlation between NIRv and SSM as well as NIRv and TWS during growing season-months were included in the 217 

random forest analysis. For training a random forest model, we used the “xgboost” package in R (Chen and Guestrin, 2016).  218 

 219 

We further incorporate SHAP (SHapley Additive exPlanations) values for interpreting the predictions of the random forest 220 

model (Lundberg et al., 2020). The SHAP value for a feature is the average difference in prediction of the model when that 221 

feature is included compared to when it is excluded, over all possible combinations of features. By calculating SHAP values 222 

for each feature in the model, we identified which features were most important in explaining the spatial variability in the 223 

relevance of SSM versus TWS. For calculating the SHAP values, we employed “SHAPforxgboost” package in R.  224 
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3. Results and Discussion 225 

3.1 Coupling of vegetation functioning with surface soil moisture and total water storage in the growing season  226 

      227 

Figure 1: Coupling strength between vegetation functioning (NIRv) and (a) near-surface soil moisture (SSM), and (b) total water 228 
storage (TWS) during the growing season months. Monthly anomalies of all variables are used to calculate the partial correlation. 229 
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(c) Difference between (a) and (b). The purple colour in (c) indicates the greater partial correlation of NIRv with SSM compared to 230 
the partial correlation of NIRv with TWS while orange colour indicates the opposite. Grid cells with positive relationships for both 231 
correlations (a) and (b) are shown in (c) with blueish and orange colours. Light grey colour indicates negative partial correlations 232 
between NIRv and water storage. The absence of color within the land boundary signifies inadequate observational data for precise 233 
computation of the partial correlation. Each inset in the respective maps illustrates the probability distribution function (pdf) of the 234 
correlations. 235 

The partial correlation of NIRv with near-surface soil moisture varies globally during growing-season months (Figure 1a). 236 

NIRv demonstrates stronger correlation with near-surface soil moisture within semi-arid climates, Central North America, 237 

South America, regions in South Africa and Australia. The correlation is stronger in Southern Europe and the Mediterranean 238 

region compared to central and Northern Europe. The correlation gradient from the hot and dry Mediterranean region to wet 239 

and cold Northern Europe corresponds to the gradient of water-limited ecosystems to energy-limited ecosystems obtained in 240 

other studies (Denissen et al., 2022; Teuling et al., 2009).  241 

 242 

The global correlation of NIRv with TWS follows a similar pattern as with SSM (Figure 1b) in growing-season months. The 243 

correlation of NIRv with TWS is higher in drier central northern America and Australia compared to other regions. The 244 

similarities in the correlation of NIRv with SSM and TWS are expected because the monthly anomalies of SSM and TWS are 245 

highly correlated during growing season months in most of our study area (Figure S2).  246 

 247 

The difference between the partial correlation of NIRv with SSM and TWS (Figure 1c) indicates that the NIRv correlates 248 

stronger with TWS in Western America, Southern Europe, and arid regions of Australia compared to other regions globally 249 

during growing-season months. In South America and Southern Africa, however, the NIRv shows a stronger correlation with 250 

SSM. Although we control for the effect of soil water storage (SSM or TWS) when computing partial correlation to discern 251 

the relative importance for vegetation, it should be noted that the varying noise levels inherent in these datasets might impact 252 

our results. 253 

 254 

 255 

 256 
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Figure 2: Summarising the coupling strengths of vegetation functioning (NIRv) with (a) near-surface soil moisture (SSM) and (b) 257 

terrestrial water storage (TWS) in the growing season-months across climate (aridity index) and vegetation regimes (fraction of tree 258 

cover). (c) shows the difference between (a) and (b). Numbers within the boxes denote the number of grid cells for each aridity-tree 259 

cover class. Aridity-tree cover classes containing less than 1000 grid cells are shown in grey. The color bar denotes the mean partial 260 

correlation for each class, computed from bootstrapping. The asterisk in figure (c) signifies that the 95% confidence interval (lower 261 

and upper) shares the consistent sign (+/-) in the difference of partial correlation. Only grid cells with positive partial correlation 262 

are considered.  263 

 264 

Next, we analyse the partial correlation between NIRv and soil water storages across different aridity and tree cover fraction 265 

classes during growing season months. For this, we group the grid cells into different aridity and tree cover fraction classes 266 

and then do bootstrapping to compute mean partial correlation and the 95 percent confidence intervals for each class with more 267 

than 1000 grid cells. We find that the partial correlation of NIRv with SSM (Figure 2a) increases with increasing aridity for 268 

aridity index (0-4). This can be attributed to the intensification of water stress on vegetation under increasingly arid conditions, 269 

resulting in a stronger correlation between NIRv and SSM. However, for a further increase in aridity (4-8), the strength of the 270 

correlation of NIRv with SSM declines. This is due to a low soil moisture availability and low temporal variability under 271 

extremely arid conditions (Figure S4). The pattern of increasing correlation along aridity index is also observed in the partial 272 

correlation between NIRv and TWS. (Figure 2b).  273 

 274 

Furthermore, the correlation of NIRv with SSM decreases for higher tree cover fractions (Figure 2a). However, such a gradient 275 

along tree cover fraction is less pronounced in the partial correlation of the NIRv with TWS (Figure 2b). This overall depicts 276 

that the coupling of vegetation functioning with SSM is generally higher for non-forested areas compared to forested areas 277 

while this gradient is less pronounced in the case of TWS.   278 

 279 

Though the difference in inherent noise levels associated with SSM and TWS impacts partial correlation analysis, we can 280 

compare the evolution of the gradient along tree cover or aridity index and assert how the relevance of SSM and TWS changes 281 

with varying tree cover or aridity index, assuming that the noise levels are similar across varying AI-TC classes. Taking this 282 

into account, we find that NIRv correlates more strongly with near-surface soil moisture compared to terrestrial water storage 283 

in semi-arid regions with low tree cover (Figure 2c), suggesting that the vegetation preferentially takes up water from SSM 284 

whenever available to meet its transpiration demand. This might be due to lower energy expenditure on root water uptake, 285 

abundant nutrients and reduced chance of root water logging in the near-surface soil moisture (Feldman et al., 2023; Schenk 286 

and Jackson, 2002; Tao et al., 2021). Conversely, the correlation between the NIRv and TWS in arid areas (AI 4-8)  and regions 287 

with a high fraction of tree cover is equivalent to or greater than that of SSM, suggesting that trees can utilise their extensive 288 

root systems to access deeper soil moisture, as observed in arid vegetation. This is consistent with previous studies reporting 289 

that the vegetation dependence on sub-surface soil moisture is higher in arid and seasonal-arid climates (Miguez-Macho and 290 
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Fan, 2021). However, in certain regions with higher tree cover in humid areas, specifically with AI 0.5-1, such conclusions 291 

cannot be confidently drawn statistically. The reason is that the confidence intervals for the difference in partial correlation of 292 

NIRv with SSM and TWS fluctuate between positive (indicating greater relevance of SSM) and negative (indicating greater 293 

relevance of TWS) values (Figure 2c). 294 

 295 

Note that while our analysis focuses on regions with water-controlled vegetation as denoted by positive correlations between 296 

NIRv and the considered soil water storages, some of these grid cells are located in comparatively wet climate regimes with 297 

aridity index values between 0 and 1 (Figure 2). This highlights the relevance of non-climatic factors such as soil and 298 

vegetation types or topography in determining vegetation-water relationships in addition to the climate regime. Next to this, 299 

in Figure 2c it seems that the relevance of terrestrial water storage is comparatively higher in wet climate (aridity 0.5-1) than 300 

in transitional climate regimes (aridity 1-2) as shown with the smaller correlation differences. This, however, is probably not 301 

the case and simply a reflection of reduced variability in surface soil moisture (Figure S4). 302 

 303 

3.2 Coupling of vegetation functioning with surface soil moisture and total water storage in dry months  304 

The correlation between NIRv and soil water storage increases during dry months (Figure 3a,b) compared to growing season 305 

months (Figure 2a,b). This increase is consistent for both SSM and TWS and across all tree cover fractions and aridity classes. 306 

This is because the water limitation on vegetation increases in dry months and so does the vegetation’s sensitivity to the 307 

moisture. During the dry months, the correlation with near-surface soil moisture tends to rise, but the correlation with terrestrial 308 

water storage increases even more significantly (Figure 3c). This indicates the relevance of deeper water resources during 309 

periods of scarce rainfall. The partial correlation maps (Figure S5) also reveal that NIRv's correlation with TWS increases 310 

more than its correlation with SSM for most grid cells. 311 

 312 

 313 

Figure 3: Summarising the coupling strengths of vegetation functioning (NIRv) with (a) near-surface soil moisture (SSM) and (b) 314 
terrestrial water storage (TWS) in the 10% driest months in each grid-cell across climate (aridity index) and vegetation regimes 315 
(fraction of tree cover). (c) shows the difference between (a) and (b). Numbers within the boxes denote the number of grid cells for 316 
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each aridity-tree cover class. Aridity-tree cover classes containing less than 1000 grid cells are shown in grey. The color bar denotes 317 
the mean partial correlation for each class, computed from bootstrapping. The asterisk in figure (c) signifies that the 95% confidence 318 
interval (lower and upper) shares the consistent sign (+/-) in the difference of partial correlation. Only grid cells with positive partial 319 
correlation are considered. 320 

During dry months, the number of analysed grid cells (Figure 3) is lower compared to all growing season months (Figure 2). 321 

We performed a reanalysis of the correlation patterns within aridity-tree cover classes by selecting only those grid cells that 322 

displayed positive partial correlation between NIRv and soil water storages during both the dry months and the growing season 323 

months. The results demonstrate that the previously observed patterns remain valid, thereby eliminating the impact of the 324 

differing numbers of grid cells analysed. (Figure S6. 325 

 326 
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3.3 Climate, vegetation, and topographic controls on the relevance of surface soil moisture vs. total water storage on 327 

vegetation 328 

 329 

Figure 4: (a) Global feature importance based on the mean absolute magnitude of the SHAP values. The higher the mean SHAP 330 
values, the greater the predictor’s relevance. (b-d) Evaluation of SHAP values (=contributions to the correlation difference 331 
illustrated in Figure 1c) against predictor values for the 3 most relevant predictors tree cover fraction (TC), variability of 332 
temperature (sd Ta) and mean temperature (mean Ta) during the growing season months. . The colour indicates the density of data 333 
points. For plotting (b), (c) and (d), only 10 percent random samples of the whole dataset are utilised.  334 

We use a random forest model to understand the spatial variability in the relevance of SSM versus TWS for NIRv. The model 335 

was trained with 15 climatic, vegetation, and topographic predictors against the target variable which is the difference of the 336 

partial correlations of NIRv with SSM and TWS during growing season-months (R2 = 0.59, see methods section 2.2.3). The 337 

mean absolute SHAP value plot shows that the tree cover and the climate variables (mean and standard deviation of Ta) are 338 

most important variables for explaining the spatial variability in the relative importance of SSM vs. TWS for vegetation 339 
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functioning (Figure 4a). This overall highlights that the relative importance of SSM vs. TWS for the vegetation is broadly 340 

controlled by vegetation type, reflecting the local adaptation of ecosystem and climate, influencing water availability.(Stocker 341 

et al., 2023).  342 

Tree cover fraction is an important factor in determining the relevance of SSM and TWS for vegetation functioning (Figure 343 

4c). Regions with a high tree cover are more dependent on TWS, as trees generally have deeper root systems that allow them 344 

to adjust water uptake between different depths (Tao et al., 2021). Grasslands on the other hand have shallow roots that are 345 

more susceptible to surface soil moisture variations (Yang et al., 2014). 346 

 347 

Similarly, the relative importance of SSM and TWS varies non-linearly with the mean growing season temperature (Figure 348 

4b). TWS tends to be more crucial for vegetation functioning in areas with low (approximately below 20°C) or high (above 349 

27°C) growing season temperatures, while SSM has greater importance in regions with moderate growing season air 350 

temperatures. One possible explanation for this trend is that high temperatures induce a strong atmospheric water demand that 351 

dries near-surface soil layers, which leads vegetation to increase water extraction from deep soils. This observation is further 352 

underscored by the analogous pattern observed in the SHAP dependence plot for vpd, which accentuates atmospheric water 353 

demand (Figure S8). In contrast, SSM is more available during growing season months characterised by moderate 354 

temperatures. We hypothesize that the regions that experience relatively cold growing season temperatures exhibit stronger 355 

temperature and weather variability that may contribute to longer dry periods and, thus, emphasises the importance of deeper 356 

soil moisture for vegetation functioning. However, it should be noted that our findings regarding the relevance of TWS at high 357 

temperatures must be interpreted with caution due to the exclusion of most tropical forest regions from our analysis (Figure 358 

S7). As a result, most warm regions are dry, and there are only a few hot and wet regions included in our training data. 359 

 360 

 361 

Not only the mean of the growing season temperature, but also its variability is crucial for explaining the significance of SSM 362 

and TWS for vegetation functioning (Figure 4d). A higher temporal variability in temperature increases the importance of 363 

TWS for vegetation. This is because atmospheric water demand scales with temperature. Hence, higher variability in 364 

temperature implies more peaks in related atmospheric water demand which is a stronger incentive for plants to access deeper 365 

water storages which are more often available to meet the vegetation´s transpiration demand.  366 

 367 

Figure S8 illustrates the effect of the other six important predictors on the model output. Apart from climatological parameters 368 

(mean P, mean vpd, variability in Rn, and aridity index ), elevation and slope explain part of the variability in the relevance of 369 

SSM vs. TWS for NIRv. Although the reasons for increasing relevance of TWS for vegetation functioning at higher elevation 370 

remain unclear, it may be due to elevation’s strong correlation with other climatic variables such as Ta and P. 371 

 372 
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Several local studies identified other relevant factors that determine root water uptake depth such as forest stand age and tree 373 

height, competition, root hydraulic architecture, and tree species (Zhu et al., 2022; Quijano et al., 2012; Stahl et al., 2013, 374 

Gessler et al., 2021; Liu et al., 2021). For example, young trees more easily increase their root activity in the shallow or deep 375 

soil dependent on soil moisture than mature trees (Zhu et al., 2022; Drake et al., 2011). These variables were not included in 376 

our attribution analysis, because they are not available at global scale. 377 

3.4 Robustness Tests 378 

In the aforementioned analysis, we included grid cells exhibiting both positive partial correlations, whether significant or non-379 

significant. Upon further examination, we specifically assessed the evolution of partial correlation between NIRv and water 380 

storages, considering only grid cells with significant partial correlation (p < 0.05). The observed patterns along the aridity-tree 381 

cover gradient remained similar during growing season months. This suggests the robustness of our results to the choice of the 382 

statistical significance criterion, albeit with a substantial reduction in the number of globally available grid cells when 383 

considering only significant partial correlation (Figure S9). 384 

 385 

Furthermore, to ensure that our results are robust to variations in the threshold for Solar-Induced Fluorescence (SIF) used to 386 

define growing season months, we conducted additional analyses with a different SIF threshold. Instead of filtering out all 387 

months from 2007-2018 when the mean-monthly SIF value was below the threshold of 0.2 mW/m²/sr/nm, we utilized a 388 

threshold of 0.5 mW/m²/sr/nm. Elevating the SIF threshold implies the exclusion of additional months characterized by lower 389 

vegetation activity for the partial correlation analysis. However, it is essential to note that this threshold does not seem to affect 390 

the number of globally available grid cells during growing season months and hence patterns along AI-TC classes are similar. 391 

Instead, it specifically influences the selection of dry months and hence the number of grid cells available for the analysis 392 

during dry months. . Nevertheless, even with the elevated SIF threshold for defining growing season months, the observed 393 

patterns along aridity-tree cover (AI-TC) classes remain largely consistent with the results obtained in our main analyses 394 

(Figure S10). 395 

 396 

Although NIRv can largely reflect vegetation functioning (Badgley et al., 2017), we repeat our analysis with SIF, which is an 397 

alternative and independent indicator for vegetation functioning and shows a near-linear relationship with gross primary 398 

productivity at the ecosystem level (Guanter et al., 2012). However, SIF is only available at a coarse resolution of 0.5 degree. 399 

The partial correlations, r(SIF~SSM) and r(SIF~TWS) largely agree with the pattern of r(NIRv~SSM) and r(NIRv~TWS) 400 

across varying aridity index and tree cover classes (Figure S11. This suggests that our overall conclusion on the relevance of 401 

SSM or TWS for vegetation functioning is robust across different indicators of vegetation productivity.  402 

Additionally, we tested if our results are robust when the aridity index is calculated based on the FAO Penman-Monteith 403 

Reference Evapotranspiration equation, for which we applied aridity classification based on UNEP 1997 guidelines – Our 404 

results confirm the findings of Section 3.1and Figure 2 that as aridity increases, the correlation of NIRv with Soil Surface 405 
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Moisture (SSM) and Total Water Storage (TWS) intensifies. Moreover, in hyper arid regions (AI < 0.03) the correlation with 406 

TWS surpasses that with SSM (Figure S12). They also confirm that regions with higher tree Cover (TC) fraction correlates 407 

more strongly with TWS compared to SSM. Thus, the choice of aridity index formulation does not alter our main conclusions. 408 

 409 

4. Summary and Conclusions 410 

In this study we compare the relevance of near-surface soil moisture and of terrestrial water storage for vegetation functioning 411 

across the globe. We find that in semi-arid regions and regions with low tree cover, vegetation preferentially utilises the water 412 

from shallow soil, which is related to continuous availability of near-surface water availability and lack of deep rooting systems 413 

respectively. The stronger correlation of NIRv with SSM than TWS is supported by site-level studies that find a higher root 414 

water uptake of surface soil moisture (Brinkmann et al., 2019, Gessler et al., 2021, Deseano Diaz et al., 2023; Kulmatiski and 415 

Beard, 2013), also when deeper water is available. Some local studies however find a higher root water uptake from deeper 416 

layers (Zhu et al., 2022).  417 

 418 

By contrast, in mostly forested regions and in relatively dry climate regimes, the correlation with terrestrial water storage is 419 

comparable or higher than with near-surface soil moisture, indicating that trees and vegetation in arid regions use their deep 420 

root systems to access deeper soil moisture. Point-scale studies also found a different water uptake depth for trees and grasses 421 

in for example savanna ecosystems (Kulmatiski et al., 2010), and a different water uptake depth for tree species (Kahmen et 422 

al., 2022). Liu et al. (2021) showed for example that for a karst forest in Southwest China, evergreen species rely mostly on 423 

water sources from the 0-30 cm layer, while deciduous species extracted most water from the 30-70 cm layer. 424 

  425 

We also find that vegetation’s preferential water uptake depth changes over time. During particularly dry months, the relative 426 

importance of terrestrial water storage is higher, highlighting the importance of deep water resources during periods of low 427 

soil water availability. This is in line with previous studies showing changes in vegetation’s water uptake depth during drought 428 

periods at small spatial scales where accessing water in deeper soil layers helps plants to alleviate water stress and maintain 429 

transpiration (Migliavacca et al., 2009; Tao et al., 2021). 430 

 431 

Our global results are supported by site-scale studies that find that, during drought, the deeper roots play a more active role in 432 

water extraction (Stahl et al., 2013, Volkmann et al., 2016; Tao et al., 2021). In some studies however, the increase of deep 433 

water uptake is only relative: the absolute uptake of deep water does not increase, but the uptake of shallow water decreases 434 

(Brinkmann et al., 2019, Gessler et al., 2021, Rasmussen et al., 2020; Kühnhammer et al., 2023). This means that the uptake 435 

of deeper soil layers cannot compensate for the loss of water uptake from the dry topsoil. Contrary to trees, grasses do not shift 436 
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their uptake depth (Deseano Diaz et al., 2023), or even extract water from the most shallow soils (Prechsl et al., 2015, 437 

Kulmatiski and Beard, 2013). 438 

 439 

Furthermore, we show that the spatial variability of the importance of near-surface soil moisture vs. terrestrial water storage 440 

for vegetation functioning is influenced by fraction of tree cover and mean and standard deviation of air temperature. This 441 

emphasises the role of climate in determining shallow vs. deep soil water resources, and the role of vegetation in adapting to 442 

different soil water availability patterns.  443 

 444 

Vegetation functioning and soil water storages are generally coupled in both directions, i.e. while soil moisture availability 445 

affects vegetation functioning (positive coupling), this in turn also affects soil moisture through transpiration (negative 446 

coupling). As our study focuses on water-controlled vegetation we only consider positive couplings and filter out grid cells 447 

with negative correlations. Future research may consider the relevance of soil moisture across depths for the positive coupling 448 

regions.  449 

 450 

Overall, our analysis illustrates that satellite-based data can be used for belowground analysis at large spatial scales thanks to 451 

the fact that satellite retrievals can assess soil water storage dynamics across depths and because vegetation in water-controlled 452 

areas can be used as an indicator of soil water dynamics. Such novel ways to improve our understanding of belowground water 453 

dynamics is necessary and valuable as respective in-situ observations are scarce and of limited representativeness for larger 454 

areas, particularly given the typical spatial heterogeneity of soils and vegetation. Our results can further inform a better 455 

representation of belowground processes in global models in order to support more accurate projections of future changes in 456 

climate, water resources, and ecosystem services.  457 

Data availability 458 

The monthly SIF data is available from https://www.gfz-potsdam.de/sektion/fernerkundungund- 459 

geoinformatik/projekte/global-monitoring-of-vegetation-fluorescence-globfluo/daten.The NIRv was calculated from the red 460 

and near-infrared reflectance obtained from the MOD13C1 v006 product (https://lpdaac.usgs.gov/products/mod13c1v061/). 461 

The ESA-CCI soil moisture can be accessed through https://esa-soilmoisture-cci.org/ and Terrestrial Water Storage Anomaly 462 

data can be accessed through https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACGRFO_MASCON_CRI_GRID_RL06_V2. 463 

The ERA5 climate variables are available from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 . Tree 464 

cover fraction data is available from the AVHRR vegetation continuous fields products  465 

https://lpdaac.usgs.gov/products/vcf5kyrv001/, land cover data is available from https://www.esa-landcover-cci.org/, and 466 

topographic data is available via https://www.earthenv.org/topography. Similarly, the irrigation fraction data could be accessed 467 

from https://mygeohub.org/publications/8 . 468 
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https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://lpdaac.usgs.gov/products/vcf5kyrv001/
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