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Abstract. Soil water availability is an essential prerequisite for vegetation functioning. Vegetation takes up water from varying 14 

soil depths depending on the characteristics of their rooting system and soil moisture availability across depth. The depth of 15 

vegetation water uptake  is largely unknown across large spatial scales as a consequence of sparse ground measurements. At 16 

the same time, emerging satellite-derived observations of vegetation functioning, surface soil moisture and terrestrial water 17 

storage, present an opportunity to assess the depth of vegetation water uptake globally. In this study, we characterise vegetation 18 

functioning through the Near-Infrared Reflectance of Vegetation (NIRv), and compare its relation to (i) near-surface soil 19 

moisture from ESA-CCI and (ii) total water storage from GRACE at the monthly time scale during the growing season. The 20 

relationships are quantified through partial correlations to mitigate the influence of confounding factors such as energy and 21 

other water-related variables. We find that vegetation functioning is generally more strongly related to near-surface soil 22 

moisture, particularly in semi-arid regions and areas with low tree cover. In contrast, in regions with high tree cover and in 23 

arid regions, the correlation with terrestrial water storage is comparable to or even higher than with near-surface soil moisture, 24 

indicating that trees can and do make use of their deeper rooting systems to access deeper soil moisture, similar to vegetation 25 

in arid regions. At the same time we note that this comparison is hampered by different noise levels in these satellite data 26 

streams. In line with this, an attribution analysis that examines the relative importance of these soil water storages for vegetation 27 

reveals that they are controlled by (i) water availability influenced by the climate and (ii) vegetation type reflecting adaptation 28 

of ecosystems to local water resources. Next to variations in space, the vegetation water uptake depth also varies in time. 29 

During dry periods, the relative importance of terrestrial water storage increases, highlighting the relevance of deeper water 30 

resources during rain-scarce periods. Overall, the synergistic exploitation of state-of-the-art satellite data products to 31 
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disentangle the relevance of near-surface vs. terrestrial water storage for vegetation functioning can inform the representation 32 

of vegetation-water interactions in land surface models to support more accurate climate change projections. 33 

1. Introduction 34 

The regulation of water, energy, and biogeochemical cycling between land and atmosphere is primarily dependent on 35 

vegetation. In addition, global vegetation provides essential ecosystem services such as food production and uptake of some 36 

of the anthropogenic carbon dioxide emissions (Keenan & Williams, 2018).(Keenan and Williams, 2018). Vegetation growth 37 

depends on nutrient, water and energy availability. As a result, on a global scale, there are regions with energy or water limited 38 

vegetation functioning (Orth, 2021). In energy-limited regions, the functioning of vegetation is controlled by radiation and 39 

temperature, as they often lack sunny and warm conditions but have ample soil moisture. In contrast, soil moisture becomes 40 

critical for vegetation growth in water-limited regions. Plant photosynthesis involves opening the stomata for the uptake of 41 

CO2, while at the same time water is lost through transpiration. However, in water-limited conditions, plants can reduce the 42 

stomatal opening to avoid water loss, leading to a decrease in photosynthesis. Hence, variations in soil moisture are likely to 43 

affect vegetation functioning in water-limited conditions. Moreover, climate change has led to an expanded water limitation 44 

on vegetation (Denissen et al., 2022) and increased vegetation sensitivity to soil moisture (Li et al., 2022). For these reasons, 45 

it is essential to better understand the dependence of vegetation functioning on soil moisture to comprehend their coping 46 

mechanisms during drought to predict the future of global water, energy, and carbon cycles. 47 

 48 

Plants extract water from varying soil depths based on the positioning of their roots and the availability of soil moisture. and 49 

nutrients. In general, the plant water uptake depth further differs spatially across different climate regimes and vegetation 50 

types, and temporally between seasons. Vegetation in arid regions is more susceptible to fluctuations in near-surface soil 51 

moisture compared to vegetation in humid regions (Xie et al., 2019). Grasses, which generally have shorter roots than trees 52 

and shrubs, are more reliant on near-surface moisture than deeper moisture (Schenk & Jackson, 2002).Grasses, which generally 53 

have shorter roots than trees and shrubs, are more reliant on near-surface moisture than deeper moisture (Schenk and Jackson, 54 

2002). Further, root water uptake profiles vary within individual plant types according to above-ground biomass and age, with 55 

larger and older trees having deeper roots capable of extracting water from deeper soil layers (Schenk & Jackson, 2002; Tao 56 

et al., 2021)(Schenk and Jackson, 2002; Tao et al., 2021). Additionally, within similar climate regimes, plant water uptake 57 

varies across topographic positions. Upland and lowland roots tend to be shallower, making vegetation more reliant on near-58 

surface soil moisture, while roots go deeper in steep terrain between these landscapes to access both surface and deep moisture 59 

(Fan et al., 2017).   60 

 61 

Though spatial variations of plant water uptake depths across vegetation types and climate regimes, and temporal shift during 62 

dry-months, are widely studied at point scale, inadequate deep soil moisture records pose a major obstacle to study vegetation 63 
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root water uptake at a global scale. Microwave remote sensing allows to infer near-surface soil moisture dynamics globally. 64 

However, such data may not fully represent root-zone soil moisture as microwaves can only propagate through the top few 65 

centimetres in soil (Capehart & Carlson, 1997). Land surface models provide an alternative source of global soil moisture data 66 

across depths, but they are subject to uncertainties arising from meteorological data, inaccurate knowledge of soil and 67 

vegetation characteristics, and the representation of complex processes such as photosynthesis, infiltration, and evaporation .. 68 

While microwaves penetrate only the top few centimeters and do not cover the entire soil moisture profile, they represent 69 

larger depths of moisture variation, providing valuable insights into root zone soil moisture (Feldman et al., 2023) .Land 70 

surface models provide an alternative source of global soil moisture data across depths, but they are subject to uncertainties 71 

arising from meteorological data, inaccurate knowledge of soil and vegetation characteristics, and the representation of 72 

complex processes such as photosynthesis, infiltration, and evaporation (Koster et al., 2009; Seneviratne et al., 2010). Hence, 73 

some studies have employed reanalysis-based soil moisture estimates, to investigate the relationship between vegetation and 74 

soil moisture at the  global(Li et al., 2021; Miguez-Macho & Fan, 2021);  but those are likely to be impacted by model 75 

assumptions affecting soil moisture dynamics, particularly for deeper layers where less observational constraints are available.. 76 

Hence, some studies have employed reanalysis-based soil moisture estimates, to investigate the relationship between 77 

vegetation and soil moisture at the  global scale ((Li et al., 2021; Miguez-Macho and Fan, 2021);  but those are likely to be 78 

impacted by model assumptions affecting soil moisture dynamics, particularly for deeper layers where less observational 79 

constraints are available. Thus, studying vegetation interactions with the entire water column, including near-surface and deep 80 

soil moisture, at a global scale using exclusively observation-based dataset is imperative to enhance the understanding of 81 

relevance of near-surface and deep soil moisture for vegetation functioning.  82 

 83 

The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides total water storage 84 

(TWS) anomalies observations at the global scale and offers a unique opportunity to investigate the relationship between 85 

vegetation and the total water column. Furthermore, the inter-annual carbon dioxide growth rate in the atmosphere has been 86 

found to be well correlated with the total water storage anomalies on a global scale, underlining the relevance of total water 87 

column for vegetation functioning (Humphrey et al., 2018)The Gravity Recovery and Climate Experiment (GRACE) satellite 88 

mission, launched in 2002, provides total water storage (TWS) anomalies observations at the global scale. The TWS captures 89 

not only soil water but also snow and ice, canopy water, surface water and groundwater. Its depth of representation is therefore 90 

difficult to physically quantify, and that is why we studies TWS anomalies. Nevertheless, they seem to be related to variations 91 

of overall water availability (near-surface + deep soil moisture) for vegetation (Yang et al., 2014). The inter-annual carbon 92 

dioxide growth rate in the atmosphere, for example, has been found to be well correlated with the total water storage anomalies 93 

on a global scale, indicating the relevance of total water column for vegetation functioning (Humphrey et al., 2018). The TWS 94 

captures not only soil water but also snow and ice, canopy water, surface water, and groundwater.  In this study, we assume 95 

that TWS anomalies can be used to estimate the variation of overall water availability (near-surface + deep soil moisture) for 96 
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vegetation under (i) snow-free conditions, and assuming that (ii) water storage variations in lakes or groundwater are negligible 97 

at the monthly time scale, (iii) and canopy water storage is much smaller than soil water storage and hence also negligible.  98 

 99 

This study focuses on understanding the relevance of near-surface vs. total water storage for vegetation functioning on a global 100 

scale using observation-based datasets, thereby inferring vegetation’s large-scale water uptake depth from observation-based 101 

datasets. For this purpose, we utilise TWS and near-surface soil moisture and correlate them with vegetation functioning, 102 

represented by Near-Infrared Reflectance of Vegetation (NIRv). In particular, we analyse (1) what is the relevance of near-103 

surface soil moisture vs. the terrestrial water storage for vegetation functioning?, (2) how does the importance of near-surface 104 

soil moisture vs. terrestrial water storage change during dry months? and (3) how do climatic, vegetation, and topographic 105 

characteristics explain the variability in the relevance of near-surface vs. terrestrial water storage for vegetation functioning? 106 

2. Data and Methodology 107 

     Table 1: Table summarising all the datasets.  108 

Datasets Variables Source Spatial 

Resolution 

Temporal 

Resolution 

Temporal 

Coverage 

References 

Vegetation 

Functioning 

Near Infrared 

Reflectance of 

Vegetation 

(NIRv) 

MODIS/MOD1

3C1 v061 

0.05 

degree 

 16 daily  2000 - present (Badgley et al., 

2017) 

Solar Induced 

Chlorophyll 

Fluorescence 

(SIF) 

GOME-2 0.5 degree  16 daily 2007  - 2018 (Köhler et al., 

2015) 

Soil Water 

Storage 

Near-surface 

soil moisture 

(SSM) 

ESA-CCI v04.4 0.25 

degree 

 Daily 1978 - 2022 (Dorigo et al., 

2017) 

Total Water 

Storage (TWS) 

Anomalies 

GRACE 0.5 degree (Landerer & 

Swenson, 2012) 

Monthly  

2002 - present (Landerer and 

Swenson, 2012) 

Meteorological Air 

Temperature 

(Ta) 

ERA-5  0.25 

degree25d

egree 

Hourly 1940 - present (Hersbach et al., 

2020) 
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Precipitation (P) 

Net Radiation 

(Rn)  

Dew point 

Temperature 

(Td) 

Climatological Aridity Index Global Aridity 

Index and 

Potential 

Evapotranspirati

on Database - 

Version 3 

30 arc 

seconds 

Static 1970-2000 (Zomer et al., 

2022) 

Vegetation and 

Land cover class 

Tree cover 

fraction 

VFC5KYR 0.05 

degree 

(Hansen,  

Matthew & 

Song,  Xiao-

Peng, 2018) 

1982 - 2016 (Hansen,  

Matthew and 

Song,  Xiao-Peng, 

2018) 

Land cover data ESA-CCI 0.05 

degree300 

m  

Yearly  1992 - 2018 ESA. Land Cover 

CCI Product User 

Guide Version 2. 

Tech. Rep. (2017) 

Topographical 

data 

Elevation Earthenv 1 km (Amatulli et al., 

2018)Static 

 (Amatulli et al., 

2018) 

Slope 

Soil data Fraction of sand FAO 0.05 

degree 

(Reynolds et al., 

2000) Static 

 (Reynolds et al., 

2000) Fraction of clay 

Irrigation Percentage of 

Irrigated area 

HID 5 arcmin (Siebert et al., 

2015)Yearly 

1990 - 2005 (Siebert et al., 

2015) 

 109 

2.1 Data 110 

2.1.1 Vegetation Functioning: 111 

In our study, vegetation functioning is characterised by satellite measurements of Near-Infrared Reflectance of vegetation 112 

(NIRv) and Solar Induced Fluorescence (SIF) (Table 1). NIRv is the product of near-infrared reflectance and the normalised 113 

difference vegetation index (NDVI) and represents the vegetation structure and vegetation greenness (Badgley et al., 2017). 114 

The NIRv data is available at a high spatial resolution of 0.05°, and the original 16-day data was aggregated to the monthly 115 

Inserted Cells
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NIRv data. SIF is directly related to the photosynthetic activity of plants because the excess energy from sunlight, that triggers 116 

the light reaction during photosynthesis, is dissipated by leaf as chlorophyll fluorescence (Mohammed et al., 2019). SIF data 117 

is derived from the Global Ozone Monitoring Experiment (GOME-2), because GOME-2 provides relatively reliable data over 118 

a long period (2007-2018). The 0.5° spatial and 16-day temporal resolution SIF data is processed into monthly data as described 119 

by (Köhler et al., 2015).  120 

 121 

The high spatial resolution of NIRv allows for a detailed study of the correlation of vegetation functioning with soil water 122 

availability. Therefore, we performed the main analyses using NIRv data. However, SIF is more sensitive to drought stress 123 

than NIRv (Qiu et al., 2022). Therefore, we perform additional analyses with SIF to show that the relationships hold for a 124 

different and more direct indicator of vegetation functioning. 125 

2.1.2 Soil Water Storage 126 

This study includes two different measures of soil water availability. The near-surface soil moisture (SSM) provides an 127 

estimate of water availability in the top layer of the soil, while the Terrestrial Water Storage (TWS) Anomaly provides an 128 

estimate of the overall water column of the soil. The SSM data is derived from the European Space Agency (ESA) Climate 129 

Change Initiative Program (CCI), which combines active and passive satellite microwave measurements to provide reliable 130 

estimates of SSM (Dorigo et al., 2017). The ESA CCI soil moisture data, at a daily temporal resolution, was aggregated to 131 

monthly temporal resolution. The TWS Anomaly data is derived from the GRACE mission, which measures changes in the 132 

Earth’s gravity field (Landerer & Swenson, 2012). Here, we use the JPL-Mascons product of TWS Anomalies which is 133 

available at a 0.5° spatial and monthly temporal resolution.The TWS Anomaly data is derived from the GRACE mission, 134 

which measures changes in the Earth’s gravity field (Landerer and Swenson, 2012). Here, we use the JPL-Mascons product of 135 

TWS Anomalies which is available at a 0.5° spatial and monthly temporal resolution(Watkins et al., 2015) 136 

2.1.3 Meteorological Data 137 

Employed climate variables include monthly air temperature (Ta), 2m dew point temperature (Td), precipitation (P), and net 138 

radiation (Rn) from the ERA5 reanalysis products at a 0.25° spatial resolution. TheThe vapor pressure deficit (vpd) is calculated 139 

from Ta and Td.  Further, the aridity index is calculated from the ratio between the long-term mean Rn (mm y-1) (1 MJ/sq.m/day 140 

= 0.408 mm/day) and P (mm y-1) for each grid cell (Budyko, 1974). We opted for this formulation as it offers a direct estimation 141 

of aridity and water (energy) constraints on vegetation. This eliminates the necessity to navigate through various formulations 142 

utilized for calculating potential evapotranspiration. However, we conducted additional validations of our results using the 143 

Global Aridity Index dataset (Zomer et al., 2022)based upon the FAO Penman-Monteith Reference Evapotranspiration 144 

equation. The use of the Global Aridity Index did not change the results of our study (Section 3.4). In addition, the mean and 145 

standard deviation of the climate variables are calculated and incorporated in the attribution analysis (Section 2.2.3).  146 
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2.1.4 Vegetation, soil, and topography data  147 

To evaluate the resulting correlation of vegetation functioning and water storages with respect to vegetation characteristics, 148 

we employ the tree cover fraction data from the AVHRR vegetation continuous fields products (VCF5KYR, 149 

https://lpdaac.usgs.gov/products/vcf5kyrv001/) (Hansen,  Matthew & Song,  Xiao-Peng, 2018).(Hansen,  Matthew and Song,  150 

Xiao-Peng, 2018). For this purpose, the mean of tree cover fraction for the years between 2007 and 2016 is calculated.  151 

 152 

Topographical variables such as elevation and slope are incorporated along with other climatologicalmeteorological variables 153 

to determine the relative contribution of different variables to the correlation between vegetation functioning and water storage. 154 

Topographic data at a 5 km resolution were downloaded from the EarthEnv. These data are calculated based on the 250 m 155 

GMTED dataset, and compared against the 90 m SRTM 4.1 dev dataset. The data were resampled to a coarser resolution of 5 156 

km using various aggregation techniques, details of which are in (Amatulli et al., 2018). Furthermore, for each grid cell, the 157 

fraction of sand and clay in soil (Reynolds et al., 2000)(Reynolds et al., 2000) along with the percentage of irrigated area 158 

(Siebert et al., 2015)(Siebert et al., 2015) were considered in attribution analysis.  159 

 160 

2.2 Methodology  161 

2.2.1 Data pre-processing 162 

A flowchart of the data pre-processing and analyses is presented in Figure S1. The time period of analysis is from 2007 to 163 

2018 constrained by the concurrent availability of all involved datasets. All the analyses were performed in monthly temporal 164 

resolution and at 0.05° spatial resolution (for NIRv) and 0.5° spatial resolution (for SIF). The SSM and TWS data were initially 165 

available at 0.25° and 0.5° resolution, but were disaggregated or aggregated to 0.05° or 0.5° degrees , depending on the spatial 166 

resolution of the analysis performed, based on the assumption that the soil water storage anomalies are representative over 167 

larger areas. Also, the meteorological data and vegetation, soil, and topographic data were resampled into the same resolution. 168 

After aggregating all the datasets to 0.05° resolution, the monthly anomalies were calculated by subtracting the long term mean 169 

monthly cycle and by removing linear trends. A SIF threshold was applied in each grid cell to filter out non-growing season 170 

data. For this purpose, we filtered out all the months from 2007-2018 when the mean-monthly SIF value was below the 171 

threshold of 0.2 mW/m2/sr/nm. We apply an additional temperature threshold (Ta > 5◦C) to remove the months with frozen 172 

soil and snow cover, similar to (Li et al., 2021)(Li et al., 2021). Last, all months with missing soil water storage or vegetation 173 

functioning records were excluded.  174 
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2.2.2 Calculate the relevance of near-surface (SSM) soil moisture and terrestrial water storage (TWS) for vegetation 175 

functioning  176 

We calculated the spearmanSpearman correlation between vegetation functioning (NIRv) and soil water storages (SSM and 177 

TWS) for each grid cell during growing season months when observations for at least 40 months were available. The cutoff of 178 

40 months was implemented to guarantee a substantial number of observations for growing-season months in each grid cell. 179 

This consideration assumes that the minimum number of growing-season months varies from 3 to 4 months per year globally. 180 

In addition to soil moisture, also air temperature (Ta) and net radiation (Rn) affect the vegetation functioning. Moreover, SSM 181 

(soil moisture) and TWS (total water storage) demonstrate a notable correlation, as illustrated in Figure S2, signifying the 182 

presence of mutual information. To focus exclusively onexamine the effectsindividual impacts of each water 183 

availabilitystorage variable on vegetation functioning and disentangle mutual information from other water variables, we 184 

correctedaccounted for the confounding effects of Ta and Rn, by. This entailed computing the partial correlation between NIRv 185 

and water storages (SSM or TWS), while controlling for Ta and Rn., Rn, and the other water storage variable (TWS or SSM). 186 

Since we focus on understanding the role of soil moisture on vegetation functioning, which is primarily critical in water-limited 187 

conditions, we removed the grids cells with insignificant (p <0.05) and negative partial correlations from our analysis. Such 188 

negative partial correlations may hint at vegetation’s converse effect on soil moisture (when increasing vegetation activity 189 

depletes the soil moisture) and a negative correlation could occur in the grid cells where water limits vegetation productivi ty 190 

through oxygen limitation (Ohta et al., 2014).  191 

 192 

It is important to note that we chose not to apply a significance criterion in analyzing the partial correlation between NIRv and 193 

water storages. When controlling for both water storage (TWS or SSM) and energy variables (Ta and Rn) in the partial 194 

correlation (NIRv~SSM or TWS), a limited number of grid cells demonstrate significant correlation globally, given the high 195 

correlation between SSM and TWS (Figure S2). This poses challenges for drawing global inferences on vegetation water 196 

uptake. However, our overarching goal is to discern variations in the partial correlation of NIRv with water storages across 197 

differing climate-vegetation gradients and how it changes from the growing season to dry months, rather than confirming 198 

specific statistical thresholds. For this, we want to maintain a sufficient amount of grid cells necessary for making global 199 

inferences. However, to ensure that our results are not affected by the significance criterion, we conducted additional analyses 200 

considering only grid cells with a significant partial correlation (though a very small number compared to the total grid cel ls 201 

available for each AI-TC class globally), as described in section 3.4. 202 

 203 

The impact of all pre-processing steps on the number of grid cells included in this study is illustrated in Figure S3. Generally, 204 

our filtering procedures enable us to concentrate primarily on water-limited regions, as they effectively remove a substantial 205 

number of grid cells from the wet regions globally. 206 

To analyse how the importance of SSM and TWS changes during dry months, we specifically selected the months 207 

withcharacterized by the lowest 10% SSM for each grid cell. , representing the driest conditions within the growing-season 208 
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months.The partial correlations between NIRv and water storages, r(NIRv~SSM) and r(NIRv~TWS) were calculated 209 

separately for dry months. To focus on vegetation response to similar extent of dryness spatially, only grid cells with greater 210 

than 100 monthly observations were considered for the dry months analysis. In addition, only the grid cells which had 211 

significantpositive partial correlation in growing season months were included for the dry months analysis.  212 

 213 

After computing the partial correlations, we grouped the grid cells by aridity and tree cover or land cover classes and calculated 214 

the mean correlation, for each aridity-tree cover class with sufficient number of observations for both growing season and dry 215 

months. Thisclasses, which allowed us to analyse the evolution of correlations and the difference between the partial correlation 216 

across aridity and vegetation classes-tree cover classes. Afterwards, we employed bootstrapping with 1000 repetitions to 217 

compute the bootstrap means and confidence interval using a full bootstrapping methodology (resampling with replacement 218 

from the original data) for each aridity-tree cover class with sufficient number of observations for both growing season and 219 

dry months. . 220 

 221 

Moreover, to test the robustness of the results, we did additional partial correlation analyses, for which we correlated the SIF 222 

(instead of NIRv) with SSM and TWS. The analyses with SIF were performed at a spatial resolution of 0.5°, at which SIF data 223 

was available.  224 

2.2.3 Attribution Analysis 225 

We used a random forest model to understand the spatial variability in the relevance of SSM versus TWS for NIRv. Random 226 

forest is a nonparametric based regression algorithm which does not require any statistical assumptions on the predictor and 227 

target variables which makes it particularly useful for detecting the nonlinear relationship (Breiman, 2001). Given potential 228 

nonlinear impacts of various factors (climate, soil types, vegetation) on the relationship between moisture storages and 229 

vegetation functioning, this study employed the random forest method to assess the relative contributions of these variables. 230 

 231 

In our study, 1315 predictors were included in the random forest model based on their potential physical relevance to the target 232 

variable, which is the difference in correlation between SSM and TWS with NIRv in growing season months. These predictors 233 

included mean and standard deviation of climate variables (Ta, Rn, P and Pvpd), aridity index, topographical variables 234 

(elevation and slope), vegetation variable (tree cover), soil-related variables (fraction of clay and sand), and percentage of 235 

irrigated areas for each grid cell. We calculated the mean and standard deviation of the climate variables only during the 236 

growing-season months (, as determined for the months with SIFmean-monthly < 0.2 mW/m2/sr/nm were excluded).subsequent 237 

partial correlation analysis..  Furthermore, only the grid cells having significant andexhibiting positive partial correlation 238 

between NIRv and SSM as well as NIRv and TWS during growing season-months were included in the random forest analysis. 239 

For training a random forest model, we used the “xgboost” package in R (Chen & Guestrin, 2016).(Chen and Guestrin, 2016).  240 

 241 
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We further incorporate SHAP (SHapley Additive exPlanations) values for interpreting the predictions of the random forest 242 

model (Lundberg et al., 2020). The SHAP value for a feature is the average difference in prediction of the model when that 243 

feature is included compared to when it is excluded, over all possible combinations of features. By calculating SHAP values 244 

for each feature in the model, we identified which features were most important in explaining the spatial variability in the 245 

relevance of SSM versus TWS. For calculating the SHAP values, we employed “SHAPforxgboost” package in R.  246 
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3. Results and Discussion 247 

3.1 Coupling of vegetation functioning with surface soil moisture and total water storage in the growing season  248 
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 250 

Figure 1: Coupling strength between vegetation functioning (NIRv) and (a) near-surface soil moisture (SSM), and (b) total water 251 
storage (TWS) during the growing season months. Monthly anomalies of all variables are used to calculate the partial correlation. 252 
(c) Difference between (a) and (b). The purple colour in (c) indicates the greater partial correlation of NIRv with SSM compared to 253 
the partial correlation of NIRv with TWS while orange colour indicates the opposite. Grid cells with significant (p < 0.05) and 254 
positive relationships for both correlations (a) and (b) are shown in (c) with blueish and orange colours. Light grey colour indicates 255 
insignificant and/or negative partial correlations between NIRv and water storage. The absence of color within the land boundary 256 
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signifies inadequate observational data for precise computation of the partial correlation. Each inset in the respective maps 257 
illustrates the probability distribution function (pdf) of the correlations. 258 

The partial correlation of NIRv with near-surface soil moisture varies globally during growing-season months (Figure 1a). 259 

NIRv demonstrates stronger correlation with near-surface soil moisture within semi-arid climates, Central North America, 260 

South America, regions in South Africa and Australia. The correlation is stronger in Southern Europe and the Mediterranean 261 

region compared to central and Northern Europe. The correlation gradient from the hot and dry Mediterranean region to wet 262 

and cold Northern Europe corresponds to the gradient of water-limited ecosystems to energy-limited ecosystems obtained in 263 

other studies (Denissen et al., 2022; Teuling et al., 2009).  264 

 265 

The global correlation of NIRv with TWS follows a similar pattern as with SSM (Figure 1b) in growing-season months. The 266 

correlation of NIRv with TWS is higher in drier central northern America and Australia compared to other regions. The 267 

similarities in the correlation of NIRv with SSM and TWS are expected because the monthly anomalies of SSM and TWS are 268 

highly correlated during growing season months in most of our study area (Figure S2).  269 

 270 

The difference between the partial correlation of NIRv with SSM and TWS (Figure 1c) indicates that the NIRv correlates 271 

stronger with TWS in Western America, Southern Europe, and arid regions of Australia compared to other regions globally 272 

during growing-season months. In South America and Southern Africa, however, the NIRv shows a stronger correlation with 273 

SSM. It is difficult to determine which Although we control for the effect of soil water storage (SSM or TWS) is more critical 274 

when computing partial correlation to discern the relative importance for vegetation, because the near-surface soil moisture is 275 

includedit should be noted that the varying noise levels inherent in the measurements of TWS, and boththese datasets have 276 

very different noise levelsmight impact our results. 277 

 278 

 279 

 280 
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 281 

Figure 2: Summarising the coupling strengths of vegetation functioning (NIRv) with (a) near-surface soil moisture (SSM) and (b) 282 

terrestrial water storage (TWS) in the growing season-months across climate (aridity index) and vegetation regimes (fraction of tree 283 

cover). (c) shows the difference between (a) and (b). Numbers within the boxes denote the number of grid cells for each aridi ty-tree 284 

cover class. Aridity-tree cover classes containing less than 1000 grid cells are shown in grey. The colourcolor bar indicates adenotes 285 

the mean partial correlation for each class., computed from bootstrapping. The asterisk in figure (c) signifies that the 95% confidence 286 

interval (lower and upper) shares the consistent sign (+/-) in the difference of partial correlation. Only grid cells with significant (p 287 

< 0.05) and positive relationshipspartial correlation are considered.  288 

 289 

Next, we analyse the partial correlation between NIRv and soil water storages across different aridity and tree cover fraction 290 

classes during growing season months. For this, we group the grid cells into different aridity and tree cover fraction classes 291 

and then do bootstrapping to compute mean partial correlation and the 95 percent confidence intervals for each class with more 292 

than 1000 grid cells. We find that the partial correlation of NIRv with SSM (Figure 2a) increases with increasing aridity for 293 

aridity index (0.5 – -4.). This can be attributed to the intensification of water stress on vegetation under increasingly arid 294 

conditions, resulting in a stronger correlation between NIRv and SSM. However, for a further increase in aridity (4-8), the 295 

strength of the correlation of NIRv with SSM declines. This is due to a low soil moisture availability and low temporal 296 

variability under extremely arid conditions (Figure S7S4). The pattern of increasing correlation along aridity index is also 297 

observed in the partial correlation between NIRv and TWS. (Figure 2b).  298 

 299 

Furthermore, the correlation of NIRv with SSM decreases for higher tree cover fractions (Figure 2a). However, such a gradient 300 

along tree cover fraction is less pronounced in the partial correlation of the NIRv with TWS (Figure 2b). This overall depicts 301 

that the coupling of vegetation functioning with SSM is generally higher for non-forested areas compared to forested areas 302 

while this gradient is less pronounced in the case of TWS.   303 

 304 

It is difficult to conclude which soil moisture storage (SSM or TWS) is more important for a certain aridity-vegetation class 305 

because it inherently includes the difference in noise levels associated with SSM and TWS. However, we can compare the 306 
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evolution of the gradient along tree cover or aridity index and assert how the relevance of SSM and TWS changes with varying 307 

tree cover or aridity index. Taking this into account, we find that NIRv correlates more strongly with near-surface soil moisture 308 

compared to terrestrial water storage in semi-arid regions with low tree cover (Figure 2c), suggesting that the vegetation 309 

preferentially takes up water from SSM whenever available to meet its transpiration demand. This might be due to lower 310 

energy expenditure on root water uptake, abundant nutrients and reduced chance of root water logging in the near-surface soil 311 

moisture (Andrew Feldman et al., 2022; Schenk & Jackson, 2002; Tao et al., 2021). Conversely, the correlation between the 312 

NIRv and TWS in arid areas (AI 4-8)  and regions with a high fraction of tree cover is equivalent to or greater than that of 313 

SSM, suggesting that trees can utilise their extensive root systems to access deeper soil moisture, as observed in arid vegetation. 314 

This is consistent with previous studies reporting that the vegetation dependence on sub-surface soil moisture is higher in arid 315 

and seasonal-arid climates (Miguez-Macho & Fan, 2021). 316 

 317 

Though the difference in inherent noise levels associated with SSM and TWS impacts partial correlation analysis, we can 318 

compare the evolution of the gradient along tree cover or aridity index and assert how the relevance of SSM and TWS changes 319 

with varying tree cover or aridity index, assuming that the noise levels are similar across varying AI-TC classes. Taking this 320 

into account, we find that NIRv correlates more strongly with near-surface soil moisture compared to terrestrial water storage 321 

in semi-arid regions with low tree cover (Figure 2c), suggesting that the vegetation preferentially takes up water from SSM 322 

whenever available to meet its transpiration demand. This might be due to lower energy expenditure on root water uptake, 323 

abundant nutrients and reduced chance of root water logging in the near-surface soil moisture (Feldman et al., 2023; Schenk 324 

and Jackson, 2002; Tao et al., 2021). Conversely, the correlation between the NIRv and TWS in arid areas (AI 4-8)  and regions 325 

with a high fraction of tree cover is equivalent to or greater than that of SSM, suggesting that trees can utilise their extensive 326 

root systems to access deeper soil moisture, as observed in arid vegetation. This is consistent with previous studies reporting 327 

that the vegetation dependence on sub-surface soil moisture is higher in arid and seasonal-arid climates (Miguez-Macho and 328 

Fan, 2021). However, in certain regions with higher tree cover in humid areas, specifically with AI 0.5-1, such conclusions 329 

cannot be confidently drawn statistically. The reason is that the confidence intervals for the difference in partial correlat ion of 330 

NIRv with SSM and TWS fluctuate between positive (indicating greater relevance of SSM) and negative (indicating greater 331 

relevance of TWS) values (Figure 2c). 332 

 333 

Note that while our analysis focuses on regions with water-controlled vegetation as denoted by significantly positive 334 

correlations between NIRv and the considered soil water storages, some of these grid cells are located in comparatively wet 335 

climate regimes with aridity index values between 0.5 and 1 (Figure 2). This highlights the relevance of non-climatic factors 336 

such as soil and vegetation types or topography in determining vegetation-water relationships in addition to the climate regime. 337 

Next to this, in Figure 2c it seems that the relevance of terrestrial water storage is comparatively higher in wet climate (aridity 338 

0.5-1) than in transitional climate regimes (aridity 1-2) as shown with the smaller correlation differences. This, however, is 339 

probably not the case and simply a reflection of reduced variability in surface soil moisture (Figure S7S4). 340 
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 341 

To ascertain that our results are not impacted by outliers, we analysed the heatmaps with 10th and 90th percentile correlation 342 

values for each aridity-vegetation class, instead of the mean correlation value (Figure S3). This shows consistent patterns of 343 

the partial correlation of NIRv with soil water storages as in Figure 2 and indicates that the gradients with tree cover and 344 

aridity are valid throughout the entire dataset.  345 

3.2 Coupling of vegetation functioning with surface soil moisture and total water storage in dry months  346 

The correlation between NIRv and soil water storage increases during dry months (Figure 3a,b) compared to growing season 347 

months (Figure 2a,b). This increase is consistent for both SSM and TWS and across all tree cover fractions and aridity classes. 348 

This is because the water limitation on vegetation increases in dry months and so does the vegetation’s sensitivity to the 349 

moisture. During the dry months, the correlation with near-surface soil moisture tends to rise, but the correlation with terrestrial 350 

water storage increases even more significantly (Figure 3c). This hintsindicates the relevance of deeper water resources during 351 

periods of scarce rainfall. The partial correlation maps (Figure S4S5) also reveal that NIRv's correlation with TWS increases 352 

more than its correlation with SSM for most grid cells. 353 

 354 

 355 

Figure 3: Similar to Figure 2, but only considering the 10% driest months in each grid cell.  356 

 357 
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Figure 3: Summarising the coupling strengths of vegetation functioning (NIRv) with (a) near-surface soil moisture (SSM) and (b) 358 
terrestrial water storage (TWS) in the 10% driest months in each grid-cell across climate (aridity index) and vegetation regimes 359 
(fraction of tree cover). (c) shows the difference between (a) and (b). Numbers within the boxes denote the number of grid ce lls for 360 
each aridity-tree cover class. Aridity-tree cover classes containing less than 1000 grid cells are shown in grey. The color bar denotes 361 
the mean partial correlation for each class, computed from bootstrapping. The asterisk in figure (c) signifies that the 95% confidence 362 
interval (lower and upper) shares the consistent sign (+/-) in the difference of partial correlation. Only grid cells with positive partial 363 
correlation are considered. 364 

During dry months, the number of analysed grid cells (Figure 3) is lower compared to all growing season months (Figure 2). 365 

We performed a reanalysis of the correlation patterns within aridity-tree cover classes by selecting only those grid cells that 366 

displayed significant and positive partial correlation between NIRv and soil water storages during both the dry months and the 367 

growing season months. The results demonstrate that the previously observed patterns remain valid, thereby eliminating the 368 

impact of the differing numbers of grid cells analysed. (Figure S5).S6. 369 

 370 
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3.3 Climate, vegetation, and topographic controls on the relevance of surface soil moisture vs. total water storage on 371 

vegetation 372 

 373 
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 374 

Figure 4: (a) Global feature importance based on the mean absolute magnitude of the SHAP values. The higher the mean SHAP 375 
values, the greater the predictor’s relevance. (b-d) Evaluation of SHAP values (=contributions to the correlation difference 376 
illustrated in Figure 1c) against predictor values for the 3 most relevant predictors mean temperature during the growing season 377 
months (mean Ta), tree cover fraction (TC), and variability of temperature during the growing season months (sd Ta).) and mean 378 
temperature (mean Ta) during the growing season months. . The colour indicates the density of data points. For plotting (b), (c) and 379 
(d), only 10 percent random samples of the whole dataset are utilised.  380 

We use a random forest model to understand the spatial variability in the relevance of SSM versus TWS for NIRv. The model 381 

was trained with 1315 climatic, vegetation, and topographic predictors against the target variable which is the difference of 382 

the partial correlations of NIRv with SSM and TWS during growing season-months (R2 = 0.6459, see methods section 2.2.3). 383 

The mean absolute SHAP value plot shows that the tree cover and the climate variables (mean and standard deviation of Ta) 384 

and tree cover are most important variables for explaining the spatial variability in the relative importance of SSM vs. TWS 385 

for vegetation functioning (Figure 4a). This overall highlights that the relative importance of SSM vs. TWS for the vegetation 386 
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is broadly controlled by climate, influencing water availability and vegetation type, reflecting the local adaptation of ecosystem 387 

and climate, influencing water availability.(Stocker et al., 2023).  388 

The relative importance of SSM and TWS varies non-linearly with the mean growing season temperature (Figure 4b). TWS 389 

tends to be more crucial for vegetation functioning in areas with low (approximately below 20°C) or high (above 27°C) 390 

growing season temperatures, while SSM has greater importance in regions with moderate growing season air temperatures. 391 

One possible explanation for this trend is that high temperatures induce a strong atmospheric water demand that dries near-392 

surface soil layers, which leads vegetation to increase water extraction from deep soils. In contrast, SSM is more available 393 

during growing seasons characterised by moderate temperatures. Regions that experience relatively cold growing season 394 

temperatures exhibit stronger temperature and weather variability that may contribute to longer dry periods and, thus, 395 

emphasises the importance of deeper soil moisture for vegetation functioning. However, it should be noted that our findings 396 

regarding the relevance of TWS at high temperatures must be interpreted with caution due to the exclusion of most tropical 397 

forest regions from our analysis (Figure S6).Tree As a result, most warm regions are dry, and there are only a few hot and wet 398 

regions included in our training data. 399 

 400 

In addition to mean growing season Ta, tree cover fraction is an important factor in determining the relevance of SSM and 401 

TWS for vegetation functioning (Figure 4c). Regions with a high tree cover are more dependent on TWS, as trees generally 402 

have deeper root systems that allow them to adjust water uptake between different depths (Tao et al., 2021). Grasslands on the 403 

other hand have shallow roots that are more susceptible to surface soil moisture variations (Yang et al., 2014). 404 

 405 

Similarly, the relative importance of SSM and TWS varies non-linearly with the mean growing season temperature (Figure 406 

4b). TWS tends to be more crucial for vegetation functioning in areas with low (approximately below 20°C) or high (above 407 

27°C) growing season temperatures, while SSM has greater importance in regions with moderate growing season air 408 

temperatures. One possible explanation for this trend is that high temperatures induce a strong atmospheric water demand that 409 

dries near-surface soil layers, which leads vegetation to increase water extraction from deep soils. This observation is further 410 

underscored by the analogous pattern observed in the SHAP dependence plot for vpd, which accentuates atmospheric water 411 

demand (Figure S8). In contrast, SSM is more available during growing season months characterised by moderate 412 

temperatures. We hypothesize that the regions that experience relatively cold growing season temperatures exhibit stronger 413 

temperature and weather variability that may contribute to longer dry periods and, thus, emphasises the importance of deeper 414 

soil moisture for vegetation functioning. However, it should be noted that our findings regarding the relevance of TWS at high 415 

temperatures must be interpreted with caution due to the exclusion of most tropical forest regions from our analysis (Figure 416 

S7). As a result, most warm regions are dry, and there are only a few hot and wet regions included in our training data. 417 

 418 

 419 
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Not only the mean of the growing season temperature, but also its variability is crucial for explaining the significance of SSM 420 

and TWS for vegetation functioning (Figure 4d). A higher temporal variability in temperature increases the importance of 421 

TWS for vegetation. This is because atmospheric water demand scales with temperature. Hence, higher variability in 422 

temperature implies more peaks in related atmospheric water demand which is a stronger incentive for plants to access deeper 423 

water storages which are more often available to meet the vegetation´s transpiration demand.  424 

 425 

Figure S8 illustrates the effect of the other six important predictors on the model output. Apart from climatological parameters 426 

(mean P, mean vpd, variability in Rn, and P, and aridity index ), elevation and slope explain part of the variability in the 427 

relevance of SSM vs. TWS for NIRv. Although the reasons for increasing relevance of TWS for vegetation functioning at 428 

higher elevation remain unclear, it may be due to elevation’s strong correlation with other climatic variables such as Ta and P. 429 

 430 

Several local studies identified other relevant factors that determine root water uptake depth such as forest stand age and tree 431 

height, competition, root hydraulic architecture, and tree species (Zhu et al., 2022; Quijano et al., 2012; Stahl et al., 2013, 432 

Gessler et al., 2021; Liu et al., 2021). For example, young trees more easily increase their root activity in the shallow or deep 433 

soil dependent on soil moisture than mature trees (Zhu et al., 2022; Drake et al., 2011). These variables were not included in 434 

our attribution analysis, because they are not available at global scale. 435 

3.4 Robustness Tests 436 

In the aforementioned analysis, we included grid cells exhibiting both positive partial correlations, whether significant or non-437 

significant. Upon further examination, we specifically assessed the evolution of partial correlation between NIRv and water 438 

storages, considering only grid cells with significant partial correlation (p < 0.05). The observed patterns along the aridity-tree 439 

cover gradient remained similar during growing season months. This suggests the robustness of our results to the choice of the 440 

statistical significance criterion, albeit with a substantial reduction in the number of globally available grid cells when 441 

considering only significant partial correlation (Figure S9). 442 

 443 

Furthermore, to ensure that our results are robust to variations in the threshold for Solar-Induced Fluorescence (SIF) used to 444 

define growing season months, we conducted additional analyses with a different SIF threshold. Instead of filtering out all 445 

months from 2007-2018 when the mean-monthly SIF value was below the threshold of 0.2 mW/m²/sr/nm, we utilized a 446 

threshold of 0.5 mW/m²/sr/nm. Elevating the SIF threshold implies the exclusion of additional months characterized by lower 447 

vegetation activity for the partial correlation analysis. However, it is essential to note that this threshold does not seem to affect 448 

the number of globally available grid cells during growing season months and hence patterns along AI-TC classes are similar. 449 

Instead, it specifically influences the selection of dry months and hence the number of grid cells available for the analysis  450 

during dry months. . Nevertheless, even with the elevated SIF threshold for defining growing season months, the observed 451 
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patterns along aridity-tree cover (AI-TC) classes remain largely consistent with the results obtained in our main analyses 452 

(Figure S10). 453 

 454 

Although NIRv can largely reflect vegetation functioning (Badgley et al., 2017), we repeat our analysis with SIF, which is an 455 

alternative and independent indicator for vegetation functioning and shows a near-linear relationship with gross primary 456 

productivity at the ecosystem level (Guanter et al., 2012)(Guanter et al., 2012). However, SIF is only available at a coarse 457 

resolution of 0.5 degree. The partial correlations, r(SIF~SSM) and r(SIF~TWS) largely agree with the pattern of r(NIRv~SSM) 458 

and r(NIRv~TWS) across varying aridity index and tree cover classes (Figure S9).S11. This suggests that our overall 459 

conclusion on the relevance of SSM or TWS for vegetation functioning is robust across different indicators of vegetation 460 

productivity.  461 

 462 

The partial correlation of NIRv with TWS is confounded by the presence of SSM within TWS, which makes it  challenging to 463 

determine the relative importance of SSM and TWS for vegetation functioning. To address this issue, we re-calculated the 464 

partial correlation of NIRv with TWS while additionally controlling for SSM (next to Ta and Rn) during growing season 465 

months. With this additional control variable, we observed fewer grid cells with positive and significant correlations compared 466 

to the analysis without controlling for SSM. Additionally, the magnitude of the partial correlation of NIRv with TWS slightly 467 

decreased in most grid cells when controlling for SSM (Figure S10). Nevertheless, we still observed the decreasing relevance 468 

of SSM and increasing relevance of TWS along an increasing tree cover fraction. Similar gradient across the aridity index is 469 

also observed in this analysis controlling for SSM. Thus, we conclude that our findings  hold even after controlling for the 470 

effect of SSM in TWS .Additionally, we tested if our results are robust when the aridity index is calculated based on the FAO 471 

Penman-Monteith Reference Evapotranspiration equation, for which we applied aridity classification based on UNEP 1997 472 

guidelines – Our results confirm the findings of Section 3.1and Figure 2 that as aridity increases, the correlation of NIRv with 473 

Soil Surface Moisture (SSM) and Total Water Storage (TWS) intensifies. Moreover, in hyper arid regions (AI < 0.03) the 474 

correlation with TWS surpasses that with SSM (Figure S12). They also confirm that regions with higher tree Cover (TC) 475 

fraction correlates more strongly with TWS compared to SSM. Thus, the choice of aridity index formulation does not alter our 476 

main conclusions. 477 

 478 

4. Summary and Conclusions 479 

In this study we compare the relevance of near-surface soil moisture and of terrestrial water storage for vegetation functioning 480 

across the globe. We find that in semi-arid regions and regions with low tree cover, vegetation preferentially utilises the water 481 

from shallow soil, which is related to continuous availability of near-surface water availability and lack of deep rooting systems 482 

respectively. The stronger correlation of NIRv with SSM than TWS is supported by site-level studies that find a higher root 483 
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water uptake of surface soil moisture (Brinkmann et al., 2019, Gessler et al., 2021, Deseano Diaz et al., 2023; Kulmatiski and 484 

Beard, 2013), also when deeper water is available. Some local studies however find a higher root water uptake from deeper 485 

layers (Zhu et al., 2022).  486 

 487 

By contrast, in mostly forested regions and in relatively dry climate regimes, the correlation with terrestrial water storage is 488 

comparable or higher than with near-surface soil moisture, indicating that trees and vegetation in arid regions use their deep 489 

root systems to access deeper soil moisture. Point-scale studies also found a different water uptake depth for trees and grasses 490 

in for example savanna ecosystems (Kulmatiski et al., 2010), and a different water uptake depth for tree species (Kahmen et 491 

al., 2022). Liu et al. (2021) showed for example that for a karst forest in Southwest China, evergreen species rely mostly on 492 

water sources from the 0-30 cm layer, while deciduous species extracted most water from the 30-70 cm layer. 493 

  494 

We also find that vegetation’s preferential water uptake depth changes over time. During particularly dry months, the relative 495 

importance of terrestrial water storage is higher, highlighting the importance of deep water resources during periods of low 496 

soil water availability. This is in line with previous studies showing changes in vegetation’s water uptake depth during drought 497 

periods at small spatial scales where accessing water in deeper soil layers helps plants to alleviate water stress and maintain 498 

transpiration (Migliavacca et al., 2009; Tao et al., 2021). 499 

 500 

Our global results are supported by site-scale studies that find that, during drought, the deeper roots play a more active role in 501 

water extraction (Stahl et al., 2013, Volkmann et al., 2016; Tao et al., 2021). In some studies however, the increase of deep  502 

water uptake is only relative: the absolute uptake of deep water does not increase, but the uptake of shallow water decreases 503 

(Brinkmann et al., 2019, Gessler et al., 2021, Rasmussen et al., 2020; Kühnhammer et al., 2023). This means that the uptake 504 

of deeper soil layers cannot compensate for the loss of water uptake from the dry topsoil. Contrary to trees, grasses do not shift 505 

their uptake depth (Deseano Diaz et al., 2023), or even extract water from the most shallow soils (Prechsl et al., 2015, 506 

Kulmatiski and Beard, 2013). 507 

 508 

Furthermore, we show that the spatial variability of the importance of near-surface soil moisture vs. terrestrial water storage 509 

for vegetation functioning is influenced by temperature and the fraction of tree cover. and mean and standard deviation of air 510 

temperature. This emphasises the role of climate in determining shallow vs. deep soil water resources, and the role of vegetation 511 

in adapting to different soil water availability patterns.  512 

 513 

Vegetation functioning and soil water storages are generally coupled in both directions, i.e. while soil moisture availability 514 

affects vegetation functioning (positive coupling), this in turn also affects soil moisture through transpiration (negative 515 

coupling). As our study focuses on water-controlled vegetation we only consider positive couplings and filter out grid cells 516 
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with negative correlations. Future research may consider the relevance of soil moisture across depths for the positive coupling 517 

regions.  518 

 519 

Overall, our analysis illustrates that satellite-based data can be used for belowground analysis at large spatial scales thanks to 520 

the fact that satellite retrievals can assess soil water storage dynamics across depths and because vegetation in water-controlled 521 

areas can be used as an indicator of soil water dynamics. Such novel ways to improve our understanding of belowground water 522 

dynamics is necessary and valuable as respective in-situ observations are scarce and of limited representativeness for larger 523 

areas, particularly given the typical spatial heterogeneity of soils and vegetation. Our results can further inform a better 524 

representation of belowground processes in global models in order to support more accurate projections of future changes in 525 

climate, water resources, and ecosystem services.  526 

Data availability 527 

The monthly SIF data is available from https://www.gfz-potsdam.de/sektion/fernerkundungund- 528 

geoinformatik/projekte/global-monitoring-of-vegetation-fluorescence-globfluo/daten.The NIRv was calculated from the red 529 

and near-infrared reflectance obtained from the MOD13C1 v006 product (https://lpdaac.usgs.gov/products/mod13c1v061/). 530 

The ESA-CCI soil moisture can be accessed through https://esa-soilmoisture-cci.org/ and Terrestrial Water Storage Anomaly 531 

data can be accessed through https://podaac.jpl.nasa.gov/dataset/TELLUS_GRACGRFO_MASCON_CRI_GRID_RL06_V2. 532 

The ERA5 climate variables are available from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 . Tree 533 

cover fraction data is available from the AVHRR vegetation continuous fields products  534 

https://lpdaac.usgs.gov/products/vcf5kyrv001/, land cover data is available from https://www.esa-landcover-cci.org/, and 535 

topographic data is available via https://www.earthenv.org/topography. Similarly, the irrigation fraction data could be accessed 536 

from https://mygeohub.org/publications/8 . 537 
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