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Fig. S1: Density plots of global, annual mean output from 221 PPE members for AFer,
AFaci, AFari, and global mean Fsw, LWP, Ng, f.,tc and re,. Diagonal panels show probability
density functions for individual variables.
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Fig. S2: Transects from stratocumulus to cumulus cloud dominated regions in a) July and

b) November, superimposed on MODIS liquid cloud fraction values for the corresponding
month.
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North Atlantic transect constraint variables
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Fig. S3: Probability density functions of North Atlantic transect constraint variables.



North Pacific transect constraint variables
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Fig. S4: Probability density functions of North Pacific transect constraint variables.
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South Atlantic transect constraint variables
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Fig. S5: Probability density functions of South Atlantic transect constraint variables.



South Pacific transect constraint variables
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60  Fig. S6: Probability density functions of South Pacific transect constraint variables.
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Fig. S7: Pairwise comparisons of North Pacific and Hq constraint variables. Figure features
are identical with Fig. 5.
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Fig. S10: Pairwise comparisons of Southern Ocean and Hgq constraint variables. Figure
80  features are identical with Fig. 5.
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Fig. S11: Probability density functions of model parameters after constraint using our
optimal set of constraint variables. In the original sample of 1 million model variants, these
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proportion of model variants with corresponding parameter values have been ruled out as
implausible.
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221 PPE members. Values were calculated in each model grid box independently.
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Fig. S15: Relative importance of model parameters as causes of uncertainty in Hq. Relative
importance metrics are calculated for each month (December 2016 to November 2017), for
the annual mean (Ann) and the seasonal amplitude (Amp). Relative importance metrics
lower than 4% are not shown.
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Fig. S16: Relative importance of model parameters as causes of uncertainty in global mean
Nq. Figure features are identical to Fig. S15.
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Fig. S17: Relative importance of model parameters as causes of uncertainty in global mean

115  Fsw. Figure features are identical to Fig. S15.
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Fig. S18: Relative importance of model parameters as causes of uncertainty in global mean
fe. Figure features are identical to Fig. S15.
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Fig. S19: Relative importance of model parameters as causes of uncertainty in global mean

LWP. Figure features are identical to Fig. S15.
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Fig. S20: Relative importance of model parameters as causes of uncertainty in global mean
T.. Figure features are identical to Fig. S15.
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130  Fig. S21: Relative importance of model parameters as causes of uncertainty in global mean
re. Figure features are identical to Fig. S15.
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North Atlantic transect
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Fig. S22: Relative importance of model parameters as causes of uncertainty in North

135  Atlantic transect constraint variables. Figure features are identical to Fig. S15.
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Fig. S23: Relative importance of model parameters as causes of uncertainty in North Pacific

transect constraint variables. Figure features are identical to Fig. S15.
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South Atlantic transect
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Fig. S24: Relative importance of model parameters as causes of uncertainty in South
Atlantic transect constraint variables. Figure features are identical to Fig. S15.
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Fig. S25: Relative importance of model parameters as causes of uncertainty in South Pacific
transect constraint variables. Figure features are identical to Fig. S15.
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Fig. S26: Probability distributions of North Pacific regional mean output from our sample

of model variants, satellite-derived measurements and the default UKESM1-A model, for
individual months spanning December 2016 to November 2017 and the annual mean.
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155  Fig. S27: Probability distributions of South Atlantic regional mean output from our sample
of model variants, satellite-derived measurements and the default UKESM1-A model, for

individual months spanning December 2016 to November 2017 and the annual mean.
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160  Fig. S28: Probability distributions of South Pacific regional mean output from our sample
of model variants, satellite-derived measurements and the default UKESM1-A model, for
individual months spanning December 2016 to November 2017 and the annual mean.
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Fig. S29: Probability distributions of Southern Ocean regional mean output from our
sample of model variants, satellite-derived measurements and the default UKESM1-A
model, for individual months spanning December 2016 to November 2017 and the annual

mean.
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Table S1. Parameters perturbed in our PPE, the ranges they were perturbed over and default values as
prescribed in the release version of the model. For parameters described as “scale factors”, we perturbed
values by scaling the default process parameter value up or down over the indicated range. All other
parameters are specific values within the corresponding process parametrizations.

Parameter Minimum | Maximum Default Parameter Description
bl_nuc 0.1 10 1 Boundary layer nucleation rate scale
factor
ait_width 1.2 1.8 1.59 Modal width of Aitken modes (nm)
cloud_ph le-7 2.51e-5 le-5 Cloud droplet pH
carb_ff_diam 30 90 60 Emission diameter of carbonaceous
aerosol from fossil fuel sources (nm)
carb_bb_diam 90 300 110 Emission diameter of carbonaceous
aerosol from biomass burning sources
(nm)
carb_res_diam 90 500 150 Emission diameter of carbonaceous
aerosol from residential sources (nm)
prim_so4_diam 3 100 150 Emission diameter of 50% of new sub-
grid sulfate particles (nm). Remaining
50% emitted into the larger coarse
mode (nm)
sea_spray 0.25 4 1 Sea spray emission flux scale factor
anth_so» 0.6 15 1 Anthropogenic SO2 emission flux
scale factors. Applied independently to
European, North American, Chinese,
Asian regions and the rest of the world
volc_so2 0.71 2.38 1 Volcanic SO, emission flux scale
factor
bvoc_soa 0.32 3.68 1 Biogenic monoterpene production rate
of secondary organic aerosol scale
factor
dms 0.33 3 1 Dimethyl-sulfide emission flux scale
factor
prim_moc 0.4 6 1 Primary marine organic carbon
emission flux scale factor
dry_dep_ait 0.5 2 1 Dry deposition velocity of Aitken
mode aerosol
dry_dep_acc 0.1 10 1 Dry deposition velocity of
accumulation mode aerosol
dry dep_so2 0.2 5 1 Dry deposition velocity of SO,
kappa_oc 0.2 0.65 0.65 Hygroscopicity parameter k for organic
aerosol — affects wet diameter and
clear-sky radiative flux
sig_w 0.25 1.75 1 Standard deviation of shallow-cloud
updraft velocity scale factor
rain_frac 0.3 0.7 0.3 Fraction of cloud covered area where
rain forms
cloud_ice_thresh 0.1 0.5 N/A Threshold of cloud ice water fraction
for scavenging
conv_plume_scav 0 0.5 0.5 Scavenging efficieny (as a fraction of
total aerosol removed) of Aitken mode
aerosol in convective clouds
bc_ri 0.2 0.8 0.565 Imaginary part of the black carbon
refractive index
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oxidant_oh 0.7 1.3 1 Offline oxidant OH concentration scale
factor
oxidants_o3 0.7 1.3 1 Offline oxidant O3 concentration scale
factor
bparam -0.15 -0.13 -0.14 Coefficient of the spectral shape
parameter 3 for effective radius
two_d_fsd_factor 1 2 1.4 Scale factor for the 2D relationship
between cloud condensate variance,
cloud cover and convection. Cotrols
sub-grid cloud heterogeneity
c_r_correl 0 1 0.9 Cloud and rain sub-grid horizontal
spatial colocation
autoconv_exp_lwp 2.15 3.31 247 Exponent of liquid water path in the
power law for initiating autoconversion
autoconv_exp_nd -3 -1 -1.79 Exponent of cloud droplet
concentration (Ng) in the power law for
initiating autoconversion
dbsdtbd_turb 0 0 le-3 1.5e-4 Cloud erosion rate (s)
ai 0 5e-2 2.57e-2 | Scaling coefficient for the dependence
of ice mass on diameter
m_ci 0 3 1 Ice fallspeed scale factor
aent1lrp 0 0.5 0.23 Cloud top entrainment rate scale factor
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Table S2. Regions of persistent stratocumulus cloud used to calculate regional mean constraint

variables.
Region Latitude range Longitude range
North Atlantic 34.4°t0 54.4° N 329.1°t0 347.8° E
North Pacific 14.4° to0 48.1° N 197.8°t0 231.6° E
South Atlantic 30.6°to0 10.6° S 347.8°t0 2.8° E
South Pacific 30.6°t0 15.6° S 254.1°t0 284.1° E
Southern Ocean 30.6° t0 50.6° S 0°to 360° E

180
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Table S3. Transects from stratocumulus- to cumulus-dominated regions.

Region Start position End position
North Atlantic 54.4°N, 336.6° E 45.6° N, 330.9° E
North Pacific 30.6° N, 229.7° E 19.4°N, 227.8° E
South Atlantic 11.9°S,357.2°E 11.9°S, 345.9°E

South Pacific

20.6°S, 282.2°E

15.6°S, 269.1°E
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Table S4. Effect of varying the number of model variants retained at each stage of constraint. We
show the number of constraint variables needed to optimally constrain AF. and the 90% CI in

each case.

Number of model Number of Lower, negative AFaer Upper AF;er bound

variants retained measurements used bound
1000 27 -1.15 -0.07
2000 31 -1.23 -0.10
5000 13 -1.26 -0.13
10000 29 -1.30 -0.13
20000 15 -1.33 -0.13
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