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Abstract. Aerosol radiative forcing uncertainty affects estimates of climate sensitivity and limits model skill at making climate
projections. Efforts to improve the representations of physical processes in climate models, including extensive comparisons
with observations, have not significantly constrained the range of possible aerosol forcing values. A far stronger constraint, in
particular for the lower (most-negative) bound, can be achieved using global mean energy-balance arguments based on
observed changes in historical temperature. Here, we show that structural deficiencies in a climate model, revealed as
inconsistencies among observationally constrained cloud properties in the model, limit the effectiveness of observational
constraint of the uncertain physical processes. We sample uncertainty in 37 model parameters related to aerosols, clouds and
radiation in a perturbed parameter ensemble of the UK Earth System Model and evaluate 1 million model variants (different
parameter settings from Gaussian Process emulators) against satellite-derived observations over several cloudy regions. Our
analysis of a very large set of model variants exposes model internal inconsistencies that would not be apparent in a
small set of model simulations, of an order that may be evaluated during model tuning efforts. Incorporating
observations associated with these inconsistencies weakens any forcing constraint because they require a wider range
of parameter values to accommodate conflicting information. We show that by neglecting variables associated with these
inconsistencies, it is possible to reduce the parametric uncertainty in global mean aerosol forcing by more than 50%,

constraining it to a range (around -1.3 to -0.1 W m™) in close agreement with energy-balance constraints. Our estimated
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aerosol forcing range is the maximum feasible constraint using our structurally imperfect model and the chosen observations.
Structural model developments targeted at the identified inconsistencies would enable a larger set of observations to be used
for constraint, which would then very likely narrow the uncertainty further and possibly alter the central estimate. Such an
approach provides a rigorous pathway to improved model realism and reduced uncertainty that has so far not been achieved
through the normal model development approach.

1 Introduction

The most uncertain component of human forcing of the climate system over the industrial period is aerosol effective radiative
forcing (AFer; Forster et al., 2021). Uncertainty in historical AFqr reduces our ability to confidently project near-term future
changes to our climate (Andreae et al., 2005; Seinfeld et al., 2016; Peace et al., 2020; Fyfe et al., 2021). The best estimate of
AF4r based on current understanding of aerosols, clouds, radiation and their interactions (informed by results from global
climate models and analysis of observations) ranges from -3.2 to -0.4 W m2 (Bellouin et al., 2020). The magnitude of AFser
has remained uncertain through all Intergovernmental Panel on Climate Change assessment reports (Forster et al., 2021),
despite decades of research to improve our scientific understanding of the key processes and abundant observations with which
to test models.

The lower (most-negative) bound on AF 4 is more tightly constrained by global mean energy balance arguments, which
infer the magnitude indirectly based on historical emissions and changes in global mean surface temperature. Such studies
suggest the lower bound may be around -1.8 to -1.7 W m (e.g. Aldrin et al., 2012; Skeie et al., 2014, 2018). Evidence for a
weaker (less negative) lower bound on AF. comes from energy-balance relationships that are additionally informed by output
from global climate model ensembles. For example, Smith et al., (2021) constrain the AF4 lower bound to around -1.5 W mr
2 and Albright et al., (2021) constrain the lower bound to between -1.8 and -1.3 W m2, However, tight constraint of just the
magnitude of historical and future global mean AF4 does not produce a climate model that can be used to explore the full
range of regional and global climatic effects. Thus, although energy-balance constraints and emergent constraint methods (e.g.
Watson-Parris et al., 2020) can set the plausible bounds on historical global mean AF (and/or its components), we also need
a “process-based” approach of building reliable global climate models that can accurately simulate the observed state and
behaviour of aerosols, clouds and radiation that will determine the regional patterns of aerosol effects on future climate
(Williams et al., 2022).

A process-based constraint of AFgr is @ substantial undertaking, with many steps involved. It relies mainly on using
complex climate models to simulate the underlying physical processes that affect changes in aerosols, clouds and radiation
(and hence AF4e), then settling on models that have been developed and refined to achieve acceptable agreement with extensive
observations of these atmospheric properties and trends. It is assumed that good agreement of a model simulation with
observations ensures that the model is able to make trustworthy estimates of historical AFsr and reliable projections of

future AFzer, which cannot themselves be observed. Yet, the process-based uncertainty range has remained far wider than
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estimates from energy balance approaches because models simulate a very large number of complex and regionally varying
processes that can affect the magnitude of global mean AF. (Carslaw et al., 2013; Regayre et al., 2015; Qian et al., 2018;
Yoshioka et al., 2019).

A further challenge in process-based constraint is that the range of AFae Stems from two sources of uncertainty in
climate models: structural uncertainty and parametric uncertainty. Structural deficiencies in a model are associated with coding
choices related to spatial resolution, numerical methods, parametrisation schemes, and neglected processes. Model
developments attempt to reduce these deficiencies and the biases they cause compared to observations, and multi-model
intercomparisons (GIiB et al., 2021; Thornhill et al., 2021) can be used to estimate a range of AF . across sets of structurally
different models (structural uncertainty). Within a particular model, the uncertain parameters in the process equations cause
an additional uncertainty in simulations of AF. (parametric uncertainty). Adjustment of parameter values, or tuning, is
performed during and/or following model development to further improve the goodness-of-fit to observations (e.g. Hourdin et
al., 2017), although it is recognised that well-tuned models still have a large (and usually unquantified) parametric uncertainty
(Lee et al., 2016). Perturbed parameter ensembles (PPEs) of the kind we use here (see Sect. 2.1.2) are a substantial extension
of normal model tuning that explore many combinations of parameter values across their likely uncertainty ranges and quantify
their combined effects on AFqr (Carslaw et al., 2013; Regayre et al., 2018; Yoshioka et al., 2019). The resulting unconstrained
uncertainty in AFa, from sampling all important sources of parametric uncertainty in our model, is larger than the range
based on energy balance constraints and approximately as wide as the multi-model range (which conflates structural and
parametric uncertainties without fully sampling either), suggesting that parametric uncertainties in AF are as important
as structural model differences.

Separation of structural and parametric sources of model uncertainty is important because they have different remedies.
Structural uncertainties point to model deficiencies that require model developments, while parametric uncertainties can be
reduced by matching the outputs of many model variants (parameter combinations) to historical observations through a process
called ‘history matching’ (Craig et al., 1997a; Williamson et al., 2013; Vernon et al., 2014; Johnson et al., 2020; Regayre et
al., 2020). There is currently no best practice for accounting for and separating the effects of structural and parametric
uncertainties (Sexton et al., 2012; Brynjarsdéttir and O’Hagan, 2014; McNeall et al., 2016; Johnson et al., 2020; Rostron et
al., 2020). In particular, the observational constraint of parametric uncertainty cannot be cleanly separated from the effects of
structural uncertainties. For example, without accounting for potential (usually unquantified) structural errors, it may not be
possible to find any parameter combinations that produce a model that is consistent with all target observations. Therefore, it
is common to add a structural error term during model-observation comparison (e.g. Sexton et al., 2012), which effectively
inflates the parametric uncertainty and the overall model uncertainty to accommodate the structural errors. This approach
avoids overfitting and provides an estimate of the uncertainty in AF that broadly accounts for both sources of uncertainty.
However, it does not provide any information about which processes cause structural model errors, nor how they weaken the

constraint of parameter values and the range of AFer.
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To maximise AFqr constraint, we need to address three key challenges. First, we need to densely sample the model
parametric uncertainty related to the multitude of cloud, aerosol and physical atmosphere processes that determine AFger.
Secondly, we need to identify model variables that share causes of uncertainty with AFr, to prioritise associated observations
for use in the constraint process (Carslaw et al., 2013; Regayre et al., 2020). The final challenge is to ensure any constraint on
AF4 is consistent across multiple observation types and/or quantify the limiting effect of any internal model inconsistencies
on AF constraint. Here, we tackle these challenges using 1 million variants of the UKESM1-A model (based on statistical
emulators trained on output from 221 model simulations) that sample AFer uncertainty (Sect. 3.1) caused by 37 aerosol, cloud
and physical atmosphere model parameters (Sl table S1). We evaluate the causes of uncertainty in cloud properties over
stratocumulus-dominated regions (Sect. 3.2) and observationally constrain AF.r using tens of thousands of combinations of
more than 450 satellite-derived values (Sect.3.3). This approach exposes previously hidden structural inconsistencies related
to representations of cloud properties in the model. We remove variables associated with these inconsistencies from the
constraint process to produce an internally consistent constraint on AFgr. This constraint does not make use of all available
observations, therefore our central estimate of forcing may not be the final best value, which would ultimately be achieved
in a model with no remaining structural deficiencies. However, we argue that in a model with fewer structural

inconsistencies, our approach could constrain AF4, and associated process uncertainties even further.

2 Methods

Our approach is summarised in Fig. 1.
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Figure 1: Flowchart detailing the procedure to densely sample model parameter uncertainty, evaluate model variants

against observations, identify potential structural inconsistencies, and constrain AFzer.

2.1 Experimental design
2.1.1 Model version

We used the atmosphere-only configuration of version 1 of the UK Earth System Model (UKESM1; Sellar et al., 2019) to
create our PPEs (Sect. 2.1.2). UKESM1 was the model version submitted to the 6™ Coupled Model Intercomparison Project
(CMIPS6; Eyring et al., 2016). UKESML1 is based on the HADGEM3-GC3.1 physical climate model (Williams et al., 2018)
with additional coupling to key Earth System processes (Sellar et al., 2019), including the United Kingdom Chemistry and
Aerosol (UKCA) model (Archibald et al., 2019). The atmosphere-only configuration used here consists of the GA7.1
atmosphere (Walters et al., 2019; Mulcahy et al., 2020), with additional aerosol, cloud and physical atmosphere structural
updates as implemented in UKESM1 (Mulcahy et al., 2020). GA7.1 includes several structural advancements to the aerosol
component of the model which significantly affect anthropogenic aerosol radiative forcing (Mulcahy et al., 2018). We refer to
this model version as UKESM1-A.

We use an N96 horizontal resolution, which is 1.875 x 1.25° (208 x139 km) at the equator, with 85 vertical levels

between the surface and 85km in altitude. Model vertical levels use a stretched grid such that the vertical resolution is around
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13 m near the surface and around 150 to 200 m at the top of the boundary layer. We chose this resolution since it is the same
as that used for long climate runs in CMIP6.

Horizontal wind fields above around 2 km in our simulations (model vertical level 17) were nudged towards ERA-
Interim values for the period December 2016 to November 2017. Nudging is intended to remove the effects of differences in
large-scale meteorology between our PPE members, meaning we can attribute differences between model variants to perturbed
parameter values. We do not nudge winds within the boundary layer, as many of our parameters are intended to affect
meteorological conditions, in particular cloud adjustments, in this part of the atmosphere.

The model was forced using anthropogenic SO, emissions, for the years 2014 and 1850, as prescribed in CMIP6
simulations. We separately calculated components of AR (Forster et al., 2021) caused by aerosol-cloud interactions
(AFaci) and aerosol-radiation interactions (AFari) using differences in top-of-the-atmosphere radiative fluxes between these
two periods. The separation of these AF.r components accounts for above-cloud aerosol radiative effects (Ghan et al.,
2016) and multiple cloud adjustments (Grosvenor and Carslaw, 2020).

Carbonaceous aerosol from fossil fuel and residential sources match those used in CMIP6 in our early-industrial
simulations. However, in our present-day simulations we prescribed carbonaceous aerosol from biomass burning sources using
emissions generated using Copernicus Atmospheric Monitoring Service Information for December 2016 to November 2017
(CAMS global biomass burning emissions based on fire radiative power; GFAS: data documentation) and spread these
emissions between the surface and around 3km. We used emissions for the same period as prescribed wind fields, for the
closest possible comparison to observed values. In our early-industrial simulations (1850 anthropogenic SO, emissions) we
similarly spread CMIP6 carbonaceous aerosol from biomass burning over model levels between the surface and around 3km.

We also prescribed, rather than simulated, sea surface temperatures and sea ice fraction to best match the December
2016 to November 2017 period. We prescribed land surface quantities, ocean surface concentrations of dimethylsulfide (DMS)
and chlorophyll, and atmospheric concentrations of gas species (including oxidants OH and Os, which we then perturb), using
monthly mean output values from a fully-coupled version of the UKESM model, averaged over the 1979 to 2014 period.
Additionally, we prescribe volcanic SO, emissions for continuously emitting and sporadically erupting volcanoes (Andres and
Kasgnoc, 1998) and for explosive volcanic eruptions (Halmer et al., 2002).

Aerosol humber concentrations are treated prognostically with the GLOMAP multi-modal scheme (Mann et al., 2010,
2012), which uses five log-normal aerosol size modes and includes sulfate, sea-salt, black carbon and organic carbon chemical
components that are internally mixed within each size mode. Mineral dust is simulated separately using the CLASSIC dust
scheme (Woodward, 2001). GLOMAP simulates new particle formation, coagulation, gas-to-particle transfer, cloud
processing and deposition of gases and aerosols. The activation of aerosols into cloud droplets is calculated using distributions
of sub-grid vertical velocities based on available turbulent kinetic energy (West et al., 2014) and the removal of cloud water
by autoconversion to rain is calculated by the host model using a single-moment cloud microphysics scheme. Aerosols are
also removed by impaction scavenging of falling raindrops according to the collocation of clouds and precipitation (Lebsock
et al., 2013; Boutle et al., 2014).
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We modified some aspects of UKESM1-A and perturbed key parameters related to these uncertain processes in the
PPE. Including these structural changes adds complexity to our model that we consider worthwhile given their potential
to interact with other processes and affect AFzr. Firstly, we defined an ice mass fraction threshold (cloud_ice_thresh; Sl
table S1) above which no nucleation scavenging occurs, to allow sufficient aerosol to be transported to the Arctic (Browse et
al., 2012). We assumed that the wet scavenging of all aerosol particles (soluble and insoluble) is zero in large-scale raining
clouds if the simulated ice to total water mass fraction is higher than this fixed value. This first structural change replicated the
model change we implemented in (Yoshioka et al., 2019) which is not yet in the release version of the model. We evaluated
the climatic importance of this parameter as a cause of AFqr uncertainty in Regayre et al., (2018, 2020), Johnson et al., (2020)
and Peace et al., (2020). Secondly, we implemented a version of look-up tables for aerosol optical properties (Bellouin et al.,
2013) that includes optical properties for mineral dust (Balkanski et al., 2007) and higher-resolution increments of the
imaginary part of the refractive indices, to better resolve the absorption coefficient of aerosols. Finally, we included an
organically-mediated boundary layer aerosol nucleation parametrisation (Metzger et al., 2010) to enhance remote marine and

early-industrial aerosol concentrations in the model.

2.1.2 Perturbed parameter ensembles

We created a new PPE of 221 model simulations for this study. Each member of the PPE has a distinct combination of 37
aerosol and physical atmosphere parameter values (Sl table S1). Parameters perturbed in previous PPEs using older versions
of the model (Yoshioka et al., 2019; Sexton et al., 2021), and identified as important causes of uncertainty in cloud active
aerosol concentrations and/or aerosol forcing (Carslaw et al., 2013; Regayre et al., 2015, 2018), were perturbed here alongside
parameters associated with structural model developments (Mulcahy et al., 2018, 2020; Walters et al., 2019). Following
Regayre et al. (2015), Yoshioka et al. (2019) and Sexton et al. (2021), uncertain parameter ranges were determined by
formal expert elicitation using the approach described in Gosling (2018).

We created the PPE in two stages, following ‘history matching’ conventions (Craig et al., 1997b; Williamson et al.,
2013). The main benefit of a multi-stage observational constraint is that it maximises computational efficiency and the value
of information in the final stage PPE by ruling out the most implausible parts of parameter space in earlier stages. We describe
both stages here. However, the second stage PPE is the focus of our analysis. The PPEs in both stages have a ratio of simulations
to uncertain parameters of around six to ensure the ensembles accurately represent model responses across the 37-dimensional
parameter space.

In the first stage, the 221 member ensemble was made by combining a simulation using median values for each
parameter with 220 additional parameter combinations drawn from a Latin hypercube optimized to ensure design points were
distributed as evenly as possible across the parameter space, using the ‘optimumLHS” R function (Stocki, 2005). To extend
the sample of model simulations from 221 to 1 million model variants, we created statistical Gaussian process emulators
(O’Hagan, 2006) that densely sample model parameter uncertainty. We evaluated a single month of model output (May 2015

to match nudged wind fields for this stage) and ruled out model variants (parameter combinations) that compared poorly to
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global and regional mean observations. At this stage, observations included global mean shortwave and longwave top-of-the-
atmosphere radiative fluxes from the Clouds and the Earth’s Radiant Energy System (CERES) experiment and global mean
precipitation amount from version 2 of the Global Precipitation Climatology Project (GCPC). Additionally, we used North
Pacific and North Atlantic marine only data between 10° and 60° N for low- and total-cloud fraction from the Moderate
Resolution Imaging Spectroradiometer (MODIS) and LWP from the Multi-Sensor Advanced Climatology of Liquid Water
Path data set (Elsaesser et al., 2017). We assumed model-measurement comparison errors of 8%, 2%, 30%, 20%, 20% and
40% respectively for these observations.

For the second (final) stage, we identified the model variant closest to the centre of the not-ruled-out parameter space,
then iteratively identified 220 additional parameter combinations with the greatest Euclidean distance from existing points,
until we had a new and diverse set of 221 members that spanned the uncertain parameter space retained from the first stage.
Thus, second stage PPE members correspond to a diverse set of parameter combinations from the not-ruled-out-yet
set of first stage model variants. As in the first stage, we created and validated (e.g. SI Fig. 1) statistical emulators of global
mean and regional mean variables, and used these emulators to extend the output from 221 simulations to 1 million model

variants.

2.2 Measurements

We evaluated the potential of several types of observations, related to clouds and aerosol-cloud interactions in multiple

locations and times of the year, to serve as global mean AF.er constraints and refer to them collectively as ‘constraint variables’.

2.2.1 Regional mean cloud and radiative properties

We compared physical and radiative properties of clouds derived from MODIS instruments (King et al., 2003) to model output
calculated using the Cloud Feedback Model Intercomparison MODIS satellite simulator (Bodas-Salcedo et al., 2011; Saponaro
et al., 2020) where available. This simulator minimizes errors in model comparisons to MODIS retrieval data, by recreating as
near as possible what the satellite would retrieve given model-simulated atmospheric conditions.

We used MODIS retrievals of liquid water path (LWP), liquid cloud fraction (f;), cloud optical depth () and cloud
droplet effective radius (re) at 1° by 1° resolution and used t. and re values to calculate cloud droplet number concentration
(Ng). We assumed constant Ng throughout cloud layers, which is a good approximation for stratocumulus clouds (Grosvenor
and Carslaw, 2020; Painemal and Zuidema, 2011), and compared observed Nq to values calculated at model-simulated cloud
tops. Additionally, we used outgoing top-of-the-atmosphere shortwave radiative flux (Fsw) measurements from the CERES
instrument.

All satellite-derived measurements were degraded to match the model resolution, then averaged over time and space
for each region. We then identified regions with high cloud fraction across the year (Sl table S2). We evaluated constraint
variables at the regional level, since there are no clear relationships between aerosol forcing and observations of global mean

values (Sl Fig. S2). The chosen regions are dominated by stratocumulus cloud, have relatively high multi-model diversity in
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cloud amount in CMIP6 models (Vignesh et al., 2020), and are the most important regions for understanding the role of aerosol-
cloud interactions (Langton et al., 2021). We only used values corresponding to model grid boxes with at least 50% ocean
coverage in our area-weighted regional mean calculations.

These constraint variables are defined as monthly mean, annual mean, or seasonal amplitude (difference between
maximum and minimum monthly mean values) within each region. So, for each of our six observation types (Fsw, Ng, fc, LWP,
1. and re) we have 70 constraint variables (12 months, annual mean and seasonal amplitude, all over 5 regions), for a total of

420 regional cloud and radiative flux constraint variables.

2.2.2 Hemispheric difference in Ngq

The contrast between marine Ng in the polluted Northern Hemisphere and relatively pristine Southern Hemisphere (Hq) can
act as a proxy for the difference in Ny between the early-industrial and present-day atmospheres (McCoy et al., 2020). We
calculated Hq as the difference in hemispheric mean marine Ng values, using MODIS 1. and re values, and evaluated 14

constraint variables calculated as annual and monthly means, and the seasonal amplitude.

2.2.3 Transects from stratocumulus- to cumulus-dominated regions

Cloud physical and radiative properties are sensitive to changes in aerosol concentrations in regions where
stratocumulus clouds transition into cumulus (Christensen et al., 2020, 2022). We identified transects from stratocumulus- to
cumulus cloud (SI Fig. S3, table S3) and evaluated changes in aerosol and cloud along these transects (July or November for
Northern and Southern Hemispheres respectively) as constraint variables. We refer to these collectively as transect variables.
These transect variables include changes in Ng, re, fc, LWP and aerosol index (Al; the total MODIS aerosol optical depth at
550 nm multiplied by the Angstrom exponent) along the transects. Additionally, we included ratios of Ng to Al, re to Ng, LWP
to Ng and f. to Ng along each transect as constraint variables. All transect variables were calculated as gradients of linear
relationships between the variable (or ratio of logarithms following McComiskey et al., 2009) and distance (in meters).

Meteorological covariability (changes induced in both variables by shared meteorological drivers) means that these
transect variables cannot be used to directly infer the strength of the aerosol effect on clouds (Gryspeerdt et al., 2016), but this
is not what we do here. Rather, in order to constrain AF, it is only required that the transect variables (calculated identically
from the observations and model) share causes of uncertainty and parameter dependencies with uncertain parameters in the
model (see Sect. 2.3). Intotal, we evaluated 36 transect variables calculated using 4 transects from stratocumulus- to cumulus-

dominated regions.

2.3 Relative importance of parameters

One way to prioritise which observations to use for constraint is to quantify the overlap in causes of uncertainty between AFaer

and model variables associated with the observations (e.g. Regayre et al., 2020). Variance-based sensitivity analyses (Lee et
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al., 2012) can be used to robustly quantify the percentage of variance caused by each parameter. However, the multi-stage
design of the present PPE (section 2.1.2) potentially leaves gaps in the parameter space that may limit the interpretability of
variance-based methods. Therefore, we approximated the relative importance of parameters as causes of uncertainty using
Pearson partial correlations (Kim, 2015). Partial correlations control for the effects of all other perturbed parameters on the
variable of interest in the calculation of correlations. A partial correlation between a constraint variable and a parameter is the
correlation between the residuals from a) linear regression of the variable on the remaining 36 parameters and b) linear
regression of the parameter on the remaining 36. For each of the 37 model parameters we defined the relative importance
metric as the proportion of its partial correlation with the variable to the total of the 37 partial correlations, multiplied by the
sign of the gradient of the linear regression of the variable on the parameter in question. We included the sign of the gradient
to define whether increasing the parameter value increases or decreases the output variable, which helps to develop a process-
based understanding. Relative importance metrics are used in section 3.2 to guide our choice of variables for model constraint
and to inform our understanding of how they relate to AFaer. The metrics were calculated using 1 million model variants (from

the emulator) for AFzr, and its components AFaci and AFari, and using the 221 PPE members for other variables.

2.4 Constraint process
2.4.1 Observationally plausible model variants

In our previous effort to constrain AFer, We calculated ‘implausibility metrics’ that quantify the implausibility of each
model variant for all observed values, accounting for emulator uncertainty, observational uncertainty, inter-annual variability
and representation errors (Johnson et al., 2020; Regayre et al., 2020). Implausibility metrics were calculated for 1 million
model variants across more than 9000 distinct measurements and we used these implausibility values to rule out model variants
as observationally implausible if they did not compare well to the full set of observations. In practice, observations associated
with relatively large uncertainties had little-to-no impact on ruling out model variants. Using this approach, we constrained
AFqr and the parameter space, but could not readily isolate the role of individual constraint variables on the resulting AFaer
constraint and could not quantify how the constraint improved model skill, only how it reduced AF4er uncertainty range.

We did not include (largely unquantified) observational errors in our constraint here because we compare satellite data
to model output from satellite simulators, which significantly reduces the importance of this source of uncertainty in
observation to model comparisons. We also neglected the effects of representation errors (Schutgens et al., 2017) because they
are unquantified for the satellite-derived observations used here. Instead, we restricted our model-measurement comparisons
to monthly mean values within stratocumulus-dominated regions to reduce the magnitude of these errors. Neglecting
observational and representation errors risks over-constraining the model. To avoid over-constraint, we retained a proportion
of model variants (at least 5000, or 0.5%) of the same order of magnitude as earlier constraint efforts that used constraint

variables with more readily quantifiable sources of model-observation comparison uncertainty (Johnson et al., 2020; Regayre
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et al., 2020). In this way, our method avoids over-constraining the model, yet allows us to identify potential model structural

inconsistencies.

2.4.2 Model-observation differences

We calculated absolute differences between observed and simulated values, for each of the 1 million model variants
and for each of the 450 constraint variables. For each constraint variable, we then normalized the million absolute difference
values and ranked model variants according to their normalized absolute difference (NAD) values to identify which model
variants to rule out as least skilful. To further avoid over-constraint, we set NAD to zero where the uncertainty in the emulators
was large relative to the difference between observed and emulated values. In this way, individual constraints are stronger for
constraint variables where parameter perturbations clearly define the response surface of the associated statistical emulators.
For this step, we defined the emulator uncertainty as the square root of the emulator variance at that specific combination of
model parameters. Thus, for each constraint we retained the larger of either a) all model variants with errors smaller than the
emulator uncertainty, or b) the 5000 model variants with the lowest NAD. For combinations of constraint variables, we
calculated the average NAD across all variables for each model variant prior to ranking and rejecting model variants with the

highest average NAD across variables.

2.4.3 ldentifying viable constraint variables

Constraint variables where the emulator uncertainty (average emulator standard deviation) was larger than the changes
in the emulated response surface (standard deviation of emulated values) were considered to have low emulator skill and
thus, were removed from our analysis. This was the case for a small number of transect constraint variables and for the
seasonal amplitude of f; in the Southern Ocean. Additionally, we removed transect measurements from the set of constraint
variables where the observed values were outside the 90% credible interval of corresponding values in the sample, since such
discrepancies are indicative of structural model inadequacies and/or unaccounted for observational errors (SI Fig. S4-7). In

total, we evaluated 1 million model variants against the remaining 450 constraint variables.

2.4.4 Internally consistent constraint variables

We identify a subset of the 450 constraint variables that are “pairwise consistent” with Ny in each region. We defined a
variable as being consistent with Ng when the constraint to match Ny did not increase the mean NAD calculated across the
remaining model variants in the associated region and vice versa. We used individual monthly mean Ng values (September,
October, December, March and the annual mean for the North Atlantic, North Pacific, South Atlantic, South Pacific and
Southern Ocean respectively) to identify which constraint variables could be considered regionally pairwise consistent. These
months were chosen based on the degree of between-month Ng-consistency in each region (see Sect. 3.3.2 and Sl Fig. S8-11).
We assumed constraint variables that are consistent with Ng in these specific months in these regions are also consistent with

Nq (and other selected constraint variables) in other regions. Our strategy here is to rule out constraint variables that are clearly
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inconsistent, rather than to assure internal consistency between all remaining constraint variables. Across all regions, 225

constraint variables were identified as pairwise consistent with Ng.

2.4.5 An optimal set of constraint variables

An “optimal” set of constraint variables was identified (using our specified set of observations and ensemble of model
variants) by first identifying the individual constraint variable (from the 225 member Ng-consistent set) with the greatest impact
on AF4 uncertainty (our target model variable), then progressively adding constraint variables that most improved the overall
constraint (quantified as a reduction in the 90% credible interval). That is, we identified the most effective constraint variable,
then quantified the constraint efficacy of the remaining 224 variables in combination with the first, and repeated until AFci
could not be constrained further. To avoid confusing a local maximum constraint with an optimal constraint, we continued to
add constraint variables to the optimal set, progressively including constraint variables that weakened the AFci constraint the
least. At each of the more than twenty thousand steps in this process, we evaluated the average NAD values for each of the 1
million model variants, for every possible additional constraint.

We tested how the order of introducing constraint variables affects the results, since a stronger constraint may be
achieved using a different set of “optimal” constraint variables. We could not feasibly calculate NAD values for 1 million
model variants across all possible combinations of 225 Ng-consistent constraint variables. Instead, we tested the effect of
starting with all 225 consistent constraint variables and progressively removing one variable at a time. This is the most distinct
test of reordering the constraint variables. This approach yielded a similar “optimal” constraint on AF as achieved by
progressively adding constraint variables (see Sect. 3.3.2) and very similar constraints on marginal parameter distributions (see
Sect. 3.3.4 and Sl Fig. S12, S13). Additionally, we tested the impact of our choice to retain 5 thousand model variants at each
step in the constraint process. The number of model variants retained affects the number of constraint variables needed to
optimally constrain AFr, but not in a consistent manner (SI Fig. S14 and table S4), since changing the efficacy of individual
and combined constraint variables affects the potential for additional observations to further reduce the AF4 uncertainty.
However, the strength of constraint and the bounds of constrained AFqer (to 1 decimal place) are insensitive to the number of
model variants retained (SI Fig. S14 and table S4).

3 Results
3.1 Sampling uncertainty in AFaer

Industrial period AFr ranges from around -3.5 to 3.0 W m2in our set of 1 million UKESM1-A model variants, with a 90%
credible interval of -1.8 to 0.9 W m (Fig. 2). This unconstrained 90% credible range (2.7 W m) is as wide as the credible
range (2.8 W m?) based on an in-depth review of evidence from models and observations related to aerosol-cloud and aerosol-
radiation interactions (Bellouin et al., 2020), and therefore spans a wide spectrum of model behaviour. The range includes

positive AFger values that stem from positive forcing contributions from AF, and AFai (SI Fig. S15), which the Bellouin
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review discounts (Bellouin et al., 2020). These positive AFai and AFi values arise from individually plausible parameter
values that produce seemingly implausible model output when combined. As shown below, the associated model variants are

amongst those ruled out as observationally implausible after optimal constraint (section 2.4.5).
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Figure 2. Probability density functions for global, annual mean effective radiative forcings from 1850 to 2014. a)
AFzer, b) AFaci and ¢) AFari in the original 1 million member sample and after optimal constraint (see Sect. 3.3.2). Box
plots show the 5%, 25t 50t 751 and 95" percentiles. The 5" and 95™ percentiles from Bellouin et al., (2020) are also

shown.

3.2 Shared causes of uncertainty and the potential for observational constraint

Our aim is to constrain AF as tightly as possible using a set of observations that constrain all processes and associated model
parameters that cause AFgr uncertainty. Figure 3 shows global mean AF is sensitive to around 10 model parameters (see
Sect. 2.3 and Sl table S1). Here, we prioritise the constraint of global mean AF . because it is the quantity most commonly
used to inform policy decisions (Forster et al., 2021). We are particularly motivated to constrain processes that cause
uncertainty in AFag, since it is the larger and more uncertain component of AFer (Fig. 2) and the AF4i component can be more
readily constrained using available aerosol observations (Johnson et al., 2020; Watson-Parris et al., 2020). Thus, we seek model
variables that share causes of uncertainty with global mean AF. and AFgi. Sharing causes of uncertainty (or parameter
sensitivity) with AFqr iS a necessary, but not sufficient, condition for constraint (Lee et al., 2016). Model variables and AFaer
must also share parameter dependencies (responses to high-dimensional parameter combinations). It is highly unlikely that
any one model variable will share exactly the same set of dependencies on uncertain model parameters with AFaer and AF4gi
(Lee et al., 2016; Regayre et al., 2020). Thus, to constrain model uncertainty we anticipate needing multiple observations that

share at least some causes of uncertainty and parameter dependencies with AFaer and AF4i.
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Figure 3: Relative importance of model parameters as causes of uncertainty in global mean AFar and its components
AFai and AFari. Only parameters with a relative importance of 5% or larger are shown. Positive values correspond to
parameters where increasing the parameter value causes median values of AFaer, AFaci or AFari to become weaker (less

negative) across the set of 1 million model variants.

To find a set of useful constraint variables (i.e. a set that collectively share causes of uncertainty and parameter
dependencies with AF.e), we evaluate a diverse set of constraint variables. Causes of uncertainty and the dependence of forcing
on these causes are likely to vary regionally and seasonally (Regayre et al., 2015), so observations of the same type over
multiple regions and months may all inform the constraint, but with some redundancy where sensitivities and dependencies
are similar. In total, we have more than 450 constraint variables (see Sect. 2.2) spanning monthly mean, annual mean and
seasonal amplitudes, for global mean Hq and 6 observation types (Fsw, Ng, fc, LWP, tc and r.) across 5 stratocumulus-dominated
regions (state variables), along with 9 constraint variables for changes in aerosol and cloud properties, and their relationships,

each along 4 transects from stratocumulus- to cumulus-dominated regions (transect variables).

First, we evaluate the causes of uncertainty in AFgr and its components (Fig. 3). There is substantial overlap between
the parametric causes of uncertainty in AFar and AF4, with the parameter that controls the diameter of newly formed
accumulation mode sulfate particles (“prim_so4 diam”) causing the largest amount of uncertainty. Increasing the value of this
parameter increases the diameter of newly emitted sulfate particles and thus decreases the number of particles emitted (for

fixed emission mass flux), which makes AFai more negative (stronger) on average since larger particles are more likely to act

14



400

405

410

415

420

425

430

as cloud condensation nuclei. Any constraint that rules out the most positive AFaci values will likely constrain newly formed

sulfate particles towards higher diameters.

Other key causes of AFaer uncertainty include the parameters controlling sub-grid updraft velocities (sig_w), emission
fluxes of sea spray aerosol (sea_spray) and dimethyl-sulfide (dms), the dry deposition removal rate of accumulation mode
aerosol (dry_dep_acc) and the refractive index controlling carbonaceous aerosol radiative properties (bc_ri). The physical
atmosphere parameter controlling cloud top entrainment (a_ent 1 rp) affects AF4 uncertainty and the parameter controlling
sub-grid cloud heterogeneity (two_d_fsd_factor) affects AFai. However, in contrast with previous PPE analyses of this kind
(Regayre et al., 2018; Yoshioka et al., 2019), no physical atmosphere parameters feed through to causes of global mean AFzr,

likely due to model structural developments related to clouds and radiation (Walters et al., 2019; Williams et al., 2018).

We understand how the key causes of uncertainty affect AFaci in the model. Increasing the value of the updraft parameter
increases Ng, particularly in the present-day atmosphere with relatively high cloud condensation nuclei concentrations where
droplet activation is limited by vertical velocity. Thus, increasing the value of the updraft parameter makes median AFai more
negative (stronger) by increasing cloud albedo, particularly in the relatively polluted present-day atmosphere. The influence
of natural emission flux parameters on AF4 uncertainty is well established (Carslaw et al., 2013). Increasing sea spray or
dimethyl-sulfide emission fluxes makes global mean AFq; less negative (weaker) on average by increasing the background
aerosol concentration and thus reducing the sensitivity of cloud albedo to anthropogenic aerosol. The removal rate of
accumulation mode aerosol similarly affects background aerosol concentrations. These three parameters also influence present-
day Ngq in relatively low anthropogenic aerosol environments such as the Southern Ocean (Hamilton et al., 2014) so can be
collectively constrained using appropriate observations (Regayre et al., 2020). However, compensating errors in aerosol
emission fluxes and removal rates moderate our ability to constrain these parameters individually (Regayre et al., 2020).

The constraint variable that shares most causes of uncertainty with AFaer and AF4, is Hg, the hemispheric difference in
marine Ng. The key parameters that cause uncertainty in AFc (related to vertical velocities and sea spray emissions) also cause
most of the uncertainty in Hq in all months (Fig. 3 and SI Fig. S16). This suggests we may extract much of the potential
constraint from this type of observation using a single representative month (with dependencies on key parameters most closely
aligned to AF4; parameter dependencies). Other important parameters (newly formed sulfate diameters, DMS emissions and
dry deposition velocities) also cause Hq uncertainty in some months. Seasonal differences in causes of Hy uncertainty can be
traced to regional causes of Ny uncertainty (not shown), so based on shared causes of uncertainty, both Hq and regional Ng

observations have potential to constrain AFqi.

Several other observable state variables share key causes of uncertainty with AFq (SI Fig. S17-22). Vertical velocities
cause uncertainty in re and t (around 20 to 30%), as do dry deposition velocities and, to a lesser extent, newly formed sulfate
diameters (around 5 to 10%). Some transect variables also share causes of uncertainty with AFaci (SI Fig. S23-26). For example,

along the North Atlantic transect, the diameter of newly formed sulfate particles causes up to 50% of the uncertainty in many
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transect variables, including variables associated the cloud albedo response (gradient of the relationship between r. and Nq for
given LWP) and cloud adjustments (LWP and f. vs. Ng). Vertical velocities cause up to 35% of the uncertainty in these cloud-
related variables in the South Atlantic, whilst dry deposition causes up to 30% in the South Pacific. These regionally distinct
causes of uncertainty suggest that observations from transects in several regions may constrain the model when combined,
even if each transect variable constrains just one source of parametric uncertainty. Additionally, the radiative properties of
carbonaceous aerosol (an important cause of AF4i uncertainty) causes around 20% of the uncertainty in several variables along
transects in the North Pacific. Thus, North Pacific transect variables have potential to constrain a process related to AFaer
through AF4i that is otherwise unconstrained by our set of satellite-derived observations. In contrast with model constraint
efforts designed to improve model skill more generally (Sexton et al., 2012), our evaluation of shared causes of uncertainty

provides process-based insight into the nature of any AF4 constraint we may achieve.

Not all state variables share causes of uncertainty with global mean AF.e and AF4i. Outgoing radiative flux (Fsw)
shares a few causes of uncertainty with AFac but is largely controlled by physical atmosphere parameters (in agreement with
Regayre et al., 2018). Similarly, global mean f. and LWP share only a few minor causes of uncertainty with AFaci, with values
for these variables predominantly controlled by physical atmosphere parameters and uncertainties in the autoconversion
scheme (that converts cloud drops to rain drops). Yet at the regional level (not shown), key parameters like the updraft
parameter contribute between 5 to 10% of the f. and LWP uncertainty in most months, so f. and LWP observations may still
influence the AF4ci constraint. Thus, although some observation types have far greater potential for AF4 constraint than others
(based on shared causes of uncertainty) we do not exclude any from our constraint process at this stage. The overlap in causes
of uncertainty across constraint variables suggests that in practice, we may only need a subset to constrain AFar and others
will be effectively redundant.

3.3 Observational constraint
3.3.1 Detection of potential structural model inadequacies

Our goal is to constrain parametric uncertainty in AFc, ideally using all of the available observations, but in practice using a
subset of observations for which the model-observation comparison is not affected by structural model inadequacies. We use
two key indicators to identify potential structural model inadequacies. Firstly, some observations lie outside the range of the 1
million model variants, or are amongst the most extreme values. This indicates a discrepancy between the model and the
observations that adjustments to model parameters cannot overcome (even by adjusting multiple parameter values
simultaneously). That is, the discrepancy is more likely caused by a structural model deficiency than by parametric uncertainty.
In practice, the discrepancy between model values and observations may be caused by very large, unquantified observational
uncertainties or their lack of spatiotemporal representativeness (Schutgens et al., 2017). In such cases, either the model is
incorrect due to some structural error, or the observation is unreliable. Variables associated with this type of indicator are not

useful for model constraint. Secondly, constraint of the model using observations related to some constraint variables can
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degrade model skill at simulating other variables (Johnson et al., 2020; McNeall et al., 2016; Sengupta et al., 2021). In such
cases, the model can be constrained towards one set of constraint variables or another, but not both simultaneously without
systematically weakening the constraint. This suggests structural inadequacies prevent the model from consistently

representing all processes associated with these constraint variables.

We begin by analysing potential structural errors in just one stratocumulus-dominated region. Fig. 4 shows the seasonal
cycles of cloud physical and radiative properties in the North Atlantic (for other regions see SI Fig. S27-30). The distribution
of the 1 million model Fsw values is centred on observed values, which is expected since extensive evaluations of Fsw across
multiple model configurations feed into the model development process. Similarly, the distribution of f; values is centred on
the observations, with the exception of the April observation. This suggests that the f. observation for April may be corrupted,
or affected by some atypical event the model did not simulate, so should probably not inform our constraint. Model variants
generally overestimate Ng, although Ng observations are well within the model’s parametric uncertainty range. For LWP, t¢
and to a lesser extent re, observed values are near the edge of the model parametric uncertainty range or outside the range by
a small margin. We have accounted for a very wide range of parameter uncertainties, but cannot adequately reproduce observed
LWP and 1 values in this region (more extreme in other regions and for some transect variables; SI Fig. S4-7; S27-30), which
suggests the model bias is caused by some structural deficiency. We cannot rule out satellite retrieval biases as an explanation
for the model-observation bias with this first type of indicator, but the distinction between model structural error and
observation error is not important in terms of model constraint. We therefore refer to such biases as potential structural
inadequacies and remove the associated constraint variables from our process. Figure 4 exemplifies how we can compare
observations to a broad range of model output to identify potential structural inadequacies where only extreme model behaviour

aligns with observations.

We identified instances of the second indicator of potential structural inadequacy (associated with inconsistent model
process representations) by evaluating how constraint of each model variable affects all other variables. We call this “pairwise”
comparison. Figure 4 shows two contrasting sets of pairwise comparisons, highlighting both consistency and inconsistency.
We constrained the model to match the mean Nq observation for November in the North Atlantic and, separately, to match
November LWP observations in this region. November was chosen to exemplify the effect of the second indicator of potential
structural inadequacy because the parametric uncertainty in Ng and LWP peaks in this month. In each case we ruled out model
variants with relatively large model-observation differences (quantified using NADs) as observationally implausible and
retained the subset of model variants with values closest to observations (Sect. 2.4.5). Individual constraint variables have a
large effect on the uncertainty of the same observation type in other months because they share common causes of uncertainty
in the model. For example, constraint to November Nqy consistently reduces Nq uncertainty in all other months and brings the
remaining model variants into close agreement with measured Ng values. This set of model variants also closely match Fsw

and f; observations, with the exception of April f;, which we have already identified as problematic.
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These pairwise comparisons suggest that representations of Ng, Fsw and f; are internally consistent in the model and we
may only need a subset of these constraint variables to reduce uncertainty in AFa. However, the set of Ng-constrained model
variants do not span the LWP, 1¢ or r, observations in most months, suggesting that model Ny is inconsistent with LWP, 1. and
re over the North Atlantic. In the other constraint shown in Fig. 4, the model variants that are consistent with November LWP
in the North Atlantic do not span Fsw, fc or re observations. Retrievals of cloud properties are consistent by design due to
dependencies in their calculation. That is, multiple retrieved cloud properties from the same instrument share causes of
observation bias. Thus, our results suggest structural deficiencies in the model related to internal inconsistencies in the
representations of physical and radiative cloud properties, which may be caused by the use of a single-moment cloud
microphysics scheme in UKESML1. For example, in a single-moment microphysics scheme where Nq is not prognosed, removal
of cloud water in precipitation (affecting LWP and t¢) does not act consistently on Ng, which is prescribed by aerosol activation
at cloud base. Using a double-moment microphysics scheme, such as the Cloud—AeroSol Interacting Microphysics (CASIM)
scheme (e.g. Grosvenor and Carslaw, 2020; Grosvenor et al., 2017; Hill et al., 2015; Shipway and Hill, 2012; Gordon et al.,
2018), that simulates cloud water (droplet mass) and droplet number in a more-realistic way could eliminate these internal
model inconsistencies. However, in our ensemble these inconsistencies may prevent us using all available data for constraint
of AFi.
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Figure 4: Seasonal cycles of North Atlantic mean radiative fluxes and cloud properties before and after observational
constraint using a single month of observations. Model output for individual months spanning December 2016 to
November 2017 are followed by the annual mean. Credible intervals for the full set of model variants are shown (grey
shading) along with satellite-derived observations and the default UKESM1-A model values. Each panel also shows the
range (shading) of values from the November Na constraint (green) and the November LWP constraint (pink; arrows

show constraint variable). The orange data point shows the observed variable and month used for the constraint.

To reveal the full extent of internal model consistencies and inconsistencies, we extended the analysis in Fig. 4 to all
pairwise comparisons of the 88 North Atlantic constraint variables and 14 Hqy constraint variables (Fig. 5; other regions are
shown in Sl Fig. S8-11). Calculation of each of these pairwise effects across the full parameter space requires 1 million model-
to-observation comparisons for each variable that is constrained and another million for each variable being compared. Two
constraint variables are judged to be pairwise consistent if constraint to one variable improves the model—observation
comparison for the other variable and vice versa. We quantify the impact on model-observation comparison as the percentage
change in the average NAD, when moving from the unconstrained set of 1 million model variants to the set of model variants
retained by the constraint (Sect. 2.4.2). For each pairwise comparison, green shading in Fig. 5 indicates that observational
constraint of the variable on the y-axis improves the model-observation agreement (reduces average NAD) for the variable on
the x-axis. Pink shading indicates that the average NAD increases, which suggests that the two variables are inconsistent — that
is, the set of model variants that best match the variable on the y-axis are on average further from observations related to the
variable on the x-axis than in the original (unconstrained) set. For example, model skill at simulating April f. declines after
constraint of any other variable, even f. in most other months (vertical pink stripe). This supports our hypothesis that an
observational error is the cause of the April f; discrepancy and rules out using this constraint variable. These pairwise
comparisons of constraint effects reveal inconsistencies between model variables LWP, 1. and re, and other variables related
to cloud properties (Fsw, Ng and fc) in the North Atlantic (top right quadrant and bottom right panel of Fig. 5) and other regions
(SI Fig. S8-11). The degree of cross-variable consistency is not dependent on emulator skill (SI Fig. S1). We have

identified two distinct sets of model variants that can be constrained independently, but not in a consistent manner.

19



540

545

NAD change (%)

B <-80
T s -80 to -60
Fsw [ -60 to -40
p -40 to -20
o i -20to -5
® No 1 -5to 5
g o | 5to 20
g - L 20 to 40
g F I 40 to 60
o [ 60 to 80
@ B 80<
L Fe -
N [T
= === QObserved value
s !
> I Unconstrained
LWP - '— T ] I Constrained by Ny
I-I [ Constrained by LWP
*
LWpe I I E ::
H_§ E
TL‘ ~ ] :— -i- I
- r j \
ol \
n | ! | ! ! - ,_...illll“ll ‘.I.h..
T ol S W 2 % W 100 150
oy = Fsw / W m™

Constrained variable

Figure 5: Pairwise comparisons of North Atlantic constraint variables (and hemispheric difference, Ha) showing how
constraint of one variable affects all others. The y-axis labels refer to variables used to constrain the model output and
the x-axis labels refer to variables whose values have been consequently constrained. For each state variable, the pixels
in the first row/column are the seasonal amplitude, followed by individual months from January to December and the
annual mean. Transect variables are within the section labelled “T”. Shading indicates the percentage change in
average NAD after constraint. In the bottom-right panel we exemplify the effect of constraint on average NAD in two
pixels in terms of probability density functions of July Fsw in the unconstrained set of model variants (black), in the
set constrained to match July Nd observations (green), and in the set constrained to match July LWP (pink). Vertical
dashed lines represent the observed Fsw value and median values in the unconstrained and constrained sets of model

variants.
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3.3.2 Optimal constraint of aerosol forcing

The pairwise comparisons in Fig. 5 show that it is not appropriate to use all observed variables to constrain the model because,
due to potential structural model inconsistencies, different variables are consistent with different combinations of model
parameters. The set of variants that simultaneously encompasses as many observed variables as possible is essentially the full
initial set of 1 million. However, a smaller set of variants could be identified that agree with those observed variables that are
represented consistently in the model. This is an approach taken either deliberately or inadvertently in model tuning in which
some variables are deprioritised or neglected altogether. For example, Fsw is almost always treated as a high-priority target
when tuning climate models because of its importance for energy balance, while Ng is more commonly treated as an adjustment
term to achieve greater agreement with target values, and many other cloud variables are often neglected completely (e.g.
Hourdin et al., 2017). Model tuning approaches attempt to minimise the effect of biases in a well-configured model version
rather than seeking to identify structural systematic biases across a large number of model variants as we do here. There is no
agreed best practice for identifying which combinations of model variables are structurally consistent. To explore the potential
for constraint of AFci, we take the approach of constraining to the most consistent set of observed variables across our selected

regions, then add more variables to understand the effect of accounting for inconsistencies.

We first identify constraint variables that are pairwise consistent with Ng at the regional level (see Sect. 2.4.4). We
chose the 225 constraint variables that are Ng-pairwise consistent because Nq is one of the most uncertain variables we evaluate
here (Fig. 4), and Ng is a common adjustment variable for AF.er constraint (Hourdin et al., 2017) due to its sensitivity to aerosol
and its importance for AF4i. In practice, we could use other constraint variables to define an internally consistent set (top left
corner of Fig. 5). We evaluate the 25,200 combinations of these 225 constraint variables to reveal structural inconsistencies
(Sect. 2.4.4). First, we identify the constraint variable with the greatest individual effect on reducing AF4i uncertainty, then
progressively add constraint variables that are consistent with the existing set of variables (and Ng at the regional level) and
contribute most to the AFqi constraint. Figure 6 shows the effect of progressively adding constraint variables in this way

(orange points).

The hemispheric contrast in Ng (Hg) in the Northern Hemisphere summer (August) provides the strongest individual
constraint on AFg. The constraint towards lower values of Hq in August reduces the credible AF uncertainty range in the
unconstrained set of model variants by around 44%. August Hgq shares causes of uncertainty with AF4, and with Hg in all other
months, but the nature of the relationships between the associated parameters (parameter dependencies) may be more clearly
defined in August, since in most other months Hyq is sensitive to additional parameters (SI Fig. S16). In combination with
August Hg, additional constraint comes from next including South Pacific Nq in September (dependencies on natural emission
flux parameters and dry deposition velocity), followed by March Hq (carbonaceous aerosol properties). Further constraint
comes from North Pacific f. in August (updraft velocity, autoconversion and physical atmosphere parameters) and changes in

LWP along the North Pacific transect (carbonaceous aerosol radiative properties, autoconversion and physical atmosphere
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580 parameters). Southern Ocean Nq in December (natural emission fluxes and dry deposition velocities) and changes in LWP and

Ng along the North Atlantic transect (updraft velocity and primary sulfate diameter) additionally constrain AF ;.
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Figure 6: Constraint of AFaci and the effect of varying the number of constraint variables used. We show the effect of
progressively adding constraint variables with the greatest influence on AFaci uncertainty (orange), alongside synthetic

585 examples of how the constraint might improve with very few, or no structural model inadequacies (purple and blue
respectively). In each case, only the first 125 of 225 Ng-pairwise consistent constraint variables are shown. Arrows
indicate the constraint of AFai using the single strongest constraint variable (44%), all 225 Ng-pairwise consistent
constraint variables (52%0) and all 450 constraint variables (37%), including those associated with identified structural
inadequacies at the regional level (e.g. Fig. 4 and 5).

590 We only need to include 7 additional constraint variables, in combination with the constraints identified above, (13 in
total) to optimally constrain AF (i.e. greatest reduction in the AF4i 90% credible interval, orange points in Fig. 6). We define
the “optimal constraint” to be the greatest reduction in AF.ci achievable using our specified set of observations and structurally
imperfect model. This optimal set of constraint variables spans the observation types, regions and seasons, and provides
information about the key uncertain parameters associated with these observations (and AFai dependencies on key model

595 parameters). The optimally constrained set of model variants reduces AFi uncertainty by nearly 70% (90% credible interval
-0.9 to -0.1 W m™) and AF.er uncertainty by more than 50% (-1.3 to -0.1 W m?; Fig. 2). This constrained AFr range is

narrower than previous best estimates (Bellouin et al., 2020) and purely process-based constraints (Regayre et al., 2018, 2020;
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Johnson et al., 2020) even though the AF,i component of forcing is effectively unconstrained here. Additionally, the optimally

constrained lower negative bound is now in close agreement with energy-balance constraints (table 1).

When applied in combination with the set of the 13 optimal constraint variables, any additional variables weaken the
constraint (Fig. 6). This is because the additional variables are either redundant (no additional benefit in reducing AFaci
uncertainty range because key parameter dependencies are already constrained), inconsistent with those already used
(expand the parameter space and widen the uncertainty range), or some combination of these. We retain at least 5
thousand model variants for each combined constraint (Sect. 2.4.1), so the result of adding further observations can force a
compromise in the sense that the existing constraints of AFsi dependencies on key parameters need to be relaxed to
accommodate conflicting information introduced by inconsistent variables. We hypothesise the nature of this conflicting
information could be revealed by exploring spatially and/or temporally coherent patterns of pairwise inconsistency.
Practically, this compromise means that some of the model variants with low NAD values are no longer retained. Instead,
these model variants are replaced with other variants that have tolerable (not low) NAD values for the existing set of constraint
variables and tolerable NAD values in relation to the new variable. Thus, the constraint is no longer optimal (for our model
and these observations). Including all 225 observations of Ng-pairwise consistent constraint variables reduces the AFi
uncertainty by just over 50%, and adding observations of inconsistent variables to the constraint reduces the uncertainty by
less than 40%. We expected a decline in constraint efficacy (levelling off when progressively adding constraint variables; Fig.
6) once hidden structural inconsistencies started to mitigate the benefits of including additional constraint variables. However,
we did not anticipate the optimal constraint to include so few constraint variables. These results suggest across 1 million
variants, the model is structurally incapable of matching more than a handful of our chosen observations simultaneously (Fig.
6 and Sl table S4).

3.3.3 Constraint of uncertain model parameters

Our approach consistently constrains the values of model parameters (SI Fig. S12, S13). Most parameters that cause
AF4; uncertainty (Fig. 3) are constrained, as are numerous other parameters that cause uncertainty in variables associated with
our set of optimal observations, that are not shared with AF,.i. We entirely rule out some values as observationally implausible
for parameters related to vertical velocity and newly formed sulfate particle diameters. Vertical velocities are constrained
towards lower values, which are consistent with lower Ng concentrations in the relatively polluted Northern Hemisphere, a
lower hemispheric contrast in Ng and weaker (less negative) median AF.ci. Conversely, newly formed sulfate particle diameters
are constrained towards higher values, consistent with higher concentrations of cloud active aerosol concentrations and
stronger (more negative) median AF.ci. Low sulfate emission diameters likely contributed to the spurious positive AFq values
in Fig. 2. Dry deposition removal rates are also constrained towards higher values. This constraint reduces background aerosol

concentration (consistent with lower Ng) and causes stronger (more negative) median AF, (increased sensitivity to
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anthropogenic aerosol). These key parameters are constrained concurrently, so have the effect of ruling out the strongest and
weakest AF4ci (and AF4) values in our original set of model variants.

There is little evidence to support altering the current model representations of natural emission fluxes. Two key causes
of AF4i uncertainty, the emission fluxes of sea spray aerosol and DMS are constrained towards central values. However, the
constraints on these parameters are relatively modest given their importance as causes of uncertainty. Additional constraint
using in situ observations in relatively unpolluted regions (Hamilton et al., 2014; Schmale et al., 2019) could further constrain
these parameters and the AF4ci uncertainty (Regayre et al., 2020). Also, additional AF constraint could be achieved using in-
situ observations that target processes related to the AFai component of AFzer (Johnson et al., 2020; Watson-Parris et al., 2020),

which is effectively unconstrained by the satellite-derived observations used here.

Table 1. 90% credible intervals for AFaer, AFaci and AFari from the original 1 million model variants, and after
constraint using process-based and energy-balance methods. We also include plausible bounds (90% credible

interval) from energy-balance constraints.

AFzer (W M) AFaci (W m?) AFai (W m?)
Unconstrained -1.8t0 0.9 -15t01.0 -0.6t00.3
All constraint variables (450) -1.5t00.2 -1.21t00.2 -0.6t00.2
Ng-pairwise consistent constraint variables (225) -1.41t00.0 -1.1t00.1 -0.6t0 0.3
Optimal set of constraint variables (13) -1.3t0-0.1 -09t0-0.1 -0.6t0 0.3
Smith et al. 2021; 1750 to 2019 -1.5t0-0.4 -1.2t0-0.1 -0.6t0 -0.1
Albright et al. 2021 -1.3t0-0.5 -0.9t0-0.2 -1.0t0 0.0

4 Discussion

We illustrate some of the benefits of climate model evaluation that accounts for parametric uncertainty. In addition to
constraining the lower bound on AF4 to -1.3 W m2, a value in close agreement with energy-balance constraints, we have
shown how this type of model evaluation can reveal potential structural model inadequacies. In our case, prioritising structural
improvements to address model inconsistencies related to the representations of cloud variables, would increase the number
and type of observations that could be used to further reduce AF4 and AF4r uncertainty in the model.

Structural inconsistencies weaken model observational constraint because to achieve tolerable agreement with more
variables than in the optimal set, the inconsistencies demand a compromise in the tightness of constraint achieved (Fig. 7). In
UKESM1-A, the set of optimal constraint variables is surprisingly small, containing only around 3% of the constraint variables
we explored. At present, the remaining 97% of variables weaken the constraint. If we could make these variables consistent

with other model variables already used for constraint, for example by altering the structure of the model, then they would
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instead potentially strengthen the constraint by further defining parameter relationships that were not constrained by the 3%.
The hypothetical lines in Fig. 6 (purple and blue) describe what might be achieved if some or all of the structural model
inadequacies were identified and improved — moving the peak to the right (more constraint variables used consistently in a
structurally different model) and raising the peak (tighter parametric constraint of AFaiand AFer). The values used to create
these lines are chosen to exemplify our point and do not correspond to actual constraints of the model. Ultimately, in a model
without any structural inadequacies, the constraint versus number of variables would asymptote — additional variables would
further constrain parameter relationships that were already partially constrained. The magnitude of constraint at this
hypothetical asymptote is currently unknown. It will be determined in part by the effects of observational uncertainty and
model-observation representation errors (Schutgens et al., 2017). Thus, we consider our optimal constraint the minimum level
of process-based constraint that we might achieve, with this set of observations, if we could eliminate structural model
inadequacies.

N
Optimal constraint
of forcing
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& % .
o \ panding parameter
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space as consistent
constraint variables
are included
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Figure 7: Schematic of how the addition of constraint variables affects the constrained parameter space. This is a 2-dimensional
schematic of what is here a 37-dimensional problem. Initially, adding constraint variables leads to a reduction in the amount of
parameter space that corresponds to a relatively good match to the observations (rising branch of Fig. 6). Each new variable
constrains the parameter space more than the previous set. An optimum constraint is reached (shaded grey region; peak in Fig. 6).
Beyond this point, each new constraint variable is no longer consistent with the existing set already used because the model has
structural deficiencies. Thus the parameter space must be expanded (and the AFzer constraint weakened) to accommodate these
inconsistencies.
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We suggest modelling groups may benefit from replacing existing model tuning strategies with a new approach to
model evaluation and development that accounts for parametric uncertainty and strategically identifies the causes of model
inconsistencies as well as ways to overcome their effects. In practice, the magnitude and distribution of observationally
constrained AFgr values in a structurally improved model may differ from the original model values (even with an identical
set of parameter combinations). Thus, coherent progress at improving model skill at simulating aerosol-cloud interactions may
require several cycles of uncertainty quantification, constraint, structural error identification and model development. Open
source tools and code can help simplify some aspects of model evaluation within an uncertainty framework (Watson-Parris et
al., 2021) and thus streamline some aspects of this cycle.

Identifying optimal replacements for inconsistent process representations will require additional insight into the causes
of uncertainty within and across climate models, although knowledge of inconsistencies between variables provided by our
approach will provide a strong steer. This valuable insight could be achieved by extending model intercomparisons, such as
the 6™ Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016), to include a cross-model perturbed parameter
component. Constraint of perturbed parameter uncertainty across multiple models will help close the gap between
constrained model values of aerosol forcing and the real-world value. The breadth of model behaviour sampled in enhanced
intercomparisons would help to identify optimal combinations of process representations and parameter values that minimise
important shared biases in climate models. Additionally, data from such ensembles would be invaluable for training relatively
simple climate models (Albright et al., 2021; Smith et al., 2021) and would contribute to efforts to identify robust emergent
constraints (Carslaw et al., 2018). Experiments that sample parametric uncertainty and structural model differences could help
deliver a step change in model skill at making climate projections beyond the advances we have achieved here using a single

climate model.

Data availability
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