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Abstract

The rapid environmental changes in aquatic systems as a result of anthropogenic forcings are
creating a multitude of challenging conditions for organisms and communities. The need to
better understand the interaction of environmental stressors now, and in the future, is
fundamental to determining the response of ecosystems to these perturbations. This work
describes an automated ex-sifu mesocosm perturbation system that can manipulate several
variables of aquatic media in a controlled setting. This perturbation system was deployed in
Kongsfjorden (Svalbard) where ambient water from the fjord was heated and mixed with
freshwater in a multifactorial design to investigate the response of mixed kelp communities in
mesocosms to projected future Arctic conditions. The system employed an automated dynamic

offset scenario where a nominal temperature increase was programmed as a set value above real-

time ambient conditions in order to simulate future warming. A, freshening component was (Deleted:
(Deleted: The
applied in a similar manner where 3, decrease in salinity was coupled to track the temperature (De]eted: the

NN AN

offset based on a temperature-salinity relationship in the fjord. The system functioned as an
automated mixing manifold that adjusted flow rates of warmed and chilled ambient seawater,
with unmanipulated ambient seawater and freshwater delivered as a single source of mixed

media to individual mesocosms. These conditions were maintained via continuously measured

temperature and salinity in all 12 mesocosms (1 control and 3 treatments, all in triplicates) for 54 (Deleted: ambient-

days. System regulation was robust as median deviations from conditions were < 0.15 (Deleted: setpoint

for both temperature (°C) and salinity across the 3 replicates per treatment. Regulation further

improved during a second deployment that mimicked three marine heatwave scenarios where a

dynamic temperature regulation held median deviations to < 0.036°C from the for (Deleted: setpoint

all treatment conditions and replicates. This perturbation system has the potential to be
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implemented across a wide range of conditions to test single or multi-stressor drivers (e.g.,
increased temperature, freshening, high CO,) while maintaining natural variability. The
automated and independent control for each experimental unit (if desired) provides a large

breadth of versatility with respect to experimental design.

1 Introduction

The persistent burning of fossil fuels since the industrial revolution has radically increased
atmospheric CO,. This has led to an enhanced greenhouse effect resulting in a multitude of
changing climatic elements such as increasing sea surface temperature (Bindoff et al., 2019). In
fjord systems, the confluence of increased fluvial inputs, glacier and permafrost meltwater,

stratification and water mass intrusion, as well as increased sea surface temperatures can create

periods of extreme physicochemical conditions for nearshore benthic and pelagic marine (De]eted_ as

(Deleted: assemblages
(Deleted: Methodological

communities (Bhatia et al., 2013; Poloczanska et al., 2016; Divya and Krishnan, 2017; Bindoff et

al., 2019). As ocean changes progress, the need to better understand the effects of combined (De]eted: to
(Deleted: ing
stressors (e.g., increased temperature and freshening) on marine communities is essential to (Deleted: ing

(Deleted: communit

understand how community function and species richness will be affected wcosystems (Delete diy

. . .. (Deleted: assemblages
adjust to new environmental conditions (Kroeker et al., 2017; Wake, 2019; Orr et al.,

’ (Deleted: is often pursued by conducting
2020). approaches ,assess,and characterize, the / (Deleted: s
4 [Deleted: utilizing
response of organisms and ¢ .o future ocean changes L ex-situ Fiu [Deleted; or performing
. . o ,(Moved (insertion) [1]

experiment o d natural analogues (e.g., CO; vents), and, space-for-time substitution

" (Deleted: when
(Deleted: are
(Deleted: used

( . spatial phenomena, to model temporal changes) (Blois et al., 2013; Rastrick et al., 2018;

Bass et al., 2021), can be limit \testing the range and '(Deleted: ; however,
h=. (Deleted: this
dynamics of present and future environmental conditions. The use of ex-situ experimental ( Deleted: the ability to
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“( Moved up [1]: (Blois et al., 2013; Rastrick et al., 2018; Bass
et al., 2021).
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systems that manipulate multiple environmental conditions, such as temperature and salinity, can,

th .. a valuable tool to assess the response to multi-stressors in a future ocean.

The ,conducting multi-stressor experiments has become ,

environmental drivers in dynamic systems under a changing

222

climate (Kroeker et al., 2020). Nearshore regions can experience, amplified modulations of

temperature and salinity on short timescales (Evans et al., 2015; Hales et al., 2016; Fairchild and
Hales, 2021). Such instances have been observed in sub-Arctic estuaries where water
temperature at a depth of 10 m decreased by 1.5°C in < 10 h, and in temperate systems where the
magnitude of salinity change driven by high precipitation displayed a decrease of 4 units in <24
h (Miller and Kelley, 2021; Poppeschi et al., 2021). Changes of this magnitude are particularly

pertinent for Arctic fjords, v y Jn salinity from glacial meltwater ¢

whether a system . net heterotrophic or autotrophic (Sejr et al., 2022).

Recent advances in the ability to modulate several environmental parameters at once

using ex-situ mesocosms have,been . via the use of modular programmable systems (Wahl

et al., 2015; Pansch and Hiebenthal, 2019). Such systems have demonstrated an ability to apply
programmable environmental scenarios as a multifactorial design, or as a delta-change (offset)
from ambient conditions that mimic the natural variability of an environment. The advantages of
these types of automated systems lie in their ability to overcome the need for capturing and
measuring abundant discrete measurements used to regulate experimental conditions, and
transcend the logistical difficulties of implementing natural variability to experimental designs.
In addition, these systems can reduce the need for constant human observation which may be
required to program new regulatory operations or make rapid adjustments to experimentally

manipulated conditions.
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In this system, the salinity dynamics were observed
as a temporal decrease from 31 to 28 over a few days, or as a
spatial modification where values changed by 5 units over a

5 — 10 km distance.
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Here, we describe an autonomous salinity and temperature experimental perturbation
mesocosm system (SalTExPreS) that has the ability to modify, and then regulate, salinity and

temperature in real-time. The SalTExPreS can perform similar functions as the ex-situ mesocosm

systems discussed ; (i.e., Kiel-outdoor and -indoor benthocosms), such as applying (Deleted: previously

programmable static or dynamic changes to temperature and salinity, or by replicating natural

variability as on offset in real-time, but has the added capability of autonomous control for each

experimental unit (e.g., chamber or mesocosm). In the, initial deployment of the SalTExPreS, we (Deleted: is

applied a delta offset (i.e., offset from a measured control) to temperature and salinity as a

fractional-factorial treatment design for a two-month long experiment in KongsFjorden,

Svalbard, that exposed mixed kelp communities to future temperature, salinity, and irradiance, (Deleted: conditions in the fjord

This study demonstrates the stability and flexibility of the SalTExPreS as an experimental tool to
be utilized under extreme and dynamic conditions to test the effects of physicochemical multi-

stressors on marine organisms and communities in the context of a multi-month experiment.

2 Methods
2.1 Operational Concept of the Experimental System:
The SalTExPreS simulates the drivers in a marine or freshwater system such as temperature,

freshening, acidification, or hypoxia as either static or as temporally-variable modifications to

.. This is accomplished by mixing manipulated source water, whether it is (Deleted: ambient seawater

freshwater or warmed water, with ambient water through automatic flow valves that control the
volume and rate of water delivered. This is regulated by the constant monitoring of the mixed
water conditions in each mesocosm or chamber via a programmable feedback loop that transmits

the opening or closing of the automatic flow valves. The automated ability of the SalTExPreS is
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configured to respond to near instantaneous measurements (several reads per second) to achieve
high frequency regulation of the manipulated drivers based on a measured in-situ or control

reference. The programmable conditions in each mesocosm are easily controllable

through an intuitive interface,

2.2 Site Description and Experimental Design

Kongsfjorden is a fjord system on the west coast of Svalbard (Norway) where the West
Spitsbergen Current exchanges warm Atlantic water through sill channels based on differences in
density gradients at the fjord mouth. Over the past two decades, a persistent influx of Atlantic

water has resulted in the reduction of sca ice and the melting of -ferminating glaciers
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causing enhanced freshwater and fluvial input (Luckman et al., 2015; Tverberg et al., 2019). The :‘(Deleted:

influx of freshwater is highest in summer and is accompanied by an important sediment loading

with the potential to . the euphotic zone from 30 to 0.3 m depth (Svendsen et al., 2002). (Deleted: shoal )

These climatic changes in the Kongsfjorden set a relevant context for the inaugural (Deleted: advancing )
,of the SalTExPreS on a concrete platform situated ~ 12 m from the (Deleted: deployment )

shoreline in Ny-Alesund, which is located on southwestern shore of Kongsfjorden ~ 11 km from
the fjord mouth.

The SalTExPreS was utilized to implement three treatment scenarios in a fractional-

factorial design to ; expected future conditions in Kongsfjorden for a | experiment
that the productivity, survival, and growth response of mixed kelp communities
< at7m .. .The treatments were realized by multi-driver

combinations of temperature, freshening, and irradiance, where treatments 1 and 2 differed in the

magnitude of temperature increase, salinity decrease, and irradiance decrease (Table 1). Only
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" Deleted: The response of these kelp community assemblages

was determined in part by conducting weekly closed system
incubations and assessing the growth and metabolism of the
kelp in each mesocosm—the details and results of this
experiment are discussed elsewhere (Miller et al., 2023).
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temperature was manipulated for treatment 3.

.The applied temperature offsets used for this experiment reflected the projected, SSP2-

4.5 and SSP5-8.5 scenarios (Meredith et al., 2019; Overland et al., 2019; Table 1). The chosen
decreases in salinity were based on correlations between in-situ temperature and salinity during
summer 2020 in Kongsfjorden (Gattuso et al., 2023), weeks 22 to 35 (Appendix A1l and Fig.
Al). These calculated delta salinity values were applied as offsets in treatments 1 and 2 (Table
1). The third treatment scenario applied a temperature change of + 5.3°C as a way to decouple
the multi-stressor system and evaluate a temperature only stress. The effect of turbidity for
treatments 1 and 2 were simulated as a decrease in surface irradiance (i.e., ~ 25% and ~ 40%
reduction from ambient irradiance at 7 m) by applying a combination of neutral light and spectral

filters (Lee(© Filters) placed as static fixtures over the top of the mesocosms.

2.3 Experimental System
Water was pumped from Kongsfjorden at a 10 m depth (300 m offshore) using a submersible
pump (NPS© Albatros F13T) that was tapped into an underwater intake pipe that fed a

header tank in the Kings Bay Marine Laboratory in Ny-Alesund, Svalbard.

Deleted: The chosen treatment and salinity perturbations
were applied as offset values from measured in-situ fjord
conditions at 11 m which captured the natural variability of
the fjord system.
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Pumped ambient seawater from the header tank was then split into

three sub-header tanks within the marine lab where ambient water was (1) left unchanged, (2)
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chilled to 0°C, or (3) warmed to 15°C. Each sub-header tank was plumbed to supply a maximum (Deleted:
(Deleted:
flow of 6 m?® h'! for the ambient, 1 m? h! for chilled, and 2 m? h™! of warmed water which
required a pressure of 0.3 bars for each line to ensure consistent flow rates (Fig. 1). The three
control mesocosms received a mix of chilled and ambient seawater in order to properly simulate
in-situ temperatures. The three experimental treatments (nine mesocosms in total) received a mix
of ambient, warmed, and freshwater for treatments 1 and 2, whereas treatment 3 received a mix
of just ambient and warmed water (Fig 1). Freshwater was sourced from the tap which is fed by [Deleted: wa
the Tvillingvann reservoir close to Ny-Alesund. The total flow-through rate of each mesocosm
was 0.5 m® h! (i.e., each mesocosm turned over every 2 h) of post-mixed media delivered in an
open cycle flow-through system,, Jo,maintain the target (Deleted: ,
i } [Deleted: where flow rates of 7 — 8 L min™!
B . Continuous flow was maintained throughout the experiment ¢ weekly 3 ;‘(De]eted: were
. . (Deleted: edas
hj (to perform experiments on the community) where the flow to each mesocosm . -
L5 (Deleted: setpoints
was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, . (Deleted: with the exception of
“(Deleted: incubations
 replicates) with a mean diameter of 1.1 m and a volume of 1 m?, each equipped with a 12 (Deleted: 3x
W wave pump (Sunsun© JVP-132), a temperature-conductivity probe (Aqualabo, PC4E), an
optical oxygen sensor (Aqualabo, PODOC), and an Odyssey(© light logger. Fiberglass insulation
the outside of each mesocosm reduced, unintended changes in temperature. [Deleted: was secured around
(Deleted: in order to
Delivery of ambient, chilled, warmed, and freshwater first ran through an automated “(Deleted: any
.. . . . . ) [Deleted: S
mixing manifold that regulated the flow of each media type assuring that proper volumetric
proportions passed through the regulator valves to achieve target conditions (Fig. 1). Each
; (Deleted: -
source-water flow line was regulated by an automated 2-way mixing valve (J (Deleted: 3
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2-way mixing valve for
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each mesocosm ( Fig. 1). This style of regulation ensured that the proper proportions

of manipulated media and ambient water were mixed to achieve conditions. Any (Deleted: setpoint )
temperature variation induced by mixing freshwater was immediately compensated for by

regulating the flow of the warm water line. Details regarding the programmed regulation are

discussed further in the appendix (Section A2). The mixed media then passed through a flow [Deleted: 2

meter ,measured the flow rate to each mesocosm

[Deleted: to

Jminor adjustments

. Measurements by, the pressure sensors, the status of open position for the

Deleted: which was regulated by a manual hand-crank valve
used to make

Deleted: to the valve opening position. This regulates the
flow to each mesocosm

regulator valves, and flow rates were logged every minute and the user interface (Deleted: all
(Deleted: projected to

,(Fig. A v) (Deleted: via a computer application
(Deleted: 3

2.4 |, Regulation (Deleted: Setpoint
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temperature conditions of + 3.3, 5.3, and 5.3°C applied to treatments 1, 2, and 3,

v

(Deleted: Setpoint

respectively, were offsets from the control temperature, The temperature of the

control was updated hourly and programmed to replicate the measured in-situ conditions in the

fjord logged by the AWIPEV (Alfred Wegener Institute and Institute Paul Emile Victor)

FerryBox part of the COSYNA underwater observatory (https://dashboard.awi.de/) situated at a

depth of 11 m. Each treatment condition (temperature and salinity offset) was set by manually

programming the value of temperature in the software interface (see appendix A3). The

salinity offset was coupled to the temperature yia the correlation described in appendix

Al. The measured temperature and salinity observations from inside each mesocosm were

recorded multiple times per minute and used to continuously monitor the regulation of the
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controller that performed the automated regulation of mixed media (for details see appendix A2). (Deleted: 2
2.5 Software
The software application used for the control of the SalTExPreS was developed using Visual
Studio Community (2019 edition) with the vMicro extension and Arduino 1.8.13. The program
application has a user-friendly interface designed to allow real-time monitoring and
parameterization of regulation processes (Fig. A2). The main window displays each mesocosm (Deleted: 3
condition (fhe parameters ), their piping connections, a connection status (Deleted: sensor measured
for each PLC) informing on proper communication, date and (Deleted:
(Deleted:
time of the last received communication packet from the Head PLC, and the status of the
experiment (e.g., started or stopped). The interface also displays the valve ppening percentage (Deleted: -
along with the pressure and the actual measured value for each main source-water inlet. (Deleted: setpoints
In addition, the in-situ data (temperature and salinity) received from the FerryBox is displayed
with the time and date of the last logged value utilized to program the real-time ; of (Deleted: setpoint
the control, Sensor readings of flow rate (L min!), O ¢ (%), salinity, and temperature (Deleted: condition
(Deleted: concentration
(°C) are shown for each mesocosm in conjunction with the treatment (i.e., “(Deleted: saturation
temperature, and salinity when relevant). All measured data arc, stored through the server 8;::::: ?:tpomts
connection to the cloud, however, there is a backup microSD card on the Head PLC that logs
data from all mesocosms every 5 sec. If communication fails between the Head PLC and the
interfaced computer, data will not be retrieved by the PC during the communication break, but (Deleted: ,

will be retained by the microSD card.

3 Results
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3.1 Regulation of the Control

The control was able to simulate the ambient fjord temperature well over the

experimental period Aaverage across the 3 replicates (Table 2,
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[Deleted: condition
CDeleted: condition

(Deleted: deviating < 0.3°C on

Fig. 2). The overall quality of the regulation was . the ability of the system to

the measured data from the FerryBox (or to follow a manually

v

programmed | when communication with the FerryBox was interrupted). During

) (Deleted: s

the experiment, the FerryBox went intermittently offline 24% of the time, ceasing transmission
of real-time data that resulted in a break of communication to the PLCs. This somewhat frequent

break in communication resulted in an average deviation that was nearly double for the

control compared to the treatment conditions (Table 2). The ability to manually program a new

3 when communication breaks occurred ensured that the control robustly

regulated. Over the entire period of the SalTExPreS deployment, the mean temperature of the

control jncreased from ~ 4 to 6.5°C from early July to the end of August (Fig. 3a). The coldest
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mean temperature of the control pccurred when a backup pump situated at 90 m

(Deleted: condition )

was used from 2021-07-14 ~21:00 UTC until 2021-07-26 13:49 UTC while the original

pump at 10 m was repaired, During this period, the control was ~ 1.0 — 1.5°C cooler than

[Deleted: due to a motor malfunction

the temperature measured by the FerryBox (Figs. 2, 3). Since a warmed seawater inlet was not

supplied to the control, the temperature of the control remained cooler than the measured

ambient conditions at the FerryBox. Despite the cooler temperature for the control, regulation of

flow rates, mesocosm turnover time, and variability across the control replicates was well

. (Deleted: condition

maintained by the system.

1.2 Temperature and Salinity 2egulation
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The regulation of temperature and salinity in the different treatment conditions (Trts. 1 — 3) was

maintained py the SalTExPreS

(Deleted: for 54 days (2021-07-03 — 2021-08-26)

., For the first 6 days of the SalTExPreS ; , the treatment conditions were held at

control (i.e., no applied offset from the control) before the stepwise increase in temperature

began. On 2021-07-10 12:00 UTC a temperature offset of 0.55°C d! was programmed for
treatment 1 while treatment 2 and 3 were programmed to increase by 0.88°C d-! (Figs. 2, 3). The

final temperature above the control was reached on,2021-07-15 21:00 UTC. The system

needed 4 h to achieve the new temperature conditions (i.e., homogenize the mesocosm to a

0.88°C increase), Jreatments 1 and 2

Jesulted in the system,; final salinity offset value upon the initial temperature

increase (Fig. 3b, 4).

It took the system 4 h to achieve

i

the salinity offset for treatment 2 adjusting the value from ~ 34 to 29.8 (Fig. 3b, 4).
The precision of the temperature and salinity regulation across all treatment conditions

was well maintained as the mean difference between the measured value and the
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was < 0.2°C and < 0.36 for salinity across the entire deployment (Table 2). The mean deviations
observed across treatments did not appear to correlate to the degree of offset. Thus, treatment 3
showed the highest precision for temperature regulation, while salinity regulation was the most

robust for treatment 2 compared to treatment 1 (Table 2). During, several instances whern,

communication the FerryBox and the Head PLC, the SalTExPreS

retained the last measured value at the FerryBox as a contingency protocol. This aided in the

ability of the system to maintain a high degree of regulation throughout the entire deployment.
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The largest deviation from the value for all treatment conditions occurred during the (Deleted: setpoint

single instance in which the last read value from the FerryBox was not retained: this occurred on
2021-08-24 04:47 UTC (Fig. 4). Communication was quickly restored after this incident by
cycling the program code, and the average deviation of temperature and salinity for
treatment 1 for the remainder of the deployment was < 0.16. and < 0.25 for treatment 2.

When adequate flow rates were maintained, the SalTExPreS was able to simultaneously

regulate 12 mesocosms at 4 different conditions to deviations in temperature and salinity that

were < 0.5°C or 0.5 in salinity from the value > 80% and = 70% of the time, (Deleted: setpoint

respectively (Fig. 5). Due to an erroneous for the control during the 90 m pump (Deleted: setpoint
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system to successfully manipulate temperature and salinity as an offset value from the control, (Deleted: conditions
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thus maintaining, natural, in-situ variability for 4 different conditions simultaneously. We
utilized this deployment to test the effects of climate change drivers on Arctic kelp communities

recognizing the feasibility of the system to perform ex-situ experiments on organisms or whole
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hypoxia (Gazeau et al., in prep). While this experiment used a control offset approach to produce
treatment conditions, programmable parametrization of various treatment combinations can be
applied depending on the question and design of the experiment. The automated component of
the system reduced the logistical hurdles that can arise when performing high precision
replication and regulation of experimental conditions that track real-time system variability.
While the use of such a system can reduce user oversight and limitations, there is still a need for
diligent operation.

Since the, initial ¢ , we have implemented ; changes jo improve, the

performance of the system have been realized during a second ¢ in the summer

of 2022 (Fig. 6). In this experiment, the SalTExPreS was integrated to function with a deployable
heat pump to simulate multiple scenarios of heatwave patterns over a nearly month-long
experiment. In this instance, temperature regulation was vastly improved as a result of the

programmable modifications made since the initial ¢ . During this K

the SalTExPreS mimicked 3 marine heatwave scenarios where a dynamic temperature regulation

deviations ,<0.5°C for 94% of the time, This was an

A

improvement to the % time of temperature regulation by ~ 15% compared to the first

, inconsistent flow rates and communication errors

v ¥

between the FerryBox and the Head PLC were the primary causes of larger deviations (> 2.0

salinity or °C) from values. For example, flow rates of <2 L min™!' accounted for ~ 20%
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of the large deviations in temperature and salinity regulation. Simple modifications
such as ‘pop-up’ alert windows that warned when a lapse in communication with the FerryBox
occurred ( FerryBox stopped logging), and the addition of contingency coding instructions

(1.c.. fail-safe instructions) ensuring that the last received in-situ data were maintained solved
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most of the issues. Communication errors were easily remedied by cycling the power on a PLC
which is why pop-up alerts were an improvement to the operation. Other extraneous
circumstances that could impact flow rates. such as pump failure and clogging

are whenever the SalTExPreS is used. However,

these are very manageable situations which can be easily mitigated by an operator.
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The novelty of the SalTExPreS lies in its ability to independently regulate, experimental (Deleted: an
conditions in a single experimental chamber (e.g., mesocosm). The operational data produced
from this deployment are reliable, easily quantifiable, and provide the highest degree of
monitoring frequency for every applied experimental condition. This study has demonstrated
. ability to replicate dynamic nearshore g where temperature and salinity can (Deleted: its
( Deleted: systems
vary at high frequency (e.g., tidally) fo mimic, future scenario (Deleted: i
by applying an amplitude offset to the natural dynamics of in-sifu conditions . g::::: t;ut further enhances these conditions
. Wahl et al. (2015) described a system with a similar
capability, but regulated treatment conditions by monitoring source water and adjusting that
media before it was delivered to each experimental chamber. The SalTExPreS differs ] it ( Deleted: here as
measures the conditions inside each experimental chamber (i.e., mesocosm) and regulates
based on per second measurements, This provides the flexibility to individually (Deleted: made inside each chamber

modulate each experimental chamber providing a broad range of versatility. The lack of
infrastructure needed to set up the SalTExPreS makes it easy to deploy and transport. As long as
there is a sufficient supply of ambient water and manipulated media, there is little limit to the
versatility of automated control for each mesocosm. Many research endeavors and future
implementations by the SalTExPreS have the potential to conduct a large range of experimental

settings that pertain to environmental perturbations associated with climate change or other
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anthropogenic forcings. The operation of such a system in extreme environmental conditions has
shown the durability of the manifold to endure an adverse Arctic summer and still respond
without mechanical failures. With proper operation and user proficiency, this proves to be a
highly sophisticated and powerful tool to be utilized for marine and aquatic perturbation

experiments.
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Table 1. Experimental treatment conditions with corresponding offsets

and photosynthetically active radiation (PAR

)
Treatment Temperature Salinity PAR
1 +33°C "2:5-3.0 -25% PAR
-S=0.546*T + 0.490
2 +53°C “3:0-35 -40% PAR
-S=0.877*T + 0.089
3 +53°C Ambient Ambient
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Table 2. Absolute mean difference between measured temperature

values against

deviation

treatments 1 — 3 to account for the

plus or minus the

and salinity

standard

5-day incremental increase. ,

. A weighted average was used for
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Deleted: Cntrl. is the control and Trt. is treatment 1 — 3 with
replicates a —c.

Mean diff Mean diff Ater
Treatment
AbS(T yeas = T nominat) _AbS(S meas. = S nominat) Cold Ambient Warm Fresh

Control a 0.275 £0.39 - X X

Control b 0.291 £0.36 - X X

Control ¢ 0.223 +0.36 — X X
Treatment la 0.126 + 0.31 0.116 + 0.31 X X X
Treatment 1b 0.142 £ 0.29 0.148 + 0.22 X X X
Treatment Ic 0.145 + 0.33 0.171 + 0.33 X X X
Treatment 2a 0.111 £ 0.29 0.357 + 0.74 X X X
Treatment 2b 0.133 £ 0.29 0.149 + 0.26 X X X
Treatment 2¢ 0.196 + 0.38 0.128 + 0.25 X X X
Treatment 3a 0.109 £ 0.27 - X X
Treatment 3b 0.112 £ 0.27 - X X
Treatment 3¢ 0.106 + 0.28 - X X
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Figure 1. Piping schematic of the SalTExPreS which includes the mixing and regulation
manifold. Items 1 — 3 depict the main seawater inlets from the chilled, ambient. and warmed sub- - Deleted: ambient )
o ‘(Deleted: , and chilled )
header tanks located in the Kings Bay Marine Laboratory. Seawater from each sub-header tank
moves through a 2-way regulator (4) valve followed by a pressure sensor (5) before splitting into : (Deleted: 4 )
individual lines that lead to all 12 3-way regulator valves (6), each assigned to a single - ‘CDeleted: 5 )
mesocosm. For treatments | and 2, the freshwater inlet (clear tube; item 7) passes through a 2- = ‘CDeleted: 2 )
‘ 'CDeleted: 3 )
way regulator valve before mixing with the ambient and warmed seawater lines. Flow rates are “(Deleted: 6 )
then measured (&) post-mixing, and final flow rates are set using a hand-crank (HC) red valve = '[Deleted: 7 ]
(9). The shaded regions in the schematic indicate that mixed media lines and instruments occur o ‘[Deleted: 8 )

3x or 9x times. T-C probe is the temperature-conductivity probe and the PAR logger measures

the photosynthetically active radiation. Photos of mesocosms and the sensors inside can be found

in the appendix (Fig. A6). Table Al provides the parts list for the items shown in this figure.
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instances when flow rates < 2 L min™!. Dashed black lines indicate periods when the pump at 10
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bars) 0.5°C (AT; a) or 0.5 in salinity (AS; b) when flow rates were above 2 L min™!. Cnirl. and

Trt. abbreviations are the control and treatments, respectively. This excludes the period when

using the 90 m pump (12 d). but accounts for 42 days out of the 54-day experiment. Bar color e (Deleted: 54 day

indicates different treatment groups, as shown on the y-axes.
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Appendix

Al. Calculation of Salinity Offset

In the summer of 2020—weeks 22 to 35— the mean temperature at 11 m displayed a range from

2.48 — 6.28, with salinity values ranging from 34.67 measured at the minimum 2.48°C and 33.63

measured at 6.28°C (Fig. Ala). The correlation was best fit with a 2" order polynomial. To

project the salinity offset at a future temperature based on this 2" order polynomial fit,

temperatures of + 3.3 and 5.3°C (SSP2-4.5 and SSP5-8.5, respectively) were added to in-situ

fjord temperatures and salinity was calculated based on the 2" order polynomial. These

estimated salinity values were then subtracted from the mean salinity values observed (y-axis,

Fig. Ala) in summer 2020 in order to calculate a delta salinity value for the SSP2-4.5 and SSP5-

8.5 scenarios. The relationship between these estimated delta salinity values and the mean in-situ

temperature (y-axis, Fig. Ala) displayed a robust linear relationship (Fig A1b).
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Figure A1. Relationship between temperature and salinity in summer 2020 weeks 22 — 35 in Ny-
Alesund, Svalbard (a). Relationship between estimated delta salinity and in-situ temperature,

where delta salinity was calculated as the difference between the current mean salinity and the

salinity estimated at the temperature increase projected for SSP2-4.5 (¢ dots) and SSP5-8.5 (Deleted: blue

6 dots) scenarios (b). (Deleted: green
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Table A1, Parts list with manufacturer model numbers.

Group Item Supplier/manufacturer Model / details Quantity
Hydraulic system
Mesocosms home made 1000 L fiber glass 12
Seawater pump NPS, Albatros F13T 1
BradFord, UK
PVC-U tubing and 20mm, 32mm & B
fittings 50mm diameter
Insulated flexibl
nsulated flexible 19mm diameter 100 m
hose
Sensors
L. Aqualabo,
Conduct /
onductivity Champigny sur Marne, PC4E 12
temperature
France
Aqualabo,
Oxygen Champigny sur Marne, PODOC 12
France
Pressure Siemens, TMF1567-3BE00- 3
Y Munich, Germany 1AAl
IFM
Flow rate ? SV3150 12
Essen, Germany
Actuators
Pressure regulation BELIMO, R2025-10-S2 with 3
valves Hinwil, Switzerland LR24A-SR motor
Temperature BELIMO, R3015-10-S2 with 12
regulation valves Hinwil, Switzerland LR24A-SR motor
Salinity regulation BELIMO, R2015-10-S2 with 6
valves Hinwil, Switzerland LR24A-SR motor
Automation cabinet
Cabinet Flbo?(’
Espoo, Finland FIB8120017N 1
. . KRAUS-NAIMER,
Security switch Karlsrah
arlsruhe, germany KNA002245 1
12 vdc power TDK Lambda,
supply New York, USA LAMDRL30-12-1 1
24vdc power TDK Lambda,
supply New York, USA | A\ MDRB240-24-1 1
PLC I}r;dust;'lal SI;lek?s,
arcelona, Spam Mduino-42+ 4
HIRSCHMANN-INET,
Ethernet switch Neckartenzlingen, HIR942132002
Germany
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AZ, Temperature and Salinity Regulation,

Accurate temperature and salinity regulation was managed using the software PID (proportional
integral derivative) controller on the corresponding Programmable Logic Controller (PLC). The
PLC operated in PoE mode (power over ethernet) which builds a local area network (LAN)
enabling use of Ethernet data cables to carry electrical power. The PID controller measures the
difference between the measured value and the nominal value (i.e., the error). This calculates the
position and adjustment of the valve opening by multiplying the error, the integral of this error,
and the derivative of the error over time, by previously determined coefficients K, (proportional
gain), K; (integral gain) and Kq (derivative gain), respectively. These coefficients were obtained
experimentally using the empirical method of Ziegler & Nichols (1943). These coefficient values

may differ from one condition to another.

AZ2,1. Pressure and Flow Regulation

Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure
regulation system enabling equivalent pressure levels to be maintained. This regulation process
aided in the ability to adjust flow rates for all mesocosms by using the hand-crank valves (Fig.
1). The system consisted of an analog pressure sensor (Siemens(© 7MF1567-3BE00-1AA1) and
a two-way analog valve (BELIMO®© R2025-10-S2 with LR24A-SR motor). The pressure
sensors were placed in-line directly after water from each sub-header tank passed through a
regulator valve. The sensor ensured that pressure for each line was maintained at 0.3 bars by
transmitting data to the system which then regulated the valve opening position of the incoming

flow. A pressure for all three sensors was predetermined during flow rate test trials. This
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N W

)
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Figure A2. Oxygen evolution for each mesocosm separated
by treatment.
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process took place during the setup of the system where the valve opening was adjusted using a

PID regulator (see A2) to maintain the defined pressure,

A2,2 Automation
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The automation was performed using 4 Industrial Arduino-based PLCs (Industrial shields©

Mduino-42+), with an individual PLC regulating the control and each treatment 1 — 3,

(Deleted: condition

respectively. Each PLC was responsible for logging data and regulating a specific experimental

condition. The PLC regulating the control.—identified as the Head PLC—was the primary device

(Deleted: condition

responsible for communication with the branched PLCs and the monitoring computer (Fig. A2).

All monitoring was performed on a PC Windows application (Section A3) and responsible for:

(Deleted: 2

(Deleted: 3

(1) reading data received from the PLCs, (2) reading in-situ data received from the internet, (3)
displaying live data, (4) logging data and sending it to an FTP server, and (5) sending settings
and commands to the PLCs. Communication between the PLCs and the PC was ensured using
http WebSocket protocol on RJ45 ethernet cables. The communication between the PLCs and the
conductivity-temperature and oxygen sensors, flow rate sensors, and regulation valves was
executed using a half duplex RS485 (2 wires) protocol, with an analog 4-20mA and an analog 0-
10V signal, respectively. All PLCs and wired communication lines were housed in an electrical
box installed to an IP68 Fibox enclosure with a 400 V (3P+N+E) 32 A security switch (Fig. AG).
All the automation elements use low tension (12 Vdc or 24 Vdc) through circuit breakers and

fuses. The electrical box was protected with a 220 V socket.
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A2, Software Development ( Deleted:

(Deleted: 3

N AN

The code for the application was written in C/C++. The code uses publicly available Arduino

libraries (https://www.arduino.cc/reference/en/libraries/) as well as originally designed libraries.

All code is available on Github (https://github.com/purrutti/FACEIT). The code is divided into

two pathways: ‘Master.ino’ for the Head PLC, and ‘Regul condition.ino’ for the Branched

PLCs. A description of the main functions applied in the code for programming the system

regulation and features are listed in Table A2, [Deleted: 3
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Function Operation Ancillary field Sender ID Ancillary field Command #
RIC.read) The PLCs are equipped with a RTC chip and battery to keep track of the date. Once set on commissioning,
RTC.read() returns the current date and time.
This functions loops through each sensor connected on the RS485 bus. Each Mesocosm has two sensors
(02 and Conductivity/Salinity), so each PLC has 6 sensors connected on its bus.
readMBSensors() - 02 sensors have addresses ranging from 10 to 12, for mesocosms 0 to 2 of the scenario, respectively.
- PCAE sensors have addresses ranging from 30 to 32, for mesocosms 0 to 2 of the scenario, respectively.
- Sensors are requested individually and in sequence. A request is made every 200 ms.
Request params: setpoints, PID settings (# = 0)
Request data: measurement values, regulation outputs (# = 1)
This is a callback function responsible for dealing with the WebSocket communication. The master PLC is Send Params: response (o a « request params » request (# = 2)
the WebSocket server. It listens to slave PLCs requests and to the monitoring PC requests. Requests are Head PLC (ID = 0) Send Data: response to a « request data » request (# = 3)
webSocket.loop()  JSON formatied. They always contain anciallry fields: senderlD (ID of the entity sending the request),  Branched PLCs (ID=1-3)  Calibrate sensor: request for calibrating sensor to specified value (# = 4)

condID (ID of the requested entity), command (command type of the request). They optionally can also Monitoring PC (ID = 4)
contain a « time » field: Unix-like timestamp (number of seconds since 01-01-1970)

Request Head data: specific data measured by Head PLC (pressure &
flowrates ) (# = 5)
Send Head data: a response to a « request Head data » request (# = 6)

regulationTemperature()

This function is for the lation of the It sets the cor three-
way valve position using a 0-10V analog signal. The function first checks if the regulation is in « manual
override » mode. If so, it applies the override setpoint. If not, it reads the temperature measure in the
mesocosm, compares it with the setpoint, and uses the PID settings to set the valve position.

checkMesocosmes()

This functions loops through every mesocosm every 200 ms and reads analog signals (i.e., flowrates and
pressure readings).

regulationPression()
Only for HEAD PLC

This function is for the pressure lation of the It sets the cor three-
way valve position using a 0-10V analog signal. The function first checks if the regulation is in « manual
override » mode. If so, it applies the override setpoint. If not, it reads the pressure measure in the
mesocosm, compares it with the setpoint, and uses the PID settings to set the valve position.

printToSD()
Only for HEAD PLC

Master PLC is equipped with a microSD card, on which data from all mesocosms is logged every 5
seconds, in one csv file per day. This is for security only, as the microSD card is not easy to remove from
the PLC casing. It should not be removed before the end of the experiment.

regulationSalinite()
Only for Branched PLCs

This function is ible for the salinity ion of the It sets the cor ing thi

valve position using a 0-10V analog signal. The function first checks if the regulation is in « manual
override » mode. If so, it applies the override setpoint. If not, it reads the salinity measure in the mesocosm,
compares it with the setpoint, and uses the PID settings to set the valve position.

1F52 Table A3, Functions used for programming of software.
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5] FACE-IT Mesocosm App

File Settings Maintenance Data About

Rep. 1 Rep. 2 Rep. 3
Valve: 70% V3V: 45% V3V: 28% V3V: 100% " .
Ambiant sea water Flowrate: 7.06 L/min Flowrate: 8.18 L/min Flowrate: 7.85 L/min Condition 0 set points
nnnnnnnnnnnn 104.98% ——————— 02: 109.88%
Pressure setpoint: 0.300 bars ;3490 Salinity: 3471
Pressure measure: 0.302 bars OH;H.— cororrrrmee e : Nk 373°C TG 3.75°C

Valve: 33%

Cold sea water

Pressure setpoi V3V: 0% V3V: 100% ) VaV: 100% . '
Pressure measure: 0.305 bars Flowrate: “%M .MH.: Flowrate: 7.36 L/min Flowrate: ﬂwuukﬁ_: Condition 1 set points
ty: 3333 Salinity: 33.29
i B T 7.13°C TG 7.05°C
Valve: 60%
Waem sea water “# J—,JQ. H Fresh water Fresh water Fresh water
Valve: 0% Valve: 22
Pressure setpoint: 0.300 bars Valve: 0%
Pressure measure: 0311 bars
V3V: 0% V3V: 89% V3V: 100%

In Situ Data:
Temperature: 3.75 °C
Salinity: 3485

Time: 2021-06-14 09:00:00

Ambient

Connection Status: Connected

Trt. 2 Fresh water

Valve: 0%

"Arctic Biodivorsity & Livolihoods

Last updated: 6/14/2021 11:59:08 AM UTC

|||||||| TC

V3V: 100%

Flowrate: 7.36 L/min
0 101.44%

: 31.50
9.09°C

Valve: 24%

V3V: 100%
Flowrate: 8.19 L/min

109.17%
: 3516

|||||||| B 9.11°C

Flowrate: 7.65 L/min

Fresh water

Valve: 0%

V3V: 0%
Flowrate: 842 L/min

02 115.45%
Salinity: 3515
T™C 893°C

Condition 2 set points

Salinity: 31.47
9.05°C

Condition 3 set points

T™C 9.05 °C

STOP

periment is running normalk
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Figure A3, Application interface displaying real-time monitoring of ambient conditions as well

and control (Cntrl.), and treatment (Trt.) conditions for each replicate (Rep.) in each mesocosm.
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A4, Menu bar of PC application

From the interface, the user sets the temperature condition and associated salinity offset, IP
address and logging parameters, sensor calibration settings, and pressure, (Fig. A4).
Within the menu bar several tabs permit the setup of the project: file, settings, maintenance, and
data. Under ‘file’ the system can be manually connected to, or disconnected from, the PLCs.
Connection is usually maintained automatically. The ‘settings’ tab displays the application and
experimental setting options (Fig. A4.1 a —c). All the settings of the project are stored on the

computer (found in ‘application settings’) that is running the application, which include:

i Master IP address: The IP Address of the Master PLC (centralizing all the data).
il. Data Query Interval: Frequency of queries from the application to the master PLC.
iii. Data Log Interval: Number of minutes between logs to file.

iv. Data Base File Path: Directory and base filename of the csv data files.
V. FTP Username, Password, Path: FTP settings for sending the data file every hour.

Vi. InfluxDB Settings: For Live Monitoring and local storage of the data.

Under ‘experimental settings’, the programmed specificities and regulation of the treatment

conditions can be adjusted. This includes programming the ; pressure (all main inflow

(Deleted: 3.1

(Deleted: setpoints

(Deleted: setpoints for

lines), temperature and the salinity-temperature relational equation (on a different tab selected
from dropdown), as well as adjusting the K,, K; & Kq coefficients for the regulation (see section

2.3.1). The temperature js provided by the data received from the ferry-box, however
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this can be overridden if needed. The « Save to PLC » button sends the values to the
corresponding PLC and saves the data, while the « Load from PLC » button loads the settings

from the PLC. For the purposes of this experiment, the salinity was calculated based on
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a delta salinity for treatments 1 and 2 which were derived from the linear relationship with
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temperature (see section 2.3.1). This can also be overridden if needed by selecting the manual
override box.

The ‘maintenance’ tab is where sensor calibration and communication ‘Debug’
operations can be executed (Fig. A4 d, e). Calibration can be performed for each sensor deployed
in each mesocosm, and uses a 2-point calibration for temperature and % oxygen. The salinity
calibration is done by setting the conductivity value corresponding to a temperature of 25°C
rather than the in situ measured temperature. The conductivity value is programmed as pS cm'.
The communication process for sensor calibration is between 5 to 10 seconds. The final option in
the menu is the ‘data’ tab which displays the historical and live data. The historical data can be

interfaced to an html site if desired.
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Figure A4, Operation windows for the application and experimental settings (a-c). These

windows are found under the ‘settings’ tab. Operation windows for sensor calibration and

debugging (d, e). These are found under the ‘maintenance’ tab.
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Black vertical lines are when incubations were performed and the system shut-off for a period of

3 h. Flow rates went to zero at these times.
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1156 Figure A6. All 12 mesocosms are displayed (upper left photo) with the inside of one mesocosm . ‘v—'CFormatted: Font: Bold

1157  (right photo) showing the oxygen (silver) and temperature/conductivity sensors along with the

1158  photosynthetically active radiation (PAR) logger (bottom right photo).
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