1 2	Title: An Autonomous Flow through Salinity and Temperature Perturbation Mesocosm System for Multi-stressor Experiments
3 4 5 6	Author list : Miller, C.A. ^{1,2*} , Urrutti, P. ¹ , Gattuso, JP. ^{1,3} , Comeau, S. ¹ , Lebrun, A. ¹ , Alliouane ¹ S., Schlegel, R.W. ¹ , and F. Gazeau ¹
7 8 9	 Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F-06230 Villefranche-sur-Mer, France
10 11 12	2. Present address: Department of Earth Sciences, Geosciences, Utrecht University, Utrecht, The Netherlands
13 14 15	 Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F-75007 Paris, France
16 17 18 19 20 21	*Author for correspondence (e-mail: c.a.miller@uu.nl)
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

34	Abstract		Deleted: ¶
35	The rapid environmental changes in aquatic systems as a result of anthropogenic forcings are		
36	creating a multitude of challenging conditions for organisms and communities. The need to		
37	better understand the interaction of environmental stressors now, and in the future, is		
38	fundamental to determining the response of ecosystems to these perturbations. This work		
39	describes an automated ex-situ mesocosm perturbation system that can manipulate several		
40	variables of aquatic media in a controlled setting on land. This perturbation system was deployed	*****	Deleted: e
41	in Kongsfjorden, (Svalbard) where ambient water from the fjord was heated and mixed with		Deleted: employed system manipulated ambient water from
42	freshwater in a multifactorial design to investigate the response of mixed kelp communities in		Deleted: by increasing temperature and freshening the
43	mesocosms to projected future Arctic conditions. The system employed an automated dynamic	****	Seawater Deleted: is
44	offset scenario where a nominal temperature increase was programmed as a set value above real-		Deleted: manipulated Deleted: and salinity in
45	time ambient conditions in order to simulate future warming. The freshening component was		Deleted:
46	applied in a similar manner where the decrease in salinity was coupled to track the temperature		Deleted: as an offset from incoming ambient seawater to Deleted: ing
47	offset based on a temperature-salinity relationship in the fjord, The system functioned as an		Deleted: Arctic fjords Deleted: .
48	automated mixing manifold that adjusted flow rates of warmed and chilled ambient seawater,		Deleted: adjusted
			Deleted: and mixing regimes
49	with unmanipulated ambient seawater and freshwater delivered as a single source of mixed		Deleted: of chilled, heated,
50	media to individual mesocosms. These conditions were maintained via continuously measured		Deleted: ,
51	temperature and salinity in all 12 mesocosms (1 ambient-control and 3 treatments, all in		Deleted: conditions
52	triplicates) for 54 days. System regulation was robust as median deviations from setpoint		Deleted: a total of
53	conditions were < 0.15 for both temperature (°C) and salinity across the 3 replicates per		
54	treatment. Regulation further improved during a second deployment that mimicked 3 marine		
55	heatwave scenarios where a dynamic temperature regulation held median deviations to ≤ 0.036		
56	<u>°C from the setpoint for all treatment conditions and replicates.</u> This perturbation system has the		

77	potential to be implemented across a wide range of conditions to test single or multi-stressor	Deleted: e
-		Deleted: ation
78	drivers (e.g., increased temperature, freshening, high CO ₂) while maintaining natural variability.	Deleted: of this system has
79	The automated and independent control for each experimental unit (if desired) provides a large	Deleted: of versatility and can be deployed in a range
12	The automated and mappingent control for each experimental and in desired, provides a targe	Deleted: conditions
80	breadth of versatility with respect to experimental design.	Formatted: Subscript
		Deleted: .
81		
82	1 Introduction	Deleted: ¶
83	The persistent burning of fossil fuels since the industrial revolution has radically increased	
84	atmospheric CO ₂ . This has led to an enhanced greenhouse effect resulting in <u>a multitude of</u>	
85	changing climatic elements such as increasing sea surface temperature, (Bindoff et al., 2019). In	Deleted: s
86	fjord systems, the confluence of increased fluvial inputs, glacier and permafrost meltwater,	
87	stratification and water mass intrusion, as well as increased sea surface temperatures can create	
88	periods of extreme physicochemical conditions for nearshore benthic and pelagic marine	
89	communities (Bhatia et al., 2013; Poloczanska et al., 2016; Divya and Krishnan, 2017; Bindoff et	
90	al., 2019). As ocean changes progress, the need to better understand the effects of combined	
91	stressors (e.g., increased temperature and freshening) on marine communities is essential to	Deleted: nearshore
92	understand how community function, and species richness will be affected as assemblages adjust	Deleted: s
		Deleted: transition
93	to new environmental conditions (Kroeker et al., 2017; Wake, 2019; Orr et al., 2020).	
94	Methodological approaches to assessing and characterizing the response of organisms and	Deleted: A
95	community assemblages to future ocean change is often pursued by conducting ex-situ	
96	experiments, <u>utilizing</u> , natural analogues (e.g., CO ₂ vents), or <u>performing</u> space-for-time	Deleted: using
97	substitution (when spatial phenomena are used to model temporal changes); however, this can	Formatted: Subscript
98	limit the ability to test the range and dynamics of present and future <u>environmental</u> conditions	Deleted: physicochemical

99 (Blois et al., 2013; Rastrick et al., 2018; Bass et al., 2021). The use of *ex-situ* experimental

118	systems that manipulate multiple environmental conditions such as temperature and salinity can,	
119	thus, be a valuable tool to assess the response to multi-stressors in a future ocean.	
120	The recognition of conducting multi-stressor experiments has become increasingly	
121	relevant due to the interaction of environmental drivers in dynamic systems under a changing	
122	climate (Kroeker et al., 2020). Nearshore regions such as fjord systems and estuaries can	
123	experience an amplified modulation of temperature and salinity on short timescales (Evans et al.,	
124	2015; Hales et al., 2016; Fairchild and Hales, 2021). Such instances have been observed in sub-	
125	Arctic estuaries where water temperature at a depth of 10 m decreased by 1.5 °C in < 10 h, and	
126	in temperate systems where the magnitude of salinity change driven by high precipitation	
127	displayed a decrease of 4 units in < 24 h (Miller and Kelley, 2021; Poppeschi et al., 2021).	
128	Changes of this magnitude are particularly pertinent for Arctic fjords where recent evidence	
129	found that changes in salinity from glacial meltwater were capable of directing whether a system	
130	is net heterotrophic or autotrophic (Sejr et al., 2022). In this system, the salinity dynamics were	
131	observed as a temporal decrease from 31 to 28 over a few days, or as a spatial modification	
132	where values changed by 5 units over a $5 - 10$ km distance.	Deleted: (Sejr et al., 2022)
133	Recent advances in the ability to modulate several environmental parameters at once	
134	using <i>ex-situ</i> mesocosms has been presented via the use of a modular programmable system	Formatted: Font: Italic
135	(Wahl et al., 2015; Pansch and Hiebenthal, 2019). Such systems have demonstrated an ability to	Formatted: Font: Italic
136	apply programmable environmental scenarios as a multifactorial design, or as a delta-change	
137	(offset) from ambient conditions that mimic the natural variability of an environment. The	
138	advantages of these types of automated systems lie in their ability to overcome the need for	
139	capturing and measuring abundant discrete measurements used to regulate experimental	
140	conditions, and transcend the logistical difficulties of implementing natural variability to	

142	experimental designs. In addition, these systems can reduce the need for constant human	
143	observation which may be required to program new regulatory operations or make rapid	
144	adjustments to experimentally manipulated conditions.	
145	Here, we describe an autonomous salinity and temperature experimental perturbation	
146	mesocosm system (SalTExPreS) that has the ability to modify, and then regulate, salinity and	
147	temperature in real-time. The SalTExPreS can perform similar functions as the <i>ex-situ</i> mesocosm	
148	systems discussed previously (i.e., Kiel-outdoor and -indoor benthocosms), such as applying	
149	programmable static or dynamic changes to temperature and salinity, or by replicating natural	
150	variability as on offset in real-time, but has the added capability of autonomous control for each	
151	experimental unit (e.g., chamber or mesocosm). In this initial deployment of the SalTExPreS, we	
152	applied a delta offset (i.e., offset from a measured control) to temperature and salinity as a	
153	multifactorial treatment design for a two-month long experiment in KongsFjorden, Svalbard, that	
154	exposed mixed kelp communities to future temperature, salinity, and irradiance conditions in the	
155	fjord. This study demonstrates the stability and flexibility of the SalTExPreS as an experimental	
156	tool to be utilized under extreme and dynamic conditions to test the effects of physicochemical	
157	multi-stressors on marine organisms and communities in the context of a multi-month	
158	experiment.	
159	•	
160	2 Methods	
161 162	2.1 Operational Concept of the Experimental System:	
163	The SalTExPreS simulates the drivers in a marine or freshwater system such as temperature,	
164	freshening, acidification, or hypoxia as either static or as temporally-variable modifications to	
165	ambient seawater. This is accomplished by mixing manipulated source water, whether it be	

Deleted: ¶

A principal challenge of conducting an *ex-situ* multistressors experiment lies within the ability to consistently modulate, replicate, and regulate the experimental conditions in real-time. To date, the majority of experiments conducted only static changes to physical stressors with a limited capacity to induce variability by either manually changing conditions at set time points or using coarse automation with static setpoints and thresholds (Olariaga et al., 2014; Pansch and Hiebenthal, 2019; Kroeker et al., 2020). Often, this can fail to capture the high frequency variability of *in-situ* conditions. When considering the dynamics of physicochemical conditions in nearshore systems that can

physicochemical conditions in nearshore systems that can notably change within tidal cycles (Evans et al., 2015; Hales et al., 2016; Miller and Kelley, 2021; Fairchild and Hales, 2021), replication of these environmental scenarios necessitates the development of an autonomous system in order to properly conduct experiments over various periods of time. The advantages of implementing an automated system are that it can overcome the need for capturing and measuring the abundant discrete measurements used to regulate the experimental conditions. This can also remove the need for constant human observation which may not be feasible in the long-term, but may be required to program new regulatory operations and make rapid adjustments to the experimentally manipulated conditions.

Deleted:

Deleted: can Formatted: Font: Italic

Deleted: This system was employed outdoors, along with static light filters to mimic the increase in turbidity and associated irradiance attenuation due to glacial melting to perform a two-month long experiment in KongsFjorden, Svalbard, exposing mixed kelp communities to future Arctic conditions. The rapidly changing conditions in Kongsfjorden are partly due to intrusion of Atlantic water that increase sea surface temperature, as well as freshening from retreating sea-terminating glaciers and enhanced terrestrial flow from proglacial streams (Tverberg et al., 2019). Such a dynamic multi-stressor environment was ideal for the SalTExPreS deployment. This study focuses on the stability and flexibility of SalTExPreS as an experimental tool to be utilized under extreme and dynamic conditions to test the effects of physicochemical multi-stressors on marine organisms and communities.

Formatted: Font color: Auto, Pattern: Clear Formatted: Indent: First line: 0", Line spacing: single

211	freshwater or warmed water, with ambient water through automatic flow valves that control the		
212	volume and rate of water delivered. This is regulated by the constant monitoring of the mixed		
213	water conditions in each mesocosm or chamber via a programmable feedback loop that transmits		
214	the opening or closing of the automatic flow valves. The automated ability of the SalTExPreS is		
215	configured to respond to near instantaneous measurements (several reads per second) to achieve		
216	high frequency regulation of the manipulated drivers based on a measured <i>in-situ</i> or control		Formatted: Font: Italic
217	reference. The programmable setpoint conditions in each mesocosm are easily controllable		
218	through an intuitive computer interface application.		
219			
220	2.2, Site Description and Experimental Design,	(Deleted: ¶
			Deleted: 1
221	Kongsfjorden is a fjord system on the west coast of Svalbard where the West Spitsbergen	7	Deleted:
222 223	Current exchanges warm Atlantic water through trough channels regulated by density gradients at the fjord mouth. Over the past 2 decades, a persistent influx of Atlantic water has resulted in		Deleted: Three experimental treatments representing expected future conditions in Kongsfjorden were considered to examine potential changes in the productivity, survival, and growth of mixed kelp communities present at a 7 m
224	the reduction of land-fast ice and the melting of sea terminating glaciers causing enhanced	l	depth in the fjord.
225	freshwater and fluvial input (Luckman et al., 2015; Tverberg et al., 2019). The influx of	(Deleted: ; Luckman et al., 2015
226	freshwater is highest in summer and is accompanied by an important sediment loading with the		
227	potential to shoal the euphotic zone from 30 m to a 0.3 m depth (Svendsen et al., 2002). These		
228	advancing climatic changes in Kongsfjorden set a relevant context for the inaugural deployment		
229	of the SalTExPreS on a concrete platform situated ~ 12 m from the shoreline in Ny-Ålesund,		
230	which is located on southwestern shore of Kongsfjorden ~ 11 km from the fjord mouth.		
231	The SalTExPreS was utilized to implement three treatment scenarios in a multifactorial		
232	design to represent expected future conditions in Kongsfjorden for an experiment that examined		
233	the productivity, survival, and growth response of mixed kelp communities found at 7 m for 54		

243	d. The response of these kelp community assemblages was determined in part by conducting	(Deleted: This involved manipulating
		/ >	Deleted: stressor
244	weekly closed system incubations and assessing the growth and metabolism of the kelp in each		Deleted: combinations:
245	mesocosm—the details and results of this experiment are discussed elsewhere (Miller et al., in		Formatted: Font: Italic
246	prep). The treatments were realized by multi-driver combinations of temperature, freshening, and		Moved down [1]: The response of communities was determined by conducting weekly assessments of growth and metabolism via closed system incubations (Miller et al., <i>in</i> <i>prep</i>).
247	irradiance, where treatments 1 and 2 differed in the magnitude of temperature increase, salinity	11 2	Formatted: Font: Italic
		11/2	Deleted: temperature anomalies
248	decrease, and irradiance decrease (Table 1). Only temperature was manipulated for treatment 3.		Deleted: represent future Arctic sea surface temperatures projected following scenarios
249	The chosen treatment and salinity perturbations were applied as offset values from measured <u>in-</u>) // (Deleted: offsets
250	situ fjord conditions at 11 m which captured the natural variability of the fjord system. The	////	Deleted: the
250	Situ jord conditions at 11 in which captured the natural variability of the ford system. The)	Deleted: summer
251	applied temperature offsets used for this experiment reflected the projected, SSP2-4.5 and SSP5-	-///	Deleted: (Gattuso et al., 2023)
252	8.5 <u>scenarios (Meredith et al., 2019; Overland et al., 2019; Table 1</u>). The <u>chosen decreases in</u>	###	Deleted: This correlation was then used to estimate salinity offsets derived from the temperature offset values extrapolated from a linear fit
253	salinity were based on correlations between <i>in-situ</i> temperature and salinity during summer, 2020	// (Deleted: for
200	banning white based on contentions between <i>in bits</i> temperature and banning during barnine 2020	///	Deleted: 2
254	in Kongsfjorden (Gattuso et al., 2023), weeks 22 to 35 (Appendix A1 and Fig. A1). These	/ /	Deleted: In
			Deleted: t
255	calculated delta salinity values were applied as offsets in treatments 1 and 2 (Table 1). The third		Deleted: , only
256	treatment scenario applied a temperature, change of + 5.3 °C as a way to decouple the multi-	\square	Deleted:
250	ucament scenario appred a emperature enange of + 5.5 C as a way to decouple the multi-		Deleted: was manipulated
257	stressor system and evaluate a temperature only stress. The effect of turbidity for treatments 1		Deleted: representing coastal areas not affected by gla [1]
			Deleted: as
258	and 2 were simulated as a decrease in surface irradiance (i.e., ~ $\frac{25}{25}$ % and ~ $\frac{40}{2}$ % reduction from	\leq	Deleted: 30
		(Deleted: 5
259	ambient irradiance at 7 m) by applying a combination of neutral light and spectral filters (LeeC	\leq	Deleted: and corresponding spectra
		(Deleted: the application of
260	Filters) placed as static fixtures overtop the mesocosms		Deleted: (Fig. S2)
261		1	Moved (insertion) [1]
201	V	1	Deleted: The response of communities was determine [[2]
262	2.3. Experimental System		Deleted: 2
263	¬	- 1 - 7	Deleted: Twelve circular mesocosms (3 treatments and [3]
264	Water was pumped from Kongsfjorden at a 10 m depth (300 m offshore) using a submersible	e	Deleted: (see parts list in Table A1) operated as indivi([4]
		17	Deleted: control condition was designed to represent t([5]
265	pump (NPS© Albatros F13T) that was tapped into an underwater intake pipe that fed a header		Deleted: valve
her	tank in the Wines Deer Marine Laboratory in No. 81 10 11 1 D 1 11 1		Deleted: that was plumbed into
266	tank in the Kings Bay Marine Laboratory in Ny-Ålesund, Svalbard. Pumped ambient seawater		Deleted: the
1		and the second	Deleted: of

B	40	from the header	tank was then	split into 3 sub-hea	ader tanks within the r	narine lab where ambient
	40	from the neader	tally was then	spin millo 5 sub-nea	auci tanks within the i	

340	from the header tank was then split into 3 sub-header tanks within the marine lab where ambient
341	water was (1) left unchanged, (2) chilled to 0 °C, or (3) warmed to 15 °C. Each sub-header tank
342	was plumbed to supply a maximum flow of $6 \text{ m}^3 \text{ h}^{-1}$ for the ambient, $1 \text{ m}^3 \text{ h}^{-1}$ for chilled, and 2
343	m ³ h ⁻¹ of warmed water, which required a pressure of 0.3 bars for each line to ensure consistent
344	flow rates (Fig 1). The 3 control mesocosms received a mix of chilled and ambient seawater in
345	order to properly simulate <i>in-situ</i> temperatures. The three experimental treatments (9 mesocosms
346	in total) received a mix of ambient, warmed, and freshwater for treatments 1 and 2, whereas
347	treatment 3 received a mix of just ambient and warmed water (Fig 1). Freshwater was sourced
348	from the tap which was fed by the Tvillingvann reservoir close to Ny-Ålesund. The total flow-
349	through rate of each mesocosm was 0.5 m ³ h ⁻¹ (i.e., each mesocosm turned over every 2 h) of
350	post-mixed media delivered in an open cycle flow-through system, where flow rates of $7 - 8$ L
351	min ⁻¹ were maintained as target setpoints. Continuous flow was maintained throughout the
551	
352	experiment with the exception of weekly 3 h incubations (to perform experiments on the
352	experiment with the exception of weekly 3 h incubations (to perform experiments on the
352 353	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular
352 353 354	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a
352 353 354 355	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a volume of 1 m ³ , each equipped with a 12 W wave pump (Sunsun© JVP-132), a temperature-
352 353 354 355 356	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a volume of 1 m ³ , each equipped with a 12 W wave pump (Sunsun© JVP-132), a temperature-conductivity probe (Aqualabo, PC4E), an optical oxygen sensor (Aqualabo, PODOC), and an
352 353 354 355 356 357	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a volume of 1 m ³ , each equipped with a 12 W wave pump (Sunsun© JVP-132), a temperature-conductivity probe (Aqualabo, PC4E), an optical oxygen sensor (Aqualabo, PODOC), and an Odyssey© light logger. Fiberglass insulation was placed on the outside of each mesocosm to
352 353 354 355 356 357 358	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a volume of 1 m ³ , each equipped with a 12 W wave pump (Sunsun© JVP-132), a temperature-conductivity probe (Aqualabo, PC4E), an optical oxygen sensor (Aqualabo, PODOC), and an Odyssey© light logger. Fiberglass insulation was placed on the outside of each mesocosm to increase insulation in order to reduce any potential change in temperature.
 352 353 354 355 356 357 358 359 	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a volume of 1 m ³ , each equipped with a 12 W wave pump (Sunsun© JVP-132), a temperature-conductivity probe (Aqualabo, PC4E), an optical oxygen sensor (Aqualabo, PODOC), and an Odyssey© light logger. Fiberglass insulation was placed on the outside of each mesocosm to increase insulation in order to reduce any potential change in temperature. Delivery of ambient, chilled, warmed, and freshwater first ran through an automated
 352 353 354 355 356 357 358 359 360 	experiment with the exception of weekly 3 h incubations (to perform experiments on the community) where flow to each mesocosm was shut off. In total, there were twelve circular mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a volume of 1 m ³ , each equipped with a 12 W wave pump (Sunsun© JVP-132), a temperature-conductivity probe (Aqualabo, PC4E), an optical oxygen sensor (Aqualabo, PODOC), and an Odyssey© light logger. Fiberglass insulation was placed on the outside of each mesocosm to increase insulation in order to reduce any potential change in temperature. Delivery of ambient, chilled, warmed, and freshwater first ran through an automated mixing manifold that regulated the flow of each media type assuring that proper volumetric

D	eleted: temperature
D	eleted: was
D	eleted: manipulated to obtain: ambient seawater,
D	eleted: seawater
D	eleted: at
D	eleted: and
D	eleted: d seawater
D	eleted: at
D	eleted: constant
D	eleted:
D	eleted: manipulated
F	ormatted: Superscript
F	ormatted: Superscript
D	eleted: fjord
D	eleted: water to each mesocosm
D	eleted: placed on an open outdoor platform
С	eleted: to compensate for any potential warming that buld occur from transit to the header tank, and finally to the accossms
F	ormatted: Font: Italic
D	eleted: and
D	eleted:
	eleted: in order to achieve the projected future temperature ffsets
D	eleted: Each mesocosm
D	eleted: received
D	eleted: seawater
D	eleted: which
D	eleted: equated to a
D	eleted:
D	eleted: The
D	eleted: periods when flow to each mesocosm was

Deleted: periods when flow to each mesocosm was suspended for 3 h during weekly whole-system incubations for community metabolism determination

394	for incoming freshwater) which then passed through another mixing valve (12 in total) that was
395	assigned to each mesocosm (Fig. 1) This style of regulation ensured that the proper proportions
396	of manipulated media and ambient water were mixed to achieve setpoint conditions. Any
397	temperature variation induced by mixing freshwater was immediately compensated for by
398	regulating the flow of the warm water line. Details regarding the programmed regulation are
399	discussed further in the appendix (Section A2). The mixed media then passed through a flow
400	meter to measure the flow rate to each mesocosm which was regulated by a manual hand-crank
401	valve used to make minor adjustments to the valve opening position. This regulates the flow to
402	each mesocosm. Measurements by all the pressure sensors, the status of open position for the
403	regulator valves, and flow rates were logged ever minute and projected to the user interface via a
404	computer application (Fig. A3).
405	
406	2.4 Setpoint Regulation
407	Setpoint temperature conditions + 3.3, 5.3, and 5.3 °C applied to treatments 1, 2, and 3,
408	respectively, were offsets from the control temperature setpoint. The temperature setpoint of the
409	control condition was updated hourly and programmed to replicate the measured in-situ
410	conditions in the fjord logged by the AWIPEV (Alfred Wegener Institute and Institute Paul
	conditions in the fjord togged by the Awit EV (Anted wegenet institute and institute Fau
411	Emile Victor) FerryBox part of the COSYNA underwater observatory
411 412	
	Emile Victor) FerryBox part of the COSYNA underwater observatory
412	Emile Victor) FerryBox part of the COSYNA underwater observatory (https://dashboard.awi.de/) situated at a depth of 11 m. Each treatment condition (temperature
412 413	Emile Victor) FerryBox part of the COSYNA underwater observatory (https://dashboard.awi.de/) situated at a depth of 11 m. Each treatment condition (temperature and salinity offset) was set by manually programming the setpoint value of temperature in the

Deleted: The main inflow pipes (ambient, chilled, and warmed) were plumbed in combination with a freshwater tap line (Fig. 1) into a control manifold that mixed the manipulated media regulating flow rates using a continuous monitoring system and a series of controlled valves (Fig. 2). Continuous minutely monitoring of the inflow pressure (premixing) and outflow rates to each mesocosm provided high frequency logging and observation of mesocosm condition.

Formatted: Font: Not Bold, Underline Formatted: Normal, Space After: 0 pt

Formatted: Font: Not Bold, Underline

Formatted: Font: Not Bold, Underline

Tormatted. Fond. Not Bold, Ondernie

Formatted: Font: Not Bold, Underline

Deleted:

2.3 Parameter Regulation

2.3.1 Temperature and Salinity The control from which temperature and salinity regulation were automated was based on hourly *in-situ* readings from the

Formatted: Font: Not Bold, Not Italic, Underline

Formatted: Font: Not Bold, Underline

Deleted: which is

Deleted:

Deleted: The inlet which is located ~ 400 m from the submersible pump was at 11 m depth. Control conditions were set hourly by the logged COSYNA data, referred to henceforth as the FerryBox.

Deleted: retained via manually programmed offsets from the control condition set in the

Deleted: Section Deleted: 2.5

Formatted: Not Highlight

442	continuously monitor the regulation of the conditions inside each mesocosm. This data
443	transmission was used to program the software controller that performed the automated
444	regulation of mixed media (for details see appendix A2).
445	<u>ــــــــــــــــــــــــــــــــــــ</u>
446	2.5 Software
447	The software application used for the control of the SalTExPreS was developed using Visual
448	Studio Community (2019 edition) with the vMicro extension and Arduino 1.8.13. The program
449	application has a user-friendly interface designed to allow real-time monitoring and
450	parameterization of regulation processes (Fig. A3), The main window displays each mesocosm
451	condition (sensor measured parameters), their piping connections, a connection status for each
452	PLC informing proper communication, date and time of the last received communication packet
453	from the Head PLC, and the status of the experiment (e.g., started or stopped). The interface also
454	displays the valve-open percentage along with the pressure setpoints and the actual measured
455	value for each main source-water inlet. In addition, the <i>in-situ</i> data (temperature and salinity)
456	received from the FerryBox is displayed with the time and date of the last logged value utilized
457	to program the real-time setpoint of the control condition, Sensor readings of flow rate (L min ⁻¹),
458	O2 concentration (% saturation), salinity, and temperature (°C) are shown for each mesocosm in
459	conjunction with the treatment setpoints (i.e., temperature, and salinity when relevant). All
460	measured data is stored through the server connection to the cloud, however, there, is a backup
461	microSD card on the Head PLC that logs data from all mesocosms every 5 sec. If
462	communication fails between the Head PLC and the interfaced computer, data will not be
463	retrieved by the PC during the communication break, but will be retained by the microSD card.
464	×
465	Results

Deleted: The program automatically calculated the salinity offset based on the preset temperature offsets (Table 1). Regulation was maintained via regulation flow valves utilizing minutely measurements of temperature and salinity inside each mesocosm making instantaneous adjustments. This was accomplished using an analog three-way mixing valve for temperature and two-way valve for salinity (BELIMO© R3015-10-S2 with LR24A-SR motor). Each valve was plumbed within the manifold and applied to each mesocosm flow line where its open-position was adjusted (using a PID regulator) to reach the temperature and salinity setpoint value.

Moved down [2]: Accurate temperature and salinity regulation was obtained using a software PID controller on the corresponding Programmable Logic Controller (PLC), in PoE mode (proportional on error). The PID controller measures the difference between the measure and the setpoint (i.e., the error), and calculates how the valve opening should be adjusted by multiplying the error, which is the integral of the error and the derivative of the error, by previously determined coefficients Kp (proportional gain), Ki (integral gain) and Kd (derivative gain), respectively. These coefficients were obtained experimentally using the empiric method of Ziegler & Nichols (1943), and may differ from one condition to another.

2.3.2 Pressure and Flow Regulation

Each main inflow line of ambient, cold and warmed seawater had its own pressure regulation system established to Formatted: Font: Bold Formatted ... [6]

Formatted: Font: Not Bold
Formatted: Font: Not Bold
Moved down [3]: The code for the application was written in C/C++, and developed using Visual Studio community
Deleted: ¶
Formatted: Font: Not Bold
Moved down [6]: From the interface, the user sets the temperature condition and associated salinity offset, IP
Deleted: temperature, salinity, % O2, and flow rate
Deleted: status
Deleted: ¶
Deleted: as the
Deleted: med
Deleted: for the control
Deleted: While
Deleted: there
Deleted: The microSD should not be removed before the end

of the experiment if possible. Moved (insertion) [6]

Deleted:

Results

...[7]

645 646 647	3.1 Regulation of the control condition
648 649	The control condition was able to simulate the ambient fjord temperature well over the
650 651	experimental period deviating < 0.3 °C on average across the 3 replicates (Table 2, Fig. 3). The
652	overall quality of the regulation was based on the ability of the system to read the measured data
653	from the FerryBox, or to follow a manually programmed setpoint when communication with the
654	FerryBox was, interrupted, During the experiment, the FerryBox went intermittently offline, 24.%
655	of the time ceasing transmission of real-time data that resulted in a break of communication to
656	the PLCs. This somewhat frequent break in communication resulted in an average setpoint
657	deviation that was nearly double for the control compared to the treatment conditions (Table 2).
658	The ability to manually program a new setpoint when communication breaks occurred ensured
659	that the control condition was still robustly regulated. Over the entire period of the SalTExPreS
660	deployment, the mean temperature of the control condition increased from ~ 4 to 6.5 °C from
661	early July to the end of August (Fig. 3a). The coldest mean temperature of the control condition
662	occurred when a backup pump situated at 90 m was used from 2021-07-14 ~21:00 UTC until
663	2021-07-26 13:49 UTC while the original pump at 10 m was repaired due to a motor
664	malfunction. During this period, the control condition was $\sim 1.0 - 1.5$ °C cooler than the
665	temperature measured by the FerryBox (Figs. 2, 3). Since a warmed seawater inlet was not
566	supplied to the control condition, the temperature of the control condition remained cooler than
667	the measured ambient conditions at the FerryBox. Despite the cooler temperature for the control,
668	regulation of flow rates, mesocosm turnover time, and variability across the control condition
669	replicates was well maintained by the system.
670 671	2.6 Temperature and salinity regulation

1	Deleted: from which all treatment conditions were offset
-	Deleted: tracked
1	Deleted: ¶ ¶
٦	Deleted: on
Ì	Deleted: average across replicates
	Deleted: ¶ ¶
Ì	Deleted: for
Ì	Deleted: be
Ì	Deleted: overridden
Ì	Deleted: as
Ì	Deleted: and acknowledged by the user
Ì	Deleted: for
Ì	Deleted: . During these periods the
	Deleted: dashboard populated by the COSYNA underwater observatory ceased updating and
Ì	Deleted: ed

11.

. . . .

1 . 1 11

Deleted: There were two main disruptions in the regulation of the control conditions resulting from the main seawater pump failure and a disconnection from the FerryBox. On 2021-07-14 ~21:00 UTC the pump deployed in the fjord suffered a motor malfunction causing a spike in ambient temperatures due to suspended incoming flow of water to the main header tank (Figs. A5, A6). An alternative deep-water pump (90 m) was used as a replacement until the pump at 10 m depth could be repaired on 2021-07-26 13:49 UTC. During this period, the control condition was colder than the target fjord temperature at 7 to 10 m depth by > 1 °C (Figs. 3, 4) until the proper pump depth was reestablished. The average deviation (Table 2) excluded this period as the control condition was unable to be warmed as only cold and ambient water lines were plumbed to the control condition (see section 2.2). The other instance occurred on 2021-08-24 04:47 UTC when setpoint values did not retain the last FerryBox reading and dropped to 0 °C. This issue was quickly resolved (< 8 h) by resetting the PLC.

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 5 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

709			
710	<u>The regulation of temperature and salinity in the different treatment conditions (Trts. 1 – 3) was</u>		Deleted: R
711	maintained for 54 days (2021-07-03 – 2021-08-26) by the SalTExPreS: the entirety of the		Deleted: the Deleted: (i.e., entirety of the experiment)
712	planned experiment. For the first 6 days of the SalTExPreS deployment, the treatment conditions		
713	were held at control conditions (i.e., no applied offset from the control) before the stepwise		
714	increase in temperature began. On 2021-07-10 12:00 UTC a temperature offset of 0.55 °C d ⁻¹		Deleted: All mesocosm conditions were held at ambient
715	was programmed for treatment 1 while treatment 2 and 3 were programmed to increase by 0.88		temperature and salinity for the first 6 days dedicated as an acclimation period before proceeding with an incremental rise in temperature over a 5-day period starting on day 7 (2021-07-10 12:00 UTC). Treatment 1 temperature increased
716	°C d ⁻¹ (Figs. 2, 3). The final temperature setpoint above the control condition was reached on	11	by
		\wedge	Deleted: ,
717	2021-07-15 21:00 UTC. The system needed, 4 h to achieve the new temperature conditions (i.e.,		Deleted: d
710	homogenize the mesocosm to a plus 0.88 °C increase) after the final incremental increase was	$\langle \parallel \rangle$	Deleted: 3
718	nomogenize the mesocosm to a plus 0.88 °C increase) after the final incremental increase was	$\langle \rangle \rangle \langle \rangle$	Deleted: A
719	programmed, To avoid potential discrepancies with the regulation of salinity for treatments 1 and		Deleted: 5
, 1)		$\langle \rangle$	(Deleted: The temperature offsets achieved final values at ~
720	2, a manual override was applied resulting in the system to realize the final salinity offset value	\mathcal{N}	Deleted: ,
			Deleted: (Fig. 3, A5)
721 722 723	upon the initial temperature increase (Fig. 3b, 4). It took the system 4 h to achieve the salinity offset for treatment 2 adjusting the value from ~34 to 29.8 (Fig. 3b, 4). The precision of the temperature and salinity regulation across all treatment conditions	*****	Deleted: Due to technical issues with the incoming FerryBox data, the final salinity offset values for treatments 1 and 2 were reached immediately with the first incremental temperature increase on 2021-07-10 12:00 UTC because the programmed setpoint based on the linear relationship with temperature was set as a manual override
, 20			Deleted: The regulation of temperature
724	was well maintained as the mean difference between the measured value and the setpoint was <		Deleted: over the duration of the experiment
			Deleted: value
725	0.2, °C and < 0.36 for salinity across the entire deployment (Table 2). The mean deviations		Deleted: 3
726	observed across treatments did not appear to correlate to the degree of offset. Thus, treatment 3	and the second	Deleted: across the three replicates per treatment
727	showed the highest precision for temperature regulation, while salinity regulation was the most		
728	robust for treatment 2 compared to treatment 1 (Table 2). During the several instances where		
729	communication broke with the FerryBox and the Head PLC, the SalTExPreS retained the last		Deleted: Stochastic periods of deviations that were greater than the mean value (Table 2) was due to various anomalies. In the event of a communication break between
730	measured value at the FerryBox as a contingency protocol. This aided in the ability of the system		Deleted: system
731	to maintain a high degree of regulation throughout the entire deployment. The largest deviation		
732	from the setpoint value for all treatment conditions occurred during the single instance in which		

765	the last read value from the FerryBox was not retained: this occurred on 2021-08-24 04:47 UTC	
766	(Fig. 4). Communication was quickly restored after this incident by cycling the program code,	
767	and the average deviation of temperature and salinity for treatment 1 for the remainder of the	
768	deployment was ≤ 0.16 and ≤ 0.25 for treatment 2.	
769	When adequate flow rates were maintained, the SalTExPreS was able to simultaneously	
770	regulate 12 mesocosms at 4 different conditions to deviations in temperature and salinity that	
771	were ≤ 0.5 °C or 0.5 in salinity from the setpoint value ≥ 80 % and ≥ 70 % of the time,	
772	respectively, (Fig. 5). Due to an erroneous setpoint for the control condition, during the 90 m	
773	pump usage, these times were excluded. When considering the % of time deviations from a	
774	temperature setpoint were held to <1 °C, all mesocosms were regulated accordingly 89 % of the	
775	time and 80 % for the salinity treatments (i.e., < 1 unit deviation), with the exception of the 1 st	
776	replicate for treatment 2.	
777		
777 778 779	Discussion	
778	Discussion The inaugural application of the fully autonomous SalTExPreS demonstrated the capacity of the	
778 779		
778 779 780	The inaugural application of the fully autonomous SalTExPreS demonstrated the capacity of the	
778 779 780 781	The inaugural application of the fully autonomous SalTExPreS demonstrated the capacity <u>of the</u> system to successfully <u>manipulate temperature and salinity as an offset value from control</u>	
778 779 780 781 782	The inaugural application of the fully autonomous SalTExPreS demonstrated the capacity of the system to successfully manipulate temperature and salinity as an offset value from control conditions, thus maintaining, natural, <i>in-situ</i> variability for 4 different conditions simultaneously.	
778 779 780 781 782 783	The inaugural application of the fully autonomous SalTExPreS demonstrated the capacity <u>of the</u> system to successfully <u>manipulate temperature and salinity as an offset value from control</u> conditions, thus maintaining, natural, <i>in-situ</i> variability for 4 different conditions simultaneously. We utilized this deployment to test the effects of climate change drivers on Arctic kelp	
778 779 780 781 782 783 784	The inaugural application of the fully autonomous SalTExPreS demonstrated the capacity of the system to successfully manipulate temperature and salinity as an offset value from control conditions, thus maintaining, natural, <i>in-situ</i> variability for 4 different conditions simultaneously. We utilized this deployment to test the effects of climate change drivers on Arctic kelp communities recognizing the feasibility of the system to perform <i>ex-situ</i> experiments on	
778 779 780 781 782 783 784 785	The inaugural application of the fully autonomous SalTExPreS demonstrated the capacity of the system to successfully manipulate temperature and salinity as an offset value from control conditions, thus maintaining, natural, <i>in-situ</i> variability for 4 different conditions simultaneously. We utilized this deployment to test the effects of climate change drivers on Arctic kelp communities recognizing the feasibility of the system to perform <i>ex-situ</i> experiments on organisms or whole communities (Miller et al. in prep/submitted). The versatility of the system	

Deleted: is programmed to automatically retain the last value read. Thus, regulation would be maintained based or
this last <i>in-situ</i> temperature, unless a manual value was programmed as an override.

Deleted: O

/	Moved down [10]: when connection with the FerryBox was interrupted, the last value was not retained and resulted in strong deviations in the regulation until a manual value could be implemented (Fig. A5). This happened on only one
1	Deleted: ,
	Deleted: The main cause of temporary, but frequent, s
$\sum_{i=1}^{n}$	Deleted: When accounting for the various incidences
Ņ	Deleted: , t
()	Formatted: Font: Not Bold
V	Deleted: comprised of
//	Deleted: (1 control and 3 treatments) with an accuracy that
V	Deleted:
1	Deleted: ed
11	Deleted: >
	Deleted: ≤
	Deleted: 2
	Deleted: ≤
	Deleted:
	Deleted: 3
	Deleted: , when flow rates were above 2 L min ⁻¹ and [10]
	Deleted: value
	Deleted: The
	Deleted:
	Deleted:
	Deleted: >
	Deleted: reduced to < 11 % for all treatments, and ≤ 20 %
	Deleted: all
	Deleted: Regulation of temperature resulted in a high [11]
	Moved (insertion) [10]
$\langle \rangle$	Deleted: when connection with the FerryBox was [12]
$\left(\right)$	Deleted: for this
	Deleted: be
	Formatted: Font: Italic
	Formatted: Font: Italic
N	Deleted: utilized for conducting
	Deleted:
	Deleted: exposed to multiple environmental drivers v [13]
1	Deleted: nutrient concentrations

924	combinations can be applied depending on the question and design of the experiment. The	
925	automated component of the system, reduced the logistical hurdles that can arise when,	
926	performing high precision replication and regulation of experimental conditions that track real-	(L
927	time system variability. While the use of such a system can reduce user oversight and limitations,	
928	there is still a need for diligent operation.	
929		
930	Since this initial deployment we have implemented several changes which have improved	
931	the performance of the system that have been realized during a second deployment in the	
932	summer of 2022 (Fig. 6). In this experiment, the SalTExPreS was integrated to function with a	
933	deployable heat pump to simulate multiple scenarios of heatwave patterns over a nearly month-	
934	long experiment. In this instance, temperature regulation was vastly improved as a result of the	
935	programmable modifications made since the initial deployment. During this deployment the	
936	SalTExPreS mimicked 3 marine heatwave scenarios where a dynamic temperature regulation	
937	held deviations to ≤ 0.5 °C for 94 % of the time in 9 different mesocosms. This was an	
938	improvement to the % time of temperature regulation by ~ 15 % compared to the first	
939	deployment. In the first deployment, inconsistent flow rates and communication errors between	
940	the FerryBox and the Head PLC were the primary causes of large deviations (> 2.0 salinity or	
941	<u>°C) from setpoint values. For example, flow rates $\leq 2 L \min^{-1}$ accounted for ~ 20 % of the large</u>	
942	deviations in temperature and salinity regulation. Simple modifications such as 'pop-up' alert	
943	windows that warned when a lapse in communication with the FerryBox occurred (FerryBox	
944	stopped logging), and the addition of contingency coding instructions (fail-safe instructions)	
945	ensuring that the last received in-situ data were maintained are the types of modifications that	
946	resolved most of the issues. Communication errors were easily remedied by cycling the power on	
1		

Deleted: can Deleted: needed to

949	a PLC which is why pop-up alerts were an improvement to the operation. Other extraneous
950	circumstances that could impact flow rates such as pump failure and clogging from the use of
951	raw seawater are conditions that would need to be assessed whenever the SalTExPreS is used.
952	However, these are very manageable situations which can be easily mitigated by an operator.
953	
954	The novelty of the SalTExPreS lies in its ability to independently regulate an experimental
955	condition in a single experimental chamber (e.g., mesocosm). The operational data produced
956	from this deployment are reliable, easily quantifiable, and provide the highest degree of
957	monitoring frequency for every applied experimental condition. This study has demonstrated its
958	ability to replicate dynamic nearshore systems where temperature and salinity can vary at high
959	frequency (e.g., tidally), but further enhances these conditions to mimic a future scenario by
960	applying an amplitude offset to the natural dynamics of <i>in-situ</i> conditions. Wahl et al. (2015)
961	described a system with a similar capability, but regulated treatment conditions by monitoring
962	source water and adjusting that media before it was delivered to each experimental chamber. The
963	SalTExPreS differs here as it measures the conditions inside each experimental chamber (i.e.,
964	mesocosm) and regulates based on per second measurements made inside each mesocosm. This
965	provides the flexibility to individually modulate each experimental chamber providing a broad
966	range of versatility. The lack of infrastructure needed to set up the SalTExPreS makes it easy to
967	deploy and transport. As long as there is a sufficient supply of ambient water and manipulated
968	media, there is little limit to the versatility of automated control for each mesocosm. Many
969	research endeavors and future implementations by the SalTExPreS have the potential to conduct
970	a large, range of experimental settings that pertain to environmental perturbations associated with
971	climate change or other anthropogenic forcings. The operation of such a system in extreme

Deleted: handling.

Formatted: Indent: First line: 0"

Deleted:

Some of the operational challenges encountered during the 2-month experiment in Svalbard were able to be mitigated or resolved henceforth. The use of pop-up alert windows when a lapse in connection occurred, or when data is not logging, along with secondary coding instructions (as fail-safe instructions) ensuring that the last received *in-situ* data were maintained are examples how improvements made during the experiment facilitate a more robust deployment for the future. These improvements are now incorporated into the available code for programming of the SalTExPreS. These new editions were implemented during a second deployment that occurred in the summer of 2022 under a similar experimental design, and resulted in fewer lapses and frequencies of mis-regulation (Fig. 6). Further, we forewent attempting to regulate the control condition (i.e., mixing chilled seawater with ambient to account for unintended warming during transit from fjord to header tank to mesocosm) during this second deployment as transit time and distance from pumped fjord water was substantially less than this first application. The result of this decision was the complete resolution of connection issues that regulate the control setpoint. As for some of the more common disruptions that can occur during long-term experimental setups using raw seawater such as pump failure and clogging, both of which impacted the performance of the SalTExPreS, were extraneous instances that are not relevant to its direct performance. Other issues such as a sudden glitch in the programming which resulted in a sudden freshening on 2021-08-03 07:30 UTC, or the persistent miscommunication with the treatment 2 branched-PLC from 2021-07-26 to 2021-08-03 UTC, could have been reduced by more fastidious monitoring of the SalTExPreS regulation. We note that some of these issues were easily resolvable by resetting the Head PLC or cycling the power of the system. In short, efficient user operation could further reduce deviations and increase the accuracy of the SalTExPreS regulation.

This first and initial deployment of the SalTExPreS used to conduct a multi-stressor experiment provided robust results for determining mixed kelp community metabolic responses to future Arctic conditions (Miller et al., in prep).

Deleted: r

Deleted: The operational data produced are reliable, easily quantifiable, and provide the highest degree of frequency for the monitoring of experimental conditions.

- 1019 environmental conditions has shown the durability of the manifold to endure an adverse Arctic 1020 summer and still respond without mechanical failures. With proper operation and user 1021 proficiency, this proves to be a highly sophisticated and powerful tool to be utilized for aquatic 1022 perturbation experiments. 1023 1024 Acknowledgements 1025 This study is part of the FACE-IT Project (The Future of Arctic Coastal Ecosystems -1026 Identifying Transitions in Fjord Systems and Adjacent Coastal Areas). The authors thank Philipp 1027 Fischer for access to the AWIPEV data as well as AWIPEV and Kings Bay staff for helping with 1028 logistical details, shipping, and access to marine lab facilities. 1029 1030 **Author contributions** 1031 C.M. and F.G. conceptualized the frame of the paper while F.G, S.C, and P.U. designed the 1032 experimental system. P.U. programmed the software. C.M. wrote the manuscript, performed the Deleted: and constructed 1033 data analysis, and constructed the figures and tables while P.U. designed the diagram and Deleted: figures 1034 schematic figures. All authors revised, commented, and edited during revision. 1035 1036 **Financial support** 1037 FACE-IT has received funding from the European Union's Horizon 2020 research and 1038 innovation programme under grant agreement no. 869154. Partial financial support was provided 1039 by IPEV, The French Polar Institute.
- 1040
- 1041 Competing interest

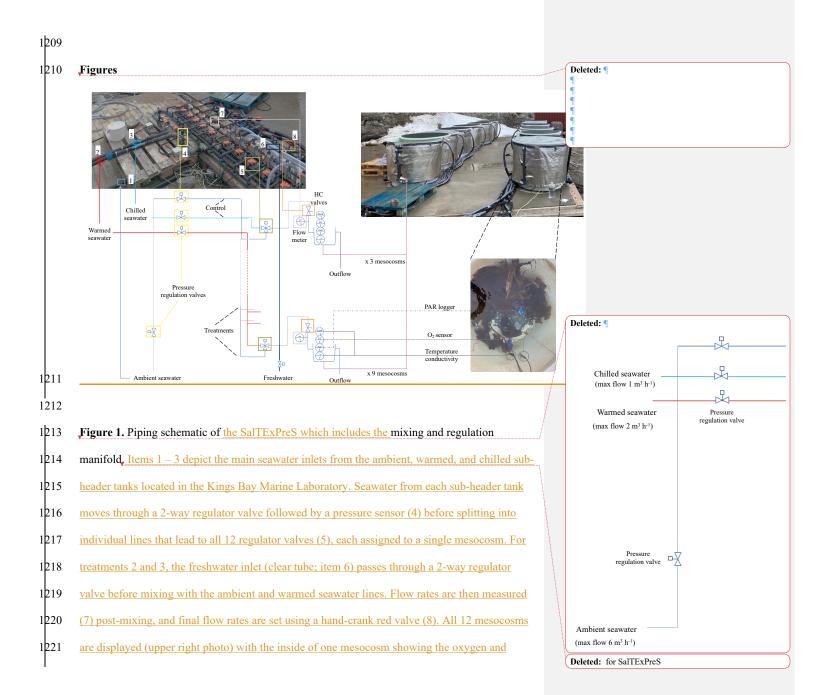
- 1044 The authors declare no competing interests exist.
- 1045

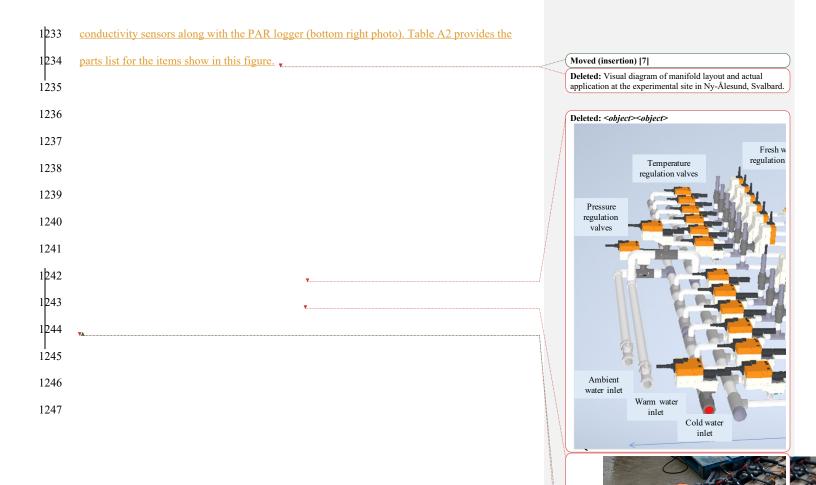
1046 References

- 1047 Bartsch, I., Paar, M., Fredriksen, S., Schwanitz, M., Daniel, C., Hop, H., and Wiencke, C.:
- 1048 Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996-
- 1049 1998 and 2012-2014 reflect Arctic warming, Polar Biol, 39, 2021-2036,
- 1050 https://doi.org/10.1007/s00300-015-1870-1, 2016.
- 1051 Bass, A., Wernberg, T., Thomsen, M., and Smale, D.: Another Decade of Marine Climate
- 1052 Change Experiments: Trends, Progress and Knowledge Gaps, Frontiers in Marine Science, 8, 1053 2021.
- 1054 Bhatia, M. P., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and Charette, M. A.:
- 1055 Greenland meltwater as a significant and potentially bioavailable source of iron to the ocean, 1056 Nature Geosci, 6, 274–278, https://doi.org/10.1038/ngeo1746, 2013.
- 1057 Bindoff, N. L., Cheung, W. W. L., Kairo, J. G., Arístegui, J., Guinder, V. A., Hallberg, R.,
- 1058 Hilmi, N., Jiao, N., Karim, M. S., Levin, L., O'Donoghue, S., Purca Cuicapusa, S. R., Rinkevich,
- B., Suga, T., Tagliabue, A., and Williamson, P.: Chapter 5: Changing Ocean, Marine 1059
- Ecosystems, and Dependent Communities Special Report on the Ocean and Cryosphere in a 1060 1061 Changing Climate, 2019.
- 1062 Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., and Ferrier, S.: Space can
- 1063 substitute for time in predicting climate-change effects on biodiversity, Proc Natl Acad Sci U S 1064 A, 110, 9374-9379, https://doi.org/10.1073/pnas.1220228110, 2013.
- 1065 Divya, D. T. and Krishnan, K. p.: Recent variability in the Atlantic water intrusion and water
- 1066 masses in Kongsfjorden, an Arctic fjord, Polar Science, 11, 30-41,
- 1067 https://doi.org/10.1016/j.polar.2016.11.004, 2017.
- 1068 Evans, W., Mathis, J. T., Ramsay, J., and Hetrick, J.: On the frontline: Tracking ocean
- acidification in an Alaskan shellfish hatchery, PLOS ONE, 10, e0130384, 1069
- 1070 https://doi.org/10.1371/journal.pone.0130384, 2015.
- 1071 Fairchild, W. and Hales, B.: High-Resolution Carbonate System Dynamics of Netarts Bay, OR 1072 From 2014 to 2019, Frontiers in Marine Science, 7, 2021.
- 1073 Gattuso, J.-P., Alliouane, S., and Fischer, P.: High-frequency, year-round time series of the
- 1074 carbonate chemistry in a high-Arctic fjord (Svalbard), Earth System Science Data, 15, 2809-1075 2825, https://doi.org/10.5194/essd-15-2809-2023, 2023.
- 1076 Hales, B., Suhrbier, A., Waldbusser, G. G., Feely, R. A., and Newton, J. A.: The Carbonate
- Chemistry of the "Fattening Line," Willapa Bay, 2011-2014, Estuaries and Coasts, 1-14, 1077
- 1078 https://doi.org/10.1007/s12237-016-0136-7, 2016.

- 1079 Hop, H., Wiencke, C., Vögele, B., and Kovaltchouk, N. A.: Species composition, zonation, and
- 1080 biomass of marine benthic macroalgae in Kongsfjorden, Svalbard, Botanica Marina, 55, 399-
- 1081 414, https://doi.org/10.1515/bot-2012-0097, 2012.
- 1082 Kroeker, K. J., Kordas, R. L., and Harley, C. D. G.: Embracing interactions in ocean
- acidification research: confronting multiple stressor scenarios and context dependence, Biology
 Letters, 13, 20160802, https://doi.org/10.1098/rsbl.2016.0802, 2017.
- 1085 Kroeker, K. J., Bell, L. E., Donham, E. M., Hoshijima, U., Lummis, S., Toy, J. A., and Willis-
- 1086 Norton, E.: Ecological change in dynamic environments: Accounting for temporal environmental 1087 variability in studies of ocean change biology, Global Change Biology, 26, 54–67,
- 1088 https://doi.org/10.1111/gcb.14868, 2020.
- 1089 Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.: Calving rates at
- 1090 tidewater glaciers vary strongly with ocean temperature, Nat Commun, 6, 8566,
- 1091 https://doi.org/10.1038/ncomms9566, 2015.
- 1092 Meredith, M., Sommerkon, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas,
- 1093 G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Ptitchard, H., and 1094 Schuur, E. A. G.: Chapter 3: Polar regions — Special Report on the Ocean and Cryosphere in a
- 1095 Changing Climate, IPCC, 2019.
- Miller, C. A. and Kelley, A. L.: Seasonality and biological forcing modify the diel frequency of
 nearshore pH extremes in a subarctic Alaskan estuary, Limnology and Oceanography, 66, 1475–
 1491, https://doi.org/10.1002/lno.11698, 2021.
- 1099 Orr, J. A., Vinebrooke, R. D., Jackson, M. C., Kroeker, K. J., Kordas, R. L., Mantyka-Pringle,
- 1100 C., Van den Brink, P. J., De Laender, F., Stoks, R., Holmstrup, M., Matthaei, C. D., Monk, W.
- 1101 A., Penk, M. R., Leuzinger, S., Schäfer, R. B., and Piggott, J. J.: Towards a unified study of
- 1102 multiple stressors: divisions and common goals across research disciplines, Proceedings of the
- 1103 Royal Society B: Biological Sciences, 287, 20200421, https://doi.org/10.1098/rspb.2020.0421,
- 1104 2020.
- 1105 Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov, V., Olsen, M. S., Pawlak, J.,
- 1106 Reiersen, L.-O., and Wang, M.: The urgency of Arctic change, Polar Science, 21, 6-13,
- 1107 https://doi.org/10.1016/j.polar.2018.11.008, 2019.
- 1108 Paar, M., de la Vega, C., Horn, S., Asmus, R., and Asmus, H.: Kelp belt ecosystem response to a
- 1109 changing environment in Kongsfjorden (Spitsbergen), Ocean & Coastal Management, 167, 60–
- 1110 77, https://doi.org/10.1016/j.ocecoaman.2018.09.003, 2019.
- 1111 Pansch, C. and Hiebenthal, C.: A new mesocosm system to study the effects of environmental
- 1112 variability on marine species and communities, Limnology and Oceanography: Methods, 17,
- 1113 145–162, https://doi.org/10.1002/lom3.10306, 2019.
- 1114 Poloczanska, E. S., Burrows, M. T., Brown, C. J., García Molinos, J., Halpern, B. S., Hoegh-
- 1115 Guldberg, O., Kappel, C. V., Moore, P. J., Richardson, A. J., Schoeman, D. S., and Sydeman, W.

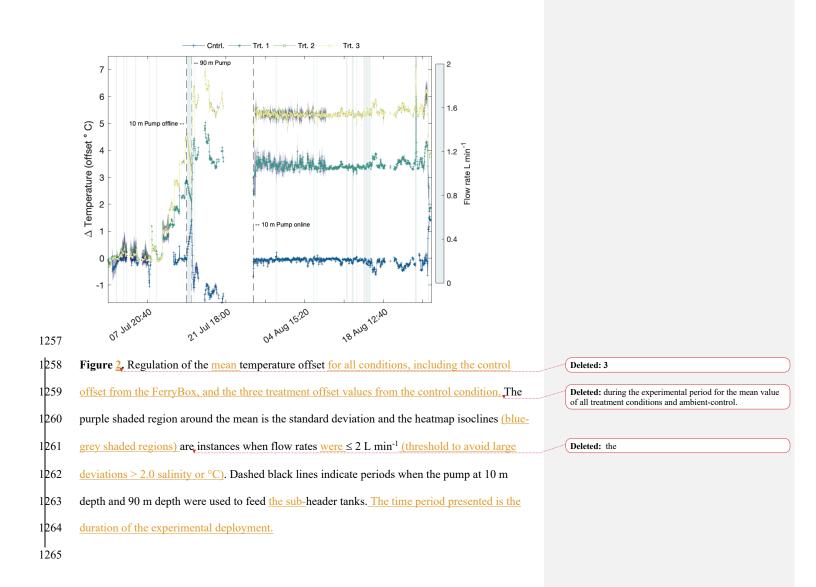
- 1116 J.: Responses of Marine Organisms to Climate Change across Oceans, Frontiers in Marine
- 1117 Science, 3, 2016.
- 1118 Poppeschi, C., Charria, G., Goberville, E., Rimmelin-Maury, P., Barrier, N., Petton, S.,
- Unterberger, M., Grossteffan, E., Repecaud, M., Quéméner, L., Theetten, S., Le Roux, J.-F., and 1119
- 1120 Tréguer, P.: Unraveling Salinity Extreme Events in Coastal Environments: A Winter Focus on
- 1121 the Bay of Brest, Frontiers in Marine Science, 8, 2021.
- 1122 Rastrick, S. S. P., Graham, H., Azetsu-Scott, K., Calosi, P., Chierici, M., Fransson, A., Hop, H.,
- 1123 Hall-Spencer, J., Milazzo, M., Thor, P., and Kutti, T.: Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems, ICES Journal of
- 1124 1125 Marine Science, 75, 2299-2311, https://doi.org/10.1093/icesjms/fsy128, 2018.
- 1126 Sejr, M. K., Bruhn, A., Dalsgaard, T., Juul-Pedersen, T., Stedmon, C. A., Blicher, M., Meire, L.,
- 1127 Mankoff, K. D., and Thyrring, J.: Glacial meltwater determines the balance between autotrophic
- 1128 and heterotrophic processes in a Greenland fjord, Proceedings of the National Academy of 1129 Sciences, 119, e2207024119, https://doi.org/10.1073/pnas.2207024119, 2022.
- Svendsen, H., Beszczynska-Møller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, 1130
- S., Børre Ørbæk, J., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., and 1131 Wiencke, C .: The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in 1132
- Svalbard, Polar Research, 21, 133-166, https://doi.org/10.3402/polar.v21i1.6479, 2002. 1133
- Tverberg, V., Skogseth, R., Cottier, F., Sundfjord, A., Walczowski, W., Inall, M. E., Falck, E., 1134
- 1135 Pavlova, O., and Nilsen, F.: The Kongsfjorden Transect: Seasonal and Inter-annual Variability in
- Hydrography, in: The Ecosystem of Kongsfjorden, Svalbard, edited by: Hop, H. and Wiencke, 1136
- C., Springer International Publishing, Cham, 49-104, https://doi.org/10.1007/978-3-319-46425-1137
- 1138 1 3, 2019.
- 1139 Wahl, M., Buchholz, B., Winde, V., Golomb, D., Guy-Haim, T., Müller, J., Rilov, G., Scotti, M.,
- 1140 and Böttcher, M. E.: A mesocosm concept for the simulation of near-natural shallow underwater
- 1141 climates: The Kiel Outdoor Benthocosms (KOB), Limnology and Oceanography: Methods, 13,
- 1142 651-663, https://doi.org/10.1002/lom3.10055, 2015.
- 1143 Wake, B.: Experimenting with multistressors, Nat. Clim. Chang., 9, 357-357,
- https://doi.org/10.1038/s41558-019-0475-z, 2019. 1144
- Ziegler, J. G. and Nichols, N. B.: Optimum Settings for Automatic Controllers, Transactions of 1145
- 1146 the American Society of Mechanical Engineers, 64, 759-765, https://doi.org/10.1115/1.4019264, 1943.
- 1147
- 1148
- 1149
- 1150
- 1151

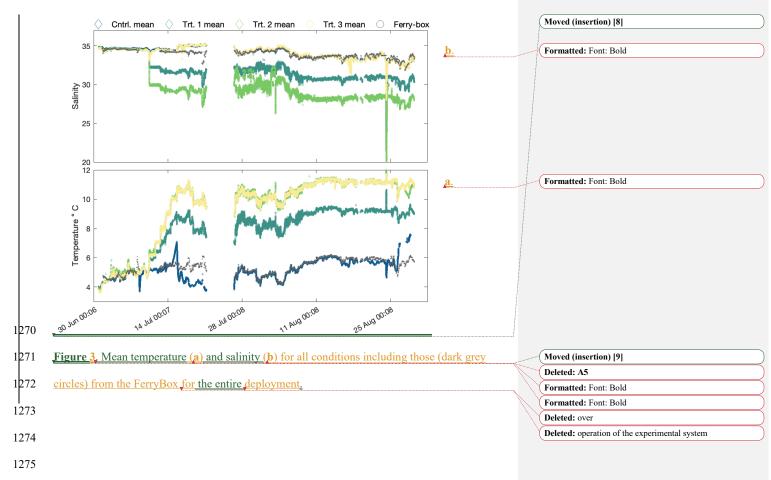

-1	Deleted:


▼					Dele	ted: ¶					
Tables					Dele	ted: ¶					
Table 1. Exp	perimental treatmen	t conditions, wit	h, corresponding posit	ive temperature offsets and							
the calculate	d <u>negative</u> salinity of	offsets <u>. See sect</u>	ion A1 and figure A1	for a full description of the							
T-S relations	ship used to calcula	te salinity offset	s. PAR offsets are the	approximate mean value	Dele	ted: s					
across replic	ates. Cntrl. is the co	ontrol and Trt. is	treatment.			Deleted: s					
	across replicates. Cntrl. is the control and Trt. is treatment.						Deleted: based on linear correlation with temperature (Finder Deleted:).				
Treat	nent Ter	nperature	Salinity	PAR		ted:).					
Cn	tl. A	Ambient	Ambient	Ambient		Treatment	Temperature				
Trt	.1 +	+ 3.3 °C	$\Delta 2.5 - 3.0$ $\Delta S = 0.546*T + 0.490$	\sim 25% decrease from ambient		Control	Ambient				
Trt	. 2 +	+53°C	$\frac{\Delta S = 0.540 \text{ T} + 0.490}{\Delta 5.0 - 5.5}$ $\Delta S = 0.877*\text{T} + 0.089$	\sim 40% decrease from ambient		Trt 1	+ 3.3 °C				
Trt	. 3 +	+ 5.3 °C	Ambient	Ambient		Trt 2	+ 5.3 °C				

1187	•	Deleted: ¶
1188	Table 2. Absolute mean difference between measured temperature and salinity values against	Deleted: ¶
1189	setpoints plus or minus the standard deviation. A weighted average was used for treatments $1-3$	
1190	to account for the 5-day incremental increase. Cntrl. is the control and Trt. is treatment $1 - 3$ with	Deleted: I

1191 replicates a – c.


Treatment	Mean diff	Mean diff		Manipula	ited water			
1 realment	Abs(T _{meas.} - T _{set})	Abs(S _{meas.} - S _{set})	Cold	Ambient	Warm	Fresh		
Cntrl. a	0.275 ± 0.39	-	х	х			-	
Cntrl. b	0.291 ± 0.36	-	х	х				
Cntrl. c	0.223 ± 0.36	-	х	х			_	
Trt. 1a	0.126 ± 0.31	0.116 ± 0.31		х	x	x		
Trt. 1b	0.142 ± 0.29 0.145 ± 0.33	0.148 ± 0.22 0.171 ± 0.33		x	x	x		
Trt. 1c Trt. 2a	0.1145 ± 0.33	0.357 ± 0.74		X	x	x	-	
Trt. 2b	0.133 ± 0.29	0.149 ± 0.26		x	x	x		
Trt. 2c	0.196 ± 0.38	0.128 ± 0.25		x	x	x		
Trt. 3a	0.109 ± 0.27	-		х	x		-	
Trt. 3b	0.112 ± 0.27	-		х	x			
Trt. 3c	0.106 ± 0.28	-		х	х			
							- Deloted I	
T							Deleted: ¶	
v							Deleted: ¶	
▼							Deleted: ¶	
▼							Deleted: ¶	
▼							Deleted: ¶	
۲							Deleted: ¶	
۲							Deleted: ¶	
۲							Deleted: ¶	
۲							Deleted: ¶	
▼							Deleted: ¶	
▼							Deleted: ¶	
▼							Deleted: ¶	
۲							Deleted: ¶	
.							Deleted: ¶	
¥							Deleted: ¶	
۲							Deleted: ¶	



Moved up [7]: Visual diagram of manifold layout and actual application at the experimental site in Ny-Ålesund, Svalbard. Deleted: ¶ Figure 2.

Deleted:

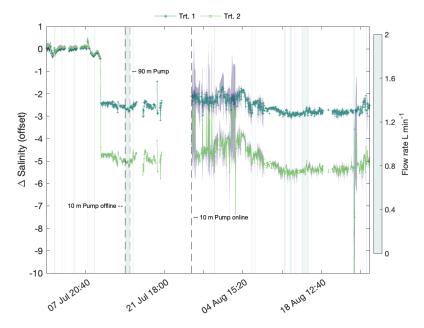
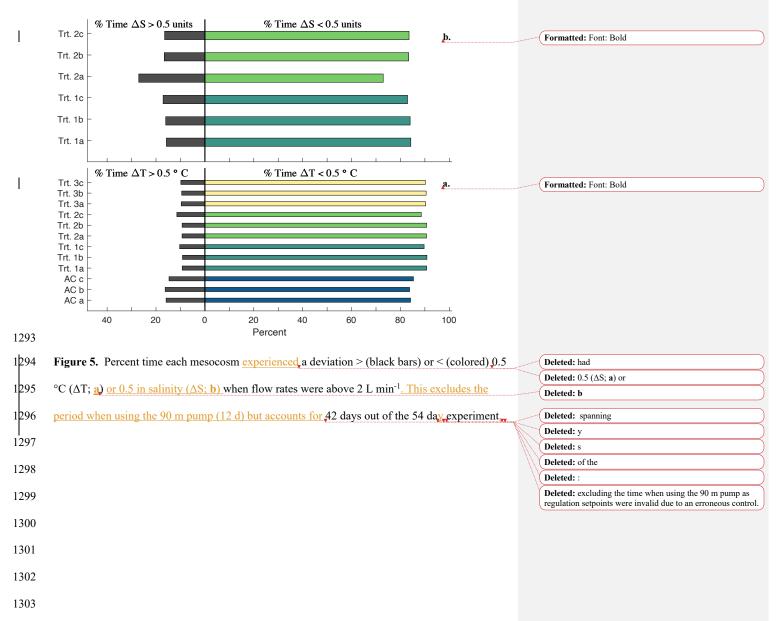
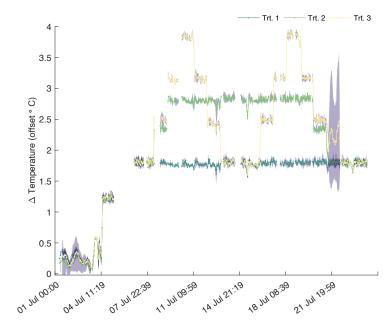
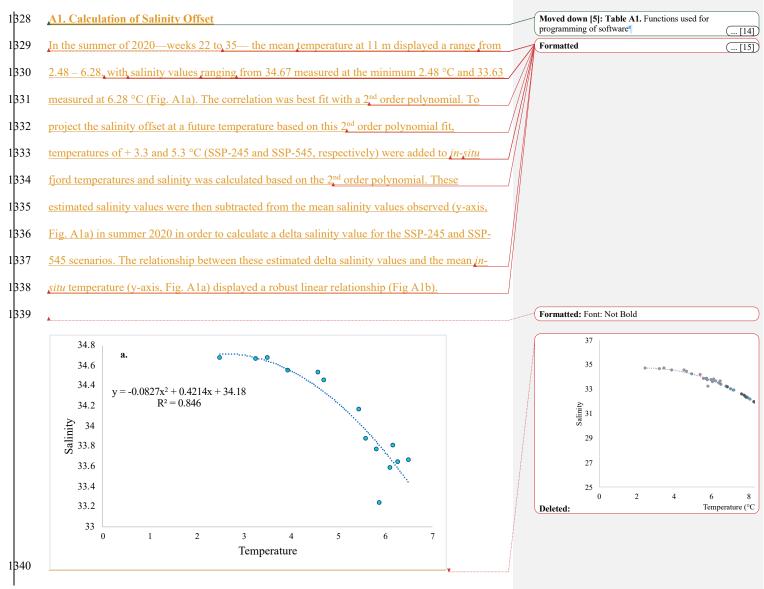




Figure 4. Regulation of the mean salinity offset (Δ salinity) during the experimental period for
treatments 1 and 2. The purple shaded region around the mean is the standard deviation and the
heatmap isoclines (blue-grey shaded regions) are the instances when flow rates ≤ 2 L min⁻¹.
Dashed black lines indicate periods when the pump at 10 m depth and 90 m depth were used to
feed the sub-header tanks.



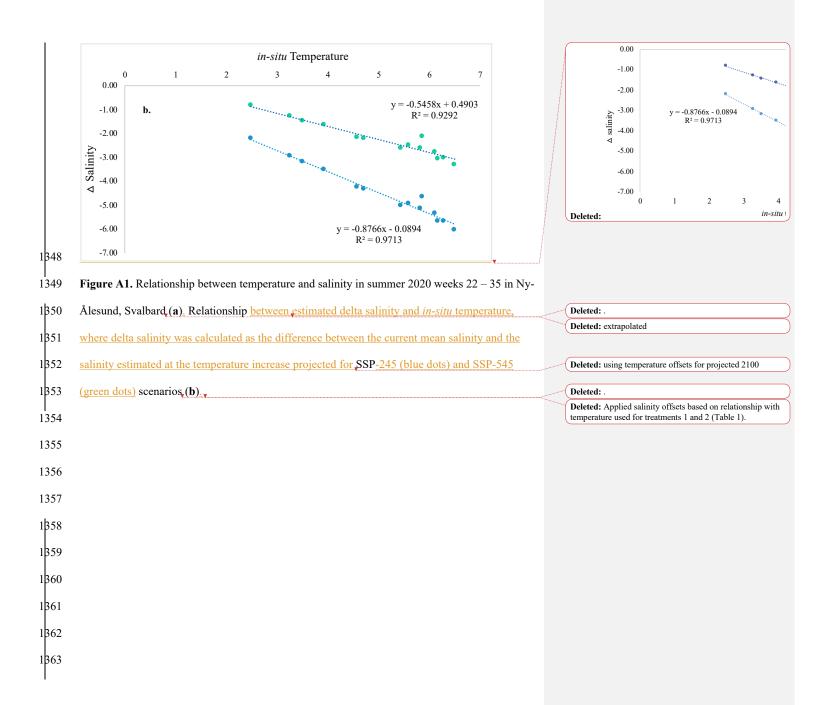
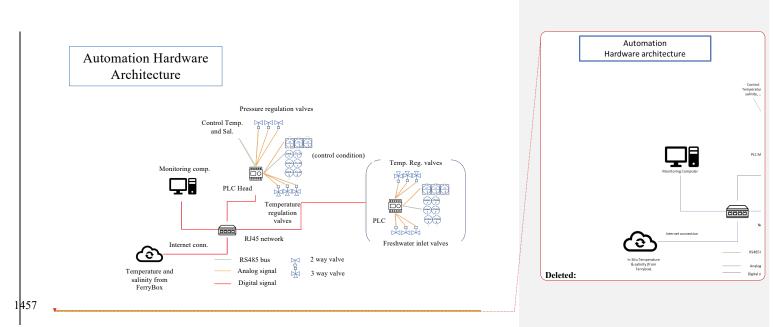


Figure 6. Regulation of the mean temperature offset (Δ temperature) during the 2nd deployment 1316 of SalTExPreS in the summer of 2022 in Tromsø (Norway) performing a variation of heatwave 1317 scenarios with three experimental treatments 1 – 3. The purple shaded region around the mean is 1318 the standard deviation.

1371 A2. Temperature and Salinity Regulation

1372	Accurate temperature and salinity regulation was managed using the software PID (proportional	Moved (insertion) [2]
10.72		Deleted: obtained
1373	integral derivative) controller on the corresponding Programmable Logic Controller (PLC). The	Deleted: a
1374	PLC operated in PoE mode (power over ethernet) which builds a local area network (LANs)	Formatted: Indent: First line: 0"
1071	The operated in the mode power over enternet which ounds a rocal area network (Entrop	Deleted: ,
1375	enabling use of Ethernet data cables to carry electrical power. The PID controller measures the	Deleted: proportional on error
1376	difference between the measured value and the nominal value (i.e., the error). This calculates the	Deleted: setpoint
1377	position and adjustment of the valve opening by multiplying the error, the integral of this error,	Deleted: , and
1577	position and adjustment of the varve opening by indusprying the error, the integral of this error.	Deleted: how
1378	and the derivative of the error over time, by previously determined coefficients Kp (proportional	Deleted: should be adjusted
		Deleted: which is
1379	gain), Ki (integral gain) and Kd (derivative gain), respectively. These coefficients were obtained	Deleted: e
1380	experimentally using the empirical method of Ziegler & Nichols (1943). These coefficient values,	Deleted: , and
1560	experimentary using the empirical method of Ziegler & Mehors (1945). These coefficient values	Deleteu:, and
1381	may differ from one condition to another,	Deleted: 1
1382	4	Formatted: Normal (Web), Space After: 8 pt
1383	A 2.1 Pressure and Flow Regulation	Deleted: 3.2
1383 1384	A2.1. Pressure and Flow Regulation	Deleted: 3.2
		Deleted: 3.2
1383 1384 1385	A2,1, Pressure and Flow Regulation Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure	Deleted: 3.2 Deleted: main
1384 1385	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure	
1384		Deleted: main
1384 1385 1386	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process,	Deleted: main Deleted: flow
1384 1385	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure	Deleted: main Deleted: flow Deleted: old
1384 1385 1386	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process,	Deleted: main Deleted: flow Deleted: old Deleted: established to maintain Deleted: , which Deleted: ing the
1384 1385 1386 1387	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process, aided in the ability to adjust flow rates for all mesocosms by using the hand-crank valves (Fig.	Deleted: main Deleted: flow Deleted: old Deleted: established to maintain Deleted: , which Deleted: ing the Deleted: to
1384 1385 1386 1387	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process, aided in the ability to adjust flow rates for all mesocosms by using the hand-crank valves (Fig.	Deleted: main Deleted: flow Deleted: old Deleted: established to maintain Deleted: , which Deleted: ing the
1384 1385 1386 1387 1388 1388	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process, aided in the ability to adjust flow rates for all mesocosms by using the hand-crank valves (Fig. 1). The system consisted of an analog pressure sensor (Siemens© 7MF1567-3BE00-1AA1) and a two-way analog valve (BELIMO© R2025-10-S2 with LR24A-SR motor). The pressure	Deleted: main Deleted: flow Deleted: old Deleted: established to maintain Deleted: , which Deleted: ing the Deleted: to
1384 1385 1386 1387 1388	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process aided in the ability to adjust flow rates for all mesocosms by using the hand-crank valves (Fig. 1). The system consisted of an analog pressure sensor (Siemens© 7MF1567-3BE00-1AA1) and	Deleted: main Deleted: flow Deleted: old Deleted: established to maintain Deleted: , which Deleted: ing the Deleted: to
1384 1385 1386 1387 1388 1388	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process, aided in the ability to adjust flow rates for all mesocosms by using the hand-crank valves (Fig. 1). The system consisted of an analog pressure sensor (Siemens© 7MF1567-3BE00-1AA1) and a two-way analog valve (BELIMO© R2025-10-S2 with LR24A-SR motor). The pressure	Deleted: main Deleted: flow Deleted: old Deleted: established to maintain Deleted: , which Deleted: ing the Deleted: to
1384 1385 1386 1387 1388 1389 1390	Each sub-header tank inlet line of ambient, chilled and warmed seawater had its own pressure regulation system enabling equivalent pressure levels to be maintained. This regulation process, aided in the ability to adjust flow rates for all mesocosms by using the hand-crank valves (Fig. 1). The system consisted of an analog pressure sensor (Siemens© 7MF1567-3BE00-1AA1) and a two-way analog valve (BELIMO© R2025-10-S2 with LR24A-SR motor). The pressure sensors were placed in-line directly after water from each sub-header tank passed through a	Deleted: main Deleted: flow Deleted: old Deleted: established to maintain Deleted: , which Deleted: ing the Deleted: to

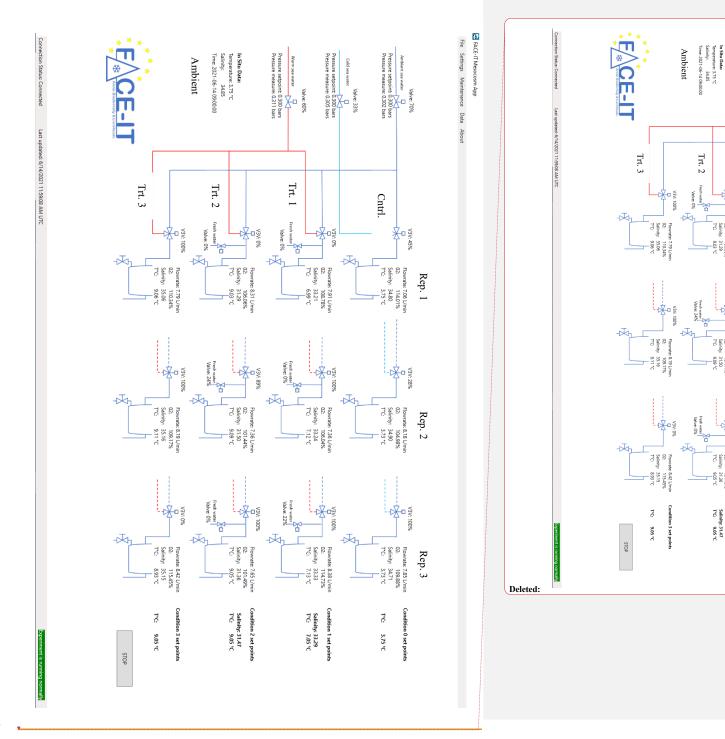

1415	process took place during the setup of the system where the valve opening was adjusted using a	
1416	PID regulator (see A2) to maintain the defined pressure setpoint.	De
1417 1418	A2.2 Automation	the sea adj
1419	The automation was performed using 4 Industrial Arduino-based PLCs (Industrial shields)	the eac
1420	Mduino-42+), with an individual PLC regulating the control condition and each treatment $1 - 3$,	rate mo Fo
1421	respectively. Each PLC was responsible for logging data and regulating a specific experimental	For
1422	condition. The PLC regulating the control condition-identified as the Head PLC-was the	De
1423	primary device responsible for communication with the branched PLCs and the monitoring	De De
1424	computer (Fig. A2). All monitoring was performed on a PC Windows application (Section A3)	De
1425	and responsible for: (1) reading data received from the PLCs, (2) reading in-situ data received	De
1426	from the internet, (3) displaying live data, (4) logging data and sending it to an FTP server, and	De
1427	(5) sending settings and commands to the PLCs. Communication between the PLCs and the PC	
1428	was ensured using http WebSocket protocol on RJ45 ethernet cables. The communication	De
1429	between the PLCs and the conductivity-temperature and oxygen sensors, flow rate sensors, and	De
1430	regulation valves was executed using a half duplex RS485 (2 wires) protocol, with an analog 4-	
1431	20mA and an analog 0-10V signal, respectively. All PLCs and wired communication lines were	De
1432	housed in an electrical box installed to an IP68 Fibox enclosure with a 400 V (3P+N+E) 32 A	
1433	security switch (Fig. A6), All the automation elements use low tension (12 Vdc or 24 Vdc)	
1434	through circuit breakers and fuses. The electrical box was protected with a 220 V socket.	

Deleted: (Kp, Ki, Kd in software interface) was applied to adjust the valve opening in order to regulate the pressure to the defined setpoint. Each water line with post-mixed seawater flowing to each mesocosm was then manually adjusted and controlled with a hand-crank valve. An analog flow rate sensor (IFM© SV3150) was placed in-line with the piping going to each mesocosm located directly before each hand-crank valve. This provided up-to-date logged flow rate values (updating every 30 sec), which could then be monitored to set incoming flow to each mesocosm. Formatted: Font: Bold

Formatted: Font: Bold	
Formatted: Normal, No bullets or numbering	
Deleted: single	
Deleted: data	
Deleted: the	
Deleted: on of	
Deleted: scenario	
Deleted: B	
Deleted: 2.5	

-(Deleted: made	
-(Deleted: ,	
\langle	Deleted: while	

eleted: signal,


1458 Figure A2. Diagram and flow-chart of the automation system.

		Å	Formatte	d: Font: E	Bold				
			Moved (i	nsertion)	[3]				
								dio commu and Arduin	
معناد		///	Field Coo	le Change	ed				[16]
1472	A3. Software Development		Formatte	d: Font: E	Bold				
1473	The code for the application was written in C/C++. The code uses publicly available Arduino	// //	Moved (i	nsertion)	[4]				
1474 1475	<u>libraries (https://www.arduino.cc/reference/en/libraries/) as well as originally designed libraries.</u> <u>All code is available on Github (https://github.com/purrutti/FACEIT). The code is divided into</u>			regulationSalinite() Only for Branched PLCs	printToSD() Only for HEAD PLC	regulationPression() Only for HEAD PLC	checkMesocosmes()	regulationTemperature()	
1476	two pathways: 'Master.ino' for the Head PLC, and 'Regul_condition.ino' for the Branched					This func way valv override > mesocosr	This func pressure		condID (
1477	PLCs. A description of the main functions applied in the code for programming the system			function is responsible for the sal position using a 0-10V analog si ride » mode. If so, it applies the ov pares it with the septoint, and uses	Master PLC is equipped with a microSD card, on which seconds, in one cs v file per day. This is for security only the PLC casing. It should not be removed before the end	This function is responsible for the way valve position using a 0-10V i override » mode. If so, it applies the mesocosm, compares it with the set	tions loops t readings).	This function is respo way valve position us override » mode. If sc mesocosm, compares	ID of the req « time » fiel
1478	regulation and features are listed in Table A3.			esponsible for the salinity regulation of the ing a 0-10V analog signal. The function firs If so, it applies the override setpoint. If not, the sepoint, and uses the PID settings to set	ed with a m le per day. ould not be r	ing a 0-10V , it applies it with the s	hrough eve	nsible for thing a 0-10V o, it applies it with the s	µested entit 1: Unix-like
1479				ne salinity re log signal. the override luses the Pl	iicroSD car This is for s removed be	ne pressure ⁷ analog sig the override the override setpoint, and	ry mesocos	ie temperati analog sig the override setpoint, and	y), commar timestamp
1480				gulatio The fun Setpoii D setti	f, on w ecurity fore the	regulati nal. Th setpoin l uses t	n every	ne regu nal. Th setpoin l uses t	d (com (numbe
1481				This function is responsible for the salinity regulation of the mescown I tests the corresponding three-way valve position using a 0-10V analog signal. The function first checks if the regulation is in « namati override» mode. If so, a tapplies the overide sequent. If not, it reads the salinity measure in the mescown, compares it with the scepoint, and uses the PID settings to set the valve position.	Master PLC is equipped with microSD card, on which data from all messoons is logged every 5 seconds, in one set fileper day. This is a rescurity only as the microSD card is not easy to remove from the PLC easing. It should not be ermoved before the end of the experiment.	This function is responsible for the pressure regulation of the messousm. It sets the corresponding three- way valve position using a 0-10V analog signal. The function first checks if the regulation is in « manual override» mode. If so, a tapplies the override sequoint. If not, it reads the pressure messure in the mesocasm, compares it with the sequoint, and uses the P1D settings to set the valve position.	functions loops through every mesocosm every 200 ms and reads analog signals (i.e., flowratts and inte readings).	mesocosm. It sets the st checks if the regula eads the temperature r gs to set the valve po	condID (ID of the requested entity), command (command type of the request). They optionally can also Monitoring PC (ID = 4) contain a « time » field: Unix-like times tamp (number of seconds since 01-01-1970)

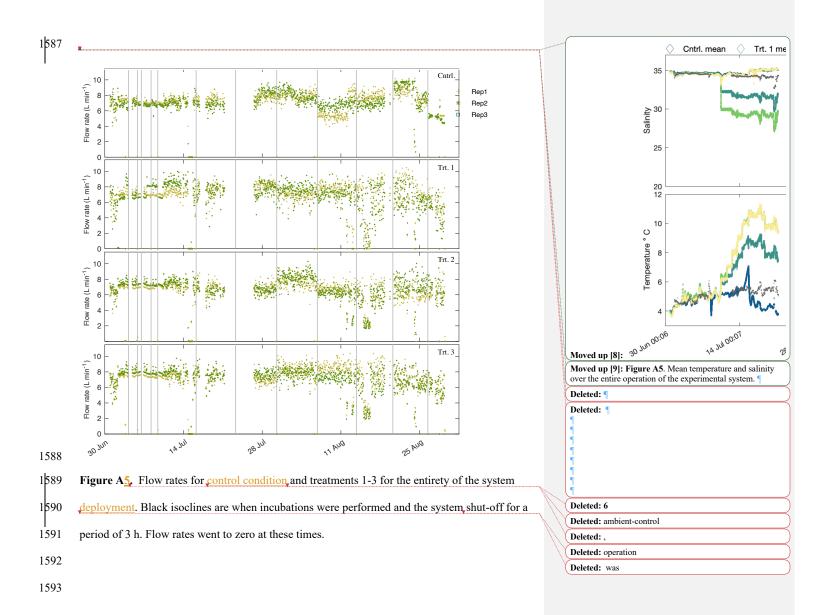
Request Head data: specific data measured by Head PLC (pressure & flow rates) (# = 5) Send Head data: a response to a « request Head data » request (# = 6)

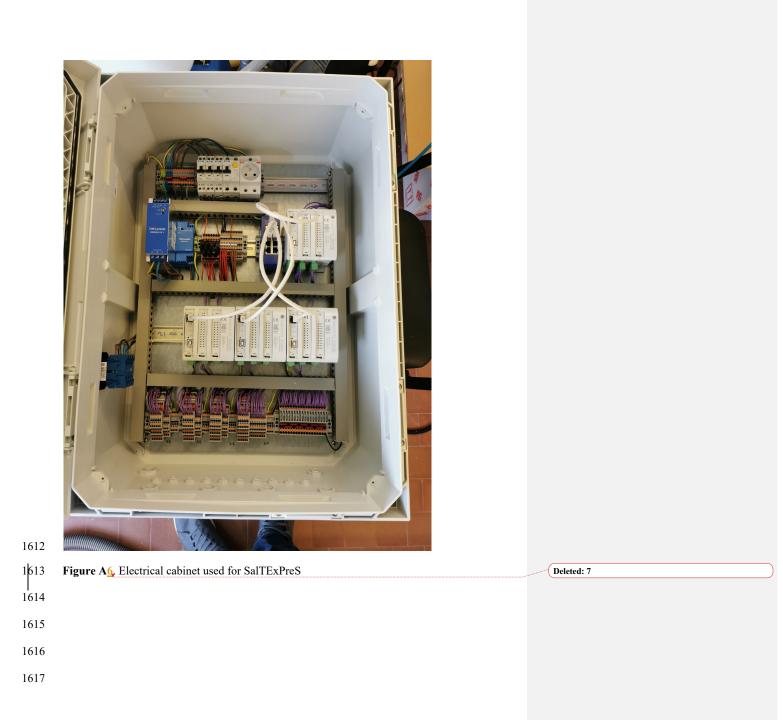
Deleted:

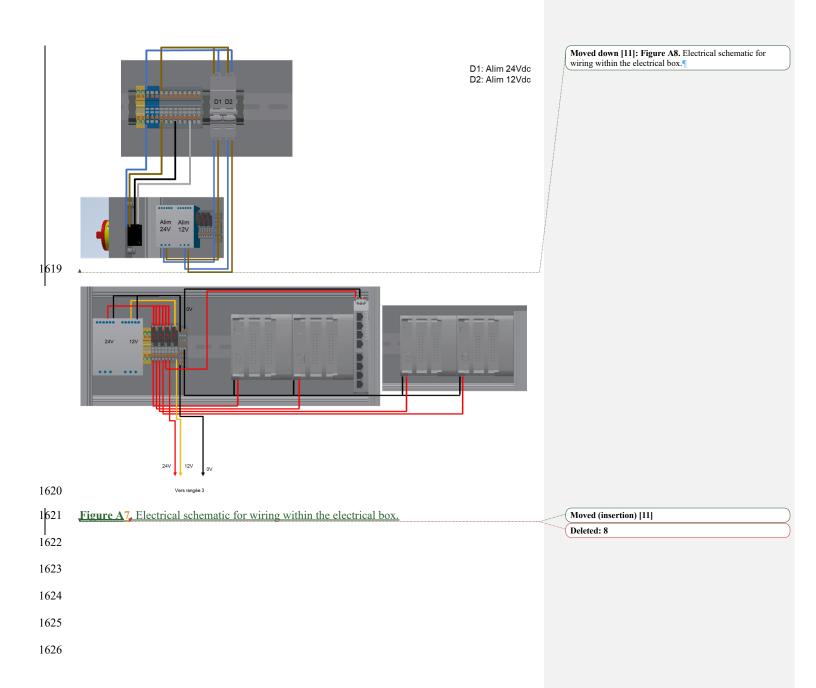
re Only	0	reg On	ch	regu	-	3			l	(Moved (insertion) [5]
Only for TEAD FEC regulationSalinite() Only for Branched PLCs	printToSD() Only for HEAD PLC	regulationPression() Only for HEAD PLC	checkMesocosmes()	regulationTemperature()	webSocket.loop()	readMBSensors()		RTC.read()	Function	Deleted: Table A1. Functions used for programm software
the PLC asing, It should not be removed before the end of the experiment. This function is responsible for the salimity regulation of the mesocessm. It sets the value position using 0-110V analog given a provide the regulation of the test of the regul override a mode. If so, it applies the override septont. If not, it reads the salimity override a mode. If so, it applies the override septont.			This functions loops through every mesocosm every 200 ms and reads analog signals (i.e., flowrates and pressure readings).	This function is reportshife for the temperature regulation of the measeosan. It sets the corresponding three- () way valve position using a 0-10V analog signal. The function first checks if the regulation is in « runnul e) coveride s model. Evo, it applies the override septemic If nead, it reads the temperature measure in the mesocosm, compares it with the septoint, and uses the PID settings to set the valve position.	This is a callback function responsible for dealing with the WebSocket communication. The master PLC is the WebSocket server. It listents to shave PLC is provide the WebSocket server it listents to shave PLC server. It listents to shave PLCs requests are the server it listent to shave PLC is sendering (D to the entity sending the request). Branched PLCs (ID = 1–3) SON formatted. They always command (commat type of the request). They optionally can also Monitoring PC (ID = 4) contain a w time » field: Unix-like timestamp (number of seconds since 01-01-1970)	 O sensors have addresses ranging from 10 to 12, for mesocosms 0 to 2 of the exemptio, respectively, PC4F sensors have addresses ranging from 30 to 32, for mesocosms 0 to 2 of the senario, respectively, Sensors are requested individually and in sequence. A request is made every 200 ms. 	This functions loops through each sensor connected on the RS485 bas. Each Mesocosm has two sensors (02 and Conductivity/Salinity), so each PLC has 6 sensors connected on its bas.	The PLCs are equipped with a RTC chip and battery to keep track of the date. Once set on commissioning, RTC: read() returns the current date and time.	Operation Ancillary field Sender ID	
					Request params: seponts. PID setting: $(\# = 0)$ Request duar: measurement values, regulation outputs $(\# = 1)$ Send Params: response to a « request params » request $(\# = 2)$ Calibrate sensor: request for calibrating sensor to specified value $(\# = 4)$ Calibrate sensor: request for calibrating sensor to specified value $(\# = 4)$ Request Head data: specific data measured by Head PLC (pressure & flow rates) $(\# = 5)$ Send Head data: a response to a « request Head data » request $(\# = 6)$				Ancillary field Command #	Deleted: 1 Deleted: ¶

1206 and control (Cntrl.), and treatment (Trt.) conditions for each replicate (Rep.) in each mesocosm. 1507 1508 1509 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1521 1523 1524 1525	1505	Figure A3. Application interface displaying real-time monitoring of ambient conditions as well	
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1521 1521 1521 1521 1521 1522 1523 1524	1506	and control (Cntrl.), and treatment (Trt.) conditions for each replicate (Rep.) in each mesocosm.	
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	1507		
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	1508		
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	1509		
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	1510		
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	1511		
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	1512		
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524	1513		
1516 1517 1518 1519 1520 1521 1522 1523 1524	1514		
1517 1518 1519 1520 1521 1522 1523 1524	1515		
1518 1519 1520 1521 1522 1523 1524	1516		
1519 1520 1521 1522 1523 1524	1517		
1520 1521 1522 1523 1524	1518		
1521 1522 1523 1524	1519		
1522 1523 1524	1520		
1523 1524	1521		
1524	1522		
	1523		
1525	1524		
	1525		
1526	1526		
1527	1527		

1528	A3.1. Menu bar of PC application	5
1529	From the interface, the user sets the temperature condition and associated salinity offset, IP	
1530	address and logging parameters, sensor calibration settings, and pressure setpoints (Fig. A4).	
1531	Within the menu bar several tabs permit the setup of the project: file, settings, maintenance, and	
1532	data. Under 'file' the system can be manually connected to, or disconnected from, the PLCs.	
1533	Connection is usually maintained automatically. The 'settings' tab displays the application and	
1534	experimental setting options (Fig. A4 $a - c$). All the settings of the project are stored on the	
1535	computer (found in 'application settings') that is running the application, which include:	
1536	i. <i>Master IP address</i> : The IP Address of the Master PLC (centralizing all the data).	
1537	ii. <i>Data Query Interval</i> : Frequency of queries from the application to the master PLC.	
1538	iii. Data Log Interval: Number of minutes between logs to file.	
1539	iv. Data Base File Path: Directory and base filename of the csv data files.	
1540	v. FTP Username, Password, Path: FTP settings for sending the data file every hour.	
1541	vi. InfluxDB Settings: For Live Monitoring and local storage of the data.	
1542	Under 'experimental settings', the programmed specificities and regulation of the treatment	
1543	conditions can be adjusted. This includes programming the setpoints for pressure (all main	
1544	inflow lines), temperature and the salinity-temperature relational equation (on a different tab	
1545	selected from dropdown), as well as adjusting the Kp, Ki & Kd coefficients for the regulation	
1546	(see section 2.3.1). The temperature setpoint is provided by the data received from the ferry-box,	
1547	however this can be overridden if needed. The « Save to PLC » button sends the values to the	
1548	corresponding PLC and saves the data, while the « Load from PLC » button loads the settings	
1549	from the PLC. For the purposes of this experiment, the salinity setpoint was calculated based on	
1550	a delta salinity for treatments 1 and 2 which were derived from the linear relationship with	
1		


Formatted: Font: Bold
Formatted: Font: Bold


Formatted: Normal, No bullets or numbering


1551	temperature (see section 2.3.1). This can also be overridden if needed by selecting the manual
1552	override box.
1553	The 'maintenance' tab is where sensor calibration and communication 'Debug'
1554	operations can be executed (Fig. A4 d, e). Calibration can be performed for each sensor deployed
1555	in each mesocosm, and uses a 2-point calibration for temperature and % oxygen. The salinity
1556	calibration is done by setting the conductivity value corresponding to a temperature of 25 °C
1557	rather than the <i>in situ</i> measured temperature. The conductivity value is programmed as μ S cm ⁻¹ .
1558	The communication process for sensor calibration is between 5 to 10 seconds. The final option in
1559	the menu is the 'data' tab which displays the historical and live data. The historical data can be
1560	interfaced to an html site if desired.

Manual Override	Persone setpoint 0.00 Temperature setpoint 3.75 60 0.00 K6 0.00 0.00 K4 0.00 K6 0.00 0.00	Experiment Satings Control Condition * Pressure regulation	Bana Jana	Approxymotes Name a valence Biologian kinedi Tomologian kinedi
Second Se	Collevation mendine 1	- Chandron X	Sulhity regulation dets Sulhity = <u>GS458</u> x Ambient TC + <u>0.4993</u> Update deta Sulhity setpoint <u>1.56</u> Sulhity setpoint <u>3.329</u> Kd <u>5000</u> Kd <u>5000</u> K	2. Condition 1
Exponent resolution C C. (Encodered): 3 (Window DV, Name (#163060033, Nam); 1.99387, Name DV, Name (#DV, Name, "163060033, Nam); 1.99387, Name DV, Name (#DV, Name, "No. N	loadly a value between DTC and DTC Kandy a value between DTC and DTC A. The memory of an instance of the DTC A. The memory of the state of the state where a doubt class data the state.	X d.	Temperature regulation deta TC setpoint 3.30 remperature setpoint 7.05 KG 1000 KG 1000 KG 1000 KG 1000 KG 1000 KG 1000 KG 5000 KG 5000 KG 5000 KG 5000 KG 5000	č

1563	Figure A4. Operation windows for the application and experimental settings (a-c). These	
1564	windows are found under the 'settings' tab. Operation windows for sensor calibration and	
1565	debugging (d, e). These are found under the 'maintenance' tab.	
1566		
1567		
1568		
1569		
1570		
1571		
1572		
1573		
1574		
1575		
1576		
1577		
1578		
1579		
1580		
1581		
1582		
1583		
1584		
1585	•	

1636 Table A2. Parts list with manufacturer model numbers.

Group	Item	Supplier/manufacturer	Model / details	Quantity
Hydraulic	system			
	Mesocosms	home made	1000 L fiber glass	12
	Seawater pump	NPS	Albatros F13T	1
	PVC-U tubing and fittings		20mm, 32mm & 50mm diameter	-
	Insulated flexible hose		19mm diameter	100 m
Sensors				
	Conductivity / temperature	Aqualabo	PC4E	12
	Oxygen	Aqualabo	PODOC	12
	Pressure	Siemens	7MF1567-3BE00- 1AA1	3
	Flow rate	IFM	SV3150	12
Actuators				
	Pressure regulation valves	BELIMO	R2025-10-S2 with LR24A-SR motor	3
	Temperature regulation valves	BELIMO	R3015-10-S2 with LR24A-SR motor	12
	Salinity regulation valves	BELIMO	R2015-10-S2 with LR24A-SR motor	6
Automatic	on cabinet			
	Cabinet	Fibox	FIB8120017N	1
	Security switch	KRAUS-NAIMER	KNA002245	1
	12 vdc power supply	Lambda	LAMDRL30-12-1	1
	24vdc power supply	Lambda	LAMDRB240-24-1	1
	PLC	Industrial shields	Mduino-42+	4
	Ethernet switch	HIRSCHMANN-INET	HIR942132002	1

Page 7: [1] Deleted	Miller, C.A. (Cale)	7/11/23 6:05:00 PM
▼		4
A		
Page 7: [2] Deleted	Miller, C.A. (Cale)	7/12/23 2:28:00 PM
Page 7: [3] Deleted	Miller, C.A. (Cale)	7/13/23 3:45:00 PM
Page 7: [4] Deleted	Miller, C.A. (Cale)	7/12/23 3:03:00 PM
x		
Page 7: [5] Deleted	Miller, C.A. (Cale)	7/12/23 3:10:00 PM
rage 7. [5] Delettu	Winter, C.A. (Cate)	//12/25 5.10.00 T M
▼		
A		
Page 10: [6] Formatted	Miller, C.A. (Cale)	7/19/23 3:50:00 PM
Aligned at: 0" + Ind		ng Style: 1, 2, 3, + Start at: 5 + Alignment: Left +
Page 10: [7] Deleted	Miller, C.A. (Cale)	7/13/23 4:58:00 PM
Page 13: [8] Deleted	Miller, C.A. (Cale)	7/18/23 5:04:00 PM
Page 13: [9] Deleted	Miller, C.A. (Cale)	7/18/23 5:05:00 PM
v		
•		
Page 13: [10] Deleted	Miller, C.A. (Cale)	7/18/23 5:06:00 PM
 V		
Page 13: [11] Deleted	Miller, C.A. (Cale)	7/21/23 11:44:00 AM
	(cut)	
V		
Dama 12, [12] Dalatad	Miller, C.A. (Cale)	7/10/22 2.45.00 DM
Page 13: [12] Deleted		7/19/23 3:45:00 PM
Page 13: [13] Deleted	Miller, C.A. (Cale)	7/19/23 10:34:00 AM
▼		
A		
Page 29: [14] Moved to pa	age 35 (Move #5) Mille	er, C.A. (Cale) 7/13/23 4:42:00 PM
Page 29: [14] Moved to pa	age 35 (Move #5) Mille	er, C.A. (Cale) 7/13/23 4:42:00 PM
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM
Font: Not Bold		
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM
Font: Not Bold		

T

1

I

Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	T
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	1
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	1
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	1
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			
Page 29: [15] Formatted	Miller, C.A. (Cale)	7/11/23 5:48:00 PM	
Font: Not Bold			_
Page 34: [16] Change	Unknown		
Field Code Changed			_
Page 34: [16] Change	Unknown		

I

L

I

L

I

I

I

I

I

I

I

I

I

I

I

I.