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Abstract

The rapid environmental changes in aquatic systems as a result of anthropogenic forcings are
creating a multitude of challenging conditions for organisms and communities. The need to
better understand the interaction of environmental stressors now, and in the future, is
fundamental to determining the response of ecosystems to these perturbations. This work
describes an

ex-situ mesocosm perturbation system that can manipulate

aquatic media in a controlled setting on land. Thy

(Deleted:

(Deleted:

€

)

Jn Kongsfjorden, (Svalbard)

(Deleted: employed system manipulated ambient water from )

to investigate the response of mixed kelp communities

to projected future Arctic conditions. The, system ¢

temperature R real-
time conditions simulate, future .
. The system
flow rates ¢ ambient seawater,
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continuously measured

in all 12 mesocosms (1 ambient-control and 3 treatments, all in

v

triplicates) for 54 days. System regulation was robust as median deviations from setpoint
conditions were < 0.15 for both temperature (°C) and salinity across the 3 replicates per

treatment.
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1 Introduction

The persistent burning of fossil fuels since the industrial revolution has radically increased
atmospheric CO;. This has led to an enhanced greenhouse effect resulting in

increasing sea surface temperature, (Bindoff et al., 2019). In
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fjord systems, the confluence of increased fluvial inputs, glacier and permafrost meltwater,
stratification and water mass intrusion, as well as increased sea surface temperatures can create

periods of extreme physicochemical conditions for nearshore benthic and pelagic marine

communities (Bhatia et al., 2013; Poloczanska et al., 2016; Divya and Krishnan, 2017; Bindoff et

al., 2019). As ocean changes progress, the need to better understand the effects of combined

stressors (e.g., increased temperature and freshening) on marine communities is essential to
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understand how community function,and species richness will be affected as assemblages ;

to new environmental conditions (Kroeker et al., 2017; Wake, 2019; Orr et al., 2020).

ssessing and characterizing the response of organisms and

community assemblages to future ocean change is often pursued by conducting ex-situ

experiments,  natural analogues , or space-for-time

a

substitution (when spatial phenomena are used to model temporal changes); however, this can

limit the ability to test the range and dynamics of present and future ¢ conditions

(Blois et al., 2013; Rastrick et al., 2018; Bass et al., 2021). The use of ex-situ experimental
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systems that manipulate multiple environmental conditions such as temperature and salinity can,
thus, be a valuable tool to assess the response to multi-stressors in a future ocean.

The recognition of conducting multi-stressor experiments has become increasingly

relevant due to the interaction of environmental drivers in dynamic systems under a changing

climate (Kroeker et al., 2020). Nearshore regions such as fjord systems and estuaries can

experience an amplified modulation of temperature and salinity on short timescales (Evans et al.

2015; Hales et al., 2016; Fairchild and Hales, 2021). Such instances have been observed in sub-

Arctic estuaries where water temperature at a depth of 10 m decreased by 1.5 °C in < 10 h, and

in temperate systems where the magnitude of salinity change driven by high precipitation

displayed a decrease of 4 units in < 24 h (Miller and Kelley, 2021; Poppeschi et al., 2021).

Changes of this magnitude are particularly pertinent for Arctic fjords where recent evidence

found that changes in salinity from glacial meltwater were capable of directing whether a system

is net heterotrophic or autotrophic (Sejr et al., 2022). In this system, the salinity dynamics were

observed as a temporal decrease from 31 to 28 over a few days, or as a spatial modification

where values changed by 5 units over a 5 — 10 km distance, “CDeleted: (Sejr et al., 2022)

Recent advances in the ability to modulate several environmental parameters at once

using ex-situ mesocosms has been presented via the use of a modular programmable system - (Pormatted: Font: ltalic

"CFormatted: Font: Italic

N

(Wahl et al., 2015; Pansch and Hiebenthal, 2019). Such systems have demonstrated an ability to

apply programmable environmental scenarios as a multifactorial design, or as a delta-change

(offset) from ambient conditions that mimic the natural variability of an environment. The

advantages of these types of automated systems lie in their ability to overcome the need for

capturing and measuring abundant discrete measurements used to regulate experimental

conditions, and transcend the logistical difficulties of implementing natural variability to
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experimental designs. In addition, these systems can reduce the need for constant human

observation which may be required to program new regulatory operations or make rapid

adjustments to experimentally manipulated conditions.

. Here, we describe an autonomous salinity and temperature experimental perturbation

mesocosm system (SalTExPreS) that has the ability to modify, and then regulate. salinity and

temperature in real-time. The SalTExPreS can perform similar functions as the gx-sifu mesocosm

systems discussed previously (i.e., Kiel-outdoor and -indoor benthocosms), such as applying

programmable static or dynamic changes to temperature and salinity, or by replicating natural

variability as on offset in real-time, but has the added capability of autonomous control for each

experimental unit (e.g., chamber or mesocosm). In this initial deployment of the SalTExPreS. we
applied a delta offset (i.e., offset from a measured control) to temperature and salinity as a
multifactorial treatment design for a two-month long experiment in KongsFjorden, Svalbard, that

exposed mixed kelp communities to future temperature, salinity, and irradiance conditions in the

fjord. This study demonstrates the stability and flexibility of the SalTExPreS as an experimental

tool to be utilized under extreme and dynamic conditions to test the effects of physicochemical

multi-stressors on marine organisms and communities in the context of a multi-month

experiment.

2 Methods

2.1 Operational Concept of the Experimental System:

A
The SalTExPreS simulates the drivers in a marine or freshwater system such as temperature,

freshening, acidification, or hypoxia as either static or as temporally-variable modifications to

ambient seawater. This is accomplished by mixing manipulated source water, whether it be

| Deleted: ¢

A principal challenge of conducting an ex-sifu multi-
stressors experiment lies within the ability to consistently
modulate, replicate, and regulate the experimental conditions
in real-time. To date, the majority of experiments conducted
on marine organisms and communities have implemented
only static changes to physical stressors with a limited
capacity to induce variability by either manually changing
conditions at set time points or using coarse automation with
static setpoints and thresholds (Olariaga et al., 2014; Pansch
and Hiebenthal, 2019; Kroeker et al., 2020). Often, this can
fail to capture the high frequency variability of in-situ
conditions. When considering the dynamics of
physicochemical conditions in nearshore systems that can
notably change within tidal cycles (Evans et al., 2015; Hales
et al., 2016; Miller and Kelley, 2021; Fairchild and Hales,
2021), replication of these environmental scenarios
necessitates the development of an autonomous system in
order to properly conduct experiments over various periods
of time. The advantages of implementing an automated
system are that it can overcome the need for capturing and
measuring the abundant discrete measurements used to
regulate the experimental conditions. This can also remove
the need for constant human observation which may not be
feasible in the long-term, but may be required to program

| new regulatory operations and make rapid adjustments to the
experimentally manipulated conditions.
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Svalbard, exposing mixed kelp communities to future Arctic
conditions. The rapidly changing conditions in Kongsfjorden
are partly due to intrusion of Atlantic water that increase sea
surface temperature, as well as freshening from retreating
sea-terminating glaciers and enhanced terrestrial flow from
proglacial streams (Tverberg et al., 2019). Such a dynamic
multi-stressor environment was ideal for the SalTExPreS
deployment. This study focuses on the stability and
flexibility of SalTExPreS as an experimental tool to be
utilized under extreme and dynamic conditions to test the
effects of physicochemical multi-stressors on marine
organisms and communities. ¢
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freshwater or warmed water, with ambient water through automatic flow valves that control the

volume and rate of water delivered. This is regulated by the constant monitoring of the mixed

water conditions in each mesocosm or chamber via a programmable feedback loop that transmits

the opening or closing of the automatic flow valves. The automated ability of the SalTExPreS is

configured to respond to near instantaneous measurements (several reads per second) to achieve

high frequency regulation of the manipulated drivers based on a measured jn-situ or control

,..vr—"-(Formatted: Font: Italic

reference. The programmable setpoint conditions in each mesocosm are easily controllable

through an intuitive computer interface application.

2.2, Site Description and Experimental Design,

Kongsfjorden is a fjord system on the west coast of Svalbard where the West Spitsbergen

Current exchanges warm Atlantic water through trough channels regulated by density gradients

at the fjord mouth. Over the past 2 decades, a persistent influx of Atlantic water has resulted in

the reduction of land-fast ice and the melting of sea terminating glaciers causing enhanced

freshwater and fluvial input (Luckman et al., 2015: Tverberg et al., 2019). The influx of

- nn"CDeleted:
" Deleted: Three experimental treatments representing

expected future conditions in Kongsfjorden were considered
to examine potential changes in the productivity, survival,
and growth of mixed kelp communities present at a 7 m
depth in the fjord.

)
)
j

“CDeleted: ; Luckman et al., 2015

freshwater is highest in summer and is accompanied by an important sediment loading with the

potential to shoal the euphotic zone from 30 m to a 0.3 m depth (Svendsen et al., 2002). These

advancing climatic changes in Kongsfjorden set a relevant context for the inaugural deployment

of the SalTExPreS on a concrete platform situated ~ 12 m from the shoreline in Ny-Alesund

which is located on southwestern shore of Kongsfjorden ~ 11 km from the fjord mouth.

The SalTExPreS was utilized to implement three treatment scenarios in a multifactorial

design to represent expected future conditions in Kongsfjorden for an experiment that examined

the productivity, survival, and growth response of mixed kelp communities found at 7 m for 54
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water was (1) left unchanged. (2) chilled ;0,0 °C, or (3) warmed, to, 15 °C. Each sub-header tank
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mesocosms (3 treatments and 1 control, 3x replicates) with a mean diameter of 1.1 m and a

volume of 1 m?, each equipped with a 12 W wave pump (Sunsun(©) JVP-132), a temperature-

conductivity probe (Aqualabo, PC4E). an optical oxygen sensor (Aqualabo, PODOC), and an

Odyssey(©) light logger. Fiberglass insulation was placed on the outside of each mesocosm to

increase insulation in order to reduce any potential change in temperature.

Delivery of ambient, chilled, warmed, and freshwater first ran through an automated

mixing manifold that regulated the flow of each media type assuring that proper volumetric

proportions passed through the regulator valves to achieve target conditions (Fig. 1). Each

source-water flow-line was regulated by an automated 3-way mixing valve (2-way mixing valve

.| Deleted:
offsets

‘ (Deleted: Each mesocosm
Deleted: received
Deleted:
i (Deleted: which
! ?‘_[Deleted: equated to a
[Deleted:
1‘1(Deleted:

(Deleted: periods when flow to each mesocosm was

seawater

The

suspended for 3 h during weekly whole-system incubations
for community metabolism determination

— N AN AANANAANAAL A NN




394

395

396

397

398

399

#00

A01

A02

#03

104

A0S

H06

407

H08

#09

410

411

412

413

414

415

416

for incoming freshwater) which then passed through another mixing valve (12 in total) that was

assigned to each mesocosm (Fig. 1) This style of regulation ensured that the proper proportions

of manipulated media and ambient water were mixed to achieve setpoint conditions. Any

temperature variation induced by mixing freshwater was immediately compensated for by

regulating the flow of the warm water line. Details regarding the programmed regulation are

discussed further in the appendix (Section A2). The mixed media then passed through a flow

meter to measure the flow rate to each mesocosm which was regulated by a manual hand-crank

valve used to make minor adjustments to the valve opening position. This regulates the flow to

each mesocosm. Measurements by all the pressure sensors, the status of open position for the

regulator valves, and flow rates were logged ever minute and projected to the user interface via a

computer application (Fig. A3).,

| Deleted: The main inflow pipes (ambient, chilled, and

'| warmed) were plumbed in combination with a freshwater tap
line (Fig. 1) into a control manifold that mixed the
manipulated media regulating flow rates using a continuous
monitoring system and a series of controlled valves (Fig. 2).
Continuous minutely monitoring of the inflow pressure (pre-

2.4 Setpoint Regulation

Setpoint temperature conditions + 3.3, 5.3, and 5.3 °C applied to treatments 1, 2, and 3

mixing) and outflow rates to each mesocosm provided high
frequency logging and observation of mesocosm condition.
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Software

.The program
application has a user-friendly interface designed to allow real-time monitoring and

parameterization of regulation processes (Fig. A3), The main window displays each mesocosm

condition ( ), their piping connections, a connection status for each

v

PLC informing proper communication, date and time of the last received communication packet

from the Head PLC, and the experiment, (e.g., started or stopped). The interface also

displays the valve-open percentage along with the pressure setpoints and the actual measured

value for each main inlet. In addition, the in-situ data (temperature and salinity)
received from the FerryBox is displayed with the date of the last logged value utilized
Jo program the, real-time condition, Sensor readings of flow rate (L min),

O: concentration (% saturation), salinity, and temperature (°C) are shown for each mesocosm in
conjunction with the treatment setpoints (i.e., temperature, and salinity when relevant). ;
measured data is stored through the server connection , .15 a backup
microSD card on the Head PLC that logs data from all mesocosms every 5 sec. If
communication fails between the Head PLC and the interfaced computer, data will not be

retrieved by the PC during the communication break, but will be retained by the microSD card.

Results
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offset based on the preset temperature offsets (Table 1).
Regulation was maintained via regulation flow valves
utilizing minutely measurements of temperature and salinity
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setpoint value.
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3.1 Regulation of the control condition

The control condition ambient fjord femperature well over the

L 2 Y

experimental period deviating < 0.3 °C (Table 2, Fig. 3). The

overall quality of the regulation was based on the ability of the system to read the measured data
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During this period, the control condition was colder than the
target fjord temperature at 7 to 10 m depth by > 1 °C (Figs.
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combinations can be applied depending on the question and design of the experiment. The

automated component of the system, reduced the logistical hurdles that can arise when, "'(Deleted: can

"CDeleted: needed to

AN

performing high precision replication and regulation of experimental conditions that track real-
time system variability. While the use of such a system can reduce user oversight and limitations,

there is still a need for diligent operation.

Since this initial deployment we have implemented several changes which have improved

the performance of the system that have been realized during a second deployment in the

summer of 2022 (Fig. 6). In this experiment, the SalTExPreS was integrated to function with a

deployable heat pump to simulate multiple scenarios of heatwave patterns over a nearly month-

long experiment. In this instance, temperature regulation was vastly improved as a result of the

programmable modifications made since the initial deployment. During this deployment the

SalTExPreS mimicked 3 marine heatwave scenarios where a dynamic temperature regulation

held deviations to < 0.5 °C for 94 % of the time in 9 different mesocosms. This was an

improvement to the % time of temperature regulation by ~ 15 % compared to the first

deployment. In the first deployment, inconsistent flow rates and communication errors between

the FerryBox and the Head PLC were the primary causes of large deviations (> 2.0 salinity or

°C) from setpoint values. For example, flow rates <2 L min"' accounted for ~ 20 % of the large

deviations in temperature and salinity regulation. Simple modifications such as ‘pop-up’ alert

windows that warned when a lapse in communication with the FerryBox occurred (FerryBox

and the addition of contingency coding instructions (fail-safe instructions

ensuring that the last received in-situ data were maintained are the types of modifications that

resolved most of the issues. Communication errors were easily remedied by cycling the power on
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research endeavors and implementations by the SalTExPreS have the potential to conduct

a large range of experimental settings that pertain to environmental perturbations associated with

climate change or other anthropogenic forcings. The operation of such a system in extreme
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Some of the operational challenges encountered during the
2-month experiment in Svalbard were able to be mitigated or
resolved henceforth. The use of pop-up alert windows when
a lapse in connection occurred, or when data is not logging,
along with secondary coding instructions (as fail-safe
instructions) ensuring that the last received in-situ data were
maintained are examples how improvements made during
the experiment facilitate a more robust deployment for the
future. These improvements are now incorporated into the
available code for programming of the SalTExPreS. These
new editions were implemented during a second deployment
that occurred in the summer of 2022 under a similar
experimental design, and resulted in fewer lapses and
frequencies of mis-regulation (Fig. 6). Further, we forewent
attempting to regulate the control condition (i.e., mixing
chilled seawater with ambient to account for unintended
warming during transit from fjord to header tank to
mesocosm) during this second deployment as transit time
and distance from pumped fjord water was substantially less
than this first application. The result of this decision was the
complete resolution of connection issues that regulate the
control setpoint. As for some of the more common
disruptions that can occur during long-term experimental
setups using raw seawater such as pump failure and
clogging, both of which impacted the performance of the
SalTExPreS, were extraneous instances that are not relevant
to its direct performance. Other issues such as a sudden
glitch in the programming which resulted in a sudden
freshening on 2021-08-03 07:30 UTC, or the persistent
miscommunication with the treatment 2 branched-PLC from
2021-07-26 to 2021-08-03 UTC, could have been reduced by
more fastidious monitoring of the SalTExPreS regulation.
We note that some of these issues were easily resolvable by
resetting the Head PLC or cycling the power of the system.
In short, efficient user operation could further reduce
deviations and increase the accuracy of the SalTExPreS
regulation.

This first and initial deployment of the SalTExPreS used to
conduct a multi-stressor experiment provided robust results
for determining mixed kelp community metabolic responses
to future Arctic conditions (Miller et al., in prep).
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Deleted: The operational data produced are reliable, easily
quantifiable, and provide the highest degree of frequency for
the monitoring of experimental conditions.
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environmental conditions has shown the durability of the manifold to endure an adverse Arctic
summer and still respond without mechanical failures. With proper operation and user
proficiency, this proves to be a highly sophisticated and powerful tool to be utilized for aquatic

perturbation experiments.
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Figure 1. Piping schematic of the SalTExPreS which includes the mixing and regulation

manifold, Items 1 — 3 depict the main seawater inlets from the ambient, warmed. and chilled sub-

header tanks located in the Kings Bay Marine Laboratory. Seawater from each sub-header tank
moves through a 2-way regulator valve followed by a pressure sensor (4) before splitting into
individual lines that lead to all 12 regulator valves (5), each assigned to a single mesocosm. For

treatments 2 and 3, the freshwater inlet (clear tube; item 6) passes through a 2-way regulator

valve before mixing with the ambient and warmed seawater lines. Flow rates are then measured

(7) post-mixing, and final flow rates are set using a hand-crank red valve (8). All 12 mesocosms
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A2. Temperature and Salinity Regulation
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process took place during the setup of the system where the valve opening was adjusted using a

PID regulator (see A2) to maintain the defined pressure setpoint. ,,

A2.2 Automation, -

The automation was performed using 4 Industrial Arduino-based PLCs (Industrial shields©

Mduino-42+), with an individual PLC regulating the control condition and each treatment 1 — 3.
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respectively. Each PLC was responsible for, logging data and,regulating,a specific experiment
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Function

Operation

Ancillary field Sender ID

Ancillary field Command #

RTC.read()

The PLCs are equipped with a RTC chip and battery to keep track of the date. Once set on commissioning,
RTC.read() returns the current date and time.

readMBSensors()

webSocket.loop()

This functions loops through each sensor connected on the RS485 bus. Each Mesocosm has two sensors
(02 and Conductivity/Salinity), so each PLC has 6 sensors connected on its bus.
- 02 sensors have addresses ranging from 10 to 12, for mesocosms 0 to 2 of the scenario, respectively.

- PC4E sensors have addresses ranging from 30 to 32, for mesocosms 0 to 2 of the scenario, respectively.
- Sensors are requested individually and in sequence. A request is made every 200 ms.

This is a callback function responsible for dealing with the WebSocket communication. The master PLC is
the WebSocket server. It listens to slave PLCs requests and to the monitoring PC requests. Requests are
JSON formatted. They always contain anciallry fields: senderID (ID of the entity sending the request),
condID (ID of the requested entity), command (command type of the request). They optionally can also
contain a « time » field: Unix-like timestamp (number of seconds since 01-01-1970)

Head PLC (ID = 0)
Branched PLCs (ID = 1-3)
Monitoring PC (ID = 4)

Request params: setpoints, PID settings (# = 0)
Request data: measurement values, regulation outputs (# = 1)

Send Params: response to a « request params » request (# = 2)

Send Data: response to a « request data » request (# = 3)

Calibrate sensor: request for calibrating sensor to specified value (# = 4)
Request Head data: specific data measured by Head PLC (pressure &
flowrates ) (# = 5)

Send Head data: a response to a « request Head data » request (# = 6)

regulationTemperature()

This function is responsible for the temperature regulation of the mesocosm. It sets the corresponding three-
way valve position using a 0-10V analog signal. The function first checks if the regulation is in « manual
override » mode. If so, it applies the override setpoint. If not, it reads the temperature measure in the
mesocosm, compares it with the setpoint, and uses the PID settings to set the valve position.

‘This functions loops through every mesocosm every 200 ms and reads analog signals (i.c., flowrates and
pressure readings).

regulationPression()
Only for HEAD PLC

This function is for the pressure I of the It sets the cor three-
way valve position using a 0-10V analog signal. The function first checks if the regulation is in « manual
override » mode. If so, it applies the override setpoint. If not, it reads the pressure measure in the
mesocosm, compares it with the setpoint, and uses the PID settings to set the valve position.

prinToSD()
Only for HEAD PLC

Master PLC is equipped with a microSD card, on which data from all mesocosms is logged every 5
seconds, in one csv file per day. This is for security only, as the microSD card is not easy to remove from
the PLC casing. It should not be removed before the end of the experiment.

regulationSalinite()
Only for Branched PLCs

This function is responsible for the salinity regulation of the mesocosm. It sets the corresponding three-way
valve position using a 0-10V analog signal. The function first checks if the regulation is in « manual
override » mode. If so, it applies the override setpoint. If not, it reads the salinity measure in the mesocosm,
compares it with the setpoint, and uses the PID settings to set the valve position.
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1505  Figure A3. Application interface displaying real-time monitoring of ambient conditions as well
1506  and control (Cntrl.), and treatment (Trt.) conditions for each replicate (Rep.) in each mesocosm.
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A3.1. Menu bar of PC application,

From the interface, the user sets the temperature condition and associated salinity offset, IP

Within the menu bar several tabs permit the setup of the project: file, settings, maintenance, and

data. Under ‘file’ the system can be manually connected to. or disconnected from, the PLCs.

Connection is usually maintained automatically. The ‘settings’ tab displays the application and

experimental setting options (Fig. A4 a — ¢). All the settings of the project are stored on the

that is running the application, which include:

i Master IP address: The IP Address of the Master PLC (centralizing all the data).

il. Data Query Interval: Frequency of queries from the application to the master PLC.
iil. Data Log Interval: Number of minutes between logs to file.

iv. Data Base File Path: Directory and base filename of the csv data files.

V. FTP Username, Password, Path: FTP settings for sending the data file every hour.
Vi. InfluxDB Settings: For Live Monitoring and local storage of the data.

Under ‘experimental settings’, the programmed specificities and regulation of the treatment

conditions can be adjusted. This includes programming the setpoints for pressure (all main

inflow lines), temperature and the salinity-temperature relational equation (on a different tab

selected from dropdown), as well as adjusting the Kp, Ki & Kd coefficients for the regulation

(see section 2.3.1). The temperature setpoint is provided by the data received from the ferry-box,

however this can be overridden if needed. The « Save to PLC » button sends the values to the

corresponding PLC and saves the data, while the « Load from PLC » button loads the settings

from the PLC. For the purposes of this experiment, the salinity setpoint was calculated based on

a delta salinity for treatments 1 and 2 which were derived from the linear relationship with
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temperature (see section 2.3.1). This can also be overridden if needed by selecting the manual

override box.

The ‘maintenance’ tab is where sensor calibration and communication ‘Debug’

operations can be executed (Fig. A4 d. e). Calibration can be performed for each sensor deployed

in each mesocosm, and uses a 2-point calibration for temperature and % oxygen. The salinity

calibration is done by setting the conductivity value corresponding to a temperature of 25 °C

rather than the in sifu measured temperature. The conductivity value is programmed as uS cm’'.

The communication process for sensor calibration is between 5 to 10 seconds. The final option in

the menu is the ‘data’ tab which displays the historical and live data. The historical data can be

interfaced to an html site if desired.
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Figure A4. Operation windows for the application and experimental settings (a-c). These
windows are found under the ‘settings’ tab. Operation windows for sensor calibration and

debugging (d, e). These are found under the ‘maintenance’ tab.
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Table A2. Parts list with manufacturer model numbers.

Group Item Supplier/manufacturer Model / details Quantity
Hydraulic system
Mesocosms home made 1000 L fiber glass 12
Seawater pump NPS Albatros F13T 1
PVC-U tubing and 20mm, 32mm & _
fittings 50mm diameter
RIS 19mm diameter 100 m
hose
Sensors
Conductivity / Aqualabo PC4E 12
temperature
Oxygen Aqualabo PODOC 12
Pressure Siemens TMF1567-3BEOC- 3
1AA1
Flow rate IFM SV3150 12
Actuators
Pressure regulation R2025-10-S2 with
valves BELIMO LR24A-SR motor 3
Temperature R3015-10-S2 with
regulation valves BELIMO LR24A-SR motor 12
Salinity regulation R2015-10-S2 with
valves BELIMO LR24A-SR motor 6
Automation cabinet
Cabinet Fibox FIB8120017N 1
Security switch KRAUS-NAIMER  KNA002245 1
12 vde power Lambda LAMDRL30-12-1 1
supply
2dvde power Lambda LAMDRB240-24-1 1
supply
PLC Industrial shields Mduino-42+ 4
Ethernet switch HIRSCHMANN-INET HIR942132002 1
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