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Abstract. Simulation models are tools commonly used to predict changes in soil carbon stocks. Prior validation is essential, 

however, for determining the reliability and applicability of model results. In this study, the process-based biogeochemical 

model MONICA (Model of Nitrogen and Carbon dynamics on Agro-ecosystems) was evaluated with respect to soil organic 10 

carbon (SOC) using long-term monitoring data from 46 German agricultural sites. A revision and parameterisation of 

equations, encompassing crop and fertiliser-specific C contents and the abiotic factors of soil temperature, soil water and clay 

content, were undertaken and included in the model. The modified version was also used for a Morris elementary effects 

screening method, which confirmed the importance of environmental and management factors to the model’s performance. 

T he model was then calibrated by means of Bayesian inference using the Metropolis-Hastings algorithm. The performance of 15 

the MONICA model was compared with that of five established carbon turnover models (CCB, CENTURY, C-TOOL, ICBM 

and RothC). The original MONICA model systematically overestimated SOC decomposition rates and produced on average a 

~17 % greater mean absolute error (MAE) than the other models. The modification and calibration significantly improved its 

performance, reducing the MAE by ~30 %. Consequently, MONICA outperformed CENTURY, CCB and C-TOOL, and 

produced results comparable with ICBM and RothC. Use of the modified model allowed mostly adequate reproduction of site-20 

specific SOC stocks, while the availability of a nitrogen, plant growth and water submodel enhanced its applicability compared 

with models that only describe carbon dynamics. 

1 Introduction 

T he historic conversion from native to agriculturally managed soils released 116 Pg of soil organic carbon (SOC) as CO2 to 

the atmosphere (Sanderman et al., 2018). If no measures are taken, current projections estimate a continuation in the decline 25 

of SOC stocks, further intensifying the release of CO2 from soils (Riggers et al., 2021; Zhao et al., 2021). However, the 

sequestration of atmospheric CO2 in the soil is a climate change mitigation strategy that has substantial potential (Poeplau and 

Don, 2015; Fuss et al., 2018; Amelung et al., 2020). In particular, croplands are promising landscapes since they are depleted 

in SOC and generally accessible for cultivation practices (Poeplau and Don, 2015; Sanderman et al., 2017). Researchers have 

proposed various agronomic systems, including agroforestry, reduced tilling, and perennial and cover cropping, to optimise 30 
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agricultural opportunities for sequestering carbon and thus partly restore the historically lost SOC (Smith et al., 2005). 

Estimates of the global capacity of agricultural soils for sequestering carbon range from 2 to 5 Pg C a
-1

 (Fuss et al., 2018). 

However, identifying and promoting site-specific measures in a highly diverse agricultural landscape encompassing more than 

570 million farms globally and affecting ~36 % of the earth’s terrestrial surface is a challenge (FAO, 2014; Amundson and 35 

Biardeau, 2018; FAO, 2022). Despite the uncertainty in their practicability, international initiatives such as the ‘4 per mille’ 

and scientific working groups advise the rapid modification of agricultural systems so that they act as carbon sinks (Minasny 

et al., 2017; Amelung et al., 2020). In contrast, some scientists focus on the potential for underestimated detrimental effects 

and advocate a well-thought-out approach to sequestering SOC on a large scale (Sommer and Bossio, 2014; Lugato et al., 

2014; Amundson and Biardeau, 2018; Murphy, 2020).  40 

Process-based models are tools that can be used to assess mitigation capabilities of agricultural systems for different 

environmental and management conditions and to analyse disagreements and accuracy of alternative estimation approaches. 

T hey are designed to represent the behaviour of natural systems based on a selection of mathematical formulations of generally 

accepted biophysical principles. Carbon turnover models predict the dynamics of SOC in response to management and climate. 

Agro-ecosystem models combine carbon and nitrogen turnover routines with algorithms that represent soil water dynamics, 45 

greenhouse gas emissions and crop growth and allow the simultaneous prediction of multiple variables from different domains 

of the soil–plant-atmosphere continuum. Due to the explicit simulation of crop growth in response to weather, site conditions 

and crop management, agroecosystem models exhibit a clear advantage over simple soil carbon turnover models, as they can 

translate any changes in conditions that affect biomass input to soil, e.g., climate or crop management, directly to responses in 

SOC. Potentially, they could also simulate any feedback from those changing SOC dynamics to crop growth, e.g. via nitrogen 50 

release or immobilization. The disadvantage of this is that complex models require an accurate reproduction of the carbon 

input variability, whereas simpler carbon models estimate the carbon inputs from measured yields. Processes that are not 

described by the model, such as the effects of phosphorus and other nutrients and the effects of plant diseases on plant growth, 

could further constrain the ability of complex models to simulate adequate carbon inputs. Additionally, complex agro-

ecosystem models are inherently black boxes that make it difficult to understand the various factors and feedback loops. They 55 

have yet rarely been tested for their ability to do exactly this, just as little as they have been compared to simple soil carbon 

turnover models to identify whether their advantage in applicability comes with a reduced predictive power (Smith et al., 1997; 

Farina et al., 2021). In any case, to ensure the adequate predictive capability of such models, complex or simple, a 

comprehensive validation process using measured data with different soil types, management practices and weather conditions 

is required.    60 

MONICA (Model of Nitrogen and Carbon dynamics on Agro-ecosystems; Nendel et al., 2011; 2013) is a process-based agro-

ecosystem model that simulates the effects of spatiotemporal environmental variability and agricultural practices on crop yields 

and soil condition of mineral soils (Nendel et al., 2014). It is a successor of the HERMES model, which was initially developed 

to estimate N dynamics in the soil-crop system (Kersebaum, 1995; 2007). A comprehensive SOC turnover submodule based 

on the Daisy model was added, replacing the simpler approach in the HERMES model (Hansen et al., 1991; Abrahamsen and 65 
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Hansen, 2000). The holistic principle of the MONICA model supports research questions on the interlinkage between site 70 

conditions, plant development and C and N dynamics in a changing climate. The performance of the MONICA model showed 

the capability to adequately reproduce crop yields for different crops (Asseng et al., 2013; Bassu et al., 2014; Kothari et al., 

2022; Rötter et al., 2012; Salo et al., 2016) and more complex crop rotations (Kollas et al., 2015; Kostková et al., 2021). For 

SOC dynamics under bare fallow treatment, MONICA performed similar to simple C turnover models (Farina et al., 2021), 

but furthermore demonstrated also good performance when simulating short-term high-resolution CO2 exchange in a soil–75 

plant system (Specka et al., 2016). The Daisy model, another agro-ecosystem model, had already been tested against long-

term soil carbon experiments (Smith et al., 1997) and performed comparably well to soil carbon turnover models, such as 

RothC (Coleman & Jenkinson, 1996) or CANDY (Franko, 1996).  

T he question now is whether the MONICA model with its carbon turnover submodule is able to adequately simulate changes 

in SOC stocks considering different agronomic practices. It is also important to establish how the performance of a complex 80 

model like MONICA compares with simple C turnover models such as RothC, ICBM, C-TOOL, CENTURY and CCB. To 

answer these questions, we move along the following four objectives: i) to validate the SOC submodule of the MONICA model 

with data from 46 agricultural long-term monitoring sites in Germany, ii) if necessary to enhance its applicability in view of 

the diversification of the dataset used for validation, iii) to identify the main drivers of C sequestration and decomposition in 

the model, and iv) if necessary to improve model performance. 85 
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2 Materials and Methods  

2.1 Data composition and site characteristics  

 

For calibration and validation of the SOC turnover subroutine of the MONICA model, long-term monitoring data collected by 

the State Office for Mining, Energy and Geology (LBEG) were used. In 1990, the state government of Lower Saxony 90 

(Germany) established a programme to permanently observe agricultural and forest soils in the federal territory. Its goal was 

to monitor soil changes and identify adverse ecologic and economic implications, and thus predict the risk of imminent damage 

for the sustainable utilisation of soils.  

T he examined area is part of the North German Plain, with highlands up to 971 m in its southern region. It is located at latitudes 

between 51° and 54° North and longitudes between 7° and 11 ° East (Fig. 1a). It is characterised by a maritime climate, with 95 

mean annual temperatures ranging from 8.9 °C to 10.4 °C. Average annual precipitation ranges from 574 mm to 887 mm, with 

a positive climatic water balance in spring, autumn and winter, and a negative balance in summer.  

T he database consists of 48 agricultural sites, of which 42 are conventional agricultural systems and six are organic. Two sites 

were removed due to their observation periods being less than 10 years, leaving 46 entries for the analysis. The observation 

data consist of 33 sites that have been used for agriculture for more than a century. The remaining 13 sites were converted 100 

from forests, meadows or peatlands less than five decades before the start of the observation period. Soil sampling was 

generally conducted at regular intervals of between one and five years (Höper and Meesenburg, 2021). They were sampled at 

a depth of up to ~30 cm and consisted of four replicates, which were combined as mixed samples. 

In addition, soil horizons were sampled every 10 years at a minimum depth of 1 m. During the soil monitoring programme, a 

total of 333 soil carbon measurements (replicates not included) were taken at the selected sites from 1992 until the end of 105 

Figure 1: Location (a) and soil classification (b) of the 46 agricultural long-term monitoring sites (BDF) in Lower Saxony, G ermany. 
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2015. Between the sites, the mineral composition was diverse, with soil textures predominantly sand (20 sites) or silt (21 sites), 

and less frequently clay soils (five sites; Fig. 1b). The key properties of the examined soils were highly variable between the 

sites, with SOC ranging from 0.84 % to 4.91 %, C/N from 5.25 to 23.66, bulk density from 1.14 g cm
3
 to 1.76 g cm

3
, and pH 

from 3.9 to 7.9. A special distinctiveness of the investigated area is the occurrence of so-called black sands, which are 

characterised by comparably high, stable C contents in sand-dominated locations (Vos et al., 2018). Site-specific details are 110 

summarised in the appendix (Table A1). 

T he soil and crop management at the sites was undertaken by the landowners or their associates. T herefore, there is a high 

degree of variability in the agronomic practices performed at the sites, such as tillage depth and type, fertiliser application, 

irrigation, crop rotation, harvest and crop residue management. T he reported management reflects common agricultural 

practices for the site-specific regions (more details are given by Höper and Meesenburg (2021)). Control treatments were not 115 

available for the sites. Simulated soil temperatures and moisture contents were evaluated using data from 11 German long-

term field experiments (Table A2; Flessa et al., 1995; Frolking et al., 1998; Schmädeke, 1998; Leidel et al., 2000; Wolf et al., 

2014; Flessa et al., 2017; Mallast et al., 2021; Winkhart et al., 2022). 

2.2 Model description 

T he MONICA model is comprised of subroutines that characterise plant growth, C and N dynamics, soil water and soil 120 

temperature (for a more detailed description see Nendel (2013)). Execution of the programme requires comprehensive input 

data, including weather, soil and management information, as well as parameter values describing model settings. Every model 

iteration simulates soil and plant conditions in a daily time step for soil depths up to two metres. Mathematically, the model is 

one-dimensional (point model) and the spatial representativeness of the model output depends primarily on the calibration 

data. Generally, the spatial representation ranges between one m² and one km². The soil profile is partitioned into 20 layers, 125 

each with 10 cm thickness of homogenous soil conditions. Soil input data are uniformly extrapolated to the relevant depth if 

the entered soil horizons total less than two metres. 

 According to the Daisy model, the SOC content is 

partitioned into three groups composed of dead native soil 

organic matter (SOM), living soil microbial biomass 130 

(SMB) and added organic matter (AOM), each of which 

contains one rapidly (SOMf, SMBf, AOMf) and one 

slowly decomposing subpool (Fig. 2; SOMs, SMBs, 

AOMs; Hansen et al., 1991; Bruun et al., 2003). These 

compartments are calculated separately for each soil layer.  135 

MONICA is usually initialised using a standard 

distribution of the SOC pools, which should correspond to 

Figure 2. Conceptual SOC pool distribution in MONICA, 

subdivided into the groups added organic matter (AOM), soil 
microbial biomass (SMB), soil organic matter (SOM) and inert  

organic matter (IOM). Except for IOM, each group consists of a 

slow (s) and a fast (f) pool. 

Gelöscht: Kaiser and Ruser, 2000; 

Gelöscht: Heitkamp et al., 2009; 
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an equilibrium at the beginning of the simulation (Bruun and Jensen, 2002). During the initialisation, inert SOC (IOM) is 140 

subtracted from the total SOC, based on equations adopted from Falloon et al. (1998). Then the SOM and SMB pools are 

determined by multiplying the manually entered SOC contents by the corresponding distribution parameters. The AOM pools 

are initialised and altered by added C contents from crop residues and organic fertilisers. Organic fertiliser and crop types are 

parameterised with specific N contents (NH4
+
 and NO3

-
), decomposition rate coefficients and pool distributions. Furthermore, 

plant biomass accumulation is divided into five groups: root, leaf, shoot, fruit and sugar. For perennial plants, an additional 145 

permanent structure is considered. Each group has its own parameters, controlling the growth rate and the biomass that can 

potentially be harvested or added to the AOM pools. Following a harvest command, accrued crop residues left on an 

agricultural field are immediately distributed to the AOM pools. Root remains are fragmented into the soil layers, depending 

on the root mass distribution in the soil profile. During tillage, the SOM content is distributed homogenously to the soil layers 

affected by tillage depth.  150 

T he initialised pools are managed by first-order degradation due to decomposition, each controlled by related parameters. This 

process follows a decay rate that is proportional to the pool size (Hansen et al., 1991). In addition, the decomposition rate of 

organic matter is affected by soil temperature, soil water and clay contents (Bruun et al., 2003; Farina et al., 2021). These 

environmental conditions influence each pool as rate-modifying factors, with the exception of clay, which solely affects SMBs. 

Decomposed AOMf and AOMs are subsequently transferred to the SMB pools, from where fractions are respired to the 155 

atmosphere as CO2 or alternatively converted to SOMs and SOMf, following a pool-specific carbon use efficiency coefficient. 

Biologically degraded SOMs and SOMf goes through a similar process and are either respired or returned to the SMB pools. 

A detailed description of the SOM turnover subroutine is depicted in Hansen et al. (1991) and Nendel (2013). 

2.3 Model modification 

Sixteen crop plants (amaranth, asparagus, buckwheat, carrot, flaxseed, field bean, hemp, lupine, serradella, spelt, strawberry, 160 

summer onion, sunflower, turnip, vicia) and eight types of organic fertilisers (biogas slurry, calf slurry, dried poultry manure, 

hoof and horn meal, lime-stabilised sewage sludge, sheep manure, vinasse) were added to the model. This enabled the 

reproduction of all occurring land management characteristics in the dataset. Parameter values for crop growth (Tesar, 1984; 

Jeuffroy and Ney, 1997; Allen et al., 1998), fertiliser nutrient contents (Möller and Schultheiß, 2015; Wiesler et al., 2016), 

crop residues and organic fertiliser decomposition and partitioning coefficients (Gilmour et al., 1998; Thuriès et al., 2001; 165 

Lashermes et al., 2009; Peltre et al., 2012; Semenov et al., 2019) were taken from the literature. Furthermore, a specific C 

content parameter (CorgContent) was defined for each crop and organic fertiliser, providing a more adequate replication of C 

inputs in comparison with the original constant (Möller and Schultheiß, 2015; Wiesler et al., 2016; Ma et al., 2018). In addition, 

an overhaul of existing crop and fertiliser types was undertaken, ensuring distinct and more reasonable values for essential 

parameters. Crop growth was calibrated according to the measured yield data, while the residue-to-crop product ratio was 170 

adapted from the literature and an ensemble of allometric functions (Bolinder et al., 2007; Franko et al., 2011; Jacobs et al., 
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2020; Taghizadeh-Toosi, 2020). The differences between the allometric functions served as indicators of uncertainty in the 

estimation of C inputs from crop residues. 

T he functions that describe the influence of soil temperature, water and clay content on decomposition were revised and 

parameterised. This enabled all relevant carbon turnover factors to be tested for uncertainty and subsequently calibrated. The 175 

optimal values of the parameters were used as the evidential basis for the prior probability distributions, which is necessary 

for model calibration by means of Bayesian inference. For further explanations, see Section 2.5 and Table 1. 

Extensive research provided evidence of the influence of temperature on physical soil processes, microbial metabolisms and 

enzymatic activities (Pietkäinen et al., 2005; Haddix et al., 2006; Meyer et al., 2018). The novel temperature function is 

described by the following function Eq. (1): 180 

𝑓𝑇𝑂𝐷 =
1

(1+𝑒
𝑇𝑑  −(𝑒+𝑇𝑜𝑝𝑡))

𝑄10/(𝑇𝑜𝑝𝑡/𝜋)
(−1 + 𝑄10

𝑇𝑑  

15.76) ,       (1) 

where 𝑇 is the daily soil temperature in °C, 𝑄10 is the Q10 temperature coefficient specified by the parameter QTenFactor, and 

𝑇𝑜𝑝𝑡 is the optimal temperature for decomposition in °C defined by the parameter TempDecOptimal (Fig. B1). From literature 

analysis, a range of 38.2 ± 7.5 °C was identified for the optimal temperature (Pietikäinen et al., 2005; Richardson et al., 2012; 

Menichetti et al., 2015; Liu et al., 2018; Čapek et al., 2019) and 2.6 ± 0.6 for the Q10 temperature coefficient (Haddix et al., 185 

2006; Vanhala et al., 2007; Conant et al., 2008; Gillabel et al., 2010; Meyer et al., 2018).  

Microbial aerobic respiration is often driven by changing soil water contents up to a point where water becomes a restricting 

property for the availability of oxygen (Curiel Yuste et al., 2007; Schimel et al., 2007). Based on analysis of incubation and 

field experiments, a Gaussian function was proposed, described by the following Eq (2): 

𝑓𝑀𝑂𝐷 = 𝑒−18(𝑊 𝐹𝑃𝑆𝑑 − 𝑀𝑜𝑝𝑡)2
 ,         (2) 190 

where 𝑊𝐹𝑃𝑆𝑑  is the daily water-filled pore space in % and 𝑀𝑜𝑝𝑡  is the optimal water-filled pore space (W FPS) for 

decomposition in % defined by the parameter MoistureDecOptimal (Fig. B2). Optimal WFPS for respiration was determined 

to be around 59.5 ± 9.9 % (Linn and Doran, 1984; Doran et al., 1990; Liebig et al., 1995; Aon et al., 2001; Gabriel and Kellman 

2014; Zhang et al., 2015). 

Several studies have indicated that increasing soil clay contents have a negative effect on respiration due to the reinforced 195 

inaccessibility of SOM for microorganisms (Six and Paustian, 2014; Churchman et al., 2020; Fomina and Skorochod, 2020). 

In the MONICA model, the modulating effect of clay on the decomposition rates of SMBs is by default adjustable through the 

parameter LimitClayEffect. An inverse logistic function was proposed, described by the following Eq (3): 

𝑓𝐶𝑂𝐷 =
(1−𝐿𝐶𝐸)

(1+𝑒− 𝜋 + 𝐶 ∗ 16)+𝐿𝐶𝐸
 ,         (3) 

where 𝐶 is the site-specific clay content in kg kg
-1

 and 𝐿𝐶𝐸 is the limit to which the clay content affects the mineralisation 200 

defined by the parameter LimitClayEffect (Fig. B3). Laboratory evidence suggests that soils amended with clay minerals reduce 

mineralisation rates by ~1.5 ± 1.1 % for every percent of clay added to the soil, followed by a gradual reduction in effectiveness 
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after a certain clay content is exceeded (Nguye and Marschner, 2014; Schapel et al., 2018; Riaz and Marschner, 2020; Liddle 

et al., 2020).  

2.4 Screening of variables relevant to soil carbon turnover 205 

For the purpose of understanding the relationship between input variables, parameters and the predictive proficiency of the 

MONICA model, a comprehensive sensitivity analysis was conducted using an improved Morris elementary effects screening 

method (Fig. C1; Morris, 1991; Campolongo et al., 2007; Pujol, 2009). T he algorithm demonstrates the capability of 

determining the importance of parameters in relatively short computing times (Campolongo et al., 2007; Confalonieri et al., 

2010). The effect of 51 variables was examined, of which 15 were environmental, six were related to the crop, four to the 210 

management and 26 to SOC turnover. Of the turnover parameters, six were unique for each fertiliser and crop residue type.  

Depending on the tangible properties of the variables (factual or conceptual), the upper and lower bounds of each factor were 

either derived from the literature or intuitively inferred from model characteristics. After building the parameter space, all the 

factors were scaled to a range from zero to one. During each iteration, one variable was changed to a random value in the 

defined space (levels = 5, grid.jump = 3) while the remaining variables were unaltered. Subsequently, the effect of the modified 215 

factor on SOC stocks was assessed by comparing the present iteration with the previous one. Based on the magnitude of the 

changes and the degree of the interaction with other factors, a parameter importance ranking was identified using the two 

measures µ
*
 and σ (Campolongo et al., 2007).  

Common recommendations for the number of model iterations are between 10 to 50 for each variable considered (Campolongo 

et al., 2007). However, several studies suggest a much higher number of iterations to achieve robust results (Sarrazin et al., 220 

2016; Vanuytrecth et al., 2014; Pianosi et al., 2016). As a base value, 10
3
 iterations and three runs were used in total to 

accomplish adequate coverage of possible input spaces and to estimate the uncertainty in the elementary effects. 

T he programming language R (version 4.1.0) with the graphical user interface RStudio (version 1.4.1717) and the sensitivity 

package (Iooss et al., 2020; version 1.26.0) were used for screening of variables relevant to soil carbon turnover in the 

MONICA model. 225 

2.5 Parameter calibration 

Bayesian inference techniques are an efficient approach for the calibration of process-based models (Vrugt, 2016; Van de 

Schoot et al., 2021). Common methods for prior elicitation, likelihood specification and posterior distributions have been 

extensively researched (Van de Schoot et al., 2021). For instance, Bayesian calibration has been applied successfully to forest 

biomass growth (Van Oijen et al., 2005; Svenson et al., 2008) and agro-ecosystem models (Lehuger et al., 2009; Gurung et 230 

al., 2020). 

As a first step, the experimental data were divided into one subset for calibration and one for validation. In the process, the 

data were clustered into three groups based on their initial SOC stocks in order to achieve a general representation of the 

variability between the sites. From each of the groups, two thirds of the sites were randomly sampled for model calibration 
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(totalling 31 sites) and one third for model validation (totalling 15 sites). The parameter selection process for the calibration 235 

was adapted from the results of the sensitivity analysis and the recommendations from Minunno et al. (2013), excluding local 

and 25 % of the least important parameters.  

T he calibration of the 14 selected parameters was undertaken by means of Bayesian statistical inference. In Bayesian 

calibration, the determination of possible parameter values is based on evidential probabilities (Van de Shoot et al., 2021). 

Accordingly, it was important that the upper and lower limits of the parameters were based on observed, realistic values. 240 

T herefore, a comprehensive literature analysis combined with expert knowledge provided the basis for the prior probability 

distributions, as shown in Section 2.3 (Oakley and O’Hagan, 2007). A weakly informative prior probability distribution was 

constructed, with the mean of all identified measurements as the most likely value and the observed lower and upper bounds 

as the variance for each parameter (T able 1; Van de Schoot et al., 2021). At the beginning of the calibration, a random initial 

value (within the prior probability distribution) was generated for each parameter, creating a parameter vector for each iteration. 245 

Selection for subsequent parameter values was limited by the minimum and maximum value of the prior probability 

distribution and a randomly determined step size corresponding to 1-25 % of the parameter space (Van Oijen et al., 2005). 

Accordingly, the subsequent parameter value changes from the previous value by a minimum of 1 % and a maximum of 25 % 

of the entire parameter space. During each iteration, MONICA was executed using the created parameter vector. Afterwards, 

the generated output was compared with the measured data using a log-Laplace likelihood function suggested by Vrugt (2016), 250 

estimating the association between simulated and observed values. This association was a representation of the posterior 

probability of each parameter vector. T he Laplace distribution showed robustness against outliers and random variations, 

resulting in less biased and more consistent parameter estimates (Schoups and Vrugt, 2010).  

A Markov Chain Monte Carlo (MCMC) method, namely the Metropolis-Hastings algorithm, was used for random sampling 

from proposed values to estimate the posterior probability distribution (Fig. D1; Metropolis et al., 1954; Hastings, 1970; 255 

Lehuger et al., 2009). In this process, the likelihood function serves as an indicator to generate a chain of accepted vectors. A 

sample was accepted in the sequence if the current proposal divided by the previous proposal was greater than or equal to a 

random number between 0 and 1. 
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Table 1. Description of the 14 parameters chosen for the calibration of the C submodel in MONICA. The prior distribution depicts 265 
the upper and lower bounds of possible parameter values inferred from the literature; the posterior distribution describes the 

median value of the posterior and the corresponding standard deviation. 

Param eter Prior distribution Posterior distribution 

Notation Unit Default 

value 

Minim um  

value 

Maxim um  

value 

Reference Mean Standard 

deviation 

AOM_FastUtilizationEfficiency  %  0.1 0.1 0.65 Manzoni et al. (2012), Spohn et al. 

(2016), Qiao et al. (2019), 

Schroeder et al. (2020), Agum as et 

al. (2021) 

0.27 1.2-3 

AOM_SlowUtilizationEfficiency  % 0.4 0.1 0.65 0.16 0.01 

MoistureDecOptim al % NA 0.3 0.76 Linn and Doran (1984), Doran et al. 

(1990), Liebig et al. (1995), Aon et 

al. (2001), Gabriel and Kellm an 

(2014) 

0.45 3.1-3 

Lim itClay Effect % 0.25 0.01 0.5 Nguy e and Marschner (2014), 

Schapel et al. (2018), Riaz and 

Marschner (2020), Liddle et al. 

(2020) 

0.34 2.2-3 

QTenFactor Q10 NA 1.6 4.2 Haddix et al. (2006), Vanhala et al. 

(2007), Conant et al. (2008), 

Gillabel et al. (2010), Mey er et al. 

(2018) 

3.15 0.04 

PartSMB_Fast_to_SOM_Fast % 0.6 0.4 0.8 Kindler et al. (2006), Liang and 

Balser (2011), Miltner et al. (2012), 

Kallenbach et al. (2016) 

0.66 2.1-3 

PartSMB_Slow_to_SOM_Fast % 0.6 0.4 0.8 0.61 1.3-3 

SMB_FastDeathRateStandard d-1 0.01 0.01 0.25 McGill et al. (1986), Joergensen et 

al. (1990), Throckm orton et al. 

(2012) 

0.12 1.1-3 

SMB_SlowDeathRateStandard d-1 1.0-3 3.0-4 0.01 5.4-3 5.6-5 

SMB_UtilizationEfficiency  d-1 0.0 0.1 0.88 Throckm orton et al. (2012), 

Cream er et al. (2019), Buckeridge et 

al. (2020), Gey er et al. (2020), 

Shoem aker et al. (2021) 

0.43 6.6-3 

SOM_FastDecCoeffStandard d-1 1.4-4 1.0-5 2.8-4 Paustian et al. (1992), Trum bore 

(2000), Gleixner (2013), Wang et al. 

(2016), Shi et al. (2020) 

8.6-5 1.9-5 

SOM_SlowDecCoeffStandard d-1 4.3-5 6.4-7 5.0-5 1.3-5 4.0-7 

SOM_FastUtilizationEfficiency  % 0.5 0.1 0.88 Manzoni et al. (2012), Saifuddin et 

al. (2019), Qiao et al. (2019), 

Schroeder et al. (2020), Agum as et 

al. (2021) 

0.35 6.8-3 

SOM_SlowUtilizationEfficiency % 0.4 0.1 0.88 .49 2.2-3 

T hree chains with 10
5 

iterations and different starting values were created to obtain a reliable inference on the posterior 

distribution (Van de Schoot et al., 2021). Following the recommendation of Van Oijen et al. (2005), the first ten percent of the 

accepted vectors were discarded as unrepresentative “burn-in” of the chains. Stationary distribution of the chains was verified 270 

using the empirical method developed by Gelman and Rubin (1992), which compares the variance between and within the 
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chains. An adequate convergence was obtained if the Gelman-Rubin shrink factor was < 1.2 (Brooks and Gelman, 1998). The 

R package coda (Plummer et al., 2006; version 0.19-04) was used for random sampling from the posterior distribution and 

verification of convergence. 

2.6 Quantitative methods and model evaluation specifics 275 

T he statistical methods for evaluating the sampling distributions and model performances were conducted with the R packages 

hydroGOF (Zambrano-Bigiarini, 2020; version 0.4-0) and car (Fox et al., 2019; version 3.0-12). Shapiro-Wilk (Shapiro and 

W ilk, 1965) and Levene’s tests (Levene, 1960) were used on the measured fluxes to test the population for normality and 

variance equality. The Shapiro-Wilk test resulted in rejection of the null hypothesis for the variables (p < 0.001) inferring that 

the examined datasets were not normally distributed. The Levene’s test resulted in acceptance of the null hypothesis, implying 280 

that the variance in the samples was homoscedastic (p = 0.88). Using the interquartile range criterion (Jargowsky and Yang, 

2005), 19 outliers were identified in the data, which represents ~6 % of the cases. Q-Q plots confirmed the assumption that the 

data points were nonlinear distributed.  

T o improve representativeness, the years 1992 to 2000 were excluded from the analysis, reducing the observed number of 

cases from 333 to 223. The reason for this approach was justified by the inherent risk of statistical biases from overfitting of 285 

measured and simulated values due to the initialisation of simulated SOC stocks based on measured values, as significant 

changes in SOC stocks usually take several years. Furthermore, a spin-up period of 20 simulated years was included to ensure 

a realistic reflection of available fresh matter in the soil, since the AOM pools were initialised equal to zero. The chosen period 

corresponds to the maximum duration of mineralisation of most AOM (Thuriès et al., 2001; Semenov et al., 2019).   

Based on the reduced sample size and the abovementioned statistical assumptions, Kendall’s rank correlation coefficient (Τ; 290 

Kendall, 1948) was selected to assess the statistical dependence between the observed and simulated values. Kendall’s Tau is 

the preferred method for measuring the ordinal association in data consisting of small sample sizes and outliers, and is more 

robust and efficient than the Pearson correlation coefficient and Spearman’s rank correlation coefficient (Bonett and Wright, 

2000). In addition, the model results were evaluated with the statistical methods mean absolute error (MAE; W illmott and 

Matsuura, 2005) for analysis of the average error between observed and simulated pairs, and with the Nash-Sutcliffe model 295 

efficiency coefficient (NSE; Nash and Sutcliffe, 1970) to assess the predictive skill of the simulation model (Fig. E1). 

Furthermore, the slope-intercept was considered in order to better assess the behaviour of the models. 

3 Results 

3.1 Simulation of soil and plant growth variables 

Soil temperatures were well predicted, with an average error of just under ~1.8 °C (Table 2). Low temperatures were slightly 300 

overestimated and high temperatures were underestimated. In comparison, soil water contents were predicted somewhat less 

favourably, with an average error of ~5.4 %. Nonetheless, the predictive power was better than the mean of the observations. 

Gelöscht: overassessment 
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T he model tended to slightly overestimate moderate water contents and underestimate the measured variance. A comparison 

of the default with the calibrated plant growth parameters was not performed, since new crops were added to the model in 305 

order to simulate all possible systems. The calibrated plant growth model achieved a good representation of measured yields, 

with an average error of less than ~1.6 Mg DM ha
-1 

for all crops. Overall, there was a linear relationship between the calibrated 

and measured yields. However, there was a high variability in the estimation quality between different crop types. Some crops, 

such as triticale and potatoes, were modelled less adequately than silage maize and sugar beet, which was partly explained by 

the differences in the number of observations and the variance in yields. The C inputs were compared with the estimated mean 310 

of the allometric functions. The model produced an average error that was similar to the calculated difference between the 

allometric functions (~1 Mg DM ha
-1

).  

Table 2. Statistics describing the performance of the MONICA model regarding soil and plant growth variables. The statistics 

depicted: Kendall’s rank correlation coefficient (T), Nash-Sutcliffe model efficiency coefficient (NSE), mean absolute error (MAE), 

slope and intercept for characterising the relationship between measured values (except values for C inputs, which were calculated 315 

with allometric functions), and simulated values. 

Variables T NSE MAE Slope Intercept 

Soil tem perature (n = 24576) 0.83*** 0.86 1.84 [°C] 0.93 1.17 

Soil water content (n = 9636) 0.63*** 0.39 5.37 [%] 0.84 7.83 

Yield (n = 846) 0.65*** 0.81 1.62 [Mg DM ha-1] 0.99 0.07 

C-Input (n = 846) 0.4*** 0.32 0.98 [Mg DM ha-1] 0.88 0.38 

*** p < .001, ** p < .01, * p < .05 

3.2 Quantification of uncertainty and parameter calibration 

A strong relationship was identified between SOC stock change rates and C inputs through organic fertilisation and crop 

residues (T able F1; OrganicFertilisation, AOM_DryMatterContent, CorgContent), given the upper and lower bounds of 320 

possible values. Additionally, these factors were less affected by other variables, noticeably by the lower σ on average in 

comparison with µ*. The climate variables temperature (Temperature) and precipitation (Daily_Precipitation) were also of 

greater importance to the SOC turnover rate, but had a higher standard deviation of elementary effects. Except for solar 

irradiance (Global_Radiation), temperature and precipitation, all other climatic factors had an insignificant effect on SOC 

stocks. Of all the variables that were initialised at the beginning and remained static during the model run, the initial SOC 325 

stock (SoilOrganicMatter) was the most influential, followed by the site-specific field capacity (FieldCapacity), soil bulk 

density (SoilBulkDensity) and pore volume (PoreVolume). Other site-specific variables (Sand, Clay, PermanentWiltingPoint, 

pH, Sceleton) were comparably less important. T he management factors tillage (Tillage), mineral fertilisation 

(MineralFertilisation), irrigation (Irrigation) and N content in the added organic matter (CN_Ratio_AOM_Slow, 

CN_Ratio_AOM_Fast, CN, AOM_NH4Content, AOM_NO3Content) had a small effect on the SOC turnover rate. σ values 330 

were generally higher than the overall importance of the input factors, indicating that there is probably an interaction and non-
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linear effect between the environmental and management variables. In comparison, the sensitivity of the turnover variables 

was less pronounced, and revealed three particularly important parameters. One C pool parameter 

(SOM_SlowDecCoeffStandard) and two weather-regulated decomposition factors (QTenFactor, MoistureDecOptimal). They 

were similar in significance to precipitation, initial SOC and field capacity. Changes in the parameters QTenFactor and 335 

MoistureDecOptimal were more important than in LimitClayEffect, which was in accordance with the influence of clay being 

limited to the SMBs pool. The effect of the factor describing the optimal temperature for decomposition (TempDecOptimal) 

was negligible, but considerably gained in importance when a higher range of possible values for the variable temperature was 

Figure 3. Posterior probability distribution (vertical bars) of 14 C submodel parameters calibrated over the range of the prior  

probability distribution (density curve). The posterior is depicted as the distribution of accepted values determined by rando m 

sampling from 10
5
 proposed values. The vertical red lines represent the optimal values as the median of the posterior and the blue 

lines the initial values of each chain. 
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included. Crop and fertiliser-specific turnover parameters were also sensitive and coincided with the importance of C inputs 

for SOC stock change rates. Less pronounced sensitivities involved the parameters describing the microbial dynamic (besides 340 

the parameter SMB_UtilizationEfficiency), distinguishable by the SMB in the name. Non-linear effects and interactions were 

more strongly pronounced in the SOC turnover parameters.  

Figure 3 shows the results of the calibration process, with the posterior distribution curve representing the frequency of 

accepted values and the vertical red line indicating the optimal value as the median of the posterior. Bayesian inference reduced 

the uncertainty for all parameters, converging the posterior distribution to a normal or log-normal distribution. Throughout the 345 

random sampling, the entire plausible parameter space was covered and curve progressions showed that the optimal values 

were probably within the specified limits. During the calibration process, the posterior distribution of most parameters became 

narrower in comparison with the prior, confirming the convergence to the optimal values. Similar to Lehuger et al. (2009), the 

acceptance rate for the proposed parameter values was ~25 %. Based on the results of the Gelman-Rubin diagnostics, adequate 

convergence was achieved for all parameters (Fig. G1), signifying the unbiased outcome of the MCMC. The correlations 350 

across parameters remained below a coefficient of 0.2, with the exception of QTenFactor and SOM_SlowDecCoeffStandard 

(Fig. H1). 

3.3 Model performances 

T he statistical methods showed that the default MONICA model (MONICAdef) was inferior to the RothC, ICBM and C-TOOL 

models, and produced results similar to CENTURY and CCB (Table 3; Fig. 4; Fig. I1). The mean absolute error was the 355 

highest of all the models, but was within the margin of error compared with CENTURY and CCB for all sites and with CCB 

for the validation sites. Kendall’s rank correlation coefficient and Nash-Sutcliffe model efficiency coefficient values were 

within the margin of error for all models and sites, and therefore showed insignificant differences in the predictive skill of the 

models.  

MONICAdef estimations deviated on average by more than ~10 % from the measurements. Inclusion of a C content parameter 360 

for different crop residues and organic fertilisers in the MONICA model (MONICAmod) improved the accuracy of predictions 

for C stock changes by ~16 % for all sites and by ~8 % for the validation sites, while the additional global parameter calibration 

(MONICAcal) improved MONICA’s average estimation error by ~29 % for all sites and by ~30 % for the validation sites. 

Compared to MONICAcal, only RothC achieved a lower MAE for all sites. The differences between RothC and MONICAcal 

were within the margin of error for the validation, but not for all sites. MONICAcal, MONICAmod, RothC, ICBM and C-TOOL 365 

produced errors within the average standard deviation between the replicates of the C measurements for the validation (7.76 

Mg C ha
-1

) and for all sites (5.01 Mg C ha
-1

). In contrast, MONICAdef, CENTURY and CCB had errors that were not within 

the average standard deviation for all sites. Each model was capable of producing results corresponding to the 95 % confidence 

interval for the validation sites (6.4 Mg C ha
-1

). No model achieved the same for all measurements (3.3 Mg C ha
-1

). 

  370 
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Table 3. Statistics describing the performance of the default (MONICAdef), the modified, uncalibrated (MONICAmod), and the 

modified, calibrated (MONICAcal) soil carbon submodel in MONICA in comparison with five C turnover models for all sites. The 

first ten years were excluded from the analysis (n = 223). The following statistics are depicted are Kendall’s rank correlation 

coefficient (T), Nash-Sutcliffe model efficiency coefficient (NSE), mean absolute error (MAE) and the slope and intercept for 

characterising the relationship between measured and simulated C stocks.  375 

Model T NSE MAE [Mg C ha-1] Slope Intercept 

MONICAdef 0.83*** 0.91 5.54 1.07 0.43 

MONICAmod 0.83*** 0.93 4.68 1.11 -3.8 

MONICAcal  0.85*** 0.95 3.91 1.02 -0.83 

RothC 0.85*** 0.96 3.69 1.03 -0.86 

C-TOOL 0.83*** 0.94 4.43 1.04 -0.23 

ICBM 0.85*** 0.94 3.99 0.93 3.43 

CENTURY 0.79*** 0.92 5.31 1.1 -4.19 

CCB 0.8*** 0.92 5.44 0.96 -1 

*** p < 0.001, ** p < 0.01, * p < 0.05 

Based on the outcomes of the NSE method, all models performed better than the mean of the measurements, with MONICAdef 

achieving the lowest and RothC the highest scores. The differences between MONICAcal and MONICAdef were within the 

margin of error. T he Kendall rank coefficient displayed a significant statistical dependence between the simulated and 

measured data, with MONICAcal, RothC and ICBM achieving the best results and CCB and CENTURY the weakest results. 380 

Overall the T  coefficients were high, with MONICAdef achieving average results and MONICAcal above average results in 

contrast with the other models. Of the six models, MONICAcal generally produced better results than CENTURY, C-TOOL 

and CCB. The slope and intercept of the statistical analysis indicated that MONICAdef generally overestimated decomposition, 

while MONICAcal produced results closer to the measured data. Overall, MONICAdef underestimated the SOC stocks at 24 

sites and overestimated them at two sites, leaving 20 sites that were simulated within the standard deviation of the 385 

measurements. In comparison, MONICAcal underestimated the SOC stocks at six sites and overestimated them at nine sites, 

leaving 31 sites that were simulated within the standard deviation of the measurements. The calibration resulted in a model 

behaviour that was comparable with RothC.  
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4 Discussion 

4.1 Differences in models and performances 390 

T he MONICA model featured a plant growth, nitrogen and soil water submodel, while RothC, CCB, ICMB, CENTURY and 

C-TOOL did not. Smith et al. (1997) have argued that coupling C turnover with agro-ecosystem submodels will be necessary 

to simulate the impact of global change on agricultural production and SOC changes. However, they also assumed that simpler 

Figure 4. Linear regression between simulated and observed SOC stocks for 46 BDF sites, all years and 333 measurements for the 

MONICA (a), RothC (b), C-TOOL (c), ICBM (d), CENTURY (e) and CCB (f) models. 
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models have an advantage in simulating various land uses due to the lack of adequate data and the necessary parameterisation 

of complex models. Other literature shows that C turnover models coupled with sophisticated plant growth models do not 395 

result in a better performance, highlighting that complex models are error prone (Mueller et al., 1996; Parton, 1996; Li et al., 

1997). One explanation could be that some processes, such as the effect of phosphorus and other nutrients or the impact of 

plant diseases on crop growth, are not included in the models. In addition, information on crops and plant residues is often not 

available, so that measured values from other publications must be used to determine the required parameter values for crop 

development and ultimately the C inputs. This also applied to the data requirements of the MONICA model, which led to the 400 

necessary parameterisation of new crop and fertiliser types in order to simulate all sites. Since the data available for this 

publication did not contain additional information on the organic fertilisers and crops, allometric functions and values of 

differing genotypes and growing conditions had to be used to compare ingoing C inputs. Although we were able to adequately 

replicate yields as a proxy for modelling C inputs from crop residues, some discrepancies between model and observed yields 

remained. This could have led to an inaccurate reproduction of C inputs, since the specific properties of organic fertilisers and 405 

crop residues are characterised by high standard deviations (Möller and Schultheiß, 2015; Wiesler et al., 2016; Ma et al., 2018). 

In contrast, the C input estimation for the simpler models was based on observed crop yields for each site and allometric 

functions evaluated for Germany in previous studies (Dechow et al., 2019; Riggers et al., 2019). We assumed that an C input 

estimation based on measured yields should better describe the variability of C inputs between sites. However, the results of 

the present study did not confirm the assumption that model complexity is an indicator of predictive ability in process-based 410 

models. Notable differences were driven by model characteristics, like SOM pool initialisation or model-specific response 

functions, some of which were controlled by parameterisation. Each model showed weaknesses depending on the specific 

conditions at each site (Fig. J1 to J7). For instance, MONICAdef overestimated decomposition at ~52 % at all sites in the 

dataset, but managed to predict the C losses at the Fuhrberg and Vinnhorst sites better than MONICAcal. T hese sites had 

undergone recent land-use change and had on average higher initial SOC stocks and losses over the measured period. In 415 

temperate agro-ecosystems, conversion from grassland or forest to arable land is considered to be one of the main reasons for 

C release (Vos et al., 2019; Poeplau et al., 2020). Correspondingly, sites with recent land-use change showed the strongest 

decline in C stocks and were therefore a good indicator of the downward trend in SOC stocks. Removing sites with a cultivation 

period < 50 years (n = 10) resulted in a balanced C budget (0.02 t C ha
-1

 a
-1

), which also produced an even better performance 

by the calibrated MONICA model. The magnitude of changes in SOC stocks for all sites was comparable with other studies 420 

conducted in temperate climates, representing a general trend for German arable land (Steinmann et al., 2016; Sanderman et 

al., 2017; Vos et al., 2019; Seitz et al., 2022).  

All the models underestimated the magnitude of variation in the natural SOC dynamics. The best simulation qualities were 

generally achieved at sites with slowly changing SOC stocks. Some sites distinguished by dramatic changes in SOC were 

especially problematic for the models to simulate, in particular the Dinklage site (BDF033_L), which was characterised by 425 

high C losses, and in contrast the Reinhausen site (BDF051_L), which was characterised by increasing C stocks. CENTURY 

and CCB, which underperformed in comparison with the other models, were the best at predicting these highly variable sites. 

Gelöscht: re

Gelöscht: was no additional information in the database 

Gelöscht: about430 

Gelöscht:  residue contents

Gelöscht: standard 

Gelöscht: ¶

Gelöscht:  that 

Gelöscht:  partially435 



18 
 

T he other models overestimated the SOC stock for BDF033_L and underestimated it for BDF051_L. In MONICAcal, these 

two sites caused ~10 % of the mean absolute error.  

At site BDF033_L, the farmer was cultivating winter barley and corn as energy crops, but experienced declining corn yields 

over the measured period. This probably led to a negative C balance, even though the field was extensively fertilised with pig 

and bull slurry. In MONICA, organic fertilisation was the best indicator of SOC changes, while there was no significant 440 

relationship between the amount of organic amendments and SOC stock changes in the measured data. Accounting for the 

quantitative variations in manure application supports the assumption that organic fertilisation is a weak predictor of SOC 

turnover rates, and correspondingly was overestimated in the model. However, numerous studies clearly show a positive effect 

of organic amendments on SOC stocks (Koishi et al., 2020; Gross and Glaser, 2021; Roß et al., 2022). Since the BDF data did 

not feature control treatments, it was not possible to undertake a comparative analysis of the individual sites on the effect of 445 

organic inputs. Another consideration concerned site-specific uncertainties in the necessary model input. The properties of 

organic fertilisers and residues were unknown, and thus had to be supplemented with standard values from the literature. Each 

fertiliser and crop type had fixed C ratios in the models, while in reality these inputs have a highly variable composition and 

can vary greatly depending on farm management, animal diet, climate and soil conditions (Schnug et al., 1996; McCartney et 

al., 2006; Cajamarca et al., 2019). There are three possible reasons for the disparity between the models and observations at 450 

site BDF033_L: i) the fertiliser and crop-specific nutrient contents were inaccurate, leading to an overestimation of C inputs, 

ii) the C losses from harvesting were underestimated, or iii) the site and environmental characteristics and their effect on SOC 

decomposition were incorrectly simulated. 

In comparison, at site BDF051_L the farmer had transitioned to a management with reduced tillage intensities and no 

cultivation of root crops, and managed to increase the C content in the upper soil layer by ~30 Mg C ha
-1

 during the measured 455 

time period. Although the effect of conservational tillage is still being debated, numerous studies support the effect measured 

at site BFD051_L (Freibauer et al., 2004; Luo et al., 2010). In the MONICA model, tillage uniformly distributed SOC in the 

affected soil layers. T his was supported by the sensitivity analysis, which showed that tillage had an effect when there was 

heterogeneity in the soil profile. However, based on this study’s data, it is likely that the model underestimated the effect of 

tillage on SOC decomposition. Possible reasons for the disparity were either an imbalance of C inputs into the topsoil or 460 

missing functions that describe the processes involved, such as the effect of tillage on soil aggregation, hydraulic properties 

and root growth (Mondal et al., 2020). The effect of tillage on SOC stocks is currently absent from other C turnover models, 

such as RothC. Jordon and Smith (2022) suggest modifying the decomposition rate to achieve a realistic representation of the 

effect of tillage on SOC, although they assume a small effect of tillage on SOC stocks.  

Another probable reason for the differences between the model and measurements were the climate variables. In the data, only 465 

precipitation correlated significantly with SOC stock change rates, while in MONICA this was important, but less so than 

temperature. Sierra et al. (2015) argue that functions in process-based models tend to overestimate the temperature effect on 

decomposition rates and this imbalance cannot be offset by the moisture effect. T his was also likely in the MONICA model, 

since the effect of temperature on decomposition was generally twice as strong as moisture. The importance of climate 
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variables is still being debated, with Luo et al. (2017) and Carvalhais et al. (2014) finding major effects on SOC changes, while 470 

only minor effects have been established by Fujisaki et al. (2018) and Vos et al. (2019). 

4.2 Implications for improving MONICA’s soil carbon turnover model  

Most biogeochemical models were developed many decades ago. This is also true of the C turnover subroutine in MONICA, 

which is based on the Daisy model (Hansen et al., 1991; Abrahamsen and 

Hansen, 2000). Therefore, it is based on the conceptual design of multiple SOC pools with pool-specific turnover rates that 475 

are not associated with clear, measurable soil properties (Bruun and Jensen, 2002). This circumstance makes it difficult to 

clearly define how the model could be optimized using response functions, but also the initialisation of the model. Bruun and 

Jensen (2002) argue, that it can be important to use plausible assumptions to initialise the SOM subroutine using radiocarbon 

measurements or the land-use history. Nonetheless, functions in C turnover models need to be improved in order to estimate 

SOC dynamics across a wide range of spatiotemporal and agronomic conditions (Smith et al., 1997). Correspondingly, general 480 

insights into soil processes are needed to justify the introduction of additional or improved functions. There needs to be further 

examination of existing mechanisms and the interactive effects of site-specific characteristics, but also missing factors that 

affect microbial abundance, diversity and activity (Louis et al., 2016). Microorganisms in particular play a significant role in 

the soil carbon cycle by controlling the rate of mineralisation and promoting plant growth by improving mineral nutrition or 

stimulating immune and stress reactions in crops (Tardy et al., 2015; Berg et al., 2017). This could be advantageous for 485 

representing the processes like priming or SOC responses on warming. However, microbial models as reviewed in Chandel et 

al. (2023) vary widely in terms of model structure, processes considered and parameters required, which makes it all the clearer 

that there is currently no consensus on which approach is best suited to represent the biosphere. Some of the models are 

evaluated and compared in Sulman et al. (2018) using experimental data from litter input studies and warming experiments. 

In evaluating these models, they find high variability in model results and conclude that first-order models already produce 490 

divergent projections due to parameter uncertainties, and that structural diversity among models would exacerbate these 

uncertainties. W e believe that increasing differences between models due to structural diversity does not represent a 

degradation in predictive ability, but rather a more accurate estimate of predictive uncertainty (Bradford et al., 2016; 

Lovenduski and Bonan, 2017). It is unclear if the adoption of one of the various microbial approaches could increase the model 

accuracy of MONICA. Because of the increased model complexity and number of parameters, the evaluation and calibration 495 

of an incorporated microbial model for regional conditions, would also require a more constraining data set, preferably 

including those events where microbial models might outperform models based on first-order kinetics. 

T his study attempted to introduce two changes to the default MONICA model: i) a revision, parameterisation and calibration 

of the functions that describe the influence of soil temperature, water and clay content on decomposition, and ii) an integration 

of a crop and fertiliser-specific C content parameter. Alteration of the temperature function involved mathematically 500 

reformulating the original exponential function into a surge function. The reason for this change was that the default equations 

did not consider the decreasing activity of soil microorganisms at temperatures above 30 °C (Liu et al., 2018; Fang and 
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Moncrieff, 2001). This could lead to an overestimation of mineralisation, especially under globally increasing temperatures 

caused by climate change (DW D, 2020). Further improvements could be achieved by incorporating changes in the optimal 

temperature for decomposition based on site-specific varieties of microbial communities and C qualities (Fierer et al., 2006). 

T he clay function was changed to an inverse logistic function on the basis of the original equation. Many studies suggest that 510 

increasing soil clay contents have an adverse effect on SOC decomposition due to the reinforced inaccessibility of organic 

substances for decomposers (Six and Paustian, 2014; Churchman et al., 2020; Liddle et al., 2020). Adversely, several studies 

have found no effect or even a positive effect (W ei et al., 2014; Fissore et al., 2016; Zhang et al., 2019). There are multiple 

explanations for this disparity, e.g. different clay types, residue qualities and microbial diversities (Nguye and Marschner, 

2014; Fissore et al., 2016). Without knowing the exact underlying processes to explain the variability and limitation of the 515 

available data, only minor changes were made when modifying the clay function. Removing the clay factor might reduce the 

complexity of the model, but could also negatively impact the predictive capability of the SOC turnover routine. Further 

evaluation is needed to assess the importance of the clay factor on decomposition and therefore change the function 

comprehensively.  

Furthermore, the soil moisture factor, which was originally based on the pressure potential derived from the van Genuchten 520 

model (Van Genuchten, 1980; Abrahamsen and Hansen, 2000), was simplified. The default moisture function was directly 

controlled by soil water content, soil texture, bulk density and SOC stocks, while the revised Gaussian function was only 

regulated by soil water content. It is argued that the effect of texture on the decomposing community could be overestimated, 

since clay as a factor was already included in a function limiting mineralisation. In addition, the influence of soil texture on 

decomposition proved to be inconsistent, therefore requiring a better understanding of underlying processes (Doran et al., 525 

1990; Scott et al., 1996), while the influence of bulk density was limited by model characteristics as it remained static after 

initialisation, hampering the reproducibility of management-related soil disturbances on the moisture function. Linn and Doran 

(1984) showed that the effect of ploughing on bulk density increased the microbial activity and decreased the optimum soil 

moisture content, while other studies have also determined an impact of soil structure changes on the mineralisation rate 

(Franzluebbers, 1999; Vilkiene et al., 2016). Another particularity of the default moisture function was that the optimal water-530 

filled pore space for microbial activity was estimated to be between 10-25 % for sandy soils and 30-35 % for clay soils, while 

in the literature a general value of ~60 % is considered the most probable (Linn and Doran, 1984; Doran et al., 1990; Liebig 

et al., 1995; Aon et al., 2001; Gabriel and Kellman 2014; Zhang et al., 2015). Nevertheless, the simplification is probably less 

error-prone and easier to understand, but at the same time not optimal for depicting the variance in microbial diversity and 

their environmental preferences. T he inclusion of a more complex moisture function should be based on definite results.  535 

As shown with the crop and fertiliser-specific C content parameter, increasing the complexity of a model can be important for 

improving performance. According to the sensitivity analysis and the results, the addition of a C content parameter was 

necessary for the representation of realistic C inputs. However, the limited availability of data hinders the determination of 

precise C contents in plant residues and organic fertilisers. As mentioned in Section 4.1, values adopted from the literature 

could have a detrimental effect on the model’s predictive capability. Therefore, measurements of C contents in crop residues 540 
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and organic fertilisers should be part of the experimental design when investigating changes in SOC stocks. To further optimise 

the model, it is recommended that the C inputs from crop residues be divided into aboveground and belowground biomass. 

Currently there is no distinction between roots, shoot and leaves in the AOM pool, even though there is good evidence that 

roots in particular have a much longer mean residence time in the soil (Poeplau et al., 2021; Sokol and Bradford, 2019). 

T he above suggestions for improvement relate solely to the soil carbon model, but in complex models such as MONICA, the 545 

different subroutines can be interdependent and changes in one could have a relevant impact on another function. Especially 

the feedbacks between the C and N cycle, plant growth and soil water contents should be considered in future studies.  

5 Conclusions 

T he evaluation of the original MONICA model revealed weaknesses in estimating SOC trends. Using the default 

parameterisation, decomposition was overestimated and the statistical performance was inferior compared with the C turnover 550 

models RothC, ICBM and C-TOOL. MONICA’s capabilities of simulating SOC trends increased when more realistic functions 

were introduced describing the effects of soil temperature, moisture and clay on decomposition, coupled with a better 

specification of C inputs from organic fertilisation and crop residues. A sensitivity analysis displayed the importance of C 

inputs and the environmental factors of temperature and precipitation, as well as the corresponding parameters on SOC 

variation in the model. A successful calibration by means of Bayesian inference improved the parameterisation of the C 555 

turnover subroutine. T he modified and calibrated MONICA model outperformed CENTURY, C-TOOL and CCB and 

produced similar results in comparison to RothC and ICBM. With the exception of certain sites, adequate reproduction of SOC 

stock change rates was achieved. However, none of the investigated models was capable of simulating each site satisfactorily. 

All the models underestimated the variation in measured SOC dynamics that occurred at sites with particular properties and 

management practices. This paper reveals that even complex, biogeochemical models are capable of performing similarly or 560 

even better than the more simplistic C turnover models. It is likely that with better data availability and continuing optimisation 

of functions representing natural processes, MONICA’s performance can be further enhanced.  

Appendix A. General properties of each monitoring and experimental site 

Table A1. Description of the long-term monitoring sites (n = 46) used for calibration and validation of the carbon turnover routine 

in the MONICA model. SOC = soil organic carbon, MAT = mean annual temperature, MAP = mean annual precipitation. 565 

Site Location Start 

date 

End 

date 

Sand 

[%] 

Clay  

[%] 

Bulk 

density  

[g cm -3] 

SOC 

[%] 

C/N 

ratio 

MAT 

[°C] 

MAP 

[m m ] 

Average fertiliser 

am endm ents 

[kg N y r-1]** 

Land-use change 

BDF001_L Tim m erlah 1992 

 

2014 

 

6 

 

16 

 

1.34 

 

1.2 

 

8.6 9.8 

 

632 

 

151 UAN 

27 POM 

1760 
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BDF002_L Druette 1994 2014 

 

3 

 

15 

 

1.35 

 

1.2 

 

11.0 9.8 

 

631 

 

181 UAN 

20 POM 

1760 

 

BDF003_L Ehm en 1993 2014 70 7 1.37 1.4 10.6 9.9 689 151 CAN 

17 POM 

1945 

 

BDF004_L Hem m endorf 1995 2014 2 16 1.38 1.1 10.6 9.8 769 139 UAN, CAN 

40 PIS 

1780 

 

BDF005_L Reinshof 1991 2014 11 16 1.24 1.0 10.0 9.3 632 183 UAN 

4 LFR 

1775 

 

BDF006_L* Mariental 1991 2014 60 16 1.48 0.9 10.4 9.6 601 132 CAN 1760 

 

BDF007_L Barum  1996 2014 21 7 1.4 1.0 10.0 9.4 674 155 UAN, U 

54 POM 

1776 

 

BDF008_L* Hofschwicheldt 1991 2014 17 38 1.33 2.3 9.3 9.8 617 169 UAN, U 

33 PIS 

1833 

1992 drainage 

BDF009_L* Hornburg 1991 2014 2 23 1.29 1.5 9.4 9.4 666 158 UAN 

26 POM 

1760 

 

BDF010_L* Uesen 1996 2013 86 4 1.36 2.7 17.7 9.7 680 113 CAN, AS 

22 LFR 

1897 

1997 drainage 

BDF012_L Buehren 1991 2014 14 26 1.35 1.6 10.7 10.0 740 180 UAN 

46 PIS 

1775 

 

BDF013_L Ottenstein 1995 2014 4 21 1.15 1.6 7.9 8.9 759 160 CAN, AS 

22 PIM 

1760 

 

BDF014_L* Neuhauserfelde 1991 2011 38 11 1.34 0.9 9.3 9.3 887 177 CAN, AS, U 

44 LFR 

1878 

 

BDF016_L Tetendorf 1992 2014 81 4 1.43 1.4 17.0 9.3 796 119 CAN, U 

148 LFR, SS 

1897 

 

BDF017_L* Lueder 1993 2014 82 6 1.46 1.1 12.0 9.2 735 102 CAN, AS 

81 LFR 

1777 

 

BDF019_L Ganderkesee 1992 2014 75 6 1.37 2.7 15.7 9.7 693 66 UAN 

184 CAS, LFR 

1780 

 

BDF021_L Groenheim er 

Moor 

1997 2014 84 5 1.45 2.8 18.3 10.0 770 79.8 POM 1945 

< 1990 = pasture 

BDF022_L* Voxtrup 1993 2014 44 16 1.33 1.4 9.9 10.0 830 82 CAN, AS 

101 CAS, PIS 

1920 

 

BDF024_L* Dalum er Moor 1992 2014 82 4 1.18 4.7 26.3 10.3 783 129 CAN, AS 

171 CAS 

1978 

 

BDF026_L Vechtel 1995 2014 95 4 1.34 2.0 13.1 10.1 766 112 CAN, AS 1935 
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151 CAS, PIS  

BDF027_L Barrien 1996 2014 32 5 1.26 1.5 11.5 9.7 715 134 UAN, U 

166 SS 

1897 

 

BDF031_L 

 

Vinnhorst 1992 2011 37 16 1.14 4.0 13.5 9.9 645 120 CAN 

 

1980 

 

BDF032_L Markhausen 1992 2015 81 4 1.39 3.3 54.8 9.9 777 47 UAN, CAN 

172 CAS, PIS 

1957 

 

BDF033_L Dinklage 1992 2014 92 3 1.32 1.8 13.1 9.8 765 19 CAN 

199 PIS, CAS 

1973 

 

BDF036_L* Stuetensen 1993 2014 78 7 1.56 0.9 12.9 9.4 628 175 PIM, CAM 1780 

 

BDF037_L Schladen 1994 2014 6 31 1.42 2.3 7.9 9.6 708 165 UAN, U 

17 CAS 

1901 

 

BDF039_L Handeloh 1994 2014 86 5 1.63 1.7 17.3 9.5 824 142 CAN, AS, UAN 

96 PIS, LFR 

1901 

 

BDF042_L Fuhrberg 1995 2014 87 8 1.33 3.1 10.3 10.0 692 35 UAN, CAN, AS 

54 LFR 

1950 

< 1988 = pasture 

BDF043_L Oldershausen 1996 2014 2 18 1.38 1.0 9.1 9.3 841 178 U, UAN, AS 

35 SS 

1784 

 

BDF045_L* Riddagshausen 1994 2014 58 3 1.66 0.8 8.7 9.8 631 12 CAS 1759 

 

BDF046_L* Rodewald 1997 2014 31 31 1.42 2.0 9.9 10.3 687 114 CAN 

48 PIS, LFR 

1965 

 

BDF047_L Hiddestorf 1994 2014 2 12 1.37 0.9 8.7 10.0 705 141 UAN, U 

28 CAM 

1781 

 

BDF049_L Glissen 1994 2014 87 6 1.45 1.5 12.8 10.0 730 65 CAN 

43 PIS 

1955 

 

BDF050_L Bockheber 1994 2014 78 5 1.43 1.3 12.1 9.3 790 27 CAN 

58 SHM 

1776 

 

BDF051_L Reinhausen 1995 2014 12 49 1.43 1.3 6.1 9.3 628 169 UAN, AS 

28 CAM 

1784 

 

BDF052_L Suestedt 1996 2014 14 11 1.29 1.5 10.9 9.7 715 109 UAN 

101 PIS 

1899 

 

BDF056_L* Meinersen 1996 2014 96 2 1.42 1.3 18.9 9.8 625 62 CAN, UAN 

6 LFR 

1945 

 

BDF057_L Starkshorn 1997 2014 81 5 1.55 3.3 15.8 9.2 807 118 CAN, AS 

53 POM 

1777 
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BDF058_L Kuingdorf 1996 2014 12 12 1.42 1.2 9.0 9.8 832 130 UAN, AS 

62 CAS, PIS 

1846 

 

BDF059_L Wuelferode 1997 2014 64 12 1.76 0.9 9.0 10.1 684 42 CP 1781 

 

BDF063_L* Mey enburg 1998 2014 4 36 1.3 2.4 10.3 10.0 818 213 U, AS 

27 POM 

1980 

1982 drainage 

BDF064_L Hohenzethen 1998 2014 79 7 1.44 1.0 12.9 9.7 574 145 UAN, CAN 

401 CAS, LFR 

1998 

 

BDF065_L* Juehnde 1998 2014 3 41 1.39 2.6 9.6 9.5 642 130 CAN, U 

34 PIS, LFR 

1775 

 

BDF067_L* Listrup 1998 2014 83 6 1.48 1.2 15.5 10.4 770 114 CAN, AN, UAN 

116 PIS 

1985 

 

BDF069_L Wendhausen 1998 2014 6 22 1.44 1.7 9.7 10.0 698 1.3 HOM 1845 

 

BDF070_L Sehlde 2001 2014 9 25 1.48 1.9 8.8 9.6 753 164 U, CAN 

5 CAS 

1845 

 

*
 sites used for model validation (n = 15).

   

**
 predominantly applied fertilisers, N values for organic amendments were estimated; UAN = urea ammonium nitrate; U = urea;  

CAN = calcium ammonium nitrate; AS = ammonium sulfate; AN = ammonium nitrate; POM = poultry manure; PIS = pig slurry;  

PIM = pig manure; LFR = liquid fermentation residues; SS = sewage sludge; CAS = cattle slurry; CAM = cattle manure; SHM = 

sheep manure; CP = compost; HOM = horse manure. 570 
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Table A2. Description of the long-term experimental sites (n = 11) used for validation of simulated soil temperatures and water 

contents. SOC = soil organic carbon, MAT = mean annual temperature, MAP = mean annual precipitation. 

Site Start 

date 

End 

date 

Sand 

[%] 

Clay  

[%] 

Bulk 

density  [g cm -3] 

SOC [%] pH C/N ratio MAT 

[°C] 

MAP 

[m m ] 

Bornim 2010 2016 75 6 1.65 1.0 6.6 9.8 8.7 503 

Braunschweig 2008 2011 62 8 1.55 0.9 6.1 12.2 9.1 617 

Dedelow 2010 2016 59 10 1.45 0.8 6.8 7.5 8.4 485 

Göttingen 1992 1996 5 30 1.25 1.6 7.5 8.2 8.7 634 

Hennef 1997 2000 8 22 1.31 0.9 6.5 7.5 10.3 837 

Hohenheim 2010 2016 3 19 1.3 1.7 7.1 8.4 8.3 688 

Hohenschulen 2010 2016 60 11 1.43 1.8 6.7 15.2 8.9 732 

Merbitz 2010 2016 16 16 1.42 1.2 7.4 10.9 9.0 520 

Rostock 1993 1998 70 7 1.5 0.9 6.5 1.1 9.3 593 

Schey ern 1989 1996 22 23 1.25 1.9 6.1 9.4 7.4 833 

Viehhausen 2011 2022 14 22 1.4 1.06 6.1 5.1 7.5 797 

 

  575 
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Appendix B. Revised environmental decomposition factors 

Figure B1. The effect of soil temperature on the soil organic carbon decomposition rate. The solid red line describes the standard 

function that is integrated in the MONICA model. The solid blue line describes the revised function as the best fit curve to the 

observed data, while the dashed blue lines describe the possible properties of the equation according to the prior probability 

distribution of the parameters Q TenFactor and TempDecOptimal.  580 

 

Figure B2. The effect of soil moisture on the soil organic carbon decomposition rate. The solid red line describes the standard 

function for a clay soil (clay = 60 %, sand = 10 %, bulk density = 1.4, soil organic carbon = 2 %), while the solid yellow line describes 
the standard function for a sandy soil (clay = 4 %, sand = 80 %, bulk density = 1.4, soil organic carbon = 1 %). The solid blue line 

describes the revised function as the best fit curve to the observed data, while the dashed blue lines describe the possible properties 585 
of the equation according to the prior probability distribution of the parameter MoistureDecOptimal. 
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Figure B3. The effect of clay on the soil organic carbon decomposition rate. The solid red line describes the standard function that  

is integrated in the MONICA model. The solid blue line describes the revised function as the best fit curve to the observed data,  

while the dashed blue lines describe the possible properties of the equation according to the prior probability distribution of the 590 
parameter LimitClayEffect. 

 

Appendix C. Morris elementary effects screening method 

Table C1. Mathematical formulation of the sensitivity measures of the Morris elementary effects screening method, where r is the 

number of input factors and EE is the elementary effect of each input.   595 

Description Equation Properties 

Ranking of the input factor 

(Cam polongo et al., 2007) 
µ𝑗

∗ =
1

𝑟
∑ |𝐸𝐸𝑖𝑗 |

𝑟

𝑖 =1

 
Mean estimates of the distribution of 

the absolute values of each input 

Standard deviation of the input 

factor (Morris, 1991) 𝜎𝑗 = √
1

𝑟
∑(

𝑟

𝑖 =1

𝐸𝐸𝑖𝑗 −
1

𝑟
∑(𝐸𝐸𝑖𝑗 )2

𝑟

𝑖 =1

 

Standard deviation estim ates of the 

absolute values of each input 
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Appendix D. Metropolis-Hastings algorithm 

Table D1. Mathematical formulation of the Metropolis-Hastings algorithm and the log-Laplace likelihood function, where θ is the 

parameter vector, Y the dataset used for calibration, t the number of iterations, σ the standard deviation inferred jointly from the 600 

error between observation and simulation, ω the model input, ƒ(ωi;θi) the model run with the parameter vector θ, α the acceptance 

ratio and δ a random vector from a multivariate distribution. 

Description Equation Properties 

Log-Laplace likelihood 

function (Vrugt, 2016) 
ℒ(𝜃|𝑌) = − ∑ 𝑙𝑜𝑔(

1

2𝜎𝑖

)  − ∑(

𝑡

𝑖=1

𝑒�̅� −ƒ(𝜔𝑖 ;𝜃𝑖)

𝜎𝑖

)

𝑡

𝑖 =1

 
Continuous probability  distribution,  

assum es all error residuals equally 

 

Metropolis-Hastings 

algorithm  (Metropolis et 

al., 1953; Hastings, 1970) 

𝜃∗ =  𝜃𝑖−1 + 𝛿 

𝛼 = ∑
ℒ (𝜃∗ |𝑌)

ℒ(𝜃𝑖 −1|𝑌)

𝑡

𝑖 =1

 =  ∑
ℒ(𝑌|𝜃∗)ℒ(𝜃∗ )

ℒ(𝑌|𝜃𝑖 −1)ℒ(𝜃𝑖−1 )

𝑡

𝑖 =1

 

Accept θ* if α ≥ u where u is a uniform  

random  value between 0 and 1,  

otherwise if α < u reject θ* 

 

Appendix E. Model evaluation methods 

Table E1. Q uantitative methods used for data and model evaluation, where S is the predicted value, O is the observed value, n is the 605 
number of cases and k is the number of divided subgroups from n.   

Statistical m ethod Equation Value 

range 

Properties 

Kendall rank correlation 

coefficient (Kendall, 1938; 

1948) 

𝑇 =
∑ (𝑠𝑔𝑛 (𝑆𝑖 − 𝑆𝑗 ) ∙ 𝑠𝑔𝑛 (𝑂𝑖 − 𝑂𝑗 ))𝑖<𝑗

𝑛(𝑛 − 1)
2

 
 

–1 - 1  

If T > 0 positive association between two 

variables, otherwise if 

T = 0 no association, or if T < 0 negative 

association  

Mean absolute error (Willm ott 

and Matsuura, 2005) 𝑀𝐴𝐸 = √
1

𝑛
∑(𝑆𝑖 − 𝑂𝑖 )

𝑛

𝑖 =1

 

 

> 0  

If MAE = 0 perfect agreem ent between two 

variables, otherwise if MAE > 0 decreasing 

agreem ent  

Nash-Sutcliffe m odel efficiency  

coefficient (Nash and Sutcliffe,  

1970) 

𝑁𝑆𝐸 = 1 −
∑ (𝑆𝑖

𝑛
𝑖=1 − 𝑂𝑖 )2

∑ (𝑂𝑖 − 𝑂)2𝑛
𝑖=1

 
< 1 If NSE = 1 perfect agreem ent between two 

variables, otherwise if NSE < 1 decreasing 

agreem ent  

 

  



29 
 

Appendix F. Results of the Morris elementary effects screening method 

 610 
Table F1. Results of the Morris method depicting the effects of 51 variables on soil carbon changes. The variables are subdivi de d 

into site, management, crop and fertiliser-specific and carbon turnover factors. The parameters CorgContent (C content of crop 

residues and organic fertilisers), MoistureDecOptimal (optimal water-filled pore space for decomposition), TempDecOptimal (optimal 

temperature for decomposition) and QTenFactor (Q 10 temperature coefficient) were included as modifications to the model. The 

overall importance of an input factor is specified by two sensitivity measures: the mean (µ*) and the standard deviation of the 615 
elementary effect (σ) of each parameter. Higher values in the two sensitivity measures imply a greater importance of the variable on 

changes in soil carbon stocks. The uncertainty is presented as the standard deviation between the results of three separate Morris 

elementary effects screening runs. 

Variables Absolute m ean of elementary  effect µ* [g C kg-1] Standard deviation of elem entary  effect σ [g C kg-1] 

Site factor  

Tem perature 11.43 ± 0.46 15.9 ± 0.58 

SoilOrganicCarbon 4.72 ± 0.14 8.08 ± 0.26 

SoilBulkDensity  4.44 ± 0.14 4.96 ± 0.04 

Daily _Precipitation 4.16 ± 0.28 8.55 ± 0.71 

FieldCapacity  3.7 ± 0.07 7.15 ± 0.49 

PoreVolum e 2.46 ± 0.13 4.85 ± 0.49 

Global_Raditation 1.48 ± 0.05 3.37 ± 1.28 

Clay  0.62 ± 0.04 1.4 ± 0.11 

CN 0.53 ± 0.05 2.77 ± 0.77 

Perm anentWiltingPoint 0.24 ± 0.01 0.87 ± 0.12 

Sand 0.19 ± 0.02 0.54 ± 0.18 

pH 0.0 ± 0.0 0.02 ± 0.02 

Wind_Speed 0.0 ± 0.0 0.0 ± 0.0 

Relative_Hum idity  0.0 ± 0.0 0.0 ± 0.0 

Sceleton 0.0 ± 0.0 0.0 ± 0.0 

Managem ent factor 

OrganicFertilization 18.36 ± 0.68 16.43 ± 0.44 

MineralFertilization 1.03 ± 0.05 3.39 ± 0.26 

Irrigation 0.37 ± 0.03 1.01 ± 0.12 

Tillage 0.22 ± 0.03 1.42 ± 0.42 

Crop and fertiliser factor 

AOM_Dry MatterContent 17.75 ± 0.32 16.25 ± 0.39 

CorgContent 7.74 ± 0.41 8.67 ± 0.3 

PartAOM_to_AOM_Slow 2.82 ± 0.11 4.78 ± 0.11 

PartAOM_to_AOM_Fast 2.41 ± 0.12 4.23 ± 0.15 

AOM_SlowDecCoeffStandard 1.62 ± 0.14 4.84 ± 0.5 



30 
 

AOM_FastDecCoeffStandard 1.51 ± 0.07 4.94 ± 0.79 

PartAOM_Slow_to_SMB_Slow 0.57 ± 0.06 2.05 ± 0.44 

CN_Ratio_AOM_Fast 0.44 ± 0.06 1.89 ± 0.57 

PartAOM_Slow_to_SMB_Fast 0.44 ± 0.04 1.18 ± 0.39 

CN_Ratio_AOM_Slow 0.43 ± 0.06 2.53 ± 0.29 

AOM_NH4Content 0.18 ± 0.03 0.95 ± 0.14 

AOM_NO3Content 0.18 ± 0.03 0.72 ± 0.15 

Carbon turnover factor 

QTenFactor 4.77 ± 0.08 8.56 ± 0.1 

MoistureDecOptim al 4.02 ± 0.15 6.71 ± 0.15 

SOM_SlowDecCoeffStandard 3.73 ± 0.18 7.11 ± 0.14 

SOM_FastUtilizationEfficiency  2.5 ± 0.1 4.44 ± 0.33 

AOM_FastUtilizationEfficiency  2.06 ± 0.03 4.87 ± 0.63 

PartSOM_Fast_to_SOM_Slow 1.96 ± 0.04 3.5 ± 0.04 

SOM_FastDecCoeffStandard 1.75 ± 0.09 3.05 ± 0.16 

SMB_UtilizationEfficiency  1.63 ± 0.11 3.59 ± 0.24 

AOM_SlowUtilizationEfficiency  1.34 ± 0.15 3.35 ± 0.16 

PartSMB_Fast_to_SOM_Fast 1.25 ± 0.09 2.37 ± 0.36 

PartSMB_Slow_to_SOM_Fast 0.94 ± 0.03 2.24 ± 0.25 

SOM_SlowUtilizationEfficiency 0.81 ± 0.01 1.65 ± 0.07 

SMB_FastDeathRateStandard 0.65 ± 0.02 2.0 ± 0.09 

SMB_SlowDeathRateStandard 0.53 ± 0.08 1.69 ± 0.49 

SMB_FastMaintRateStandard 0.38 ± 0.04 1.29 ± 0.48 

SMB_SlowMaintRateStandard 0.37 ± 0.02 0.92 ± 0.07 

Lim itClay Effect 0.25 ± 0.02 0.63 ± 0.13 

PartSOM_to_SMB_Slow 0.1 ± 0.0 0.13 ± 0.0 

PartSOM_to_SMB_Fast 0.04 ± 0.01 0.13 ± 0.13 

Tem pDecOptim al 0.0 ± 0.01 0.1 ± 0.17 
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Appendix G. Gelman and Rubin shrink factor 620 

Figure G 1. Evolution of the G elman and Rubin shrink factor. The 50 % (solid line) and 97.5 % (dashed red line) quantiles show the 

convergence of the calibration. 
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Appendix H. Correlations between C turnover parameters  

Figure H1. Correlation matrix quantifying the statistical relationship between the prior probability distributions of the SOM  625 
submodel parameters. 
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Appendix I. Model performance 

Table I1. Statistics describing the performance of the default (MONICAdef), the modified, uncalibrated (MONICAmod) and the 630 

modified, calibrated (MONICAcal) soil carbon submodel in MONICA in comparison with five C turnover models for 15 validat ion 

sites. The first ten years were excluded from the analysis (n = 70). The statistics depicted are Kendall’s rank correlation coefficient  

(T), Nash-Sutcliffe model efficiency coefficient (NSE), mean absolute error (MAE) and slope and intercept for characterising the 

relationship between measured and simulated C stocks. 

Description T NSE MAE (Mg C ha-1) Slope Intercept 

MONICAdef 0.85*** 0.93 5.41 1.07 0.54 

MONICAmod 0.81*** 0.94 4.97 1.08 -2.14 

MONICAcal  0.83*** 0.97 3.81 1.02 -0.41 

RothC 0.83*** 0.97 3.68 1.04 -0.57 

C-TOOL 0.85*** 0.95 4.63 1 2.68 

ICBM 0.87*** 0.95 3.6 0.91 4.86 

CENTURY 0.84*** 0.95 4.32 0.88 4.37 

CCB 0.8*** 0.93 4.95 0.89 3.29 

*** p < 0.001, ** p < 0.01, * p < 0.05 635 
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Appendix J. Model performances 

Figure J1. Performance of the default MONICA model for each individual site. The first 10 measured years were excluded. 
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Figure I2. Performance of the modified and calibrated MONICA model for each individual site. The first 10 measured years were 640 
excluded. 
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Figure I3. Performance of the CCB model for each individual site. The first 10 measured years were excluded. 

 645 
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Figure I4. Performance of the CENTURY model for each individual site. The first 10 measured years were excluded. 

 

 

 650 
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Figure I5. Performance of the C-TOOL model for each individual site. The first 10 measured years were excluded. 

 

 

 655 
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Figure I6. Performance of the ICBM model for each individual site. The first 10 measured years were excluded. 
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Figure I7. Performance of the RothC model for each individual site. The first 10 measured years were excluded. 

 660 
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Data availability 

T he described long-term soil monitoring data is available from the State Office for Mining, Energy and Geology of the Lower 

Saxony state government. Restrictions apply to the availability of these data, which were used under license for this study. 

Data are available from the State Office for Mining, Energy and Geology of the Lower Saxony state government from the 665 

website: https://www.lbeg.niedersachsen.de/boden_grundwasser/bodenmonitoring/bodendauerbeobachtung/das-boden-

dauerbeobachtungsprogramm-von-niedersachsen-572.html and mail: bodenkundlicheberatung@lbeg.niedersachsen.de 

Additional data is openly available at https://doi.org/10.5281/zenodo.8380332. Further information on the Berge, Dedelow, 

Hohenheim, Hohenschulen and Merbitz data is comprehensively described in the publication by Mallast et al. (2021), mail: 

janine.mallast@thuenen.de. T he Deutsche W etterdienst weather data is openly available under the following website: 670 

https://opendata.dwd.de/climate_environment/CDC/. 
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