
 

1 
 

 

 

Reply to RC2’s comments on 

Multiple execution of the same MPI application to exploit parallelism at hotspots with 
minimal code changes: a case study with FESOM2-Iceberg and FESOM2-REcoM 

 

 

RC2’s comments are highlighted. 

 

1) 

RC2: My main concern is that I don't understand the underlying mechanism that allows for 
performance gains with multiexeMPI 

Author answer: 

Possibly there is too high an expectation of the complexity of MULTIEXECMPI. The complexity can 
be much higher with sophisticated domain decomposition implementation, for example. The new 
approach is indeed as simple as it is presented, especially in 

line 205: “Figure 2. Exploiting parallelism at hotspot.” 

Figure 2 also contains the essential pseudo code. 

Only a few changes in the manuscript will be necessary to make the basic idea of MULTIEXECMPI 
via improved pseudo code even clearer and to emphasize the strong analogy of the basic idea of 
MULTIEXECMPI to the parallelization of a loop based on OpenMP even more. In particular, the 
performance gains with MULTIEXECMPI are also achieved in an analogous way to a typical 
parallelization based on OpenMP, i.e. via splitting of the index range of a loop, but using processes 
with MultiExecMPI and threads with OpenMP for processing the subranges. 

 

2) 

RC2: It seems that the communication are enormous (the whole data must be synced) compared to 
traditional domain decomposition. 

Author answer: 

If “whole data” refers here to the entire simulation application, then it is exactly the redundant 
computations outside the parallelized loop that are consciously accepted with MULTIEXECMPI to 
prevent that the whole data must be synced. 

For the explanation of MULTIEXECMPI using the example of the parallelization of the tracer loop 
of FESOM2-REcoM it is stated in 

line 218: “To determine the data structures relevant for tracer data, simply those were picked out in 
the FESOM2-REcoM source code that are potentially write-accessed in the loop over all tracers 



 

2 
 

and are reused outside the loop. Basically, this is very similar to the procedure for a parallelization 
of the loop with OpenMP, where these data structures would have been declared as shared.” 

This also describes the data that must be synced (in the manuscript the term “merge” is used at the 
appropriate places). Of course, depending on a concrete simulation, even this subset of the total 
global data of a simulation application can still be a lot of data. In the manuscript there is the 
following consideration: 

line 284: “For parallelizing a loop with MULTIEXECMPI there must be an appropriate relation 
between the computational and the communication effort, which is the more favorable the more can 
be computed in one iteration and the less data must be exchanged for the merge operations between 
the groups [to sync data].” 

The comparison of the synchronization effort to traditional domain decomposition you mention in 
your comment is not meaningfully possible, because MULTIEXECMPI is not proposed as an 
alternative to a domain decomposition, but as a supplement, which is described at the appropriate 
places in the manuscript. Already in the abstract it is stated: 

line 12: “Splitting the work at such hotspots between the instances represents an independent level 
of parallelization on top of the domain decomposition.” 

and 

line 22: “Nevertheless, the implementation of the approach for other simulation models with similar 
properties seems promising, if the further reduction of the time-to-solution is in the focus, but a 
limit for the scalability based on the domain decomposition is reached.” 

As long as the application based on a domain decomposition approach still scales well (i.e. better 
than MULTIEXECMPI) when adding further computing power, the combination with 
MULTIEXECMPI does not yet make sense. In an analogous way, the use of OpenMP in the 
widespread hybrid approaches (i.e. using MPI processes for the domain decomposition and 
OpenMP threads for additionally parallelizing appropriate loops) would not make sense as long as 
the application based on a domain decomposition approach still scales well when adding further 
computing power. 

The speedups of the experimental results show that MULTIEXECMPI works in practice and is quite 
equivalent to what one would expect from a parallelization based on OpenMP, e.g.: 

line 504: “For the use of 2 FESOM2-REcoM groups, the speedup of 1.90, which results with respect 
to the tracer loop, can be estimated as quite good.” 

 

3) 

RC2: Further, considering multiple groups and a decent strong scalability, the process in the 
groups could be employed to further fasten the computations with domain decomposition, instead 
they perform redundant computations. With a strong scalability of 0.75 and with 2 groups, the 
authors could get a speedup of 1.5 = (2*0.75) would they use the redundant group to activelly 
participate in the comptuations. 



 

3 
 

Author answer 

The same reasoning as under 2) applies here: The use of MULTIEXECMPI does not make sense as 
long as the application based on a domain decomposition approach still scales well (i.e. better than 
MULTIEXECMPI). 

In the manuscript it is described as follows: 

line 91: “With an increasing number of available cores to reduce the time-to-solution, the new 
approach can be used as a further level of parallelization, especially if the regions of a climate model 
can no longer be meaningfully broken down into smaller parts by means of the existing domain 
decomposition.” 

and 

line 516: “With the steadily increasing number of cores per cluster node it can become increasingly 
difficult to utilize them merely on the basis of a domain decomposition. If a region can no longer 
be (meaningfully) broken down into smaller parts, the point is reached at which a combination with 
MULTIEXECMPI can utilize additional cores and achieve a further speedup.” 

If you are suggesting to extend the MultiExecMPI implementation to use the cores of group 2 
(outside the parallelized loop) simultaneously for a domain decomposition, then this would not be 
possible because the purpose of the redundant computations is to prevent that the whole data must 
be synced – see also answer to 2). There would be no free computing resources available for this in 
MULTIEXECMPI. In addition, it would be a more complex extension anyway, which does not fit the 
character of MULTIEXECMPI to be a general method, whose attractiveness lies in the fact that only 
minimal code changes are required for implementation: 

line 50: “In this paper a different approach is presented that provides an independent level of 
parallelism based on pure MPI communication and for which an existing simulation model can 
largely be considered as a black box.” 

 

4) 

RC2: Please explain with a code example and resulting comunication size (on a dummy example) 
how it does help your comptations. 

Author answer 

A (dummy) code example for MULTIEXECMPI based on Figure 2 (line 205 in the manuscript) is 
given below (Fortran MPI). A short note first: because the MPI ranks start with index 0, 
my_group==0 corresponds to an MPI process in group 1, my_group==1 corresponds to an MPI 
process in group 2, and my_group==2 corresponds to an MPI process in group 3 in the manuscript: 



 

4 
 

 

 

 

 



 

5 
 

 

The communication pattern becomes immediately obvious with the code example. There are 
num_groups broadcast operations required per tracer loop iteration. The amount of data to be 
transmitted is determined by the size of tr_arr. The communication effort will have the more weight 
the larger size_dim1 is for a given value num_groups. 

In practice, it will often be easy to find out whether the use of MULTIEXECMPI seems promising 
for an existing simulation application: 

line 565: “Performance engineering techniques such as benchmarking and profiling and an analysis 
of the source code for data dependencies of compute-intensive loops are sufficient for this. For MPI 
calls, which may be contained within the loops, no additional (synchronization) effort is required 
anyway.” 

 

5) 

RC2: Also, the first sections of the paper need a major refactoring. The author should focus on the 
actual contribution of the paper. 

For example it's not clear to me the contribution of the multi-threaded MPI description, which 
also seems outdated. 

Author answer 

The manuscript reflects that first an OpenMP based parallelization of the tracer loop based on multi-
threaded MPI was implemented for FESOM2-REcoM and only then MULTIEXECMPI was 
implemented as an alternative solution for parallelizing the tracer loop. In this way, the manuscript 
also vividly shows that in practice about the same speedups can be achieved with MULTIEXECMPI 
and OpenMP: 

line 440: “Table 4. FESOM2-REcoM Speedups – MPI based groups vs. OpenMP threads.” 

A multi-threaded MPI solution is not outdated per se, but: 

line 539: “An implementation based on MULTIEXECMPI in turn offers the advantage over the hybrid 
approach of avoiding dependencies from certain OpenMP features (e.g. a performant support of 
MPI_THREAD_MULTIPLE) and additional complexity with respect to the use of the compiler, 
MPI and runtime environment. In addition, it can be assumed for MULTIEXECMPI that debugging 
is also less complex than for a hybrid application (even if this is very well supported with powerful 
debuggers like arm DDT (Distributed Debugging Tool) (Arm, 2022)).” 

On the other hand, these descriptions take up some space. I am willing to follow your suggestion to 
shorten this part in the sense of a refactoring to improve the focus of the paper. 


