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Abstract 15 

Timely, continuous, and dynamics-based estimates of PM2.5 emissions with a high temporal 16 

resolution can be objectively and optimally obtained by assimilating observed surface PM2.5 17 

concentrations using flow-dependent error statistics. Annual PM2.5 emissions in China have 18 

consistently decreased of approximately 3% to 5% from 2017 to 2020. Significant PM2.5 emission 19 

reductions occurred frequently in regions with large PM2.5 emissions. COVID-19 could cause a 20 

significant reduction of PM2.5 emissions in the north China plain and northeast of China in 2020. 21 

The magnitudes of PM2.5 emissions were greater in the winter than in the summer. PM2.5 emissions 22 

show an obvious diurnal variation that varies significantly with the season and urban population. 23 

Improved representations of PM2.5 emissions across time scales can benefit emission inventory, 24 

regulation policy and emission trading schemes, particularly for especially for high temporal 25 
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resolution air quality forecasting and policy response to severe haze pollutions or rare human 26 

events with significant socioeconomic impacts. 27 

 28 

1. Introduction 29 

Anthropogenic emissions have imposed essential influences on the earth system, from 30 

hourly air quality and human health to long-time climate and environment. To reduce 31 

anthropogenic emissions, the Chinese government has enforced the Clean Air Action (2013) since 32 

2013. Studies to date that evaluated the emission controls and understood the climate responses 33 

from emission reductions often have used either a fixed meteorology with emission changes or 34 

vice versa (Li et al., 2019a;  Li et al., 2021, Zhai et al., 2021). Estimated emissions from empirical 35 

extrapolation were commonly applied to analyze the meteorological-chemical mechanisms and 36 

associated social-economic impacts from occasional events like the 2015 China Victory Day 37 

Parade and Coronavirus Disease 2019 (COVID-19) pandemic (Wang et al., 2017; Liu et al., 2020; 38 

Huang et al., 2020; Zhu et al., 2021). But to better understand both long-term and short-term 39 

influences from emission changes, the continuous, up-to-date, and high temporal-/spatial- 40 

resolution emission estimates with coherent interactions of meteorology and emission changes are 41 

needed.  42 

The complex contributions from energy production, industrial processes, transportation, 43 

and residential consumptions have imposed great challenges to accurately estimate the emissions. 44 

The emission inventories created by the traditional bottom-up techniques were typically outdated 45 

from the present day due to the lack of accurate and timely statistics, and often with coarse 46 

temporal resolutions from monthly to annual (Zhang et al., 2009; Li et al., 2014; Janssens-47 

Maenhout et al., 2015; Zheng et al., 2018). Alternatively, update-to-date emission estimates with 48 

high temporal-spatial resolutions could be provided by top-down techniques (Miyazaki et al., 49 

2017), but most emissions estimated by top-down techniques were intermittent and analyzed at 50 

monthly scale or longer longer (Zhang et al., 2016; Jiang et al., 2017; Qu et al., 2017; Cao et al., 51 

2018;  Müller et al., 2018; Chen et al., 2019; Li et al., 2019b; Miyazaki et al., 2020). Moreover, 52 

emissions updated by the top-down techniques based on satellite observations could be insufficient 53 

to capture realistic near-surface characteristics (Li et al., 2019b; Liu et al., 2011; Choi et al., 2020).  54 
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Given the development of observation networks and advanced data assimilation strategies, 55 

timely and dynamics-based emission estimates with high temporal resolution can be achieved by 56 

harmonically constraining the atmospheric-chemical model with dense observations of trace gas 57 

compounds through an optimal assimilation methodology. The ensemble Kaman smoother (EnKS) 58 

(Whitaker et al., 2002; Peters et al., 2007; Peng et al., 2015), as a four-dimensional (4D) 59 

assimilation algorithm, makes use of chemical observations from past to future to provide an 60 

optimal estimate of source emissions, and it can capture the “error of the day” and construct fine 61 

emission characteristics with high temporal-spatial resolutions by using short-term ensemble 62 

forecasts (Kalnay, 2002). Since 2013, the fine particulate matter pollution (PM2.5, particles smaller 63 

than 2.5 µm in diameter) as the most urgent threat to public health has been persistently decreased, 64 

and ground-based observations of PM2.5 have been progressively increased (Huang et al., 2018). 65 

Thus by harmonically assimilating dense surface PM2.5 observations into an atmospheric-chemical 66 

model through an EnKS, hourly estimates of PM2.5 emission that were continuously cycled for 67 

years 2016-2020 are presented in this study.     68 

The timely estimated emissions can provide guidance for emission inventories that usually 69 

have time lags and emission trading schemes that often require up-to-date source emissions. Based 70 

on the dynamics-based estimated emissions with harmonic combination of the model and 71 

observations, better evaluation of the emission controls and more comprehensive understanding of 72 

the consequent climate responses can be obtained. The high temporal-resolution estimated 73 

emissions can reveal features of emissions that are absent from the traditional ones with coarse 74 

temporal resolutions. Moreover, the timely and dynamics-based emission estimates with high 75 

temporal resolution are essential for regional air quality modeling, especially for the occurrence of 76 

severe haze pollutions associated with timely evaluation for the impact on public health (Attri et 77 

al., 2001; Wang et al., 2014; Ji et al., 2018; Wang et al., 2020; Liu et al., 2021) and events that 78 

lead to large changes of emissions and significant socioeconomic impacts such as the COVID-19 79 

pandemic (Huang et al., 2020; Le et al., 2020). 80 

2. Data assimilation and experimental design 81 

The estimate of PM2.5 emission can be successfully constrained by the PM2.5 concentration 82 

observations through an ensemble Kalman filter (EnKF; Peng et al., 2017, 2018,  2020). For a 83 

retrospective ‘reanalysis’ mode here, all available PM2.5 concentration observations, including 84 
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those data collected after the analysis time, can be used. Thus a EnKS, a direct generalization of 85 

the EnKF, is applied to incorporate PM2.5 concentration observations both before and after the 86 

analysis time, aiming to provide an optimal estimate of the PM2.5 emission. Detailed procedures 87 

of the EnKS are described in section 2.1. 88 

2.1 An ensemble Kalman smoother to update the source emission 89 

The ensemble priors of source emissions  is created by multiplying a scaling factor  90 

to the prescribed emission  (Peng et al., 2017, 2018, 2020), where the superscript f denotes 91 

priors. Given a constant , the update of  is equivalent to the update of . Due to a time lag, 92 

the prior scaling factor at time t-1 ( ) is updated by chemical observations at time t ( ). At time 93 

t-1, the prior scaling factor for the ith member is written as 94 

.                                   (1) 95 

The first term is the concentration ratio given by the prior of the chemical fields ( ) normalized 96 

by the ensemble mean ( ), where  is an inflation factor used to compensate the insufficient 97 

ensemble spread (Peng et al., 2017). Through using the concentration ratio, each ensemble member 98 

of the source emissions naturally has the spatial correlations given by the chemical fields. The 99 

second term is the mean of the posterior scaling factors at previous assimilation cycles, where the 100 

superscript a denotes posteriors, M is the length of smoothing, and the subscript j+1:t-1 indicates 101 

that the scaling factor at time j is updated by future observations from j+1 to t-1. The assimilation 102 

of future observations will be described below. 103 

The ensemble square-root filter (EnSRF) (Peng et al., 2017) is used to update  by 104 

assimilating . For the scaling factor at time t-1, posterior ensemble mean is given by  105 
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,   108 

(3) 109 

where  denotes the background error covariance matrix of  and ,  indicates the 110 

background error covariance matrix of , ,  and  are the observation forward operator, 111 

Jacobian matrix and observation error covariance matrix of the chemical fields at time t,  is the 112 

localization matrix and  denotes the Schur (elementwise) product. 113 

By applying the ensemble Kalman smoother (EnKS) (Whitaker et al., 2002; Peters et al., 114 

2007), the chemical observation  is also assimilated to update the posterior scaling factor at 115 

previous assimilation cycles . After assimilating the future chemical 116 

observation at time t, posterior ensemble mean of the scaling factor at j is given by 117 

,                (4) 118 

and posterior ensemble perturbations are given by 119 

,    (5) 120 

where  denotes the background error covariance matrix of  and . After (2)-(5), 121 

the updated  will be used to construct the prior scaling factor at next 122 

time t+1 (1). 123 

As a Monte Carlo approach, the EnKS uses the forecast-analysis error covariances based 124 

on ensemble forecasts / analyses to compute the Kalman gain matrix with time lags, to incorporate 125 

observations from the past to the future. The first iteration of EnKS is equivalent to EnKF that 126 

assimilates observations up to the analysis time. The following iterations of EnKS assimilate 127 

observations in the future to update the state at the analysis time. The hourly forecasts of PM2.5 128 

concentration from the cycling assimilation experiment matched the independent observed 129 
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quantities (Figure 1). Therefore, the ability of EnKS to retrieve the source emissions has been 130 

demonstrated. 131 

2.2 WRF-Chem model, observations and emissions 132 

To simulate the transport of aerosol and chemical species, the WRF-Chem model version 133 

3.6.1 (Grell et al., 2005) that has the meteorological and chemical components fully coupled is 134 

used. The model parameterization schemes follow Peng et al. (2017). Figure 2 shows the model 135 

domain that covers most east Asia regions. Horizontal grid spacing is 45 km with 57 vertical levels 136 

and model top at 10 hPa.  137 

Experiments are conducted for each year from 2016 to 2020 separately. The 6-h 138 

meteorological observations, including all in-situ observations and cloud motion vectors from the 139 

National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS; 140 

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm), are assimilated 141 

every 6 h. The hourly observed chemical quantities, which contain PM10, PM2.5, SO2, NO2, O3, 142 

and CO from the Ministry of Ecology and Environment of China (https://aqicn.org/map/china/cn/), 143 

are assimilated every hour. Figure 2 shows the assimilated chemical observation network, which 144 

has 560 randomly chosen stations from 1576 stations in total. The thinning of observations is 145 

applied to avoid correlated errors of observations (Peng et al., 2017). The observation priors are 146 

computed by the “observer” portion of the Grid-point Statistical Interpolation system (GSI) (Kleist 147 

et al., 2009).  148 

 The hourly and constantly prescribed anthropogenic emissions are obtained from the 149 

EDGAR-HTAP (Emission Database for Global Atmospheric Research for Hemispheric Transport 150 

of Air Pollution v2.2) v2.2 inventory (Janssens-Maenhout et al., 2015), in which the Chinese 151 

emissions are derived from MEIC in 2010 (Lei et al., 2011; Li et al., 2014). Natural emissions, 152 

including the biogenic (Guenther et al., 1995), dust (Ginoux et al., 2001), dimethyl sulfide and sea 153 

salt emissions (Chin et al., 2000), are computed online. 154 

2.3 Assimilation and ensemble configurations 155 

The PM2.5 emission directly gives the primary PM2.5, and then the primary PM2.5 along 156 

with other precursor emissions could contribute to the secondary PM2.5. The observations of PM2.5 157 

concentrations that contain both primary and secondary PM2.5, are used to constrain the PM2.5 158 
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emission through data assimilation. Thus the correlations between the concentration observations 159 

and source emissions might be contaminated by the secondary PM2.5. In the presnt study, the 160 

impact of the secondary PM2.5 is ignored. One possible way to untangle the impact of secondary 161 

PM2.5 on the estimates of PM2.5 emission is to jointly estimate the source emission, primary and 162 

secondary PM2.5 given the concentration observations.  163 

The National Oceanic and Atmospheric Administration (NOAA) operational EnKF system 164 

(https://dtcenter.ucar.edu/com-GSI/users/docs/users_guide/GSIUserGuide_v3.7.pdf), which is an 165 

EnSRF and modified with the EnKS feature, is used to assimilate the observations. Ensemble size 166 

is set to 50. To combat the sampling error resulted from a limited ensemble size, covariance 167 

localization and inflation are applied. The Gaspari and Cohn (GC) (1999) function with a length 168 

scale of 675 km is used to localize the impact of observations and mitigate the spurious error 169 

correlations between observations and state variables. The constant multiplicative posterior 170 

inflation (Whitaker and Hamill 2012) with coefficients 1.12 for all meteorological and chemical 171 

variables is applied to enlarge the ensemble spread. The inflation  for advancing the scale factor 172 

is 1.2. The smoothing length M for source emissions is 4, and the EnKS lagged length K is 6.  173 

At 0000 UTC 26 December of previous year, ensemble initial conditions (ICs) of the 174 

meteorological fields are generated by adding random perturbations that sample the static 175 

background error covariances (Barker et al., 2012) on the NCEP FNL (Final) analyses (Torn et al., 176 

2006). Ensemble ICs of the chemical fields are 0, and source emissions of each ensemble member 177 

are adopted from the EDGAR-HTAP v2.2 inventory with random perturbations of mean 0 and 178 

variances of 10% of the emission values. Hourly ensemble lateral boundary conditions (LBCs) are 179 

generated using the same fixed-covariance perturbation technique as the ensemble ICs. After 6-d 180 

spin up, ensemble data assimilation experiments start cycling for each year. 181 

3. PM2.5 emission for years 2016-2020 182 

Starting from the constant source emission PR2010 (Janssens-Maenhout et al., 2015), the 183 

annual dynamics-based estimates of PM2.5 emission (DEPE) averaged over mainland China for 184 

years 2016-2020 are 8.17, 7.91, 7.53, 7.13 and 6.89 Tg, respectively. For years 2016 and 2017, the 185 

annual DEPE are very closed to 8.1 and 7.6 Tg from the Multi-resolution Emission Inventory 186 

(MEIC) (Zheng et al., 2018). From year 2017 to 2020, the estimated annual PM2.5 emissions are 187 

reduced 3.2%, 7.8%, 12.7% and 15.7% respectively compared to that of year 2016. There has been 188 

b
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3%-5% persistent reduction of annual PM2.5 emission from year 2017 to 2020, which demonstrates 189 

the effectiveness of China’s Clean Air Action (2013) implemented since 2013 and China Blue Sky 190 

Defense War Plan (2018) enforced since 2018 with strengthened industrial emission standards, 191 

phased out outdated industrial capacities, promoted clean fuels in residential sector and so on 192 

(Zhang et al., 2019). 193 

The monthly DEPE show reduction of PM2.5 emission nearly in each month from years 194 

2016 to 2020 (Figure 3a), which further demonstates the effectiveness of China’s national plan, 195 

rather than the role of weather effects alone. Compared to year 2016, both the reduction amount 196 

and reduction ratio of PM2.5 emission are more prominent for February, March, June-September, 197 

and November than the other months (Figure3b). Given larger magnitudes of PM2.5 emission in 198 

winter than in summer, emission controls with a focus from October to May should be considered 199 

in the design of future clean air actions in China, since total PM2.5 emission during this period 200 

accounts for approximate 75% annual amount. Spatial distributions of the changes of PM2.5 201 

emission from year 2017 to 2020 compared to year 2016 show significant decreases occurred at 202 

Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta region (YRD), Pearl River Delta region 203 

(PRD) and Sichuan-Chongqing Region (SCR), especially for years 2019-2020 (Figure 4). From 204 

year 2016 to 2020, BTH, YRD and SRC have larger reductions of PM2.5 emission than PRD, but 205 

SCR has larger reduction ratio compared to year 2016 than BTH and YRD (Figure 5). Therefore, 206 

BTH and YRD have more potentials for PM2.5 emission controls than PRD and SCR, which can 207 

give a guidance for future clean air actions. More specifically, most provinces have PM2.5 emission 208 

reduction from year 2016 to 2020, and the reduction ratios generally increase from year 2017 to 209 

2020 (Table 1), which confirms continuous and effective emission controls from Clean Air Action 210 

to Blue Sky Defense War Plan in China.  211 

Despites the trend in PM2.5 emissions from year 2016 to 2020, the DEPE of year 2016 has 212 

similar monthly distributions to MEIC2016 in general (Figure 3a). MEIC2016 has a “Pan-shape” 213 

monthly distribution with nearly constant PM2.5 emissions from April to October. This seasonal 214 

dependence of emissions is mainly contributed by the variations of residential energy use, which 215 

are empirically dependent on coarse monthly mean temperature intervals and thus cannot reflect 216 

the realistic monthly variations (Streets et al., 2003; Li et al., 2017). However, the DEPE yet shows 217 

a “V-shape” monthly distribution, with the minimum occurring in August. The estimated PM2.5 218 

emission is 11.8% higher than MEIC2016 in April but 12.1% lower than MEIC2016 in August, 219 
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and these different monthly distributions can influence the consequent climate responses including 220 

the radiative forcing and energy budget (Yang et al., 2020) and also impact the health issues (Liu 221 

et al., 2018). Moreover, monthly fractions of the DEPE are consistent cross years (Figure 3c). The 222 

absence of interannual variations of monthly PM2.5 emission fraction provides basis for previous 223 

studies that follow the same monthly changes of source emissions from different years (Zhang et 224 

al., 2009; Zheng et al., 2020, 2021). Monthly allocations of PM2.5 emission can be directly and 225 

objectively obtained given an estimated total annual amount based on the estimated monthly 226 

fractions of DEPE, which is valuable for emission inventory, air quality simulation, and potentially 227 

applications for future scenarios due to more accurate month fractions of DEPE. Since the hourly 228 

priors of PM2.5 concentrations from the cycling assimilation for optimally estimating PM2.5 229 

emission fit to the observed PM2.5 quantities (Figure 1), the monthly DEPE provides more realistic 230 

monthly fluctuations than the empirical estimate. 231 

4. Diurnal variations of PM2.5 emission  232 

The DEPE with high temporal-resolution given the constant prior PR2010 can reveal 233 

features that are unable to represent in the commonly used emission estimates. Although the prior 234 

PR2010 has no diurnal variations, hourly posteriors of PM2.5 emission provide the first objectively 235 

estimated diurnal variations for different seasons for years 2016-2020. To statistically present the 236 

diurnal variations, the fractions of hourly PM2.5 emissions divided by the daily amount are 237 

averaged over different years and regions (Figures 6 and 7, and Table 2). The diurnal variations of 238 

PM2.5 emission are critical for understanding the mechanisms of PM2.5 formation and evolution 239 

and are also essential for PM2.5 simulation and forecast.  240 

Five-year mean diurnal variations of the estimated PM2.5 emission fraction for mainland 241 

China show that despite the monthly variations of PM2.5 emission, the diurnal-variation fractions 242 

for November, December, January and February are similar, while those for June, July and August 243 

are similar (Figure 6a). There are stronger diurnal variations of PM2.5 emission in summer than in 244 

winter, which are represented by larger PM2.5 emission fractions during morning and less PM2.5 245 

emission fractions during evening. The diurnal variations of PM2.5 emission from March to May 246 

gradually transform from the patterns of winter to those of summer, and vice versa for the diurnal 247 

variations of PM2.5 emission from September to November. The monthly changes of diurnal 248 

variations of PM2.5 emission are consistent with the seasonal dependence, since monthly variations 249 
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of PM2.5 emission are mainly related to the variations of residential consumptions (Li et al., 2017) 250 

in which the space-heating has nearly no diurnal variations and then larger PM2.5 emissions during 251 

winter lead to reduced diurnal variations than summer. Similar to the monthly fractions of 252 

estimated PM2.5 emission for mainland China, diurnal variations of PM2.5 emission fraction are 253 

consistent cross years for a given month (Figure 7). Table 2 gives five-year mean diurnal variations 254 

of the estimated PM2.5 emission fraction for each month. Based on these high-resolution diurnal-255 

variation fractions, hourly estimates of PM2.5 emission can be objectively obtained for a given 256 

monthly estimated PM2.5 emission.  257 

Despite the high temporal resolution, the DEPE also has the ability to analyze diurnal 258 

variations for specific cities. The monthly changes of diurnal variations of PM2.5 emission 259 

estimated for megacities with urban populations larger than 5 million and non-megacities with 260 

urban populations smaller than 5 million (Notice of the State Council on Adjusting the Standards 261 

for Categorizing City Sizes, 2014) are consistent with those estimated from mainland China 262 

(Figure 6). Compared to the diurnal variations of PM2.5 emission estimated for mainland China, 263 

the megacities have stronger diurnal variations, while the non-megacities have weaker diurnal 264 

variations. These detailed descriptions of PM2.5 emission that are usually absent in common 265 

emission estimates can be essential for PM2.5 simulation, especially for providing timely and 266 

realistic guidance for severe haze events. 267 

There has been lack of local measurements for diurnal variations and widely adopted 268 

diurnal variation profiles of PM2.5 emission in China. Compared to the diurnal variations of PM2.5 269 

emission fractions estimated based on diurnal variation profiles from US and EU (Wang et al., 270 

2010), the noon and evening peaks estimated from DEPE have smaller PM2.5 emission fractions, 271 

with mean underestimations of PM2.5 emission fraction of 0.31% and 1.05% for noon peak and 272 

evening peak respectively (Figures 6a and 8). The morning peak of Wang et al. (2010) is similar 273 

to that of DEPE for spring and fall, but the former overestimates PM2.5 emission fraction of 0.81% 274 

for winter while underestimates PM2.5 emission fraction of 0.79% for summer. Due to the 275 

overestimated peaks, diurnal variations of Wang et al.(2010) have sharper appearance rate for 276 

morning peak and disappearance rate for evening peak. Compared to the diurnal variations based 277 

on diurnal variation profiles from ES and EU (Wang et al., 2010), the diurnal variations of the 278 

DEPE are constrained by the atmospheric-chemical model and observed PM2.5 concentrations, 279 
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which can objectively determine the diurnal variations of PM2.5 emission for specific regions and 280 

seasons. 281 

5. Impact of COVID-19 on PM2.5 emissions 282 

The abrupt outbreak of the COVID-19 pandemic has produced dramatically socioeconomic 283 

impacts in China. To prevent the virus spread, a lockdown was first implemented on 23 January 284 

2020 in Wuhan, Hubei province, and subsequently the national lockdown has been enforced in 285 

China (Liu et al., 2020; Huang et al., 2020; Zhu et al., 2021). Consequently, the total PM2.5 286 

emission of February 2020 for China shows an obvious decrease compared to those of previous 287 

years (Figure 3). The high temporal-resolution DEPE reveals the detailed changes of PM2.5 288 

emission with time (Figure 9). The PM2.5 emission started to decrease right around the COVID 289 

outbreak, and had been smaller than those of year 2019 till early March. During February 2020, 290 

the DEPE shows significant reductions at the north China plain and northeast of China where 291 

prominent PM2.5 emission occurred, while spotted PM2.5 emission differences with small 292 

magnitudes showed at the other regions (Figures 10a-b). Along with recovery from the COVID-293 

19, the estimated PM2.5 emission rebounded in March (Figures 3a, 9, 10c-d), which is contributed 294 

to the national work resumption. Thus, the DEPE is able to timely reflect the dynamic response of 295 

PM2.5 emission to the COVID-19.  296 

To avoid fluctuations due to diurnal variations and monthly changes of PM2.5 emission, 7-297 

day averaged PM2.5 emission differences between year 2020 and 2019 are used to analyze the 298 

dynamic impact of COVID-19 on PM2.5 emission (Figure 11). Before the lockdown, there were 299 

slight PM2.5 emission differences over several provinces (Figures 11a-b). During the first week of 300 

lockdown, PM2.5 emission reduction larger than 5x10-2 (µg·m−2·s−1) that is about 60%-70% 301 

emission reduction, occurred at Hubei, Hunan, Guangdong, Anhui and Zhejiang provinces (Figure 302 

11c). The PM2.5 emission reduction extended to BTH and Shandong province during the second 303 

week of lockdown (Figure 11d), and continuously spread to the three northeast provinces of China 304 

during the third week of lockdown (Figure 11e). During the third week of lockdown, the increased 305 

PM2.5 emissions for BTH and SCR are possibly caused by the massive emissions from high-profile 306 

firework burning on the Chinese New Year Eve of year 2019 (Ji et al., 2018). The PM2.5 emission 307 

reduction had been maintained over the central and northern China till early March when the 308 
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lockdown was lift (Figures 11f-i). Thus, the timely DEPE can provide up-to-date guidance for 309 

quantifying 310 

6. Discussion 311 

High temporal-resolution and dynamics-based estimations of PM2.5 emission can be 312 

objectively and optimally obtained by assimilating past and future observed surface PM2.5 313 

concentrations through flow-dependent error statistics. This advanced assimilation strategy can be 314 

applied for emission estimates of other chemical species when corresponding observations are 315 

available, and extend to observation types besides the surface concentrations, like the aerosol 316 

optical depth (Liu et al., 2011; Choi et al., 2020). Moreover, current estimates of PM2.5 emission 317 

are lack of explicitly representations of primary and secondary PM2.5, which could be resolved by 318 

joint estimation of the source emission, primary and secondary PM2.5 given the concentration 319 

observations. Another deficiency of this top-down technique is that it cannot directly determine 320 

dynamics-based PM2.5 emissions for different sectors as the bottom-up techniques. But this top-321 

down technique can be integrated into the bottom-up technique to retain advantages of both 322 

methods. The annual emission estimate from the bottom-up technique can be further downscaled 323 

to hourly estimates by first distributing the annual amount to each month through the monthly 324 

allocations estimated from the top-down technique, and then assuming evenly daily distribution, 325 

finally applying the fractions of diurnal variation estimated from the top-down technique. The 326 

information collected by the bottom-up technique is retained, while the common drawback of 327 

coarse temporal resolution for the bottom-up technique is remedied. The integrated bottom-up and 328 

top-down technique can improve spatiotemporal representations of source emissions cross time 329 

scales and sectors, which is beneficial for emission inventory, air quality forecast, regulation policy 330 

and emission trading scheme. 331 
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Figure 1. Times series of hourly PM2.5 concentration biases (µg·m−3). The ensemble mean priors 544 

compared to the observed quantities for December of years 2016-2020 (gray and black), and the 545 

mean biases of years 2016-2020 (blue). 546 

Figure 2. Model domain and observation sites for cycling assimilation. Red and blue dots denote 547 

the assimilated and unassimilated observational sites, respectively. 548 

Figure 3. (a) Dynamics-based monthly PM2.5 emission estimates (Tg·day-1) summed over 549 

mainland China of each year from 2016 to 2020 (colored) and the estimated PM2.5 emission from 550 

MEIC (gray); (b) Ratio of PM2.5 emission changes between two adjacent years from year 2016 to 551 

2020 normalized by the PM2.5 emission of year 2016; (c) Monthly fractions of dynamics-based 552 

PM2.5 emission estimates for years 2016-2020 (light blue), the five-year mean fractions of 553 

dynamics-based monthly PM2.5 emission estimates with bars denoting one standard deviation of 554 

the five-year variations (dark blue), and the monthly fractions of estimated PM2.5 emission from 555 

MEIC (gray). 556 

Figure 4. (a) Spatial distribution of dynamics-based PM2.5 emission estimates (µg·m−2·s−1) for 557 

year 2016, and compared to that of year 2016, spatial distributions of dynamics-based PM2.5 558 

emission changes of year (b) 2017, (c) 2018, (d) 2019 and (e) 2020. 559 

Figure 5. (a) The differences of dynamics-based PM2.5 emission estimates between years 2017-560 

2020 and 2016, and (b) the differences normalized by that of year 2016. 561 

Figure 6. Five-year mean diurnal variations of dynamics-based PM2.5 emission fraction averaged 562 

over (a) mainland China, (b) megacities with urban population ≥ 5 million, and (c) non-megacities 563 

with urban population < 5 million. 564 

Figure 7. Diurnal variations of dynamics-based PM2.5 emission fractions for years 2016-2020 565 

(light blue) and five-year mean fractions with bars denoting one standard deviation of the five-566 

year variations (dark blue) are averaged over mainland China for (a) January, (b) April, (c) July, 567 

and (d) October. 568 

Figure 8. Diurnal variations of PM2.5 emission fraction for each month based on diurnal variation 569 

profiles from ES and EU (Wang et al. 2010). 570 

Figure 9. Hourly (light red and blue) and daily (dark red and blue) dynamics-based PM2.5 emission 571 

estimates (kg·h-1) summed over mainland China from January to March of years 2019 and 2020.  572 
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Figure 10. Spatial distributions of dynamics-based PM2.5 emission estimates (µg·m−2·s−1) on (b) 573 

February and (d) March of year 2019, and spatial distributions of dynamics-based PM2.5 emission 574 

reduction of year 2020 compared to year 2019 for (c) February and (e) March. 575 

Figure 11. Mean spatial distributions of PM2.5 emission differences (µg·m−2·s−1) between year 576 

2020 and 2019 for 9 weeks starting at 9 January 2020. Negative (positive) values indicate that 577 

PM2.5 emission of year 2020 is smaller (larger) than that of year 2019. The numbers in (a) denote 578 

provinces as: 1 Heilongjiang, 2 Neimenggu, 3 Xinjiang, 4 Jilin, 5 Liaoning, 6 Gansu, 7 Hebei, 8 579 

Beijing, 9 Shanxi, 10 Tianjin, 11 Shanxi, 12 Ningxia, 13 Qinghai, 14 Shandong, 15 Xizang, 16 580 

Henan, 17 Jiangsu, 18 Anhui, 19 Sichuan, 20 Hubei, 21 Chongqing, 22 Shanghai, 23 Zhejiang, 24 581 

Hunan, 25 Jiangxi, 26 Yunnan, 27 Guizhou, 28 Fujian, 29 Guangxi, 30 Guangdong, 31 Taiwan, 582 

32 Hongkong, 33 Macao, 34 Hainan. 583 

Table 1. Dynamics-based PM2.5 emission estimates of year 2016 for each province whose value 584 

is larger than 0.01 µg·m−2·s−1 are shown in the second column. Ratios of PM2.5 emission changes 585 

of years 2017-2020 compared to year 2016 are shown from the third to the sixth column, with 586 

negative (positive) values indicating decrease (increase) of PM2.5 emission. 587 

Table 2. Five-year mean diurnal fractions (%) of the dynamics-based PM2.5 emission estimates 588 

over mainland China on local solar time (LST) for each month. 589 

  590 

https://doi.org/10.5194/egusphere-2023-755
Preprint. Discussion started: 28 April 2023
c© Author(s) 2023. CC BY 4.0 License.



 

 21 

 591 
 592 

 593 
Figure 1. Times series of hourly PM2.5 concentration biases (µg·m−3). The ensemble mean priors compared to 594 
the observed quantities for December of years 2016-2020 (gray and black), and the mean biases of years 2016-595 

2020 (blue). 596 
 597 
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 600 

 601 
Figure 2. Model domain and observation sites for cycling assimilation. Red and blue dots denote the 602 

assimilated and unassimilated observational sites, respectively. 603 
 604 

605 
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 606 
Figure 3. (a) Dynamics-based monthly PM2.5 emission estimates (Tg·day-1) summed over mainland China of 607 

each year from 2016 to 2020 (colored) and the estimated PM2.5 emission from MEIC (gray); (b) Ratio of PM2.5 608 
emission changes between two adjacent years from year 2016 to 2020 normalized by the PM2.5 emission of 609 

year 2016; (c) Monthly fractions of dynamics-based PM2.5 emission estimates for years 2016-2020 (light blue), 610 
the five-year mean fractions of dynamics-based monthly PM2.5 emission estimates with bars denoting one 611 

standard deviation of the five-year variations (dark blue), and the monthly fractions of estimated PM2.5 612 
emission from MEIC (gray). 613 
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 616 
Figure 4. (a) Spatial distribution of dynamics-based PM2.5 emission estimates (µg·m−2·s−1) for year 2016, and 617 
compared to that of year 2016, spatial distributions of dynamics-based PM2.5 emission changes of year (b) 618 
2017, (c) 2018, (d) 2019 and (e) 2020. 619 
 620 
 621 
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 623 

 624 
Figure 5. (a) The differences of dynamics-based PM2.5 emission estimates between years 2017-2020 and 2016, 625 

and (b) the differences normalized by that of year 2016. 626 
 627 
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 629 
Figure 6. Five-year mean diurnal variations of dynamics-based PM2.5 emission fraction averaged over (a) mainland 630 

China, (b) megacities with urban population ≥ 5 million, and (c) non-megacities with urban population < 5 million. 631 
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 632 
Figure 7. Diurnal variations of dynamics-based PM2.5 emission fractions for years 2016-2020 633 
(light blue) and five-year mean fractions with bars denoting one standard deviation of the five-634 
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year variations (dark blue) are averaged over mainland China for (a) January, (b) April, (c) July, 635 
and (d) October. 636 
  637 
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 638 
 639 

 640 
Figure 8. Diurnal variations of PM2.5 emission fraction for each month based on diurnal 641 
variation profiles from ES and EU (Wang et al. 2010). 642 
  643 
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 644 
 645 

 646 
Figure 9. Hourly (light red and blue) and daily (dark red and blue) dynamics-based PM2.5 emission estimates (kg·h-647 
1) summed over mainland China from January to March of years 2019 and 2020.  648 
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 650 

 651 
 652 

Figure 10. Spatial distributions of dynamics-based PM2.5 emission estimates (µg·m−2·s−1) on (b) February and (d) 653 

March of year 2019, and spatial distributions of dynamics-based PM2.5 emission reduction of year 2020 compared to 654 

year 2019 for (c) February and (e) March. 655 

 656 
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 657 

Figure 11. Mean spatial distributions of PM2.5 emission differences (µg·m−2·s−1) between year 658 
2020 and 2019 for 9 weeks starting at 9 January 2020. Negative (positive) values indicate that 659 
PM2.5 emission of year 2020 is smaller (larger) than that of year 2019. The numbers in (a) denote 660 
provinces as: 1 Heilongjiang, 2 Neimenggu, 3 Xinjiang, 4 Jilin, 5 Liaoning, 6 Gansu, 7 Hebei, 8 661 
Beijing, 9 Shanxi, 10 Tianjin, 11 Shanxi, 12 Ningxia, 13 Qinghai, 14 Shandong, 15 Xizang, 16 662 
Henan, 17 Jiangsu, 18 Anhui, 19 Sichuan, 20 Hubei, 21 Chongqing, 22 Shanghai, 23 Zhejiang, 663 
24 Hunan, 25 Jiangxi, 26 Yunnan, 27 Guizhou, 28 Fujian, 29 Guangxi, 30 Guangdong, 31 664 
Taiwan, 32 Hongkong, 33 Macao, 34 Hainan. 665 

 666 
  667 
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Table 1. Dynamics-based PM2.5 emission estimates of year 2016 for each province whose value 668 
is larger than 0.01 µg·m−2·s−1 are shown in the second column. Ratios of PM2.5 emission changes 669 
of years 2017-2020 compared to year 2016 are shown from the third to the sixth column, with 670 
negative (positive) values indicating decrease (increase) of PM2.5 emission. 671 

 672 
Province PM2.5 

emission of 
year 2016 
(µg·m−2·s−1) 

Percentage 
of PM2.5 
emission 
change for 
year 2017 
(%) 

Percentage 
of PM2.5 
emission 
change for 
year 2018 
(%) 

Percentage 
of PM2.5 
emission 
change for 
year 2019 
(%) 

Percentage 
of PM2.5 
emission 
change for 
year 2020 
(%) 

Tianjin 0.2083 -14.07 -22.99 -38.70 -26.98 
Shanghai 0.2067 -24.39 -30.21 -21.46 -30.05 
Shandong 0.1631 -15.26 -21.02 -15.57 -19.41 
Beijing 0.1598 -26.64 -25.75 -41.92 -45.27 
Hebei 0.1178 -7.47 -11.98 -26.39 -22.87 
Jiangsu 0.1088 -6.52 -3.98 -12.69 -28.20 
Henan 0.1064 -1.41 -3.68 -12.15 -24.91 
Shanxi 0.0885  6.17  7.90 -13.18 -13.85 
Liaoning 0.0742  6.32 -2.58  3.22  11.42 
Anhui 0.0687  1.92 -5.63 -6.23 -21.57 
Hubei 0.0574 -5.87 -17.69 -19.76 -36.48 
Zhejiang 0.0557 -3.62 -9.32 -9.99 -18.05 
Chongqing 0.0525 -22.24 -29.81 -24.63 -38.41 
Shanxi 0.0498  0.62 -1.97 -18.05 -17.85 
Guangdong 0.0481  1.21 -6.01 -6.69 -14.37 
Ningxia 0.0481 -8.17 -5.93 -24.46 -12.95 
Hunan 0.0417 -6.40 -19.35 -9.91 -20.62 
Guangxi 0.0390 -2.42 -3.52 -12.47 -22.31 
Guizhou 0.0365 -4.01 -15.82 -21.74 -46.41 
Jilin 0.0360  12.30 -3.22  7.37  4.76 
Jiangxi 0.0353  13.22 -9.67 -7.19 -11.91 
Sichuan 0.0337 -7.66 -15.66 -27.68 -37.93 
Fujian 0.0244  3.13 -2.73 -8.13 -13.41 
Heilongjiang 0.0231  7.30 -0.21  3.14  3.91 
Yunnan 0.0221 -1.26 -7.16 -9.93 -15.35 
Gansu 0.0177 -4.26  5.28 -17.89 -16.49 
Hainan 0.0173  3.93 -0.41 -5.04 -4.78 
Neimenggu 0.0141 -0.00 -3.63 -8.16  3.55 

 673 
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Table 2. Five-year mean diurnal fractions (%) of the dynamics-based PM2.5 emission estimates 675 
over mainland China on local solar time (LST) for each month. 676 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
0 3.61 3.53 3.57 3.57 3.50 3.36 3.33 3.39 3.51 3.46 3.49 3.59 
1 3.79 3.71 3.74 3.78 3.76 3.67 3.60 3.58 3.72 3.66 3.66 3.77 
2 3.88 3.82 3.97 4.03 4.05 3.95 3.87 4.01 4.05 3.93 3.83 3.89 
3 4.06 4.02 4.12 4.28 4.37 4.37 4.27 4.22 4.26 4.12 4.01 4.07 
4 4.18 4.15 4.42 4.78 5.01 5.11 4.97 4.80 4.77 4.41 4.21 4.20 
5 4.47 4.53 4.92 5.35 5.61 5.64 5.61 5.55 5.42 4.95 4.60 4.47 
6 4.82 4.95 5.30 5.69 5.92 5.98 5.95 5.98 5.95 5.42 5.04 4.81 
7 5.02 5.14 5.41 5.79 6.02 6.16 6.19 6.22 6.16 5.61 5.22 5.03 
8 5.00 5.16 5.44 5.87 6.12 6.30 6.34 6.36 6.22 5.64 5.17 4.98 
9 4.78 5.04 5.39 5.77 6.03 6.24 6.27 6.27 5.85 5.13 4.66 4.61 
10 4.51 4.51 4.78 5.12 5.53 5.93 5.89 5.52 4.78 4.66 4.60 4.52 
11 4.48 4.50 4.52 4.49 4.55 4.89 4.88 4.76 4.66 4.57 4.46 4.40 
12 4.32 4.28 4.33 4.34 4.43 4.45 4.56 4.47 4.15 4.42 4.56 4.44 
13 4.35 4.44 4.35 4.10 3.94 4.07 4.08 4.10 4.24 4.39 4.34 4.30 
14 4.00 4.09 4.12 4.00 3.99 3.84 3.95 3.93 3.62 3.80 3.93 3.98 
15 3.94 3.83 3.66 3.39 3.30 3.48 3.43 3.29 3.24 3.63 3.91 3.96 
16 3.96 3.83 3.51 3.16 2.95 2.86 2.96 3.03 3.18 3.69 4.09 4.08 
17 4.09 4.02 3.63 3.20 2.93 2.80 2.86 2.97 3.25 3.82 4.16 4.15 
18 4.01 4.05 3.70 3.31 2.99 2.76 2.85 3.00 3.27 3.74 4.05 4.07 
19 3.95 3.93 3.61 3.24 3.01 2.82 2.81 2.97 3.23 3.62 3.88 3.96 
20 3.81 3.78 3.46 3.18 2.92 2.69 2.78 2.89 3.14 3.44 3.70 3.83 
21 3.73 3.67 3.39 3.13 2.91 2.74 2.71 2.85 3.08 3.36 3.57 3.71 
22 3.64 3.54 3.33 3.14 2.98 2.79 2.80 2.86 3.08 3.27 3.45 3.62 
23 3.60 3.48 3.33 3.29 3.18 3.10 3.04 2.98 3.17 3.26 3.41 3.56 
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