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Abstract 15 

Timely, continuous, and dynamics-based estimates of PM2.5 emissions with a high temporal 16 

resolution can be objectively and optimally obtained by assimilating observed surface PM2.5 17 

concentrations using flow-dependent error statistics. The annual dynamics-based estimates of 18 

PM2.5 emission averaged over mainland China for years 2016-2020 without biomass burning 19 

emissions are 7.66, 7.40, 7.02, 6.62 and 6.38 Tg, respectively, which are very closed to the values 20 

of MEIC. Annual PM2.5 emissions in China have consistently decreased of approximately 3% to 21 

5% from 2017 to 2020. Significant PM2.5 emission reductions occurred frequently in regions with 22 

large PM2.5 emissions. COVID-19 could cause a significant reduction of PM2.5 emissions in the 23 

north China plain and northeast of China in 2020. The magnitudes of PM2.5 emissions were greater 24 

in the winter than in the summer. PM2.5 emissions show an obvious diurnal variation that varies 25 

significantly with the season and urban population. Compared to the diurnal variations of PM2.5 26 
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emission fractions estimated based on diurnal variation profiles from US and EU, the estimated 27 

PM2.5 emission fractions are 1.25% larger during the evening, the morning peak is 0.57% smaller 28 

in winter and 1.05% larger in summer, and the evening peak is 0.83% smaller. Improved 29 

representations of PM2.5 emissions across time scales can benefit emission inventory, regulation 30 

policy and emission trading schemes, particularly for especially for high temporal resolution air 31 

quality forecasting and policy response to severe haze pollutions or rare human events with 32 

significant socioeconomic impacts. 33 

 34 

1. Introduction 35 

Anthropogenic emissions have imposed essential influences on the earth system, from 36 

hourly air quality and human health to long-time climate and environment. To reduce 37 

anthropogenic emissions, the Chinese government has enforced the Clean Air Action (2013) since 38 

2013. Studies to date that evaluated the emission controls and understood the climate responses 39 

from emission reductions often have used either a fixed meteorology with emission changes or 40 

vice versa (Li et al., 2019a;  Li et al., 2021, Zhai et al., 2021). Estimated emissions from empirical 41 

extrapolation were commonly applied to analyze the meteorological-chemical mechanisms and 42 

associated social-economic impacts from occasional events like the 2015 China Victory Day 43 

Parade and Coronavirus Disease 2019 (COVID-19) pandemic (Wang et al., 2017; Liu et al., 2020; 44 

Huang et al., 2020; Zhu et al., 2021). But to better understand both long-term and short-term 45 

influences from emission changes, the continuous, up-to-date, and high temporal-/spatial- 46 

resolution emission estimates with coherent interactions of meteorology and emission changes are 47 

needed.  48 

The complex contributions from energy production, industrial processes, transportation, 49 

and residential consumptions have imposed great challenges to accurately estimate the emissions. 50 

The emission inventories created by the traditional bottom-up techniques were typically outdated 51 

from the present day due to the lack of accurate and timely statistics, and often with coarse 52 

temporal resolutions from monthly to annual (Zhang et al., 2009; Li et al., 2014; Janssens-53 

Maenhout et al., 2015; Zheng et al., 2018). Alternatively, update-to-date emission estimates with 54 

high temporal-spatial resolutions could be provided by top-down techniques (Miyazaki et al., 55 

2017), but most emissions estimated by top-down techniques were intermittent and analyzed at 56 
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monthly scale or longer longer (Zhang et al., 2016; Jiang et al., 2017; Qu et al., 2017; Cao et al., 57 

2018;  Müller et al., 2018; Chen et al., 2019; Li et al., 2019b; Miyazaki et al., 2020). Moreover, 58 

emissions updated by the top-down techniques based on satellite observations could be insufficient 59 

to capture realistic near-surface characteristics (Li et al., 2019b; Liu et al., 2011; Choi et al., 2020).  60 

Given the development of observation networks and advanced data assimilation strategies, 61 

timely and dynamics-based emission estimates with high temporal resolution can be achieved by 62 

harmonically constraining the atmospheric-chemical model with dense observations of trace gas 63 

compounds through an optimal assimilation methodology. The ensemble Kaman smoother (EnKS) 64 

(Whitaker et al., 2002; Peters et al., 2007; Peng et al., 2015), as a four-dimensional (4D) 65 

assimilation algorithm, makes use of chemical observations from past to future to provide an 66 

optimal estimate of source emissions, and it can capture the “error of the day” and construct fine 67 

emission characteristics with high temporal-spatial resolutions by using short-term ensemble 68 

forecasts (Kalnay, 2002). Since 2013, the fine particulate matter pollution (PM2.5, particles smaller 69 

than 2.5 µm in diameter) as the most urgent threat to public health has been persistently decreased, 70 

and ground-based observations of PM2.5 have been progressively increased (Huang et al., 2018). 71 

Thus by harmonically assimilating dense surface PM2.5 observations into an atmospheric-chemical 72 

model through an EnKS, hourly estimates of PM2.5 emission that were continuously cycled for 73 

years 2016-2020 are presented in this study.     74 

The timely estimated emissions can provide guidance for emission inventories that usually 75 

have time lags and emission trading schemes that often require up-to-date source emissions. Based 76 

on the dynamics-based estimated emissions with harmonic combination of the model and 77 

observations, better evaluation of the emission controls and more comprehensive understanding of 78 

the consequent climate responses can be obtained. The high temporal-resolution estimated 79 

emissions can reveal features of emissions that are absent from the traditional ones with coarse 80 

temporal resolutions. Moreover, the timely and dynamics-based emission estimates with high 81 

temporal resolution are essential for regional air quality modeling, especially for the occurrence of 82 

severe haze pollutions associated with timely evaluation for the impact on public health (Attri et 83 

al., 2001; Wang et al., 2014; Ji et al., 2018; Wang et al., 2020; Liu et al., 2021) and events that 84 

lead to large changes of emissions and significant socioeconomic impacts such as the COVID-19 85 

pandemic (Huang et al., 2020; Le et al., 2020). 86 
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2. Data assimilation and experimental design 87 

The estimate of PM2.5 emission can be successfully constrained by the PM2.5 concentration 88 

observations through an ensemble Kalman filter (EnKF; Peng et al., 2017, 2018,  2020). For a 89 

retrospective ‘reanalysis’ mode here, all available PM2.5 concentration observations, including 90 

those data collected after the analysis time, can be used. Thus a EnKS, a direct generalization of 91 

the EnKF, is applied to incorporate PM2.5 concentration observations both before and after the 92 

analysis time, aiming to provide an optimal estimate of the PM2.5 emission. In simple words, The 93 

emissions are updated by current and future observations though EnKS, while the concentrations 94 

are updated by current observations though EnKF. Detailed procedures of the EnKS are described 95 

in section 2.1. 96 

2.1 An ensemble Kalman smoother to update the source emission 97 

The ensemble priors of source emissions  is created by multiplying a scaling factor  98 

to the prescribed emission  (Peng et al., 2017, 2018, 2020), where the superscript f denotes priors. 99 

Given a time-invariant , the update of  is equivalent to the update of . Due to a time lag, 100 

the prior scaling factor at time t-1 ( ) is updated by chemical observations at time t ( ). At time 101 

t-1, the prior scaling factor for the ith member is written as 102 

.                                   (1) 103 

The first term is the concentration ratio given by the prior of the chemical fields ( ) normalized 104 

by the ensemble mean ( ), where  is an inflation factor used to compensate the insufficient 105 

ensemble spread (Peng et al., 2017). Through using the concentration ratio, each ensemble member 106 

of the source emissions naturally has the spatial correlations given by the chemical fields. The 107 

second term is the mean of the posterior scaling factors at previous assimilation cycles, where the 108 

superscript a denotes posteriors, M is the length of smoothing, and the subscript j+1:t-1 indicates 109 

that the scaling factor at time j is updated by future observations from j+1 to t-1. The assimilation 110 

of future observations will be described below. 111 
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The ensemble square-root filter (EnSRF) (Peng et al., 2017) is used to update  by 112 

assimilating . For the scaling factor at time t-1, posterior ensemble mean is given by  113 

,                     (2) 114 

and posterior ensemble perturbations are given by 115 

( ) ( )
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− − −

   = − + + +     
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(3) 117 

where  denotes the background error covariance matrix of  and ,  indicates the 118 

background error covariance matrix of , ,  and  are the observation forward operator, 119 

Jacobian matrix and observation error covariance matrix of the chemical fields at time t,  is the 120 

localization matrix and  denotes the Schur (elementwise) product. 121 

By applying the ensemble Kalman smoother (EnKS) (Whitaker et al., 2002; Peters et al., 122 

2007), the chemical observation  is also assimilated to update the posterior scaling factor at 123 

previous assimilation cycles . After assimilating the future chemical 124 

observation at time t, posterior ensemble mean of the scaling factor at j is given by 125 

,                (4) 126 

and posterior ensemble perturbations are given by 127 

( ) ( )

' '
, | 1: , | 1: 1

11
'

| 1: 1, , 1

a a
i j j t i j j t

ec c c c c c c c c c c c f
j j t t t t t t t t t t t t t i t

+ + −

−−

+ − −

= −

   + + +     

T

T T T

λ λ

P H H P H R H P H R R H λ
,    (5) 128 

where  denotes the background error covariance matrix of  and . After (2)-(5), 129 

the updated  will be used to construct the prior scaling factor at next 130 

time t+1 (1). 131 
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As a Monte Carlo approach, the EnKS uses the forecast-analysis error covariances based 132 

on ensemble forecasts / analyses to compute the Kalman gain matrix with time lags, to incorporate 133 

observations from the past to the future. The first iteration of EnKS is equivalent to EnKF that 134 

assimilates observations up to the analysis time. The following iterations of EnKS assimilate 135 

observations in the future to update the state at the analysis time. The hourly forecasts of PM2.5 136 

concentration from the cycling assimilation experiment matched the independent observed 137 

quantities (Figure 1). Therefore, the ability of EnKS to retrieve the source emissions has been 138 

demonstrated. Previous studies also showed that simulations forced by the posterior emissions 139 

could produce improved forecasts for PM2.5, SO2, and NO2 than those with a priori emissions 140 

(Peng et al., 2020). 141 

2.2 WRF-Chem model, observations and emissions 142 

To simulate the transport of aerosol and chemical species, the WRF-Chem model version 143 

3.6.1 (Grell et al., 2005) that has the meteorological and chemical components fully coupled is 144 

used. The model parameterization schemes follow Peng et al. (2017). Figure 2 shows the model 145 

domain that covers most east Asia regions. Horizontal grid spacing is 45 km with 57 vertical levels 146 

and model top at 10 hPa.  147 

Experiments are conducted for each year from 2016 to 2020 separately. The 6-h 148 

meteorological observations, including all in-situ observations and cloud motion vectors from the 149 

National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS; 150 

http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm), are assimilated 151 

every 6 h. The hourly observed chemical quantities, which contain PM10, PM2.5, SO2, NO2, O3, 152 

and CO from the Ministry of Ecology and Environment of China (https://aqicn.org/map/china/cn/), 153 

are assimilated every hour. Figure 2 shows the assimilated chemical observation network, which 154 

has 560 randomly chosen stations from 1576 stations in total. The thinning of observations is 155 

applied to avoid correlated errors of observations. The spatial autocorrelation of the thinning of 156 

observations is close to the original observations (Peng et al., 2017). The observation priors are 157 

computed by the “observer” portion of the Grid-point Statistical Interpolation system (GSI) (Kleist 158 

et al., 2009).  159 

 The hourly and time-invariantly prescribed anthropogenic emissions are obtained from the 160 

EDGAR-HTAP (Emission Database for Global Atmospheric Research for Hemispheric Transport 161 
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of Air Pollution v2.2) v2.2 inventory (Janssens-Maenhout et al., 2015), in which the Chinese 162 

emissions are derived from MEIC in 2010 (Lei et al., 2011; Li et al., 2014). Natural emissions, 163 

including the biogenic (Guenther et al., 1995), dust (Ginoux et al., 2001), dimethyl sulfide and sea 164 

salt emissions (Chin et al., 2000), are computed online. 165 

2.3 Assimilation and ensemble configurations 166 

The PM2.5 emission directly gives the primary PM2.5, and then the primary PM2.5 along 167 

with other precursor emissions could contribute to the secondary PM2.5. The observations of PM2.5 168 

concentrations that contain both primary and secondary PM2.5, are used to constrain the PM2.5 169 

emission through data assimilation. Thus the correlations between the concentration observations 170 

and source emissions might be contaminated by the secondary PM2.5. Since the secondary 171 

formation process can be captured by the WRF-Chem model, the impact of the secondary PM2.5 172 

is indirectly considered. The detailed updated state variables with the according observations 173 

follow Peng et al. (2018). The concentrations and emissions of PM2.5, NH3, and PM2.5 precursors 174 

that have observations (SO2 and NO), are updated by the observed quantities, respectively, but the 175 

VOC that are also PM2.5 precursors are not updated due to the lack of direct and limited 176 

observations.. One possible way to untangle the impact of secondary PM2.5 on the estimates of 177 

PM2.5 emission is to jointly estimate the source emission, primary and secondary PM2.5 given the 178 

concentration observations.  179 

The National Oceanic and Atmospheric Administration (NOAA) operational EnKF system 
180 

(https://dtcenter.ucar.edu/com-GSI/users/docs/users_guide/GSIUserGuide_v3.7.pdf), which is an 181 

EnSRF and modified with the EnKS feature, is used to assimilate the observations. Ensemble size 182 

is set to 50. To combat the sampling error resulted from a limited ensemble size, covariance 183 

localization and inflation are applied. The Gaspari and Cohn (GC) (1999) function with a length 184 

scale of 675 km is used to localize the impact of observations and mitigate the spurious error 185 

correlations between observations and state variables. The constant multiplicative posterior 186 

inflation (Whitaker and Hamill 2012) with coefficients 1.12 for all meteorological and chemical 187 

variables is applied to enlarge the ensemble spread. The inflation  for advancing the scale factor 188 

is 1.2. The smoothing length M for source emissions is 4, and the EnKS lagged length K is 6. The 189 

larger the K value, the more future observations are assimilated to constrain the current emission 190 

estimate. But the sample estimated temporal correlations could be contaminated by sampling errors 191 
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and model errors, especially with increased lagged times. Thus, there is a tradeoff between the 192 

amount of future observations and accuracy of sample estimated temporal correlations. The choice 193 

of K (=6) is determined by sensitivity experiments.  194 

At 0000 UTC 26 December of previous year, ensemble initial conditions (ICs) of the 195 

meteorological fields are generated by adding random perturbations that sample the static 196 

background error covariances (Barker et al., 2012) on the NCEP FNL (Final) analyses (Torn et al., 197 

2006). Ensemble ICs of the chemical fields are 0, and source emissions of each ensemble member 198 

are adopted from the EDGAR-HTAP v2.2 inventory with random perturbations of mean 0 and 199 

variances of 10% of the emission values. Hourly ensemble lateral boundary conditions (LBCs) are 200 

generated using the same fixed-covariance perturbation technique as the ensemble ICs. After 6-d 201 

spin up, ensemble data assimilation experiments start cycling for each year. 202 

3. PM2.5 emission for years 2016-2020 203 

Starting from the time-invariant source emission PR2010 (Janssens-Maenhout et al., 2015), 204 

the dynamics-based estimates of the PM2.5 emissions are obtained, which include both the 205 

contributions of the anthropogenic and biomass burning emissions. The mean annual PM2.5 206 

emissions from biomass burning in China (2003~2017) was 0.51 Tg (Yin et al., 2019). The annual 207 

dynamics-based estimates of PM2.5 emission (DEPE) averaged over mainland China for years 208 

2016-2020 without biomass burning emissions are 7.66, 7.40, 7.02, 6.62 and 6.38 Tg, respectively. 209 

The values from the Multi-resolution Emission Inventory (MEIC; Zheng et al., 2018) that does not 210 

consider the contributions of biomass burning emissions, are 8.10, 7.60, 6.70, 6.38 and 6.04 Tg, 211 

respectively. Thus the annual DEPE are very closed to the values of MEIC. From year 2017 to 212 

2020, the estimated annual PM2.5 emissions are reduced 3.4%, 8.4%, 13.6% and 16.7% 213 

respectively compared to that of year 2016. There has been 3%-5% persistent reduction of annual 214 

PM2.5 emission from year 2017 to 2020, which demonstrates the effectiveness of China’s Clean 215 

Air Action (2013) implemented since 2013 and China Blue Sky Defense War Plan (2018) enforced 216 

since 2018 with strengthened industrial emission standards, phased out outdated industrial 217 

capacities, promoted clean fuels in residential sector and so on (Zhang et al., 2019). 218 

The monthly DEPE show reduction of PM2.5 emission nearly in each month from years 219 

2016 to 2020 (Figure 3a), which further demonstates the effectiveness of China’s national plan. 220 

Compared to year 2016, both the reduction amount and reduction ratio of PM2.5 emission are more 221 
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prominent for February, March, June-September, and November than the other months (Figure3b). 222 

Given larger magnitudes of PM2.5 emission in winter than in summer, emission controls with a 223 

focus from October to May should be considered in the design of future clean air actions in China, 224 

since total PM2.5 emission during this period accounts for approximate 75% annual amount. Spatial 225 

distributions of the changes of PM2.5 emission from year 2017 to 2020 compared to year 2016 226 

show significant decreases occurred at Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta 227 

region (YRD), Pearl River Delta region (PRD) and Sichuan-Chongqing Region (SCR), especially 228 

for years 2019-2020 (Figure 4). From year 2016 to 2020, BTH, YRD and SRC have larger 229 

reductions of PM2.5 emission than PRD, but SCR has larger reduction ratio compared to year 2016 230 

than BTH and YRD (Figure 5). Therefore, BTH and YRD have more potentials for PM2.5 emission 231 

controls than PRD and SCR, which can give a guidance for future clean air actions. More 232 

specifically, most provinces have PM2.5 emission reduction from year 2016 to 2020, and the 233 

reduction ratios generally increase from year 2017 to 2020 (Table 1), which confirms continuous 234 

and effective emission controls from Clean Air Action to Blue Sky Defense War Plan in China. 235 

The monthly DEPE also demonstates the effectiveness of strict implementations of emission 236 

reduction policies in China, such as the coal ban for residential heating since the 2017-2018 winter. 237 

There was a sharp change of PM2.5 emission, from increase in 2017 to decrease in 2018. As shown 238 

by Figure 6, spatial distributions of the changes of PM2.5 emissions in December compared to 239 

November in 2017 show obvious increases in most China. However, the changes in 2018 show 240 

significant decreases in areas of Beijing, Tianjin, Hebei, Shanxi, Henan and Anhui provinces due 241 

to the implementation of the coal ban. 242 

Despites the trend in PM2.5 emissions from year 2016 to 2020, the DEPE of year 2016 has 243 

similar monthly distributions to MEIC2016-2020 in general (Figure 3a). MEIC has a “Pan-shape” 244 

monthly distribution with nearly time-invariant PM2.5 emissions from April to October. This 245 

seasonal dependence of emissions is mainly contributed by the variations of residential energy use, 246 

which are empirically dependent on coarse monthly mean temperature intervals and thus cannot 247 

reflect the realistic monthly variations (Streets et al., 2003; Li et al., 2017). The centralized heating 248 

system in North China has a fixed date of turning-on and turning-off during each heating season. 249 

Therefore, a sudden raise of emissions from October to November and a sudden drop of emissions 250 

from March to April are shown. But the turning-on and turning-off date are variable in different 251 

regions, which imposes a smoothing impact on the emissions. However, the DEPE yet shows a 252 
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“V-shape” monthly distribution, with the minimum occurring in August. The estimated PM2.5 253 

emission is 11.8% higher than MEIC2016 in April but 12.1% lower than MEIC2016 in August, 254 

and these different monthly distributions can influence the consequent climate responses including 255 

the radiative forcing and energy budget (Yang et al., 2020) and also impact the health issues (Liu 256 

et al., 2018). Moreover, monthly fractions of the DEPE are consistent cross years (Figure 3c). The 257 

absence of interannual variations of monthly PM2.5 emission fraction provides basis for previous 258 

studies that follow the same monthly changes of source emissions from different years (Zhang et 259 

al., 2009; Zheng et al., 2020, 2021). Monthly allocations of PM2.5 emission can be directly and 260 

objectively obtained given an estimated total annual amount based on the estimated monthly 261 

fractions of DEPE, which is valuable for emission inventory, air quality simulation, and potentially 262 

applications for future scenarios due to more accurate month fractions of DEPE. Since the hourly 263 

priors of PM2.5 concentrations from the cycling assimilation for optimally estimating PM2.5 264 

emission fit to the observed PM2.5 quantities (Figure 1), the monthly DEPE provides more realistic 265 

monthly fluctuations than the empirical estimate. 266 

4. Diurnal variations of PM2.5 emission  267 

The DEPE with high temporal-resolution given the time-invariant prior PR2010 can reveal 268 

features that are unable to represent in the commonly used emission estimates. Although the prior 269 

PR2010 has no diurnal variations, hourly posteriors of PM2.5 emission provide the first objectively 270 

estimated diurnal variations for different seasons for years 2016-2020. However, these estimated 271 

diurnal variations include the contributions of the time-varying boundary layer. An observing 272 

system simulation experiment (OSSE) is performed to investigate the effects of the boundary layer. 273 

Details of this OSSE are presented in Appendix. The results indicate that the magnitude of 274 

posterior PM2.5 emission from the OSSE is closer to the true emission than the prior. Since we 275 

have hourly assimilated observations to simultaneously update the chemical concentrations and 276 

source emissions, the impacts of time-varying boundary layer on the posterior PM2.5 emissions are 277 

limited (Figures S1). A little larger estimated PM2.5 emission fractions occurred in the morning 278 

and smaller estimated PM2.5 emission fractions occurred in the afternoon, comparing to the time-279 

invariant true emission. Nevertheless, the influences of time-varying boundary layer are still 280 

important to PM2.5 emission estimates. To statistically present the diurnal variations, the fractions 281 

of hourly PM2.5 emissions divided by the daily amount are averaged over different years and 282 
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regions after excluding the impacts of time-varying boundary layer (Figures 7 and 8, and Table 2). 283 

The diurnal variations of PM2.5 emission are critical for understanding the mechanisms of PM2.5 284 

formation and evolution and are also essential for PM2.5 simulation and forecast.  285 

Five-year mean diurnal variations of the estimated PM2.5 emission fraction for mainland 286 

China show that despite the monthly variations of PM2.5 emission, the diurnal-variation fractions 287 

for November, December, January and February are similar, while those for June, July and August 288 

are similar (Figure 7a). There are stronger diurnal variations of PM2.5 emission in summer than in 289 

winter, which are represented by larger PM2.5 emission fractions during morning and less PM2.5 290 

emission fractions during evening. The diurnal variations of PM2.5 emission from March to May 291 

gradually transform from the patterns of winter to those of summer, and vice versa for the diurnal 292 

variations of PM2.5 emission from September to November. The monthly changes of diurnal 293 

variations of PM2.5 emission are consistent with the seasonal dependence, since monthly variations 294 

of PM2.5 emission are mainly related to the variations of residential consumptions (Li et al., 2017) 295 

in which the space-heating has nearly no diurnal variations and then larger PM2.5 emissions during 296 

winter lead to reduced diurnal variations than summer. Similar to the monthly fractions of 297 

estimated PM2.5 emission for mainland China, diurnal variations of PM2.5 emission fraction are 298 

consistent cross years for a given month (Figure 8). Table 2 gives five-year mean diurnal variations 299 

of the estimated PM2.5 emission fraction for each month. Based on these high-resolution diurnal-300 

variation fractions, hourly estimates of PM2.5 emission can be objectively obtained for a given 301 

monthly estimated PM2.5 emission.  302 

Despite the high temporal resolution, the DEPE also has the ability to analyze diurnal 303 

variations for specific cities. The monthly changes of diurnal variations of PM2.5 emission 304 

estimated for megacities with urban populations larger than 5 million and non-megacities with 305 

urban populations smaller than 5 million (Notice of the State Council on Adjusting the Standards 306 

for Categorizing City Sizes, 2014) are consistent with those estimated from mainland China 307 

(Figure 7). Compared to the diurnal variations of PM2.5 emission estimated for mainland China, 308 

the megacities have stronger diurnal variations, while the non-megacities have weaker diurnal 309 

variations. These detailed descriptions of PM2.5 emission that are usually absent in common 310 

emission estimates can be essential for PM2.5 simulation, especially for providing timely and 311 

realistic guidance for severe haze events. 312 
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There has been lack of local measurements for diurnal variations and widely adopted 313 

diurnal variation profiles of PM2.5 emission in China. Compared to the diurnal variations of PM2.5 314 

emission fractions estimated based on diurnal variation profiles from US and EU (Wang et al., 315 

2010; Du et al., 2020), the estimated PM2.5 emission fractions are 1.25% larger during the evening, , 316 

which greatly changes the diurnal variations of DEPE. The noon and evening peaks estimated from 317 

DEPE have smaller PM2.5 emission fractions, with mean underestimations of PM2.5 emission 318 

fraction of0.40% and 0.83% for noon peak and evening peak respectively (Figures 7a and 9). In 319 

fact, the smaller evening peaks of Wang et al. (2010) occurred in November, December, January, 320 

February and March, while they are almost indistinct from April to October, similar to that from 321 

DEPE. The morning peak of Wang et al. (2010) is similar to that of DEPE for spring and fall, but 322 

the former overestimates PM2.5 emission fraction of 0.57% for winter while underestimates PM2.5 323 

emission fraction of 1.05% for summer. Due to the overestimated peaks, diurnal variations of 324 

Wang et al.(2010) have sharper appearance rate for morning peak and disappearance rate for 325 

evening peak. Compared to the diurnal variations based on diurnal variation profiles from ES and 326 

EU (Wang et al., 2010), the diurnal variations of the DEPE are constrained by the atmospheric-327 

chemical model and observed PM2.5 concentrations, which can objectively determine the diurnal 328 

variations of PM2.5 emission for specific regions and seasons. 329 

5. Impact of COVID-19 on PM2.5 emissions 330 

The abrupt outbreak of the COVID-19 pandemic has produced dramatically socioeconomic 331 

impacts in China. To prevent the virus spread, a lockdown was first implemented on 23 January 332 

2020 in Wuhan, Hubei province, and subsequently the national lockdown has been enforced in 333 

China (Liu et al., 2020; Huang et al., 2020; Zhu et al., 2021). Consequently, the total PM2.5 334 

emission of February 2020 for China shows an obvious decrease compared to those of previous 335 

years (Figure 3). The high temporal-resolution DEPE reveals the detailed changes of PM2.5 336 

emission with time (Figure 10). The PM2.5 emission started to decrease right around the COVID 337 

outbreak, and had been smaller than those of year 2019 till early March. The emissions at the 338 

following months of 2020 are similar to those of 2019, due to the epidemic prevention and control 339 

policies enforced by the China government. During February 2020, the DEPE shows significant 340 

reductions at the north China plain and northeast of China where prominent PM2.5 emission 341 

occurred, while spotted PM2.5 emission differences with small magnitudes showed at the other 342 
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regions (Figures 11a-b). Along with recovery from the COVID-19, the estimated PM2.5 emission 343 

rebounded in March (Figures 3a, 10, 11c-d), which is contributed to the national work resumption. 344 

Thus, the DEPE is able to timely reflect the dynamic response of PM2.5 emission to the COVID-345 

19.  346 

To avoid fluctuations due to diurnal variations and monthly changes of PM2.5 emission, 7-347 

day averaged PM2.5 emission differences between year 2020 and 2019 are used to analyze the 348 

dynamic impact of COVID-19 on PM2.5 emission (Figure 12). Before the lockdown, there were 349 

slight PM2.5 emission differences over several provinces (Figures 12a-b). During the first week of 350 

lockdown, PM2.5 emission reduction larger than 5x10-2 (μg·m−2·s−1) that is about 60%-70% 351 

emission reduction, occurred at Hubei, Hunan, Guangdong, Anhui and Zhejiang provinces (Figure 352 

12c). The PM2.5 emission reduction extended to BTH and Shandong province during the second 353 

week of lockdown (Figure 12d), and continuously spread to the three northeast provinces of China 354 

during the third week of lockdown (Figure 12e). During the third week of lockdown, the increased 355 

PM2.5 emissions for BTH and SCR are possibly caused by the long national vocation of spring 356 

holiday of year 2019 (Ji et al., 2018). The inhomogeneous spatial variations of PM2.5 emissions 357 

possibly relate with different traditions and policy enforcements for different provinces. The PM2.5 358 

emission reduction had been maintained over the central and northern China till early March when 359 

the lockdown was lift (Figures 12f-i). Though it is hard to see continuous and consistent signal of 360 

lockdown for the whole China, the timely DEPE can provide up-to-date guidance for quantifying 361 

socioeconomic impacts from rare events with large emission changes such as the COVID-19. 362 

Although there were significant reductions of PM2.5 emissions over the central and northern 363 

China in February 2020, a severe air pollution event occurred over the north China in early 364 

February 2020. Previous studies have shown that the factors influencing the severe air pollution 365 

event include the still intensive emissions from industrial, power and residential, unfavorable 366 

meteorological condition, anomalously high humidity that promoted aerosol heterogeneous 367 

chemistry, and secondary aerosol formation associated with increased atmosphere oxidants (Le et 368 

al. 2020; Sulaymon et al. 2021; Li et al., 2021) . 369 

6. Discussion 370 

High temporal-resolution and dynamics-based estimations of PM2.5 emission can be 371 

objectively and optimally obtained by assimilating past and future observed surface PM2.5 372 
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concentrations through flow-dependent error statistics. This advanced assimilation strategy can be 373 

applied for emission estimates of other chemical species when corresponding observations are 374 

available, and extend to observation types besides the surface concentrations, like the aerosol 375 

optical depth (Liu et al., 2011; Choi et al., 2020). Moreover, current estimates of PM2.5 emission 376 

are lack of explicitly representations of primary and secondary PM2.5, which could be resolved by 377 

joint estimation of the source emission, primary and secondary PM2.5 given the concentration 378 

observations. Another deficiency of this top-down technique is that it cannot directly determine 379 

dynamics-based PM2.5 emissions for different sectors and contributions from different policies, 380 

although the bottom-up technique has the potential to untangle the different contributions from 381 

different policies and quantify the different impacts on different sectors. However, this top-down 382 

technique can be integrated into the bottom-up technique to retain advantages of both methods. 383 

One future work is to integrate the top-down technique with the bottom-up one, by which the 384 

emission estimates for different sectors and polices could be quantified. The annual emission 385 

estimate from the bottom-up technique can be further downscaled to hourly estimates by first 386 

distributing the annual amount to each month through the monthly allocations estimated from the 387 

top-down technique, and then assuming evenly daily distribution, finally applying the fractions of 388 

diurnal variation estimated from the top-down technique. The information collected by the bottom-389 

up technique is retained, while the common drawback of coarse temporal resolution for the bottom-390 

up technique is remedied. The integrated bottom-up and top-down technique can improve 391 

spatiotemporal representations of source emissions cross time scales and sectors, which is 392 

beneficial for emission inventory, air quality forecast, regulation policy and emission trading 393 

scheme. 394 
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Figures and Tables 614 

Captions: 615 

Figure 1. Times series of hourly PM2.5 concentration biases (μg·m−3). The ensemble mean priors 616 

compared to the observed quantities for December of years 2016-2020 (gray and black), and the 617 

mean biases of years 2016-2020 (blue). 618 

Figure 2. Model domain and observation sites for cycling assimilation. Red and blue dots denote 619 

the assimilated and unassimilated observational sites, respectively. 620 

Figure 3. (a) Dynamics-based monthly PM2.5 emission estimates (Tg·day-1) summed over 621 

mainland China of each year from 2016 to 2020 (colored) and the estimated PM2.5 emission from 622 

MEIC (gray); (b) Ratio of PM2.5 emission changes between two adjacent years from year 2016 to 623 

2020 normalized by the PM2.5 emission of year 2016; (c) Monthly fractions of dynamics-based 624 

PM2.5 emission estimates for years 2016-2020 (light blue), the five-year mean fractions of 625 

dynamics-based monthly PM2.5 emission estimates with bars denoting one standard deviation of 626 

the five-year variations (dark blue), and the monthly fractions of estimated PM2.5 emission from 627 

MEIC (gray). 628 

Figure 4. (a) Spatial distribution of dynamics-based PM2.5 emission estimates (μg·m−2·s−1) for 629 

year 2016, and compared to that of year 2016, spatial distributions of dynamics-based PM2.5 630 

emission changes of year (b) 2017, (c) 2018, (d) 2019 and (e) 2020. 631 

Figure 5. (a) The differences of dynamics-based PM2.5 emission estimates between years 2017-632 

2020 and 2016, and (b) the differences normalized by that of year 2016. 633 

Figure 6. Spatial distributions of dynamics-based PM2.5 emission changes in December compaered to November 634 

in (a) 2017 and (b) 2018.Figure 7. Five-year mean diurnal variations of dynamics-based PM2.5 635 

emission fraction averaged over (a) mainland China, (b) megacities with urban population ≥ 5 636 

million, and (c) non-megacities with urban population < 5 million. 637 
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Figure 8. Diurnal variations of dynamics-based PM2.5 emission fractions for years 2016-2020 638 

(light blue) and five-year mean fractions with bars denoting one standard deviation of the five-639 

year variations (dark blue) are averaged over mainland China for (a) January, (b) April, (c) July, 640 

and (d) October. 641 

Figure 9. Diurnal variations of PM2.5 emission fraction for each month based on diurnal variation 642 

profiles from ES and EU (Wang et al. 2010). 643 

Figure 10. Hourly (light red and blue) and daily (dark red and blue) dynamics-based PM2.5 644 

emission estimates (kg·h-1) summed over mainland China from January to March of years 2019 645 

and 2020.  646 

Figure 11. Spatial distributions of dynamics-based PM2.5 emission estimates (μg·m−2·s−1) on (b) 647 

February and (d) March of year 2019, and spatial distributions of dynamics-based PM2.5 emission 648 

reduction of year 2020 compared to year 2019 for (c) February and (e) March. 649 

Figure 12. Mean spatial distributions of PM2.5 emission differences (μg·m−2·s−1) between year 650 

2020 and 2019 for 9 weeks starting at 9 January 2020. Negative (positive) values indicate that 651 

PM2.5 emission of year 2020 is smaller (larger) than that of year 2019. The numbers in (a) denote 652 

provinces as: 1 Heilongjiang, 2 Neimenggu, 3 Xinjiang, 4 Jilin, 5 Liaoning, 6 Gansu, 7 Hebei, 8 653 

Beijing, 9 Shanxi, 10 Tianjin, 11 Shanxi, 12 Ningxia, 13 Qinghai, 14 Shandong, 15 Xizang, 16 654 

Henan, 17 Jiangsu, 18 Anhui, 19 Sichuan, 20 Hubei, 21 Chongqing, 22 Shanghai, 23 Zhejiang, 24 655 

Hunan, 25 Jiangxi, 26 Yunnan, 27 Guizhou, 28 Fujian, 29 Guangxi, 30 Guangdong, 31 Taiwan, 656 

32 Hongkong, 33 Macao, 34 Hainan. 657 

Table 1. Dynamics-based PM2.5 emission estimates of year 2016 for each province whose value 658 

is larger than 0.01 μg·m−2·s−1 are shown in the second column. Ratios of PM2.5 emission changes 659 

of years 2017-2020 compared to year 2016 are shown from the third to the sixth column, with 660 

negative (positive) values indicating decrease (increase) of PM2.5 emission. 661 

Table 2. Five-year mean diurnal fractions (%) of the dynamics-based PM2.5 emission estimates 662 

over mainland China on local solar time (LST) for each month. 663 

  664 
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 665 

 666 

 667 
Figure 1. Times series of hourly PM2.5 concentration biases (μg·m−3). The ensemble mean priors compared to 668 

the observed quantities for December of years 2016-2020 (gray and black), and the mean biases of years 2016-669 

2020 (blue). 670 
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 674 

 675 
Figure 2. Model domain and observation sites for cycling assimilation. Red and blue dots denote the 676 

assimilated and unassimilated observational sites, respectively. 677 
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 680 
Figure 3. (a) Dynamics-based monthly PM2.5 emission estimates (Tg·day-1) summed over mainland China of 681 

each year from 2016 to 2020 (colored) and the estimated PM2.5 emission from MEIC (gray); (b) Ratio of PM2.5 682 

emission changes between two adjacent years from year 2016 to 2020 normalized by the PM2.5 emission of 683 

year 2016; (c) Monthly fractions of dynamics-based PM2.5 emission estimates for years 2016-2020 (light blue), 684 

the five-year mean fractions of dynamics-based monthly PM2.5 emission estimates with bars denoting one 685 

standard deviation of the five-year variations (dark blue), and the monthly fractions of estimated PM2.5 686 

emission from MEIC (gray). 687 

 688 

 689 

 690 

 691 

 692 

 693 
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 694 
 695 

Figure 4. (a) Spatial distribution of dynamics-based PM2.5 emission estimates (μg·m−2·s−1) for year 2016, and 696 

compared to that of year 2016, spatial distributions of dynamics-based PM2.5 emission changes of year (b) 697 

2017, (c) 2018, (d) 2019 and (e) 2020. 698 

 699 

 700 

  701 
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 702 

 703 
Figure 5. (a) The differences of dynamics-based PM2.5 emission estimates between years 2017-2020 and 2016, 704 

and (b) the differences normalized by that of year 2016. 705 
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 708 
Figure 6. Spatial distributions of dynamics-based PM2.5 emission changes in December compaered to 709 

November in (a) 2017 and (b) 2018. 710 

  711 
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 712 

Figure 7. Five-year mean diurnal variations of dynamics-based PM2.5 emission fraction averaged over (a) mainland 713 

China, (b) megacities with urban population ≥ 5 million, and (c) non-megacities with urban population < 5 million. 714 

 715 
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 716 
Figure 8. Diurnal variations of dynamics-based PM2.5 emission fractions for years 2016-2020 717 

(light blue) and five-year mean fractions with bars denoting one standard deviation of the five-718 

year variations (dark blue) are averaged over mainland China for (a) January, (b) April, (c) July, 719 

and (d) October. 720 

  721 
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 722 

 723 

 724 

 725 
Figure 9. Diurnal variations of PM2.5 emission fraction for each month based on diurnal 726 

variation profiles from ES and EU (Wang et al. 2010). 727 
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 729 

 730 

 731 

 732 
Figure 10. Hourly (light red and blue) and daily (dark red and blue) dynamics-based PM2.5 emission estimates (kg·h-733 

1) summed over mainland China from January to March of years 2019 and 2020.  734 
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 736 

 737 
 738 

Figure 11. Spatial distributions of dynamics-based PM2.5 emission estimates (μg·m−2·s−1) on (b) February and (d) 739 

March of year 2019, and spatial distributions of dynamics-based PM2.5 emission reduction of year 2020 compared to 740 

year 2019 for (c) February and (e) March. 741 
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 743 

Figure 12. Mean spatial distributions of PM2.5 emission differences (μg·m−2·s−1) between year 744 

2020 and 2019 for 9 weeks starting at 9 January 2020. Negative (positive) values indicate that 745 

PM2.5 emission of year 2020 is smaller (larger) than that of year 2019. The numbers in (a) denote 746 

provinces as: 1 Heilongjiang, 2 Neimenggu, 3 Xinjiang, 4 Jilin, 5 Liaoning, 6 Gansu, 7 Hebei, 8 747 

Beijing, 9 Shanxi, 10 Tianjin, 11 Shanxi, 12 Ningxia, 13 Qinghai, 14 Shandong, 15 Xizang, 16 748 

Henan, 17 Jiangsu, 18 Anhui, 19 Sichuan, 20 Hubei, 21 Chongqing, 22 Shanghai, 23 Zhejiang, 749 

24 Hunan, 25 Jiangxi, 26 Yunnan, 27 Guizhou, 28 Fujian, 29 Guangxi, 30 Guangdong, 31 750 

Taiwan, 32 Hongkong, 33 Macao, 34 Hainan. 751 

 752 

  753 
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Table 1. Dynamics-based PM2.5 emission estimates of year 2016 for each province whose value 754 

is larger than 0.01 μg·m−2·s−1 are shown in the second column. Ratios of PM2.5 emission changes 755 

of years 2017-2020 compared to year 2016 are shown from the third to the sixth column, with 756 

negative (positive) values indicating decrease (increase) of PM2.5 emission. 757 

 758 

Province PM2.5 

emission of 

year 2016 

(μg·m−2·s−1) 

Percentage 

of PM2.5 

emission 

change for 

year 2017 

(%) 

Percentage 

of PM2.5 

emission 

change for 

year 2018 

(%) 

Percentage 

of PM2.5 

emission 

change for 

year 2019 

(%) 

Percentage 

of PM2.5 

emission 

change for 

year 2020 

(%) 

Tianjin 0.2083 -14.07 -22.99 -38.70 -26.98 

Shanghai 0.2067 -24.39 -30.21 -21.46 -30.05 

Shandong 0.1631 -15.26 -21.02 -15.57 -19.41 

Beijing 0.1598 -26.64 -25.75 -41.92 -45.27 

Hebei 0.1178 -7.47 -11.98 -26.39 -22.87 

Jiangsu 0.1088 -6.52 -3.98 -12.69 -28.20 

Henan 0.1064 -1.41 -3.68 -12.15 -24.91 

Shanxi 0.0885  6.17  7.90 -13.18 -13.85 

Liaoning 0.0742  6.32 -2.58  3.22  11.42 

Anhui 0.0687  1.92 -5.63 -6.23 -21.57 

Hubei 0.0574 -5.87 -17.69 -19.76 -36.48 

Zhejiang 0.0557 -3.62 -9.32 -9.99 -18.05 

Chongqing 0.0525 -22.24 -29.81 -24.63 -38.41 

Shanxi 0.0498  0.62 -1.97 -18.05 -17.85 

Guangdong 0.0481  1.21 -6.01 -6.69 -14.37 

Ningxia 0.0481 -8.17 -5.93 -24.46 -12.95 

Hunan 0.0417 -6.40 -19.35 -9.91 -20.62 

Guangxi 0.0390 -2.42 -3.52 -12.47 -22.31 

Guizhou 0.0365 -4.01 -15.82 -21.74 -46.41 

Jilin 0.0360  12.30 -3.22  7.37  4.76 

Jiangxi 0.0353  13.22 -9.67 -7.19 -11.91 

Sichuan 0.0337 -7.66 -15.66 -27.68 -37.93 

Fujian 0.0244  3.13 -2.73 -8.13 -13.41 

Heilongjiang 0.0231  7.30 -0.21  3.14  3.91 

Yunnan 0.0221 -1.26 -7.16 -9.93 -15.35 

Gansu 0.0177 -4.26  5.28 -17.89 -16.49 

Hainan 0.0173  3.93 -0.41 -5.04 -4.78 

Neimenggu 0.0141 -0.00 -3.63 -8.16  3.55 

 759 

  760 
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Table 2. Five-year mean diurnal fractions (%) of the dynamics-based PM2.5 emission estimates 761 

over mainland China on local solar time (LST) for each month. 762 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

0 3.65 3.58 3.61 3.61 3.55 3.40 3.36 3.44 3.55 3.50 3.53 3.63 

1 3.77 3.69 3.72 3.76 3.74 3.65 3.58 3.56 3.70 3.64 3.64 3.75 

2 3.88 3.82 3.96 4.03 4.05 3.94 3.86 4.01 4.05 3.93 3.83 3.89 

3 3.98 3.94 4.05 4.21 4.29 4.30 4.19 4.14 4.19 4.05 3.93 3.99 

4 4.10 4.06 4.33 4.69 4.92 5.03 4.89 4.71 4.69 4.33 4.12 4.12 

5 4.32 4.38 4.76 5.20 5.46 5.48 5.45 5.39 5.27 4.80 4.45 4.32 

6 4.61 4.74 5.09 5.48 5.72 5.78 5.74 5.78 5.74 5.21 4.83 4.61 

7 4.78 4.90 5.17 5.55 5.78 5.92 5.95 5.98 5.92 5.37 4.98 4.79 

8 4.77 4.93 5.21 5.63 5.88 6.07 6.11 6.13 5.99 5.41 4.94 4.75 

9 4.54 4.79 5.14 5.52 5.79 6.00 6.03 6.02 5.60 4.89 4.42 4.37 

10 4.41 4.41 4.68 5.02 5.43 5.83 5.79 5.42 4.68 4.55 4.50 4.42 

11 4.38 4.40 4.42 4.39 4.45 4.79 4.78 4.66 4.56 4.47 4.36 4.30 

12 4.37 4.32 4.37 4.38 4.48 4.49 4.61 4.51 4.19 4.46 4.60 4.48 

13 4.34 4.43 4.34 4.09 3.93 4.06 4.07 4.09 4.23 4.38 4.33 4.29 

14 4.17 4.26 4.30 4.18 4.16 4.02 4.13 4.10 3.79 3.98 4.10 4.15 

15 4.10 3.99 3.82 3.55 3.46 3.63 3.59 3.45 3.39 3.79 4.07 4.12 

16 4.17 4.05 3.73 3.38 3.17 3.08 3.18 3.24 3.40 3.92 4.30 4.29 

17 4.24 4.17 3.79 3.36 3.08 2.95 3.01 3.12 3.41 3.98 4.31 4.30 

18 4.18 4.21 3.87 3.48 3.16 2.92 3.03 3.17 3.44 3.91 4.21 4.24 

19 4.06 4.04 3.72 3.35 3.12 2.92 2.93 3.08 3.34 3.73 3.99 4.07 

20 3.96 3.93 3.62 3.34 3.07 2.84 2.93 3.04 3.29 3.59 3.85 3.98 

21 3.81 3.75 3.47 3.21 2.99 2.83 2.80 2.93 3.16 3.44 3.65 3.79 

22 3.76 3.66 3.44 3.25 3.09 2.91 2.92 2.97 3.19 3.38 3.56 3.73 

23 3.65 3.55 3.39 3.34 3.23 3.16 3.09 3.04 3.23 3.32 3.47 3.62 

 763 

 764 

 765 

  766 
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Appendix: Effects of meteorology 767 

An observing system simulation experiment (OSSE) is performed to investigate the effects of time-768 

varying boundary layer. A nature run is first conducted from 0000 UTC 25 December 2015 to 769 

0000 UTC 2 February 2016, forced by the time-invariant source emissions PR2010 (the true 770 

emission). Synthetic observations of the six conventional air pollutant concentrations (i.e., PM10, 771 

PM2.5, SO2, NO2, O3, and CO) are generated from the natural run. Hourly synthetic observations 772 

are created from 0000 UTC 29 December 2015 to 0006 UTC 1 February 2016, by interpolating 773 

the gridded true surface concentrations to the chemical observation locations with additive random 774 

errors of ( )0,N R . R is the observation error variance, which is calculated by the formula in Elbern 775 

et al. (2007). Outputs from the first four days of the natural run are excluded to avoid the transient 776 

effect. Then the prior emissions are generated by ( )( )F 1.8 , , , Fpr trx y z t= + , where Ftr  is the true 777 

emission,   is a random number sampled from the normal distribution ( )0,1N  (Peng et al. 2015). 778 

Ensemble data assimilation experiments are conducted from 0000 UTC 29 December to 0006 UTC 779 

1 February 2016. Outputs from the first two days of the OSSE are excluded due to the spin-up. 780 

The magnitude of posterior PM2.5 emission is closer to the true emission than the prior. Figure S1 781 

presents the monthly mean diurnal variations of PM2.5 emission fraction from the OSSE. It shows 782 

that a little larger estimated PM2.5 emission fractions occurred in the morning and smaller 783 

estimated PM2.5 emission fractions occurred in the afternoon, comparing to the time-invariant true 784 

emission. But the diurnal variations of PM2.5 emission fractions caused by the boundary layer are 785 

not as strong as that caused by the emission itself (Figure 7). The reason may be that we have 786 

hourly assimilated observations to simultaneously update the chemical concentrations and source 787 

emissions. Therefore, the impacts of time-varying boundary layer on the posterior PM2.5 emissions 788 

are limited. 789 

 790 
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Figure S1. Diurnal variations of PM2.5 emission fraction for the Observing System Simulation 791 

Experiment. 792 


