
Response to Reviewer #1 

Thank the reviewer for the insightful and detailed comments and suggestions, which 

helped to significantly improve the manuscript. 

The reviewer’s comments are shown in blue italics with the author responses in black. 

This study assimilates hourly air quality observations to provide detailed primary 

PM2.5 emissions inventory across China. Some insights about inter-annual, monthly 

and diurnal variation of the derived emissions, as well as impacts from COVID-19 

lockdown are discussed. While the scope of this study is definitely within the scope of 

ACP, I have a serious reservation of publishing the manuscript at the present form. The 

main issue is about inadequate/insufficient discussion of the results and missing 

information of fundamentals which I will outline later. I am happy to re-review the 

revised manuscript, and will support the publication of this paper, if the following 

concerns can be adequately addressed.  

Major points: 

1) Assimilation approach regarding secondary PM2.5: it is hard for me to understand 

(Page 6-7) how "the impact of the secondary PM2.5 is ignored" during the assimilation. 

Secondary aerosol makes significant contributions (>50%) to observed PM2.5. This 

fact almost applies to all the hourly PM2.5 observations. Observations that are very 

remote and during less photochemically reactive periods may be less constituted by 

secondary aerosols, but I think these records make minor contributions to the air 

quality records this paper used which distribute mostly over eastern China. WRF-Chem 

simulation of PM2.5 includes important secondary species, which is fundamental to 

successfully capture PM2.5 spatiotemporal variations in China. So please further 

clarify: 

What emission species are exactly optimized during the assimilation? Do you only 

constrain PM2.5 emissions and let PM2.5 precursors (SO2, NH3, NOx, VOC) to stay 

the same as the a priori? If so, how uncertain are the constrained PM2.5 emissions, if 

the a priori precursor emissions are incorrect and they make significant contributions 

to the observed PM2.5? 

Lines 142 suggests that "hourly observed ... PM10, PM2.5, SO2, NO2, O3, and CO" 

are assimilated. So maybe these concentrations are used to also constrain the PM2.5 



precursor emissions at the same time? If so, you should also briefly present the results 

of optimized precursor emissions, and how they affect the constraints on PM2.5 

emissions. 

Overall, I do not understand how successful constraints on PM2.5 emissions can be 

achieved with "ignoring secondary aerosol". 

Thank the reviewer for the valuable comments and suggestions. We agree with the 

reviewer that secondary aerosol is important to observed PM2.5 and PM2.5 precursors 

(SO2, NH3, NOx, VOC) play crucial roles in the formation of secondary aerosol. The 

WRF-Chem model has good performances for simulating the spatiotemporal variations 

of PM2.5 over China, due to the model advances, especially with the improved 

description of the secondary formation mechanisms of aerosols. We did not clearly 

describe the assimilation process related with the secondary formation. As the reviewer 

commented, the aerosol secondary formation is captured by the WRF-Chem model, 

while the PM2.5, O3, NH3, and PM2.5 precursors that have observations (SO2 and NO), 

are updated by the observed quantities, respectively, but the VOC that are also PM2.5 

precursors are not updated due to the lack of direct and limited observations.  

The detailed updated chemical variables and emission species follow Peng et al. (2018). 

Six conventional air pollutant observations (i.e., PM10, PM2.5, SO2, NO2, O3, and CO) 

are obtained from the Ministry of Ecology and Environment of China. The 

concentrations and emissions related to the six observations are constrained by the 

observed quantities. PM2.5 observations are used to constrain the mass concentrations 

of P2.5 (the fine unspeciated aerosol contributions), S (sulfate), OC1 (hydrophobic 

organic carbon), OC2 (hydrophilic organic carbon), BC1 (hydrophobic black carbon), 

BC2 (hydrophilic black carbon), D1 (dusts with effective radii of 0.5 μm), D2 (dusts with 

effective radii of 1.4 μm), S1 (sea salts with effective radii of 0.3 μm) and S2(sea salts 

with effective radii of 1.0 μm). Besides, the emissions of the unspeciated primary 

sources of PM2.5, sulfate, nitrate and NH3 are also updated. PM10-2.5 observations (the 

differences between the PM10 observations and the PM2.5 observations) are used to 

constrain the mass concentrations of P10 (the coarse-mode unspeciated aerosol 

contributions), D3 (dusts with effective radii of 2.4 μm), D4 (dusts with effective radii 

of 4.5 μm), D5, S3(sea salts with effective radii of 3.25 μm), S4 and the emission of 

PM10. SO2 observations are used to constrain the SO2 concentrations and emissions. 



NO2 observations are used to update the NO and NO2 concentrations and NO emissions. 

CO observations are used to constrain the CO concentrations and emissions, while O3 

observations are used to constrain the O3 concentrations.  

To clarify the details of the assimilation process and the treatment for the secondary 

formation, the text in Lines 171-177, Page 7, is added. The details of the updated 

chemical and emission species follow Peng et al. (2018), which is not include in the 

text. 

“Since the secondary formation process can be captured by the WRF-Chem model, the 

impact of the secondary PM2.5 is indirectly considered. The detailed updated state 

variables with the according observations follow Peng et al. (2018). The concentrations 

and emissions of PM2.5, NH3, and PM2.5 precursors that have observations (SO2 and 

NO), are updated by the observed quantities, respectively, but the VOC that are also 

PM2.5 precursors are not updated due to the lack of direct and limited observations.” 

2) A missing piece of information is showing the improvement in model 

simulation/prediction after the assimilation? How is the agreement of simulated PM2.5 

vs. observations improved after the assimilation? If you also constrained precursor 

emissions, comparison vs. observed air quality species other than PM2.5 should also 

be provided. 

Another suggestion is to compare your results vs. the updated MEIC that has extended 

to more recent years (not just 2016). This discussion is especially necessary considering 

that MEIC contains detailed bottom-up information. Differences of the derived inter-

annual and inter-month variations of emissions vs. MEIC will be indicative where and 

when MEIC might be unrepresentative and why. 

Thank the reviewer for the insightful suggestions. In this study, the hourly forecasts of 

PM2.5 concentration from the cycling assimilation experiment matched the independent 

observed quantities well, as shown by Figure 1. This indicates that PM2.5 simulations 

are improved by the assimilation. Moreover, our previous work demonstrated that 

simulations forced by the posterior emissions could produce smaller biases and errors 

for PM2.5, SO2, and NO2 than those with a priori emissions, when independent 

verifications against the observed quantities (Peng et al., 2020). This discussion is 

added in the text in Lines 139-141, Page 6. 



The manuscript is updated by extending the comparison to MEIC from 2016 to 2020. 

For years 2016-2020, the PM2.5 emissions from MEIC are 8.10, 7.60, 6.70, 6.38 and 

6.04 Tg, respectively. The PM2.5 emissions from DEPE are 8.17, 7.91, 7.53, 7.13 and 

6.89 Tg, respectively. However, MEIC focuses on the contributions of the 

anthropogenic activities, but does not consider the contributions of biomass burning 

emissions. Meanwhile, the DEPE has the posterior PM2.5 emissions updated by the 

EnKS with both contributions from the anthropogenic and biomass burning emissions. 

The mean annual PM2.5 emission from biomass burning in China (2003~2017) is 0.51 

Tg (Yin et al., 2019). Thus to fairly compare with the MEIC, we subtract the 

contributions of biomass burning emissions from the dynamics-based estimates of 

PM2.5 emissions, which gives posterior PM2.5 emissions of 7.66, 7.40, 7.02, 6.62 and 

6.38 Tg for years 2016-2020, respectively. The text and figures are all updated by the 

extended comparisons with the MEIC from years 2016-2020.  

Yin, L., Du, P., Zhang, M., Liu, M., Xu, T., and Song, Y.: Estimation of emissions from 

biomass burning in China (2003–2017) based on MODIS fire radiative energy data, 

Biogeosciences, 16, 1629–1640, https://doi.org/10.5194/bg-16-1629-2019, 2019. 

3) Section 5: This section attributes the difference of 2020 emissions vs. the previous 

years to the COVID-19 lockdown. However, the 2020 emission vs. 2019 is not entirely 

stronger than the difference between other neighboring years (e.g., Figure 3 and Table 

1). So how much of the 2020-2019 emission difference can also be contributed by 

continuous environmental policies (as discussed in Section 3)? Overall, Figure 11 does 

not provide continuous signal of lockdown either, as some provinces show temporary 

increases at certain phases. The authors discuss New Year firework. But how can they 

only occur in certain provinces (and not occurring during the first several days of New 

Year)? Overall, the attribution of 2020-2019 emission difference to COVID-19 

lockdown and the relevant discussions about temporal changes of these differences are 

weak. 

 Thank the reviewer for the valuable comment.  

We agree with the reviewer that the 2020 emission vs. 2019 is not entirely stronger than 

the differences between other neighboring years. As shown by Figure 3, the lockdown 

impact is mainly shown in February 2020. The emissions at the following months of 

February 2020 are similar to those of 2019, due to the epidemic prevention and control 



policies enforced by the China government. This discussion is added in the text in Lines 

338-340, Page 12. 

The current EnKS, as a top-down technique, is unable to provide dynamics-based PM2.5 

emission estimates for different sectors and contributions from different policies, 

although the bottom-up technique has the potential to untangle the different 

contributions from different policies and quantify the different impacts on different 

sectors. One future work is to integrate the top-down technique with the bottom-up one, 

by which the emission estimates for different sectors and polices could be quantified. 

This discussion is added in the section of discussion in Lines 380-385, Page 14.  

We agree with the reviewer that it is hard to see continuous and consistent signal of 

lockdown for the whole China, as shown by the original Figure 11 (new Figure 12). It 

is very likely that the inhomogeneous spatial variations of PM2.5 emissions possibly 

relate with different traditions and policy enforcements for different provinces. As the 

third reviewer pointed out, the increased PM2.5 emissions for BTH and SCR are not 

resulted from the firework, but possibly led by the long national vocation of spring 

holiday of year 2019 (Ji et al., 2018). This discussion is added in the text in Lines 356-

358, 360-361, Page 13. 

Specific comments: 

1) Abstract: key quantitative results should be presented. The current form of abstract 

is too qualitative and less informative. Line 24-27 reads redundant and irrelevant, and 

is suggested to be replaced with a more concise sentence stating the significance of 

these results. 

Thank the reviewer for the valuable comment. The abstract is modified to emphasize 

the findings and significance of the study. The updated abstract is: 

“Timely, continuous, and dynamics-based estimates of PM2.5 emissions with a high 

temporal resolution can be objectively and optimally obtained by assimilating observed 

surface PM2.5 concentrations using flow-dependent error statistics. The annual 

dynamics-based estimates of PM2.5 emission averaged over mainland China for years 

2016-2020 without biomass burning emissions are 7.66, 7.40, 7.02, 6.62 and 6.38 Tg, 

respectively, which are very closed to the values of MEIC. Annual PM2.5 emissions in 

China have consistently decreased of approximately 3% to 5% from 2017 to 2020. 



Significant PM2.5 emission reductions occurred frequently in regions with large PM2.5 

emissions. COVID-19 could cause a significant reduction of PM2.5 emissions in the 

north China plain and northeast of China in 2020. The magnitudes of PM2.5 emissions 

were greater in the winter than in the summer. PM2.5 emissions show an obvious diurnal 

variation that varies significantly with the season and urban population. Compared to 

the diurnal variations of PM2.5 emission fractions estimated based on diurnal variation 

profiles from US and EU, the estimated PM2.5 emission fractions are 1.25% larger 

during the evening, the morning peak is 0.57% smaller in winter and 1.05% larger in 

summer, and the evening peak is 0.83% smaller. Improved representations of PM2.5 

emissions across time scales can benefit emission inventory, regulation policy and 

emission trading schemes, particularly for especially for high temporal resolution air 

quality forecasting and policy response to severe haze pollutions or rare human events 

with significant socioeconomic impacts.”  

2) Why are observations before 2016 not used in the assimilation? 

The experimental period is from 2016 to 2020. We did not start the experiment earlier 

than 2016, due to the lack of concentration observations.  

3) Line 154: what is the spatial autocorrelation before and after the selection of stations? 

The spatial autocorrelation of the thinning of observations is close to the original 

observations. We have added this sentence in Line 155-156, Page 6.  

4) Line 196: What are the "weather effects" referring to? 

Thank the reviewer for pointing out this sentence. We realized that PM2.5 emission is 

not related to the weather conditions, liking PM2.5 concentrations. So we have moved 

this sentence in Line 220, Page 8. 

5) Figure 3b: the winter seasons show a sharp change from increases in 2017 to 

decreases in 2018. Is it related to the coal ban for residential heating since the 2017-

2018 winter? 

The winter seasons demonstrate a sharp change from increases in 2017 to decreases in 

2018. It is related to the coal ban for residential heating since the 2017-2018 winter. In 

2017, spatial distributions of the changes of PM2.5 emissions in December compared to 

November show obvious increases in most China. However, the changes in 2018 show 



significant decreases in areas of Beijing, Tianjin, Hebei, Shanxi, Henan and Anhui 

provinces. This discussion is added in the text at 236-242, Page 9: 

“The monthly DEPE also demonstrates the effectiveness of strict implementations of 

emission reduction policies in China, such as the coal ban for residential heating since 

the 2017-2018 winter. There was a sharp change of PM2.5 emission, from increase in 

2017 to decrease in 2018. As shown by Figure 6, spatial distributions of the changes of 

PM2.5 emissions in December compared to November in 2017 show obvious increases 

in most China. However, the changes in 2018 show significant decreases in areas of 

Beijing, Tianjin, Hebei, Shanxi, Henan and Anhui provinces due to the implementation 

of the coal ban.” 

 6) Line 215-216: As I understand, the centralized heating system in North China has 

a fixed date of turning-on and turning-off during each heating season. So a sudden drop 

of emissions from March to April looks reasonable to me. Do you suggest that the 

turning-off date is variable in different places to smooth-out the differences, or 

residential heating does not contribute that much to the total emissions variations 

between these two months? 

We agree with the reviewer that the centralized heating system in North China has a 

fixed date of turning-on and turning-off during each heating season. Therefore, a 

sudden raise of emissions from October to November and a sudden drop of emissions 

from March to April is reasonable. But the turning-on and turning-off date are variable 

in different places, which help to smooth-out the differences. This discussion is added 

in the text at 248-252, Page 9: 

“The centralized heating system in North China has a fixed date of turning-on and 

turning-off during each heating season. Therefore, a sudden raise of emissions from 

October to November and a sudden drop of emissions from March to April are shown. 

But the turning-on and turning-off date are variable in different regions, which imposes 

a smoothing impact on the emissions.” 

7) Section 4: some recent bottom-up developments have more details about diurnal 

emission variations (e.g., Du et al., 10.5194/acp-20-2839-2020, 2020, Figure 1). 

Discussion about comparison of your results vs. these recent diurnal profiles can be 

insightful. 



Thank the reviewer for the thoughtful suggestion. As shown in Figure R1, the diurnal 

variation profiles for the power, industry, residential in Du et al. (2020) are the same as 

in Wang et al. (2010). However, the diurnal variation for transportation in Wang et al. 

(2010) are divided into four subcategories: light duty vehicles emissions in weekday, 

light duty vehicles emissions in weekend, heavy duty vehicles in weekday and heavy 

duty vehicles in weekend, which is more carefully than those in Du et al. (2020). So we 

did not compare the diurnal variation in Du et al. (2020), but we added this reference 

in Line 316, Page 12. 

 

Figure R1. Diurnal variations of emissions from the individual sectors from (a) Wang 

et al., 2010; (b) Du et al., 2020. 

8) Line 310: missing words here. 

Thank the reviewer for pointing out the mistake. We have revised the text in Line 362, 

Page 13. 

 

  



Response to Reviewer #2 

We thank reviewer for his thoughtful comments and suggestions that have helped to 

significantly improve this manuscript.  

The reviewer’s comments are shown in blue italics with the author responses in black. 

Summary 

This manuscript proposes an ensemble Kalman smoother to constrain the PM 2.5 

emissions by incorporating the information of PM 2.5 observations. Results based on 

5-year cycling assimilation provide quantitively estimates for annual and monthly 

variations of the PM 2.5 emission. By assimilating the observations with the ensemble 

Kalman smoother, the influences of COVID are clearly displayed. Moreover, diurnal 

variations of the PM 2.5 emission for each month are provided, which can be a valuable 

contribution to the PM 2.5 forecast. The manuscript proposed an advanced data 

assimilation method to update the PM 2.5 emissions by both present and future PM 2.5 

observations. Overall it is well written and presented. It could be very beneficial to the 

community of chemistry data assimilation. I have several minor comments below. 

1. An EnKS is proposed to update the emission along with the concentration. Are both 

the emission and the concentration updated by future observations? 

Thank the reviewer for the valuable comments.  The emissions are updated by current 

and future observations. But the concentrations are updated by current observations.  

This discussion is added in the text in Lines 93-95, Page 4. 

2. The lagged length for EnKS is an important factor because it determines how many 

future observations are applied to constrain the current state. The lagged length K is 

set to 6 in this study. How this parameter is determined? 

Thank the reviewer for the valuable comments. The larger the K value, the more future 

observations are assimilated to constrain the current emission estimate. But the sample 

estimated temporal correlations could be contaminated by sampling errors and model 

errors, especially with increased lagged times. Thus, there is a tradeoff between the 



amount of future observations and accuracy of sample estimated temporal correlations. 

The choice of K (=6) is determined by sensitivity experiments. This discussion is added 

in the text in Lines 190-194, Pages 7-8 

3. It is interesting to see the quick influences of COVID on PM2.5 (Figure 11). Can 

such a DA system be practical for real-time operations? 

Thank the reviewer for the valuable comments. This DA system can be practical for 

real time operations. 

 

 

  



Response to Reviewer #3 

We thank reviewer for his thoughtful comments and suggestions that have helped to 

significantly improve this manuscript.  

The reviewer’s comments are shown in blue italics with the author responses in black. 

This study develops and presents top-down estimates of high temporal (up to hourly) 

PM2.5 emissions using an ENKS. The goal of this study is adequate for a publication 

in this journal, and I expect this research would inspire other researchers and would 

lead to further advances in top-down estimates of pollutant emissions. However, there 

are some parts that can be misleading or need to be clarified. Also, I agree with two 

other reviewers who raised important issues, which are as follows. 

1. It is not clear how secondary PM2.5 is ignored. Did you just assume that the 

increments or differences resulting from PM2.5 assimilation are all attributed to PM2.5 

emissions? Or, the formation of secondary PM2.5 is ignored in the WRF-Chem 

modeling? I agree with the first reviewer who emphasized the importance of secondary 

PM2.5 formation. The authors should demonstrate how the ignorance of secondary 

PM2.5 can be justified and what potential errors are.  

Thank the reviewer for the valuable comment. We agree with both Reviewer #1 and 

Reviewer #3 that secondary aerosol is important to observed PM2.5 and PM2.5 

precursors (SO2, NH3, NOx, VOC) play crucial roles in the formation of secondary 

aerosol. We did not clearly describe the assimilation process related with the secondary 

formation. As Reviewer #1 commented, the aerosol secondary formation is captured by 

the WRF-Chem model, while the PM2.5, O3, NH3, and PM2.5 precursors that have 

observations (SO2 and NO), are updated by the observed quantities, respectively, but 

the VOC that are also PM2.5 precursors are not updated due to the lack of direct and 

limited observations.  

The detailed updated chemical variables and emission species follow Peng et al. (2018). 

Six conventional air pollutant observations (i.e., PM10, PM2.5, SO2, NO2, O3, and CO) 

are obtained from the Ministry of Ecology and Environment of China. The 

concentrations and emissions related to the six observations are constrained by the 

observed quantities. PM2.5 observations are used to constrain the mass concentrations 

of P2.5 (the fine unspeciated aerosol contributions), S (sulfate), OC1 (hydrophobic 



organic carbon), OC2 (hydrophilic organic carbon), BC1 (hydrophobic black carbon), 

BC2 (hydrophilic black carbon), D1 (dusts with effective radii of 0.5 μm), D2 (dusts with 

effective radii of 1.4 μm), S1 (sea salts with effective radii of 0.3 μm) and S2(sea salts 

with effective radii of 1.0 μm). Besides, the emissions of the unspeciated primary 

sources of PM2.5, sulfate, nitrate and NH3 are also updated. PM10-2.5 observations (the 

differences between the PM10 observations and the PM2.5 observations) are used to 

constrain the mass concentrations of P10 (the coarse-mode unspeciated aerosol 

contributions), D3 (dusts with effective radii of 2.4 μm), D4 (dusts with effective radii 

of 4.5 μm), D5, S3(sea salts with effective radii of 3.25 μm), S4 and the emission of 

PM10. SO2 observations are used to constrain the SO2 concentrations and emissions. 

NO2 observations are used to update the NO and NO2 concentrations and NO emissions. 

CO observations are used to constrain the CO concentrations and emissions, while O3 

observations are used to constrain the O3 concentrations.  

To clarify the details of the assimilation process and the treatment for the secondary 

formation, the text in Lines 171-177, Page 7, is added. The details of the updated 

chemical and emission species follow Peng et al. (2018), which is not include in the 

text. 

“Since the secondary formation process can be captured by the WRF-Chem model, the 

impact of the secondary PM2.5 is indirectly considered. The detailed updated state 

variables with the according observations follow Peng et al. (2018).  The 

concentrations and emissions of PM2.5, NH3, and PM2.5 precursors that have 

observations (SO2 and NO), are updated by the observed quantities, respectively, but 

the VOC that are also PM2.5 precursors are not updated due to the lack of direct and 

limited observations.” 

2. Related to the first comment and also commented by the second reviewer. Is PM2.5 

concentration also updated? Or just PM2.5 emission? 

Thank the reviewer for the insightful suggestion. In our reply to the previous comment, 

both PM2.5 emissions and their corresponding concentrations are updated in the DA 

experiments. 

3. I seriously doubt the diurnal variations in PM2.5 emission (Fig. 6). Many studies 

assume that high emission rates during daytime (working hours) and low emission rates 

during nighttime as in Fig. 8. I think the highest emission rate in the morning in Fig. 6 



is attributable to 1) high emission during rush hours and 2) shallow boundary layer. In 

other words, the diurnal variations in PM2.5 emissions estimated in this study do 

include the effects of time-varying boundary layer (and height). So, the effects of 

boundary layer are not separated from the emission estimates. We would expect high 

emission rates in the afternoon (working hours) and also during the late afternoon 

(evening rush hours). Because boundary layer height is generally highest in the late 

afternoon, the estimated emission rates in the late afternoon are too low (Fig. 6). I think 

monthly emission estimates or yearly estimates would be fine because the diurnally 

varying boundary layer is all averaged out at monthly and yearly time scales. To verify 

this, you can take a closer look at emission rates near industrial complex where diurnal 

variations in emissions are expected to be small (e.g., power plants, steel and cement 

companies …). I understand the horizontal grid of 45 km is too coarse to examine this, 

but I expect that there are some regions where many factories are concentrated.  

Thank the reviewer for the insightful comment and suggestion. We performed an 

observing system simulation experiment (OSSE) to investigate the effects of time-

varying boundary layer. A nature run is first conducted from 0000 UTC 25 December 

2015 to 0000 UTC 2 February 2016, forced by the time-invariant source emissions 

PR2010 (the true emission). Synthetic observations of the six conventional air pollutant 

concentrations (i.e., PM10, PM2.5, SO2, NO2, O3, and CO) are generated from the natural 

run. Hourly synthetic observations are created from 0000 UTC 29 December 2015 to 

0006 UTC 1 February 2016, by interpolating the gridded true surface concentrations to 

the chemical observation locations with additive random errors of ( )0,N R . R is the 

observation error variance, which is calculated by the formula in Elbern et al. (2007). 

Outputs from the first four days of the natural run are excluded to avoid the transient 

effect. Then the prior emissions are generated by ( )( )F 1.8 , , , Fpr trx y z t= + , where 

Ftr  is the true emission,   is a random number sampled from the normal distribution 

( )0,1N  (Peng et al. 2015). Ensemble data assimilation experiments are conducted 

from 0000 UTC 29 December to 0006 UTC 1 February 2016. Outputs from the first 

two days of the OSSE are excluded due to the spin-up. 

Figure S1 presents the monthly mean diurnal variations of PM2.5 emission fraction from 

the OSSE. Please note that the magnitude of posterior PM2.5 emission is closer to the 

true emission than the prior. Figure S1 shows that a little larger estimated PM2.5 



emission fractions occurred in the morning and smaller estimated PM2.5 emission 

fractions occurred in the afternoon, comparing to the time-invariant true emission. This 

result is consistent with the reviewer’s expectation. But the diurnal variations of PM2.5 

emission fractions caused by the boundary layer are not as strong as that caused by the 

emission itself (original Figure 6).  

Since we have hourly assimilated observations to simultaneously update the chemical 

concentrations and source emissions, the impacts of time-varying boundary layer on 

the posterior PM2.5 emissions are limited. Nevertheless, the influences of time-varying 

boundary layer are still important to PM2.5 emission estimates. Thus, the diurnal 

variations of PM2.5 emission fractions are updated to exclude the impacts of time-

varying boundary layer, following the reviewer’s suggestion. We modified Figures 7 

and 8, and Table 2, to reflect the revision.  

Compared to the diurnal variations of PM2.5 emission fractions estimated based on 

diurnal variation profiles from US and EU (Wang et al., 2010), the estimated PM2.5 

emission fractions are 1.25% larger during the evening, which greatly changes the 

diurnal variations of DEPE. In fact, the smaller evening peaks of Wang et al. (2010) 

occurred in November, December, January, February and March, while they are almost 

indistinct from April to October, similar to that from DEPE. 

The text in Lines 271-281, Page 10, and Appendix is added. The manuscript is updated 

by considering the effects of the boundary layer. 

Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission rate and chemical 

state estimation by 4-dimensional variational inversion, Atmos. Chem. Phys., 7, 3749–

3769, https://doi.org/10.5194/acp-7-3749-2007, 2007. 

4. Related to the effects of meteorology (or boundary layer), I would suggest some extra 

experiments (also related to the first reviewer’s 4th minor comment asking “weather 

effects”). Let’s fix anthropogenic emissions all the time, and only consider time-varying 

meteorology. Assume the observations that will be assimilated here are the model 

outputs with the same emissions but time-varying meteorology (not real observations). 

Then, assimilate these fake observations (actually model outputs) and estimate 

emissions. Would your estimated emissions be almost identical to the prior emissions 

that are fixed with time? I’m curious if your estimated emissions depend on / are 



influenced by meteorology. A month-long simulation would be enough for this type of 

simulation.  

Thank the reviewer for the insightful suggestion. In our reply to the previous comment, 

an OSSE was performed to investigate the impacts of time-varying boundary layer on 

the diurnal variations of PM2.5 emission fractions. The results indicate that the diurnal 

variations of the estimated PM2.5 emission fractions from the OSSE do deviate from the 

true time-invariant emissions, although the magnitudes are not as large as those caused 

by emission itself. The diurnal variations of PM2.5 emission fractions are updated by 

excluding the effects of time-varying boundary layer, following the reviewer’s 

suggestion. 

5. line 306-307. Did you mean that emissions in 2019 were higher than those in 2020? 

I think in 2020 there were few firework activities due to the lockdown. If this is true, the 

color for BTH and SCR in Fig 11e should be blue (lower emissions in 2020 than in 

2019). If not, please clarify. In addition, some studies highlighted that the PM2.5 

concentration during Feb. 2020 is due to unfavorable meteorological condition in the 

BTH region (Sulaymon et al. 2021). Le et al. (2020) also showed that for the severe 

haze in northern China during the lockdown is due to 1) anomalously high humidity 

that promoted aerosol heterogeneous chemistry, 2) stagnant airflow 3) uninterrupted 

emissions from power plants and petrochemical facilities, and 4) secondary aerosol 

formation associated with increased ozone.  

Thank the reviewer for pointing out this mistake. The massive emissions from firework 

burning on the Chinese New Year Eve of year 2019 occurred on February 4, 2019.  

But in the following 7-day spring holidays, the smaller PM2.5 emission rates are 

obtained (Figure 10). The possible reason of the increased PM2.5 emissions for BTH 

and SCR in 2020 is the long national vocation of spring holiday of year 2019. We 

changed the sentence in Line 356, Page 13. 

We agree with the review that although there were significant reductions of PM2.5 

emissions over the central and northern China in February 2020, a severe air pollution 

event occurred over the north China in early February 2020. Previous studies have 

shown that the factors influencing the severe air pollution event include the still 

intensive emissions from industrial, power and residential, unfavorable meteorological 

condition, anomalously high humidity that promoted aerosol heterogeneous chemistry, 



and secondary aerosol formation associated with increased atmosphere oxidants (Le et 

al. 2020; Sulaymon et al. 2021; Li et al., 2021). This discussion is added in the text at 

363-369, Page 13. 

6. Constant emissions can be misleading (line 149, line 183, line 233…). Did you mean 

time invariant emissions? That is, emission rates do not vary with time at all at a grid 

cell. If so, I would recommend saying time-invariant emissions or constant emissions 

with time because the constant emissions can be interpreted as spatially homogeneous 

emissions.  

Thank the reviewer for the insightful comment. We mean time invariant emissions and 

we have changed constant emissions to time-invariant emissions in the revised 

manuscript. 

7. Figure 9. The x-axis label should be date, not time, right? And recommend 

representing mm/dd, format.  

The x-axis label is Date. We have changed this figure. 
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