Supplement of

Diurnal variations in O and N isotopes of atmospheric nitrogen dioxide and nitrate: implication for tracing NO_x oxidation pathway and emission sources

5 S. Albertin^{1,2}, J. Savarino¹, S. Bekki², A. Barbero¹, R. Grilli¹, Q. Fournier³, I. Ventrillard³, N. Caillon¹, K. S. Law²

¹LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, 75005 Paris, France. ²IGE, Univ. Grenoble Alpes, CNRS, IRD, Grenoble INP, 38000 Grenoble, France. ³LIPhy, Univ. Grenoble Alpes, CNRS, 38000 Grenoble, France.

10 Correspondence to: Sarah Albertin (sarah.albertin@univ-grenoble-alpes.fr)

15

1. NO₂ photolysis rate

The NO₂ photolysis rate (J_{NO_2}) was calculated for the sampling periods using a boxmodel (CiTTyCAT version 2.02; Pugh et

- al., 2012) with the Fast-J photolysis scheme of Wild et al. (2000). The surface albedo (SA) was fixed to 0.65 which is between fresh-snow and old-snow albedo (Gardner and Sharp, 2010). Calculated J_{NO_2} was not constrained with cloud coverage which could induce overestimations. Based on visual observations, weather conditions during the two sampling periods (SP1 and SP2) were very stable with no cloud cover, whereas clouds were observed from February 22 to 23. To assess cloud cover and its effect on J_{NO_2} more quantitatively, we used direct shortwave radiation data (Dir_SWdown in W m⁻
- ²) from the S2M (SAFRAN–SURFEX/ISBA–Crocus–MEPRA; Vernay et al., 2022) reanalysis (open access dataset at https://doi.org/ 10.25326/37#v2020.2). Figure S1 shows the sensitivity of Dir_SWdown to the presence of clouds from February 22 to 23 while on February 20, 21, 24 and 25 Dir_SWdown values are higher and reproducible. This comparison confirms the representativeness of J_{NO_2} values calculated during SP1 and SP2 with respect to meteorological conditions.

Figure S1. Temporal evolution of the direct short wave radiation (solid colored line) from the S2M (SAFRAN–SURFEX/ISBA–Crocus– MEPRA; Vernay et al., 2022) reanalysis at five altitudes from February 20th to February 25th in 2021 and of the NO₂ photolysis rate (J_{NO_2} , dashed grey line) from CiTTyCAT boxmodel output.

2. Atmospheric NO₂ isotopic data

_

Sampling interval (start – end)	Mean NO ₂ /nmol mol ⁻¹	⊿ ¹⁷ O(NO ₂) /‰	δ ¹⁵ N(NO ₂) /‰
19/02 21:00 - 20/02 00:30	19.5 ± 2.0	20.2 ± 0.3	-6.4 ± 0.3
$20/02\ 00:30 - 20/02\ 04:30$	13.7 ± 1.8	19.9 ± 0.3	-9.0 ± 0.3
20/02 04:30 - 20/02 07:30	23.2 ± 7.7	19.9 ± 0.3	-3.9 ± 0.3
20/02 07:30 - 20/02 10:30	38.1 ± 6.6	29.4 ± 0.3	7.2 ± 0.3
20/02 10:30 - 20/02 13:30	29.1 ± 15.1	37.3 ± 0.3	12.3 ± 0.3
20/02 13:30 - 20/02 16:30	14.0 ± 13.0	40.8 ± 0.3	-0.7 ± 0.3
20/02 16:30 - 20/02 18:00	50.1 ± 16.2	23.3 ± 0.3	7.0 ± 0.3
20/02 18:00 - 20/02 21:00	35.4 ± 10.3	22.1 ± 0.3	-3.6 ± 0.3
24/02 07:30 - 24/02 10:30	41.7 ± 10.6	22.3 ± 0.3	19.7 ± 0.3
24/02 10:30 - 24/02 13:30	23.3 ± 21.9	35.0 ± 0.3	16.5 ± 0.3
24/02 13:30 - 24/02 16:30	4.5 ± 1.8	$34.4\pm3.4^*$	-5.4 ± 0.3
24/02 16:30 - 24/02 18:00	16.5 ± 9.6	20.9 ± 0.3	1.2 ± 0.3
$24/02 \ 18:00 - 24/02 \ 21:00$	33.6 ± 3.5	21.6 ± 0.3	-0.1 ± 0.3
$24/02\ 21:00 - 25/02\ 00:00$	14.7 ± 8.2	20.0 ± 0.3	-5.2 ± 0.3
25/02 00:00 - 25/02 04:00	8.1 ± 1.2	19.6 ± 0.3	-10.0 ± 0.3
25/02 04:00 - 25/02 07:30	17.6 ± 15.5	20.1 ± 0.3	-1.5 ± 0.3

Table S1. Summary table of: atmospheric NO₂ sampling periods, ambient NO₂mixing ratio (mean ± standard deviation over the sampling 40 period) and measurement of Δ^{17} O and δ^{15} N in NO₂. *Sample corrected from a blank of 14.0 % with an uncertainty of 10 % and assuming a blank Δ^{17} O at 0 ‰. Start and end date time (local time, UTC +01:00) represent when the denuder sample started and ended to be collected, respectively. All data represent the mean value over each sampling period. Uncertainty of Δ^{17} O and δ^{15} N data represents the accuracy of the analytical method (estimated as the standard deviation of the residuals between measurements of the reference materials and their expected values).

3. Atmospheric nitrate isotopic data

Sampling interval (start – end)	$NO_3^-/\mu g \ m^{-3}$	$\Delta^{17}O(NO_3^{-}) / \%$	$\delta^{15} N(NO_3^-) / \infty$
19/02 21:00 - 20/02 00:30	2.0	20.9 ± 0.4	1.5 ± 0.2
20/02 00:30 - 20/02 07:30	0.5	21.0 ± 1.1	-0.4 ± 0.1
20/02 07:30 - 20/02 10:30	1.4	18.3 ± 0.5	11.9 ± 0.1
20/02 10:30 - 20/02 13:30	1.1	21.4 ± 0.1	14.8 ± 0.1
20/02 13:30 - 20/02 16:30	0.4	26.0 ± 0.4	-1.3 ± 0.2
20/02 16:30 - 20/02 18:00	0.3	20.8 ± 0.9	1.8 ± 0.3
20/02 18:00 - 20/02 21:00	0.6	18.7 ± 0.2	2.5 ± 0.2
24/02 07:30 - 24/02 10:30	1.9	18.5 ± 0.3	9.7 ± 0.1
24/02 10:30 - 24/02 13:30	3.4	24.7 ± 0.6	5.4 ± 0.1
24/02 13:30 - 24/02 16:30	1.1	28.1 ± 0.4	-3.9 ± 1.0
24/02 16:30 - 24/02 18:00	0.9	27.1 ± 0.1	-4.2 ± 0.0
24/02 18:00 - 24/02 21:00	0.9	24.5 ± 0.6	-1.4 ± 0.0
24/02 21:00 - 25/02 00:00	0.9	22.1 ± 0.5	-0.6 ± 0.0
$25/02\ 00:00 - 25/02\ 07:30$	0.5	22.8 ± 0.6	-1.6 ± 0.0

Table S2. Summary table of: atmospheric NO₃⁻ sampling periods, NO₃⁻ mass concentration determined by ion chromatography and isotopic measurements (Δ^{17} O and δ^{15} N). Start and end datetime (local time, UTC +01:00) represent when the filter sample started and ended to be collected, respectively. All data represent the mean value over each sampling period. Uncertainty of isotopic data represents the standard deviation of the residuals between the sample measurement and the mean value of triplicates. Uncertainty of the analytical protocol averaged at ±0.4 ‰ and at ±0.3 ‰ for Δ^{17} O and δ^{15} N, respectively.

4. International isotopic reference materials

Salt	Standard name	$\delta^{17}{ m O}$ /‰	$\delta^{18}{ m O}$ /‰	⊿ ¹⁷ O /‰	δ^{15} N /‰
NaNO ₃	USGS-35	51.5	57.5	21.6	2.7
KNO ₃ /NaNO ₃	USGS 34/35, 50:50	16.5	12.5	10.9	0.3
KNO ₃	USGS-34	-14.8	-27.9	-0.3	-1.8
KNO ₃	USGS-32	13.4	25.7	0	180
KNO_2	RSIL-N7373		4.2		-79.6
KNO ₂	RSIL-N10219		88.5		2.8
KNO_2	RSIL-N23		11.4		3.7

Table S3. International isotopic reference materials used to calibrate isotopic measurements of atmospheric NO₂ and NO₃⁻ samples.

5. Ambient atmospheric observations in Chamonix

Sampling interval(start – end)	NO /nmol mol ⁻¹	NO_2 /nmol mol ⁻¹	O_3 /nmol mol ⁻¹	$PM_{10} / ug \ m^{-3}$	$PM_{2.5} / ug \ m^{-3}$
19/02 21:00 - 20/02 00:30	0.7 ± 0.3	19.5 ± 2.1	41 ± 1.5	28.7 ± 2.0	22.8 ± 2.0
20/02 00:30 - 20/02 04:30	0.2 ± 0.1	13.7 ± 1.8	7.2 ± 0.7	21.2 ± 6.9	17.4 ± 5.1
20/02 04:30 - 20/02 07:30	3.7 ± 4.1	23.3 ± 7.7	3.7 ± 2.1	9.0 ± 4.3	6.9 ± 3.9
20/02 07:30 - 20/02 10:30	32.8 ± 33.7	38.1 ± 6.7	1.7 ± 0.4	14.0 ± 9.3	10.9 ± 7.6
20/02 10:30 - 20/02 13:30	31.2 ± 35.6	29.2 ± 15.1	13.5 ± 11.9	24.7 ± 11.5	8.9 ± 8.1
20/02 13:30 - 20/02 16:30	5.6 ± 6.6	14.1 ± 13.1	28.8 ± 5.1	15.7 ± 9.3	3.6 ± 1.7
20/02 16:30 - 20/02 18:00	22.2 ± 6.5	50.2 ± 16.3	13.7 ± 7.7	39.8 ± 10.2	8.7 ± 2.5
20/02 18:00 - 20/02 21:00	4.9 ± 5.3	35.4 ± 10.4	2.9 ± 1.3	20.1 ± 2.8	13.8 ± 2.0
24/02 07:30 - 24/02 10:30	113.6 ± 53.5	41.8 ± 10.6	0.5 ± 0.4	46.9 ± 5.8	31.3 ± 3.9
24/02 10:30 - 24/02 13:30	47.4 ± 70.4	23.4 ± 22.0	13.9 ± 13.2	90.9 ± 34.6	33.5 ± 3.8
24/02 13:30 - 24/02 16:30	1.3 ± 0.4	4.6 ± 1.8	29.9 ± 0.8	114.5 ± 2.1	37.6 ± 0.5
24/02 16:30 - 24/02 18:00	4.8 ± 3.6	16.5 ± 9.7	23.5 ± 6.2	127.0 ± 11.5	38.5 ± 0.9
$24/02\ 18{:}00-24/02\ 21{:}00$	8.2 ± 6.4	33.6 ± 3.5	1.8 ± 1.2	53.7 ± 17.8	31.9 ± 5.4
$24/02\ 21:00 - 25/02\ 00:00$	1.1 ± 1.4	14.8 ± 8.2	3.1 ± 2.7	53.4 ± 147	35.7 ± 9.9
$25/02\ 00{:}00-25/02\ 04{:}00$	0.1 ± 0.1	8.1 ± 1.3	10.6 ± 3.7	31.0 ± 11.5	20.7 ± 7.7
25/02 04:00 - 25/02 07:30	6.2 ± 15.0	17.6 ± 15.6	11.5 ± 5.6	17.9 ± 2.2	12.0 ± 1.4

60 2021). Particulate matter (PM₁₀, PM_{2.5}) concentrations were monitored by an optical particle counter (GRIMM[®], EDM 164).

6. Temperature, kinetic and isotopic equilibrium constants

Sampling interval(start – end)	T _{surface} (K)	$k_{\text{NO + O}_3} \times 10^{-14}$ (cm ⁻³ mol ⁻¹ s ⁻¹)	$\alpha_{\rm EIE(NO_2/NO)}$	$\alpha_{\text{KIE}(\text{NO+O}_3)}$
19/02 21:00 - 20/02 00:30	274.6	1.14	1.045	0.994
20/02 00:30 - 20/02 04:30	272.7	1.10	1.046	0.994
20/02 04:30 - 20/02 07:30	271.6	1.08	1.046	0.994
20/02 07:30 - 20/02 10:30	271.0	1.07	1.046	0.994
20/02 10:30 - 20/02 13:30	274.6	1.12	1.045	0.994
20/02 13:30 - 20/02 16:30	287.5	1.40	1.042	0.994
20/02 16:30 - 20/02 18:00	288.3	1.44	1.042	0.994
20/02 18:00 - 20/02 21:00	280.3	1.27	1.044	0.994
24/02 07:30 - 24/02 10:30	274.0	1.12	1.045	0.994
$24/02\ 10:30 - 24/02\ 13:30$	279.4	1.22	1.044	0.994
$24/02\ 13:30 - 24/02\ 16:30$	289.3	1.45	1.041	0.994
24/02 16:30 - 24/02 18:00	289.2	1.45	1.042	0.994
24/02 18:00 - 24/02 21:00	284.2	1.35	1.043	0.994
$24/02\ 21:00 - 25/02\ 00:00$	278.3	1.22	1.044	0.994
$25/02\ 00:00 - 25/02\ 04:00$	277.1	1.19	1.044	0.994
25/02 04:00 - 25/02 07:30	276.2	1.17	1.045	0.994

Table S5. Summary table of measured surface temperature, calculated k_{N0+O_3} , $\alpha_{EIE(NO_2/NO)}$ and $\alpha_{KIE(NO+O_3)}$.

7. Temperature profiles

65 **Figure S2.** Temporal evolution of air temperature during the two sampling periods (February 19th–20th and February 24th–25th). The profiles are plotted using observations of 13 portable temperature loggers placed at two ground–based stations in Chamonix at 1035 m.a.s.l and at 1068 m.a.s.l and fixed along the Plan–Praz cable car (45°55′21.53″ N, 6°52′11.68″ E) from 1098 m.a.s.l to 2021 m.a.s.l.

8. Atmospheric observations in Chamonix in February 2021

Local date and time (2021, UTC+01:00)

Figure S3. Temporal evolution in February 2021 in Chamonix of the hourly mean of (a) NO mixing ratio (purple line), (b) NO₂ mixing ratio (blue line), (c) O₃ mixing ratio (green line), (d) PM₁₀ mass concentration (orange line) and (e) temperature at the surface (black line) and at 1206 m.a.s.l (dashed black line). Saharan dust events that occurred in February 2021 are represented by the red stars. Grey shaded areas represent sampling periods for this study. Data provided by the air quality monitoring site (https://www.atmo-auvergnerhonealpes.fr/, last access: 5 November 2021).