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Abstract. As one of the dominant sinks of aerosol particles, wet scavenging greatly influences aerosol lifetime and interactions 

with clouds, precipitation, and radiation. However, wet scavenging remains highly uncertain in models, hindering accurate 

predictions of aerosol spatiotemporal distributions and downstream interactions. In this study, we present a flexible, 

computationally inexpensive method to identify meteorological variables relevant for estimating wet scavenging using a 

combination of aircraft, satellite, and reanalysis data augmented by trajectory modelling to account for air mass history. We assess 15 

the capabilities of an array of meteorological variables to predict the transport efficiency of black carbon (TEBC) using a 

combination of nonlinear regression, curve-fitting, and k-fold cross-validation. We find that accumulated precipitation along 

trajectories (APT) – treated as a wet scavenging indicator across multiple studies – does poorly when predicting TEBC. Among 

different precipitation characteristics (amount, frequency, intensity), precipitation intensity was the most effective at estimating 

TEBC but required longer trajectories (> 48 h) and including only intensely precipitating grid cells. This points to the contribution 20 

of intense precipitation towards aerosol scavenging and the importance of accounting for air mass history. Predictors that were 

most able to predict TEBC were related to the distribution of relative humidity (RH) or the frequency of humid conditions along 

trajectories, suggesting that RH is a more robust way to estimate TEBC than APT. We recommend the following alternatives to 

APT when estimating aerosol scavenging: (1) the 90th percentile of RH along trajectories, (2) the fraction of hours along trajectories 

with either water vapor mixing ratios > 15 g kg-1 or RH > 95%, (3) precipitation intensity along trajectories at least 48 hours along 25 

and filtered for grid cells with precipitation > 0.2 mm h-1. Future scavenging parametrizations should consider these meteorological 

variables along air mass histories. This method can be repeated for different regions to identify region-specific factors influencing 

wet scavenging. 
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1 Introduction 30 

Although wet scavenging is one of the dominant removal mechanisms for atmospheric aerosol particles (Seinfeld and Pandis, 

2016; Textor et al., 2006), it remains a large source of uncertainty in global-scale models (Watson-Parris et al., 2019; Liu and 

Matsui, 2021; Moteki et al., 2019; Hodzic et al., 2016). This uncertainty hampers the ability of global-scale models to capture the 

lifecycle (i.e., sources, transformations, and sinks) (Hou et al., 2018), spatial extent (Moteki et al., 2019), and vertical profile 

(Watson-Parris et al., 2019; Liu and Matsui, 2021; Frey et al., 2021; Kipling et al., 2016) of aerosol particles. Inaccurate 35 

representations of these aerosol features contribute to uncertainties in estimates of aerosol radiative effects (Samset et al., 2013; 

Marinescu et al., 2017) and aerosol loadings over climate-sensitive regions (Liu and Matsui, 2021; Mahmood et al., 2016; Shen et 

al., 2017), with further implications for the remote sensing of aerosol abundance downwind of precipitating or cloudy areas. 

Advancing knowledge of wet scavenging processes can help reduce the largest uncertainty in human forcing of the climate system, 

which involves aerosol-cloud interactions (e.g., Bellouin et al., 2020). 40 

Wet scavenging occurs either below- or in-cloud. Below-cloud scavenging occurs when aerosol particles are collected by 

precipitation (Croft et al., 2009) and is most important between the surface and 1 km above ground level (AGL) (Grythe et al., 

2017). The efficiency of below-cloud scavenging depends on raindrop size distributions (Wang et al., 2010), aerosol composition 

(Lu and Fung, 2018; Grythe et al., 2017), the amount of in-cloud condensed water (Luo et al., 2019) as well as precipitation 

characteristics (i.e., frequency, intensity, amount, and type). To calculate the fraction of aerosol scavenged below-cloud, models 45 

typically rely on an empirically-derived below-cloud scavenging coefficient, which is a function of aerosol size (Feng, 2007; Croft 

et al., 2009) and composition (Lin et al., 2021). Semi-empirical model parametrizations of below-cloud scavenging have been 

shown to improve simulated surface concentrations (Luo et al., 2019); however, agreement between models and observations is 

highly sensitive to the specific below-cloud scavenging scheme used (Lu and Fung, 2018). Below-cloud scavenging rates in models 

also remain significantly underestimated compared to observations (Kim et al., 2021; Ryu and Min, 2022; Xu et al., 2019). 50 

Wang et al. (2010) determined the below-cloud scavenging coefficient is influenced by (1) raindrop-particle collection 

efficiency, (2) raindrop size distribution, and (3) raindrop terminal velocity. These factors were associated with differences in 

particle concentrations by a factor of 2 for sub-10 nm particles and a factor of >10 for particles larger than 3 µm; however, their 

combined uncertainty was insufficient to explain the discrepancy between theoretical and field measurements of the below-cloud 

scavenging coefficient. Wang et al. (2011) demonstrated that this discrepancy can be largely explained by the vertical turbulence 55 

as it determines which particles are subjected to impaction scavenging. This impact was most pronounced for submicron particles 

under weak precipitation intensities. 

Given these uncertainties, Wang et al. (2014a) developed a new semi-empirical, size-resolved parametrization based on an 

percentile-logarithmic power-law relationship between the below-cloud scavenging coefficient and particle size that is applicable 

to both rain and snow across different particle sizes and precipitation intensities. Based on the size-resolved parametrization of 60 

Wang et al. (2014a), a bulk or modal parametrization for fine (PM2.5), coarse (PM2.5-10), and giant particles (PM10+) was presented 

by Wang et al. (2014b). 

In-cloud scavenging occurs via nucleation (i.e., activation of aerosol particles into cloud droplets; Jensen and Charlson, 1984) 

or impaction (i.e., collision of interstitial aerosol particles with existing cloud droplets; Kipling et al., 2016; Flossmann et al., 1985) 

and is followed either by (1) precipitation that reaches the surface, removing the particle from the atmosphere (Radke et al., 1980), 65 

or (2) evaporation of cloud droplets or precipitation, returning the scavenged particle to the free atmosphere (Mitra et al., 1992). 

Model improvements in in-cloud scavenging include using a continuous rather than binary cloud fraction (Ryu and Min, 2022; Xu 

and Randall, 1996), accounting for cloud water phase (Grythe et al., 2017; Liu and Matsui, 2021), and accurately simulating cloud 
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supersaturation (Moteki et al., 2019). Although in-cloud scavenging is generally thought to be more efficient at removing 

accumulation mode aerosol particles (Watson-Parris et al., 2019; Choi et al., 2020), other studies argue that there are instances 70 

wherein below-cloud scavenging becomes more important at regulating aerosol burdens (Kim et al., 2021; Ryu and Min, 2022; Xu 

et al., 2019). Uncertainties related to wet scavenging are further exacerbated by the divergent role of clouds, which can be a sink 

or source of aerosol particles depending on environmental factors and cloud characteristics (Ryu et al., 2022). 

One avenue for improving the estimation of wet scavenging, particularly in observational studies, is to identify an effective 

meteorological indicator of wet scavenging. Previous studies used precipitation amount (Feng, 2007; Andronache, 2003) while 75 

more recent studies accounted for air mass history using the National Oceanic and Atmospheric Administration (NOAA) Hybrid 

Single Particle Lagrangian Integrated Trajectory Model (Rolph et al., 2017; Stein et al., 2015) to calculate accumulated 

precipitation along trajectories (APT) (e.g., Kanaya et al., 2016, 2020). However, APT can be problematic as an indicator of wet 

scavenging because APT is an accumulated quantity and does not consider specific characteristics of precipitation relevant to 

scavenging such as intensity and frequency (Hou et al., 2018; Wang et al., 2021b, c; Hilario et al., 2022). APT as an indicator of 80 

wet scavenging also relies on the correct detection of precipitation and retrievals of amounts, which are challenging during both 

light (Nadeem et al., 2022; Kidd et al., 2021) and intense precipitation events (Chen et al., 2020a; Gupta et al., 2020) and even 

show disagreements between different satellite precipitation products (SPPs) and reanalyses (Cannon et al., 2017; Jiang et al., 

2021; Alexander et al., 2020; Chen et al., 2020b; Barrett et al., 2020). Furthermore, precipitation from SPPs such as the 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Climate Data Record 85 

(PERSIANN-CDR) (Ashouri et al., 2015; Nguyen et al., 2018) and the Integrated Multi-satellitE Retrievals for the Global 

Precipitation Measurement (GPM) mission (IMERG) (Huffman et al., 2020) refer to total column precipitation that have been 

validated mainly with surface measurements (Sapiano and Arkin, 2009; Nicholson et al., 2019; Wang et al., 2021a) and 

consequently may not detect precipitation that evaporates before reaching the surface (e.g., virga) (Wang et al., 2018). 

Given the uncertainties of estimating wet scavenging from precipitation, we present a flexible, computationally inexpensive 90 

method to identify alternative meteorological variables that can be used to better estimate wet scavenging. We combine curve-

fitting and k-fold cross-validation to evaluate an array of meteorological variables from aircraft, satellite, and reanalysis data to 

answer the following: 

(1) What meteorological variables can estimate wet scavenging trends better than APT? Since precipitation frequency has 

been shown to exert significant control over aerosol scavenging (Wang et al., 2021b), we hypothesize that predictors that 95 

account for the frequency of scavenging-conducive conditions (e.g., frequency of high relative humidity (RH) conditions 

along trajectories) will be able to capture wet scavenging trends better than APT. 

(2) How can APT be filtered or changed to better estimate wet scavenging? We hypothesize that considering precipitation 

intensity and/or trajectory altitude thresholds when calculating APT will improve its ability to estimate wet scavenging. 

We also hypothesize that calculating APT using SPPs will perform better than APT from reanalysis. 100 

The presented method may be repeated over different regions to identify region-specific wet scavenging indicators. This can 

inform scavenging parameterization development for models by providing guidance on what meteorological variables are needed 

to properly capture wet scavenging processes over a specific region. Future studies can also use the best-performing variables 

identified in this study as alternatives to APT when estimating the extent of wet scavenging. 



4 

 

 

2 Data & Methods 105 

2.1 Aircraft data 

Much of the methodology and instrument details in this study are detailed elsewhere (Hilario et al., 2021) but are summarized 

here. We utilize aircraft measurements from NASA’s Cloud, Aerosol, and Monsoon Processes-Philippines Experiment 

(CAMP2Ex; 24 August to 5 October 2019) over the tropical West Pacific (5 – 20°N, 117 – 127°E) (Reid et al., 2023), which hosts 

a dynamic transport environment rich in aerosol sources and cloud-precipitation systems. 110 

Black carbon (BC)-equivalent concentrations (particle diameters: 100 – 700 nm; units: μg m-3) were measured with a Single-

Particle Soot Photometer (SP2) (Moteki & Kondo, 2007, 2010) with an uncertainty of 15% (Slowik et al., 2007) and lower detection 

limit of 10 ng m-3 verified by filter-blank measurements as well as observations in the clean free troposphere. To eliminate in-

cloud sampling artifacts such as droplet shattering on the inlet (Murphy et al., 2004), we use only data collected outside of clouds. 

All BC concentrations are reported at standard temperature and pressure (273 K, 1013 hPa). Carbon monoxide (CO; ppm) was 115 

measured using a dried-airstream near-infrared cavity ringdown absorption spectrometer (G2401-m; PICARRO, Inc.), with an 

uncertainty of 2% and precision of 0.005 ppm. As an in situ (i.e., at the aircraft’s position) contrast to moisture-based variables 

along trajectories, relative humidity (RHW, DLH) was derived from absolute water vapor concentrations that were retrieved by a 

diode laser hygrometer (DLH) (Livingston et al., 2008) on the aircraft. 

2.2 Calculation of enhancement ratios 120 

To relate wet scavenging to meteorological conditions during transport, previous studies calculated enhancement (Δ) ratios of 

BC and CO (ΔBC/ΔCO; Hilario et al., 2021; Kanaya et al., 2016; Oshima et al., 2012) which can then be used to quantify the 

transport efficiency of BC (TEBC) (Kanaya et al., 2016, 2020; Oshima et al., 2012), discussed more in Sect. 2.5. By using the 

enhancement above a local background, ΔBC/ΔCO accounts for background concentrations of BC and CO at a receptor site 

((
Δ𝐵𝐶

Δ𝐶𝑂
)

𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
) and is better able to detect a transported air mass containing BC and CO above local background levels. This ratio 125 

can be used as an indicator of wet scavenging because BC is relatively chemically inert and is mainly removed from the atmosphere 

via wet scavenging (Moteki et al., 2012). While CO is also relatively chemically inert, CO has a lifetime between 30 to 90 days 

(Seinfeld and Pandis, 2016) that is mainly controlled by photochemistry rather than wet scavenging due to its low solubility.  

Enhancements were defined as the difference between species concentrations and the lowest 5th percentile species 

concentration for all CAMP2Ex data for every 5 K potential temperature bin (Koike et al., 2003; Matsui et al., 2011). As CAMP2Ex 130 

spanned the late southwest monsoon and early monsoon transition, background concentrations (i.e., lowest 5th percentile) were 

calculated for each monsoon phase using 20 September 2019 to divide the two monsoon phases. Only data with ΔCO > 0.02 ppm 

were included to reduce uncertainties caused by low denominator values in the ΔBC/ΔCO ratio (Kleinman et al., 2007; Kondo et 

al., 2011; Matsui et al., 2011). When calculating transport efficiency (Sect. 2.5), we converted ΔCO (from the receptor) from ppm 

to μg m-3 using the ambient pressure and temperature measured by the aircraft such that ΔBC/ΔCO would be unitless.  135 

As ΔBC/ΔCO is expected to vary by source region, Fig. S1a shows source-resolved distributions of ΔBC/ΔCO (unitless) based 

on source regions identified by Hilario et al. (2021), which classified backward trajectories into source regions using bounding 

boxes over major source regions established in previous literature. In addition to passing over source region bounding boxes, the 

source classification also considered (1) trajectory altitude, specifically whether or not the trajectory was below 2 km AGL which 

conservatively approximates climatological boundary layer heights over the region (Chien et al., 2019), as well as (2) trajectory 140 

residence time within each bounding box (minimum residence time: 6 hours). As described in Hilario et al. (2021), ΔBC/ΔCO is 
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higher for air masses coming from East Asia or the Maritime Continent (Fig. S1a), which suggests a low degree of aerosol 

scavenging during transport, while lower ΔBC/ΔCO are seen for air from the Peninsular Southeast Asia, indicating scavenging 

had occurred. More information on major transport patterns affecting BC and CO during CAMP2Ex are provided in Appendix A. 

2.3 Trajectory modeling 145 

Trajectory modeling is a computationally inexpensive tool for characterizing transport processes (Kanaya et al., 2016; Oshima 

et al., 2012; Moteki et al., 2012) and has been used in synergy with aircraft data (Hilario et al., 2021; Dadashazar et al., 2021). In 

this study, we use trajectories to account for meteorological conditions during air parcel transport that are expected to impact the 

scavenged aerosol fraction. Backward trajectories were spawned every minute along the aircraft flight path and run for 72 hours 

using the NOAA HYSPLIT model. Meteorological input data for the HYSPLIT model were from the National Centers for 150 

Environmental Prediction (NCEP) Global Forecast System reanalysis (GFS; 0.25° × 0.25°). Figure S1b shows the distribution of 

transport times from different source regions (Sect. 2.2) to the CAMP2Ex aircraft. Generally, transit times are below 72 hours, 

indicated by 25th and 75th percentiles less than 72 hours, suggesting that 72 hours is sufficient to capture long-range transport from 

major source regions into the tropical West Pacific. 

2.4. Emission inventory 155 

To calculate the BC/CO emission ratio over each trajectory (𝐸𝑅𝐵𝐶/𝐶𝑂), we used data from the Copernicus Atmosphere 

Monitoring Service (CAMS) Global Anthropogenic Emissions (CAMS-GLOB-ANT) inventory, version 5.3 (Soulie et al., 2023) 

which is based on the Emissions Database for Global Atmospheric Research (EDGAR) inventory from the European Joint Center 

(Crippa et al., 2018) and the Community Emissions Data System (CEDS) from the Joint Global Research Institute (Hoesly et al., 

2018). CAMS-GLOB-ANT has a horizontal resolution of 0.1 × 0.1° at monthly resolution. CAMS-GLOB-ANT accounts for 17 160 

emission sectors, including shipping from CAMS-GLOB-SHIP v3.1, and emissions are reported in units of mass flux (kg m-2 s-1). 

More information on CAMS global and regional emissions can be found in Granier et al. (2019). 

2.5. Calculation of transport efficiencies 

The TEBC (unitless) was calculated for each trajectory using Eq. 1: 

 165 

where (
Δ𝐵𝐶

Δ𝐶𝑂
)

𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
 is the enhancement ratio calculated from the aircraft data (Sect. 2.2) and 𝐸𝑅𝐵𝐶/𝐶𝑂 is the weighted-average 

emission ratio of BC/CO along each 72-h trajectory, inverse-weighted by altitude and calculated using emissions from the 

CAMS-GLOB-ANT inventory (Sect. 2.4). When calculating 𝐸𝑅𝐵𝐶/𝐶𝑂 for each trajectory, we applied a weighting function (Fig. 

S2a) to assign higher weights to lower altitudes such that the resulting 𝐸𝑅𝐵𝐶/𝐶𝑂 will be mainly determined by times when 

trajectory altitude is low, reflecting the higher likelihood of entraining surface emissions when the trajectory is close to the 170 

surface. An example of the weighting function as a function of trajectory altitude is shown in Fig. S2b wherein weighting 

decreases with increasing trajectory altitude. As the 𝐸𝑅𝐵𝐶/𝐶𝑂 calculation included the entire 72 hour length of the trajectory, our 

method of computing 𝐸𝑅𝐵𝐶/𝐶𝑂 is not restricted only to source regions (e.g., East Asia) but also accounts for potential entrainment 

of BC or CO over the open ocean, where sources such as shipping could contribute BC (Lack and Corbett, 2012) and CO 

(Jalkanen et al., 2012). We note that 𝐸𝑅𝐵𝐶/𝐶𝑂 is not required to be an enhancement ratio because the purpose of the enhancement 175 

ratio is to account for local background concentrations over the receptor region (Sect. 2.2). 

𝑇𝐸 =

(
Δ𝐵𝐶
Δ𝐶𝑂

)
𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

𝐸𝑅𝐵𝐶/𝐶𝑂

(1) 
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We found that TEBC and ΔBC/ΔCO are strongly correlated (R2 = 0.90); however, TEBC has the added advantage of accounting 

for surface emissions of BC and CO that could have been entrained into transported air mass. ΔBC/ΔCO is assumed to be 

influenced by two main factors: (1) source emissions of BC and CO along the trajectory path, and (2) removal of BC via wet 

scavenging. By setting TEBC as our predictand, we account for emissions encountered during long-range transport (ERBC/CO) 180 

such that TEBC is expected to vary mainly via sinks (i.e., wet scavenging). 

To show the variation of 𝐸𝑅𝐵𝐶/𝐶𝑂 and TEBC with different source regions, Fig. S1 shows source-resolved 𝐸𝑅𝐵𝐶/𝐶𝑂 (Fig. S1c) 

and TEBC (Fig. S1d). Air masses from East Asia show the smallest range in 𝐸𝑅𝐵𝐶/𝐶𝑂 while air masses from the Maritime 

Continent and Peninsular Southeast Asia have largely similar distributions. Lower values of 𝐸𝑅𝐵𝐶/𝐶𝑂 in air masses from the 

Maritime Continent are related to smoke from agricultural burning that coincided with the CAMP2Ex period (Ge et al., 2014). 185 

Previous emission factor measurements showed that these fires tended to be smoldering rather than flaming, emitting CO but 

notably lower BC (Stockwell et al., 2015). While some variation is indeed present between source regions, the distributions of 

𝐸𝑅𝐵𝐶/𝐶𝑂 are generally similar with modes between 0.22 – 0.26, which may explain the strong correlation between TEBC and 

ΔBC/ΔCO. 

2.6 Data for predictor variables 190 

Several meteorological variables (i.e., predictors) considered in this work were calculated from GFS reanalysis collocated 

along each trajectory. Though reanalysis is relatively coarse and not cloud-resolving, reanalysis variables (e.g., RH) may still be 

useful in detecting the presence of meso-to-synoptic-scale cloud fields. As precipitation is expected to be accompanied by elevated 

RH or water vapor mixing ratio (MR), these reanalysis-derived variables could serve as effective scavenging indicators in cases 

where precipitation may be missed or misestimated. 195 

In addition to APT from GFS, we calculated APT from two SPPs: PERSIANN-CDR (0.25° × 0.25°, daily resolution) (Ashouri 

et al., 2015; Nguyen et al., 2018) and IMERG Final v6 (0.1° × 0.1°, 30-min resolution) (Huffman et al., 2020). We converted 

precipitation from these products to hourly amounts to match trajectory timesteps prior to further calculation.  

Besides APT, we also calculated precipitation amount (PA; mm h-1), frequency (PF), and intensity (PI; mm h-1), which are 

well-established in the literature for characterizing precipitation, particularly in diurnal cycle analyses (e.g., Zhang et al., 2017; 200 

Hilario et al., 2020). Applying these quantities to precipitation along trajectories, PA is APT divided by the total number of hours 

along the trajectory (i.e., trajectory length) to obtain an average hourly precipitation rate, PF is the fraction of hours along the 

trajectory where the grid cell precipitation is above 0 mm h-1, and PI is the ratio of PA to PF. Table 1 shows notation used to explain 

each type of predictor and its variations. 

2.7 Curve-fitting and k-fold cross-validation 205 

To quantify relationships between TEBC and each predictor as well as its uncertainty, we performed k-fold cross-validation (k 

= 10) parallelized using the Python package Jug, version 2.2.2 (Coelho, 2017). To create k distinct partitions of the data, we utilized 

stratified random sampling wherein random sampling was performed for each 5th percentile block of the predictor such that the 

sampling probability better reflects the distribution of predictor values, which is important for skewed distributions such as 

precipitation amount, and the resulting k partitions capture the behavior of TEBC across the full spectrum of predictor values. By 210 

randomly sampling each percentile block for k distinct partitions, this sampling method improves the chances of capturing intra-

block variability in TEBC by collecting the most samples where the highest data coverage exists. The random nature of the sampling 

also allows for the consideration of extreme values in the curve-fitting, with a sampling probability proportional to the frequency 

of these extreme values. As an example, Fig. 1a-b shows the emphasis of the stratified random sampling method on high density 

areas of the scatterplot of RHq90 and TEBC, denoted by dense percentile blocks (gray dashed lines). For extremely skewed 215 
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distributions such as APT, several of the lower-value percentiles exhibited non-unique values (e.g., zero). In the case of repeated 

percentile values, these percentile-based groups were merged. We imposed a minimum of six distinct percentile blocks to ensure 

robust curve-fitting. 

An iterative train-test split procedure using these partitions was then performed using k-1 partitions as the training set and the 

remaining partition as the testing set (Fig. 1a). For each iteration of the k-fold cross-validation, nonlinear least squares curve-fitting 220 

was applied to the training set (i.e., 9 partitions for a total k of 10) to determine coefficients for the equation (e.g., general 

exponential; discussed below) fitted onto the scatterplot of TEBC and the predictor. We used these coefficients and the testing set 

(i.e., the remaining partition) as inputs for the curve-fitting equation and calculated a predicted curve of TEBC and the predictor. 

To assess this predicted curve, we applied stratified random sampling on the testing set and took the median TEBC per 5th percentile 

block to create observed curves of TEBC as a function of the predictor that could be compared to the predicted curve (Fig. 1b). 225 

Because decreases in TEBC are expected to be mainly from wet scavenging, the overall trend or median curve may be treated as a 

reasonable indicator of wet scavenging effects on TEBC related to changes in the predictor value.  

Using a linear regression of predicted and observed median TEBC per 5th percentile block of the predictor (Fig. 1c), we 

calculated statistics (e.g., slope, R) to describe how well the predictor can predict TEBC. Specifically, the performance of a predictor 

refers to how well TEBC derived from the predictor matches observed TEBC. We also computed statistics comparing predicted and 230 

observed TEBC for individual points (Fig. 1d) rather than medians to assess how much variability in TEBC is captured by the 

predicted curves. The population in Fig. 1d visually follows the 1-to-1 line, indicating good performance of the model; however, 

the best-fit line on individual points was greatly affected by outlier points of high observed TEBC that led to poor agreement between 

the best-fit and 1-to-1 lines when the actual agreement was much better (visually). This suggests that the median-based statistics 

(Fig. 1c) are more robust to outliers and present a fairer evaluation of model predictions. Note that the individual-point statistics 235 

(Fig. 1d) resulted in correlations and slopes further from ideal values compared to the median-based statistics. This is expected as 

individual TEBC data points exhibit large variability due to the influence of factors other than wet scavenging; however, a 

comparison of our results when using individual-point or the median-based statistics show that they agree quite well qualitatively, 

with the relative ranking of predictors largely unchanged between the two types of statistics. In other words, the top predictors 

performed well whether we used median-based or individual-point statistics, implying the conclusions reached using our method 240 

are qualitatively insensitive to this choice. For simplicity, reported statistics in this study refer to median-based statistics unless 

otherwise specified. 

To determine if a predictor tended to overestimate or underestimate TEBC, we calculated a weighted area difference (WAD) 

using Eq. 1: 

𝑊𝐴𝐷 =
∑ 𝑁𝑖 ⋅ 𝑥𝑖

∑ 𝑁𝑖

(1) 245 

where 𝑥𝑖 is the difference between observed and predicted TEBC for the 𝑖𝑡ℎ percentile block and 𝑁𝑖 is the number of data points in 

that percentile block. A positive (negative) WAD indicates an overestimate (underestimate) of observed TEBC. 

To account for differing relationships between TEBC and each predictor, we applied curve-fitting on the scatterplot of each 

predictor and TEBC using multiple nonlinear equations (Table 2) and chose the equation that produced the highest Pearson 

correlation (R) between observed and predicted TEBC for that predictor. We considered equations from two previous studies 250 

(Kanaya et al., 2016; Oshima et al., 2012) and two generalized equations (Gaussian, general exponential) to capture other types of 

relationships (Table 2). The inclusion of the latter two are to account for a wider range of possible relationships between predictors 

and TEBC, such as the case of a predictor capturing TEBC trends well but not having an inversely proportional relationship with 

ΔBC/ΔCO. The case of a non-inversely proportional relationship with TEBC is still interesting because a strong relationship implies 



8 

 

 

that the variable could be used to estimate TEBC even if their relationship is nonmonotonic. The final assigned equations led to 255 

similar root mean squared error (RMSE) across predictors (Fig. S3) suggesting it is fair to compare different predictors. 

When selecting which equation to use (among those in Table 2) for fitting between the predictor and TEBC, we opted for the 

equation that resulted in the highest R between observed and predicted TEBC (e.g., Fig. 1c). The basis of this choice on R was 

because our objective is to identify predictors that can at least capture trends in TEBC. After selecting which equation to use per 

predictor, the subsequent comparison (Sect. 3) of the performance of different predictors considers other statistical metrics such as 260 

slope, intercept, and WAD. For some combinations of predictors and equations, the curve-fitting did not successfully converge (< 

4% of all combinations and k-fold iterations). In these cases, we did not include the predictor-equation combination in our analysis. 

However, curve-fitting on the predictor may still converge when using a different equation. In such a scenario, the predictor 

becomes part of our analysis. 

Sensitivity testing with the k value showed no significant effect on the general conclusions of the study when k was changed 265 

between 5 and 20 (not shown). We opted for k = 10 based on previous work evaluating different accuracy estimation methods 

which showed that k = 10 is sufficient to estimate performance metrics (e.g., R2) while minimizing computational expense 

(Breiman and Spector, 1992; Kohavi, 1995). 

Although there is no physical process built into this procedure, the strength of the method is its repeatability in different 

environments or regions with minimal changes to the overall procedure. As it requires no physical model to be run besides the 270 

trajectory calculations, the method is also relatively computationally inexpensive. Future work wanting a more physical basis may 

apply our method as a diagnostic tool to identify and narrow down a list of meteorological variables that may be relevant to wet 

scavenging and continue their analysis with a physical model using the narrowed list of variables to analyze. 

3 Results and Discussion 

3.1 Overall statistical performance 275 

Figures 2, 3, and S3 show performance comparisons of different predictors derived from linear regressions of observed and 

predicted TEBC. Hereafter, the performance of a predictor in this study refers to a predictor’s ability to predict observed TEBC based 

on curve-fitting (Sect. 2.7; Fig. 1c). To simplify these figures, only the top eight predictors per panel (by R) are colored to focus 

our discussion on predictors that were able to predict TEBC. Table S1 provides the equation and coefficients used for the top eight 

predictors per panel of Fig. 2. 280 

Using APT-based predictors (Fig. 2a) led to moderate R between predicted and observed TEBC but slopes far below the ideal 

value of 1, which, in addition to positive intercepts and WAD (Fig. S3a), indicate that APT-based predictors tend to underestimate 

TEBC when APT is high.  

In comparison, predictors in Fig. 2b are based on RH (e.g., fRH95, RHq90) or MR (i.e., fMR15) and predicted TEBC much better 

in terms of trends (high R) and magnitude (slopes close to 1), suggesting that these predictors (Fig. 2b) could be better at estimating 285 

TEBC than APT (Fig. 2a). One possibility for this is that APT is an accumulated value that does not account for frequency or 

intensity, both of which have been argued to be important for regulating aerosol scavenging (Hou et al., 2018; Wang et al., 2021c). 

To explore this possibility further, we calculated PA, PF, and PI for each trajectory (Figs. 2c-e). Among these three, PF (Fig. 2d) 

and PI (Fig. 2e) resulted in the best slopes and R, with PI showing slightly better slopes and R than PF. In comparison, PA 

performed poorly, similar to APT, which is expected as both are related to summed precipitation amount. Comparing the PI 290 

variables with the highest R (i.e., colored points in Figs. 2e), the majority of these good-performing PI variables were filtered for 

heavier or more intense precipitation (i.e., > 0.2 mm). This filtering for heavier precipitation was done by including only grid cells 
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with precipitation > 0.2 mm when calculating PI. A similarly good performance was observed for PF variables that also filtered 

for more intense precipitation. These results suggest that PI (and to a lesser degree PF) must be accounted for when predicting 

aerosol scavenging over the tropical West Pacific. This further implies that even though precipitation may be occurring, it may not 295 

be efficiently scavenging aerosol. 

Comparing which precipitation products among the top predictors (by R), most good-performing precipitation-based 

predictors used SPP-based precipitation such as IMERG or PERSIANN-CDR (Fig. 2c-e). This suggests that GFS-derived 

precipitation variables are not as able to capture observed TEBC trends. The poor performance of GFS-derived precipitation is 

reflective of past studies showing disagreements in precipitation characteristics between satellite and reanalyses (Cannon et al., 300 

2017; Jiang et al., 2021) and even divergent precipitation trends and amounts among individual reanalysis products (Alexander et 

al., 2020; Chen et al., 2020b; Barrett et al., 2020). Our results corroborate previous work that precipitation from GFS reanalysis is 

not a reliable predictor of aerosol scavenging compared to precipitation from SPPs. Future studies relating precipitation to aerosol 

scavenging are recommended to instead rely on in situ or satellite retrieved precipitation rather than precipitation from reanalysis. 

Predictors based on quantiles of RH (e.g., RHq90) (Fig. 2b) perform quite well, with high R and slope (Fig. 2e) and intercept 305 

and WAD consistently close to 0 regardless of quantile (Fig. 3b). RHq90 performs slightly better in terms of R than other RH 

thresholds (Fig. 2b); however, this difference is minor as shown by the overlapping 25th-75th percentile error bars between the 

different RH quantiles. The similar performance between different RH quantiles suggests consistency in their ability to predict 

TEBC trends (high R; Fig. 2b) while doing reasonably better than other types of predictors when estimating TEBC magnitudes across 

the spectrum of predictor values (intercepts closer to 0, slopes closer to 1). Maximum RH along trajectories was used by Kanaya 310 

et al. (2016) in their analysis of ΔBC/ΔCO scavenging to detect the role of clouds in BC removal. Our findings suggest that top 

quantiles of RH, including its maximum, are good choices for estimating TEBC. 

Compared to variables directly linked to precipitation (PA, PF, PI, APT), the slopes from RH quantiles are noticeably closer 

to the ideal value of 1 (Fig. 2b) while their intercepts are closer to the ideal value of 0 (Fig. 2b), meaning TEBC predicted by RH 

quantiles more closely matches the observed TEBC than TEBC predicted by precipitation. We hypothesize that the better 315 

performance of RH-related predictors over those more directly related to precipitation (e.g., APT) may be explained by instances 

of precipitation that are missed (or misestimated) by SPP retrievals that are indirectly detected by reanalysis as high humidity 

conditions. This possibility is supported by previous literature showing the tendency of SPPs to misestimate light (Nadeem et al., 

2022; Kidd et al., 2021) or intense precipitation (Chen et al., 2020a; Gupta et al., 2020); however, we cannot rule out the possibility 

of the hygroscopic growth, in-cloud activation (high RH), and subsequent removal of BC during transport. Thus, our hypothesis 320 

of RH from reanalysis capturing missed precipitation from SPPs requires further investigation in future work. 

Of all the fractional predictors considered in this study, fMR15 and fRH95 perform the best (Fig. 2b). fMR15 and fRH95 reflect the 

frequency of occurrence of scavenging-conducive conditions during transport. A high frequency of high MR or RH may indicate 

that air masses passed through large areas of clouds and/or precipitation during long-range transport. fRH95 has a median slope of 

0.99 (Fig. 2b), a 25th-75th percentile range in slope of 0.92 – 1.02 (Fig. 2b), and a median intercept of 0.01 (Fig. 3b), indicating that 325 

fRH95 can be used to capture TEBC trends and magnitudes for a wide range of TEBC. The good performance of fMR15 and fRH95 

suggests that the frequency of scavenging-conducive conditions may be more reliable indicators of aerosol scavenging than 

precipitation amount (e.g., APT, PA). 

3.2 Nonlinear sensitivity of TEBC to meteorological variables 

Although the predictors in Figs. 2 – 3 exhibit the highest R of all predictors considered in this study, their slopes are generally 330 

below 1 (Fig. 2) while their intercepts and WAD are generally positive (Fig. 3). The combination of these statistics implies that 
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predictions of TEBC using our method tend to overestimate observed TEBC across the spectrum of predictor values (indicated by 

WAD > 0) with maximum overestimations occurring when observed TEBC is low (indicated by slopes < 1 and intercepts > 0). This 

points to a nonlinear sensitivity of TEBC to these predictors as the degree of scavenging increases. Dadashazar et al. (2021) observed 

a similar nonlinear response to APT by a ratio of particulate matter below 2.5 µm to CO (ΔPM2.5/ΔCO), where ΔPM2.5/ΔCO was 335 

most responsive to APT when APT was below 5 mm and less sensitive to APT when APT exceeded 5 mm. 

Investigating this sensitivity further, Fig. 4 shows that PF-predicted TEBC does not capture the trends of observed TEBC for 

highly scavenged air masses. In other words, PF loses its predictive power as the degree of scavenging increases, implying that PF 

is most important for the scavenging of fresher air masses (high-TEBC). This nonlinear sensitivity of TEBC to PF hints at the 

possibility that other meteorological variables may become important for further scavenging of highly scavenged air (low-TEBC). 340 

In contrast to predictors directly related to precipitation (Fig. 4d-f), the predicted curves of RHq95 (Fig. 4a), fRH95 (Fig. 4b), and 

fMR15 (Fig. 4c) visibly track the trends of observed TEBC with approximately half the difference between predicted and observed 

TEBC when TEBC is low. The capability of RHq95, fRH95, and fMR15 to predict TEBC across a wider range of values is further reflected 

by generally lower intercepts and WAD (Fig. 3) than precipitation-related predictors, which suggests promising alternative 

indicators of aerosol scavenging. However, we also note that such differences could arise partly from the limitations of curve-345 

fitting, wherein fitted curves naturally capture gradual changes (e.g., Fig. 4b) better than sharp ones (e.g., Fig. 4d). 

3.3 Applying filters to improve the predictive power of precipitation-related variables 

In this section, we examine the predictive power of precipitation-related variables when applying the following filters: (1) 

precipitation intensity, (2) trajectory altitude, (3) data product, and (4) trajectory length, with the objective to identify what factors 

are important when relating precipitation along trajectories to TEBC. Filtering for precipitation intensity isolates the contribution of 350 

higher precipitation intensities towards a precipitation-related predictor’s ability to predict TEBC. Intense precipitation has been 

shown to be more efficient at scavenging aerosol particles (Zhao et al., 2020) and may be important when estimating aerosol 

scavenging. Filtering for trajectory altitude (i.e., considering precipitation only when the trajectory altitude is below 1.5 km AGL) 

tests the hypothesis that air masses within the boundary layer will be most susceptible to wet scavenging. Grythe et al. (2017) 

demonstrated that below-cloud scavenging (i.e., impaction by precipitation) accounted for majority of scavenging events below 1 355 

km. We selected 1.5 km based on previous work on the marine boundary layer over the tropical West Pacific (Chien et al., 2019). 

We repeated the analysis for three precipitation products (one reanalysis and two SPPs) to capture variability in our results due to 

the choice of data product which has been shown to be important for precipitation (Alexander et al., 2020). Finally, we tested the 

effect of trajectory length on the performance of APT as a predictor of TEBC. We performed these sensitivity tests on APT (Fig. 

5), PI (Fig. S4), PF (Fig. S5), and PA (Fig. S6). 360 

In general, we found that applying altitude and/or precipitation filters negatively affected the performance of APT (Fig. 5b-

d), PF (Fig. S5b-d, except for PERSIANN-CDR), and PA (Fig. S6b-d), leading to lower R between predicted and observed TEBC 

compared to the case without any filters (Fig. 5a). Two exceptions were: PF from PERSIANN-CDR (colored yellow in Fig. S5), 

which could be used to estimate TEBC if we applied both an altitude filter (< 1500 m) and a precipitation intensity filter (> 0.2 mm 

h-1) over longer back trajectory times (> 48 hours) (Fig. S5d), and PI, which could be used to estimate TEBC when filtering for 365 

precipitation intensities (> 0.2 mm h-1) and along trajectories longer than 48 hours (Fig. S4b). The better performance of PI across 

multiple SPPs (Fig. S4) is an encouraging sign that this improvement is robust and points to the contribution of higher precipitation 

intensities towards total scavenging. 

Applying a filter for trajectory altitude prior to calculating APT also did not lead to large improvements in R (Fig. 5c). This 

was surprising because, when using total column precipitation from SPPs, a maximum altitude filter should reduce errors from 370 
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cases where precipitation occurs below the air mass and no scavenging occurs. Since the SPPs used in this study have been 

validated using surface measurements (Sapiano and Arkin, 2009; Nicholson et al., 2019; Wang et al., 2021a), precipitation from 

SPPs should be reflective of precipitation that reaches the surface, implying a susceptibility of these SPPs to errors related to virga 

(Wang et al., 2018). However, Wang et al. (2018) also showed that virga occurrence over the tropical West Pacific is also 

infrequent. An alternative explanation for the poor performance of altitude-filtered APT is uncertainties related to trajectory altitude 375 

(Harris et al., 2005), such that an air parcel may have actually been traveling at a lower altitude than its modelled trajectory and 

underwent more scavenging than predicted using APT. An examination of trajectory altitudes (Fig. S7) revealed that filtering for 

trajectory altitudes below 1.5 km excluded the majority (~70%) of precipitating grid cells encountered by trajectories, which likely 

negatively impacted the predictive ability of altitude-filtered predictors. 

Longer trajectories resulted in slightly higher R between observed and predicted TEBC using APT from PERSIANN-CDR or 380 

IMERG (Fig. 5a-b); however, this difference is not large, as shown by overlapping 25th-75th percentile error bars. Interestingly, 

this increase in R for longer trajectories was more evident when filtering for precipitation intensities > 0.2 mm h-1 when calculating 

APT (Fig. 5b) or PI (Fig. S4b), but not when applying this intensity filter on PF (Fig. S3b) or PA (Fig. S4b). Further interpretation 

likely requires a physical model in future work to explain why the performance of intense precipitation (Fig. 5b) benefits from a 

longer trajectory more than total precipitation does (Fig. 5a). 385 

4 Limitations 

TEBC as a wet scavenging proxy: In this study, we treat TEBC as a proxy for wet scavenging (i.e., predictand) and base our 

conclusions on which variables (i.e., predictors) best predict TEBC. Dilution or entrainment during transport is expected to influence 

the ΔBC/ΔCO ratio and therefore TEBC. While the use of the CAMS-GLOB-ANT emission inventory (Sect. 2.4) when calculating 

ERBC/CO (Sect. 2.5) reduces this uncertainty by accounting for potential surface influence during transport close to the surface, the 390 

resolutions of both the trajectory meteorological input (0.25 × 0.25°) and the emission inventory (0.1 × 0.1°) remain limiting 

factors. Thus, our analysis assumes that wet scavenging is the main driver of changes in TEBC and chemical transport modelling in 

future work is needed to quantify the effect of mixing on TEBC. Consequently, this method is expected to work well in outflow 

regions such as the tropical West Pacific and not well where additional BC and/or CO are likely to be after initial emission or wet 

scavenging has occurred (e.g., continental region). 395 

Method does not discriminate between in- or below-cloud scavenging: The conclusions of our study are based on the 

relative ability of different variables to predict TEBC, our proxy for wet scavenging. This approach does not isolate individual 

processes that are usually parameterized by global circulation models (e.g., impaction, nucleation) (Croft et al., 2009, 2010; Ryu 

and Min, 2022) and does not discriminate between in-cloud or below-cloud scavenging. However, through our proposed 

framework, we can still gain qualitative insights into which meteorological variables are relevant for estimating aerosol scavenging, 400 

which can inform future studies as well as developments in model parametrization. 

Single predictor method: The method presented here assesses the one-to-one relationship between a single predictor and 

TEBC repeated individually for several predictors. We expect that using a combination of predictors may lead to better predictions 

of TEBC while providing a more physical picture of relative contributions of different meteorological variables towards wet 

scavenging. Future work may utilize multiple linear regression or more sophisticated methods such as machine learning to consider 405 

different combinations of predictors with the objective of identifying a combination that predicts TEBC well and extracting further 

information on what physical mechanisms may be relevant for the removal of TEBC based on relative coefficients or weightings of 

different predictors. 
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Curve-fitting: The results can depend on the curve-fitting function used. Different variables are expected to have different 

relationships with TEBC. Thus, considering only one function for curve-fitting favors variables that have a specific relationship 410 

with TEBC. To reduce this bias, we applied four different curve-fitting functions (Table 2) on each predictor based on two equations 

from previous studies (Kanaya et al., 2016; Oshima et al., 2012) and two equations of generalized form that accounted for possible 

relationships between TEBC and each predictor. We then chose the curve-fitting function that produced the highest R between 

observed and predicted TEBC. However, we note that this does not completely remove the bias as specific functions were still 

selected. 415 

Trajectory modeling: Vertical motion through convection, entrainment, and detrainment processes are known uncertainties 

in trajectory modeling, which increase with trajectory length (Harris et al., 2005). The spatial and temporal resolutions of the 

meteorological input used for the HYSPLIT model are also limiting factors as meteorology along HYSPLIT trajectories do not 

account for sub-timestep or sub-grid processes.  

5 Conclusions 420 

We present a method to identify meteorological indicators of aerosol scavenging using a combination of aircraft, satellite, and 

reanalysis data coupled with HYSPLIT backward trajectories. We apply this method to the CAMP2Ex field campaign over the 

tropical West Pacific, which hosts a wide range of cloud fractions and precipitation characteristics as well as an environment 

characterized by long-range transport of aerosol and trace gas species. We evaluate which meteorological variables can be used to 

predict TEBC (i.e., predictors). The main conclusions of the study are the following: 425 

1. Although APT has been utilized in several studies as an indicator of aerosol scavenging, we demonstrate that APT does 

poorly when predicting TEBC (e.g., weak correlations, underestimates TEBC). Furthermore, the application of altitude or 

precipitation intensity filters negatively impact the performance of APT in predicting TEBC. Since APT is an accumulated 

precipitation amount over the whole trajectory, APT does not account for other precipitation characteristics such as 

intensity or frequency, which have been shown to be relevant for aerosol scavenging. This shortcoming may explain the 430 

overall poor relative performance of APT in predicting TEBC. 

2. Predictors based on specific quantiles of RH (e.g., RHq90) also perform quite well in predicting both TEBC trends and 

magnitudes (intercepts close to zero, WAD close to zero, slopes close to 1, R close to 1). We find only minor differences 

in the performance depending on the exact quantile used, suggesting the RH distribution during transport is a robust way 

to estimate TEBC. We hypothesize the outperformance of RH quantiles over predictors more directly related to 435 

precipitation (e.g., APT) to be due to missed precipitation in SPP retrievals that was indirectly represented in reanalysis 

as high humidity conditions; however, further work is required to explore this possibility. 

3. Frequency-related predictors such as fMR15 and fRH95 perform better than APT in predicting TEBC trends (higher R) and 

magnitudes (slopes closer to 1). fMR15 and fRH95 represent the frequencies along 72-h trajectories of MR exceeding 15 g 

kg-1 and RH exceeding 95%, respectively. The abilities of fMR15 and fRH95 to predict TEBC suggests that the frequency of 440 

humid conditions should be considered when estimating aerosol scavenging. 

4. To investigate which precipitation characteristics are most relevant for predicting TEBC, we quantify PA, PF, and PI along 

trajectories and find that PI is the most effective at estimating TEBC when we calculate PI over longer trajectories (> 48 

h) and only include grid cells with precipitation > 0.2 mm h-1 in our calculation. This points to the contribution of intense 

precipitation and the importance of accounting for air mass history when estimating aerosol scavenging. 445 
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5. We find that precipitation from SPPs (IMERG, PERSIANN-CDR) is generally better at predicting TEBC (higher R) than 

precipitation from reanalysis (GFS). This is corroborated by previous studies that found larger misestimates of 

precipitation by reanalysis than by SPPs. Because of our results and those of past studies, we recommend relying on in 

situ or SPP precipitation rather than precipitation from reanalysis, particularly when relating precipitation to aerosol 

scavenging. 450 

Given these findings, we recommend the following alternatives to APT when estimating aerosol scavenging: (1) RH quantiles 

(e.g., 90th percentile of RH along trajectories), (2) fMR15 or fRH95, and (3) PI from SPPs filtered for grid cells with precipitation > 

0.2 mm h-1. These variables were found to be able to predict TEBC more accurately than APT; thus, future scavenging 

parametrizations should consider these meteorological variables along air mass histories. 

Future work is encouraged to apply this method over a variety of environments (e.g., using other data from other field 455 

campaigns), utilize machine learning to assess what combinations of meteorological variables are relevant for predicting aerosol 

scavenging, and apply this method to other regions to determine if there are regional differences in indicators of aerosol scavenging. 

Furthermore, CAMP2Ex included a rich dataset on cloud water composition (Crosbie et al., 2022; Stahl et al., 2021) that can be 

explored, as in past work for other regions (MacDonald et al., 2018), to gain additional insights into aerosol wet scavenging 

processes. 460 

Appendix A: Describing the transport of BC and CO during CAMP2Ex 

During the CAMP2Ex field campaign, BC and CO originated from several sources. Long-range transport patterns during 

the campaign and associated air mass composition are described in Hilario et al. (2021) but here we present a summary of their 

findings related to the transport of BC and CO. The CAMP2Ex field campaign overlapped with the end of the southwest monsoon 

and the beginning of the monsoon transition (Reid et al., 2023). Because of this, a synoptic shift occurred during the campaign 465 

(Hilario et al., 2021;  their Figs. 2-3) that allowed for the sampling of transported air masses from different source regions such as 

East Asia and the Maritime Continent. Hilario et al. (2021) identified four major source regions for long-range transport: East Asia 

(e.g., China, Korea), the Maritime Continent (e.g., Indonesia, Malaysia), Peninsular Southeast Asia (e.g., Vietnam), and the West 

Pacific (i.e., ocean). The presence of long-range transport was detected throughout the whole campaign (their Fig. S2). 

The Maritime Continent during the campaign was undergoing its burning season which is well-established in the literature 470 

to lead to high aerosol loadings that can be transported over large distances (Xian et al., 2013). Hilario et al. (2021) showed that 

air masses from the Maritime Continent and East Asia were transported under relatively dry conditions, which in this study 

manifested as higher ΔBC/ΔCO (Fig. S1a) and TEBC (Fig. S1d), and were associated with southwesterly monsoon flow and the 

passage of typhoons, respectively. These conditions were conducive for long-range transport and led to the sampling of higher 

concentrations of BC and CO in air from East Asia (BC: 87.29 ng m−3; CO: 0.16 ppm) and the Maritime Continent (BC: 71.81 ng 475 

m−3; CO: 0.18 ppm) than in air from Peninsular Southeast Asia (BC: 24.90 ng m−3; CO: 0.10 ppm) or the West Pacific (BC: 1.03 

ng m−3; CO: 0.08 ppm). We note that Hilario et al. (2021) kept CO in units of ppm while we converted CO to mass concentration 

units such that ΔBC/ΔCO would be unitless. Hilario et al. (2021) demonstrated that the scavenging of air from Peninsular Southeast 

Asia was related to convective lofting as air from Peninsular Southeast Asia sampled in the free troposphere (> 1.5 km) had much 

lower aerosol concentrations than air from the region sampled in the boundary layer (< 1.5 km) (their Fig. S6). These findings 480 

point to the active role of scavenging in determining aerosol loadings in transported air masses during CAMP2Ex. 

 

Code availability. Codes are freely available upon request to the authors. 
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Table 1: Examples of notation used in this study. 

Predictor Description Variations 

fRH95 
Fraction of hours along trajectories where GFS relative 

humidity (RH) > 95% 
fRH85, fRH90 

fMR15 
Fraction of hours along trajectories where GFS water 

vapor mixing ratio (MR) > 15 g kg-1 dry air 
fMR17 

RHq95 95th percentile of RH along trajectories RHq50, RHq85, RHq90, RHq100, RHmean 

RHw, DLH RH over water measured by DLH onboard the aircraft - 

APTPCP > 0.2 mm, 48H, GFS, < 1500m 

Accumulated precipitation calculated along 48-h 

trajectories where GFS precipitation is above 0.2 mm 

and trajectory altitude is below 1500 m 

• Trajectory duration: 12H, 24H, 48H, 72H 

• Precipitation product: GFS, IMERG, 

PERSIANN-CDR 

• Maximum altitude filter: no filter, < 1500 m 

• Minimum precipitation filter: no filter, > 0.2 

mm 

• Other precipitation variables: PA, PF, PI 
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Table 2: Curve-fitting equations considered where x is the predictor variable and y is the observed ΔBC/ΔCO while a, b, c, and d are 795 
best-fit parameters determined via least-squares regression. 

 

Name Equation Source 

Gaussian y =  a ⋅  exp(−
(x − b)2

2 ⋅ c2  )  +  d - 

General Exponential 𝑦 =  𝑎 ⋅  𝑒𝑥𝑝(−𝑏 ⋅  𝑥)  +  𝑐 - 

Oshima 𝑦 =  𝑏 −  𝑎 ⋅ log10(𝑥) Oshima et al. (2012) 

Kanaya 𝑦 =  𝑐 ⋅ 𝑒𝑥𝑝(−𝑎 ⋅  𝑥𝑏) Kanaya et al. (2016) 
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Figure 1: An example of the curve-fitting procedure on TEBC with RHq95 as the predictor fitted with a Gaussian function. (a) Training 

(gray dots) and testing sets (orange dots) for the 10th iteration of the k-fold cross-validation procedure selected using stratified random 

sampling. Percentile blocks of each X-axis variable are denoted by vertical gray lines with observed (black) and predicted curves (blue) 

also plotted for all 10 iterations. (b) Same as (a) but only showing observed (black) and predicted curves (blue) for all 10 iterations to 805 
highlight variations between the k iterations. (c) Scatterplot comparing RHq95-predicted ΔBC/ΔCO and observed median TEBC per 5th 

percentile block of the predictor. Note that (c) is simply the linear regression of the observed and predicted curves in (b). (d) Same as (c) 

but comparing RHq95-predicted and observed TEBC for individual points. In (c-d), only training set data are used, Y-axes are the same, 

the best-fit line is shown as a black line, and the 1:1 line is the red, dashed line.  
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Figure 2: Slope and Pearson correlation (R) values derived from linear regressions of observed (x) and predicted (y) TEBC with error 

bars representing the 25th and 75th percentile values derived from k-fold cross validation (k = 10) using stratified random sampling (Sect. 815 
2.7). Ideal values are denoted by the red dashed lines such that a better predictor would fall closer to the intersection of the two lines. 

Top eight predictors per group (panel) are colored non-gray while the rest of the predictors are plotted in gray to show the relative 

performance of all predictors. Note that PERSIANN-CDR has been abbreviated to P-CDR (b-c). Panels share the same X- and Y-axis 

limits. 

  820 



29 

 

 

 

  

Figure 3: Same as Fig. 2 but comparing intercept and weighted area difference (WAD, Sect. 2.7). 
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Figure 4: Median values of observed (black) and predicted TEBC (blue) as a function of selected predictors for 10 iterations during k-

fold cross-validation. Pearson correlations are annotated as 25th/50th/75th percentiles from k-fold iterations (k=10) calculated in two ways: 

comparing predicted and observed median TEBC per 5th percentile block of the predictor (R) and comparing predicted and observed 

TEBC for individual points (Rindiv). Panels share the same Y-axis limits. Percentile blocks for each X-axis variable are denoted by vertical 830 
gray lines. 
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Figure 5: Pearson correlations (R) between observed TEBC and TEBC predicted by accumulated precipitation along trajectories (APT) 835 
for different trajectory lengths and precipitation data products. Each panel refers to a combination of altitude and precipitation intensity 

filters. Panels share the same X- and Y-axis limits. 


