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Abstract. As one of the dominant sinks of aerosol particles, wet scavenging greatly influences aerosol lifetime and interactions 

with clouds, precipitation, and radiation. However, wet scavenging remains highly uncertain in models, hindering accurate 

predictions of aerosol spatiotemporal distributions and downstream interactions. In this study, we present a flexible, 

computationally inexpensive method to identify meteorological variables relevant for to estimating wet scavenging using a 

combination of aircraft, satellite, and reanalysis data augmented by trajectory modelingmodelling to account for air mass history. 15 

Treating the enhancement (Δ) ratio of black carbon and carbon monoxide (ΔBC/ΔCO) measured by aircraft as an in situ proxy for 

wet scavenging, wWe assess the capabilities of an array of meteorological variables to predict the transport efficiency of black 

carbon (ΔBC/ΔCOTEBC)  using a combination of nonlinear regression,  statistics derived from curve-fitting, and k-fold cross-

validation. We find that accumulated precipitation along trajectories (APT) – treated as a wet scavenging indicator across multiple 

studies – is unable to does poorly when accurately capture predicting TEBC ΔBC/ΔCO trends, suggesting that APT is not a good 20 

indicator of wet scavenging effects. Among different precipitation characteristics (amount, frequency, intensity), precipitation 

intensity was the most effective at estimating TEBC but required longer trajectories (> 48 h) and including only intensely 

precipitating grid cells. This points to the contribution of intense precipitation towards aerosol scavenging and the importance of 

accounting for air mass history. Predictors that were most able to predict TEBC were related to the distribution of relative humidity 

(RH) or the frequency of humid conditions along trajectories, suggesting that RH is a more robust way to estimate TEBC than APT. 25 

We recommend the following alternatives to APT when estimating aerosol scavenging: (1) the 90th percentile of RH along 

trajectories, (2) the fraction of hours along trajectories with either water vapor mixing ratios > 15 g kg-1 or RH > 95%, (3) 

precipitation intensity along trajectories at least 48 hours along and filtered for grid cells with precipitation > 0.2 mm h-1. Future 

scavenging parametrizations should consider these meteorological variables along air mass histories.In contrast, the frequencies of 

precipitation or high relative humidity along trajectories better predict ΔBC/ΔCO trends and magnitudes, suggesting that these 30 

types of meteorological variables are better than APT for estimating the degree of wet scavenging in an air mass. Precipitation 

characteristics (e.g., intensity, frequency) from satellite retrievals are better indicators of ΔBC/ΔCO than those calculated from 

reanalysis, supporting previous studies that demonstrated reanalysis to be less reliable than satellite retrievals in terms of 

precipitation. Finally, top quantiles (e.g., 90th) of relative humidity are able to consistently capture the behavior of ΔBC/ΔCO and 

may also be a more suitable indicator of wet scavenging than APT. Future studies can use the best-performing meteorological 35 

variables identified in our study to estimate wet scavenging. Furthermore, Tthis method can be repeated for different regions to 

identify region-specific region-specific factors influencing wet scavenging, and our findings may be useful for informing 

scavenging parametrization schemes in models. 
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1 Introduction 40 

Although wet scavenging is one of the dominant removal mechanisms for atmospheric aerosol particles (Seinfeld and Pandis, 

2016; Textor et al., 2006), it remains a large source of uncertainty in global-scale models (Watson-Parris et al., 2019; Liu and 

Matsui, 2021; Moteki et al., 2019; Hodzic et al., 2016). This uncertainty hampers the ability of global-scale models to capture the 

lifecycle (i.e., sources, transformations, and sinks) (Hou et al., 2018), spatial extent (Moteki et al., 2019), and vertical profile 

(Watson-Parris et al., 2019; Liu and Matsui, 2021; Frey et al., 2021; Kipling et al., 2016) of aerosol particles. Inaccurate 45 

representations of these aerosol features contribute to uncertainties in estimates of aerosol radiative effects (Samset et al., 2013; 

Marinescu et al., 2017) and aerosol loadings over climate-sensitive regions (Liu and Matsui, 2021; Mahmood et al., 2016; Shen et 

al., 2017), with further implications for the remote sensing of aerosol abundance downwind of precipitating or cloudy areas. 

Advancing knowledge of wet scavenging processes can help reduce the largest uncertainty in human forcing of the climate system, 

which involves aerosol-cloud interactions (e.g., Bellouin et al., 2020). 50 

Wet scavenging occurs either below- or in-cloud. Below-cloud scavenging occurs when aerosol particles are collected by 

precipitation (Croft et al., 2009) and is most important between the surface and 1 km above ground level (AGL) (Grythe et al., 

2017). The efficiency of below-cloud scavenging depends on raindrop size distributions (Wang et al., 2010),  and aerosol 

composition (Lu and Fung, 2018; Grythe et al., 2017), the amount of in-cloud condensed water (Luo et al., 2019)  as well as 

precipitation characteristics (i.e., frequency, intensity, amount, and type) the amount of in-cloud condensed water (Luo et al., 2019). 55 

To calculate the fraction of aerosol scavenged below-cloud, models typically rely on an empirically-derived below-cloud 

scavenging coefficient, which is a function of aerosol size (Feng, 2007; Croft et al., 2009) and composition (Lin et al., 2021). Semi-

empirical model parametrizations of below-cloud scavenging have been shown to improve simulated surface concentrations (Luo 

et al., 2019); however, agreement between models and observations is highly sensitive to the specific below-cloud scavenging 

scheme used (Lu and Fung, 2018). Below-cloud scavenging rates in models also remain significantly underestimated compared to 60 

observations (Kim et al., 2021; Ryu and Min, 2022; Xu et al., 2019). 

(Wang et al. (, 2010) determined the below-cloud scavenging coefficient is influenced by (1) raindrop-particle collection 

efficiency, (2) raindrop size distribution, and (3) raindrop terminal velocity. These factors were associated with differences in 

particle concentrations by a factor of 2 for sub-10 nm particles and a factor of >10 for particles larger than 3 µm; however, their 

combined uncertainty was insufficient to explain the discrepancy between theoretical and field measurements of the below-cloud 65 

scavenging coefficient. (Wang et al. (, 2011) demonstrated that this discrepancy can be largely explained by the vertical turbulence 

as it determines which particles are subjected to impaction scavenging. This impact was most pronounced for submicron particles 

under weak precipitation intensities. 

Given these uncertainties, (Wang et al. (, 2014ab) (Wang et al., 2014b)developed a new semi-empirical, size-resolved 

parametrization based on an percentile-logarithmic power-law relationship between the below-cloud scavenging coefficient and 70 

particle size that is applicable to both rain and snow across different particle sizes and precipitation intensities. Based on the size-

resolved parametrization of (Wang et al. (, 2014ab), (Wang et al., 2014a)(Wang et al., 2014a)a bulk or modal parametrization for 

fine (PM2.5), coarse (PM2.5-10), and giant particles (PM10+) was presented by Wang et al. (2014b). 

In-cloud scavenging occurs via nucleation (i.e., activation of aerosol particles into cloud droplets; Jensen and Charlson, 1984) 

or impaction (i.e., collision of interstitial aerosol particles with existing cloud droplets; Kipling et al., 2016; Flossmann et al., 1985) 75 

and is followed either by (1) precipitation that reaches the surface, removing the particle from the atmosphere (Radke et al., 1980), 

or (2) evaporation of cloud droplets or precipitation, returning the scavenged particle to the free atmosphere (Mitra et al., 1992). 

Model improvements in in-cloud scavenging include using a continuous rather than binary cloud fraction (Ryu and Min, 2022; Xu 
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and Randall, 1996), accounting for cloud water phase (Grythe et al., 2017; Liu and Matsui, 2021), and accurately simulating cloud 

supersaturation (Moteki et al., 2019). Although in-cloud scavenging is generally thought to be more efficient at removing 80 

accumulation mode aerosol particles (Watson-Parris et al., 2019; Choi et al., 2020), other studies argue that there are instances 

wherein below-cloud scavenging becomes more important at regulating aerosol burdens (Kim et al., 2021; Ryu and Min, 2022; Xu 

et al., 2019). Uncertainties related to wet scavenging are further exacerbated by the divergent role of clouds, which can be a sink 

or source of aerosol particles depending on environmental factors and cloud characteristics (Ryu et al., 2022). 

One avenue for improving the estimation of wet scavenging, particularly in observational studies, is to identify an effective 85 

meteorological indicator of wet scavenging. Previous studies used precipitation amount (Feng, 2007; Andronache, 2003) while 

more recent studies accounted for air mass history using the National Oceanic and Atmospheric Administration (NOAA) Hybrid 

Single Particle Lagrangian Integrated Trajectory Model (Rolph et al., 2017; Stein et al., 2015) to calculate accumulated 

precipitation along trajectories (APT) (e.g., Kanaya et al., 2016, 2020). However, APT can be problematic as an indicator of wet 

scavenging because APT is an accumulated quantity and does not consider specific characteristics of precipitation relevant to 90 

scavenging such as intensity and frequency (Hou et al., 2018; Wang et al., 2021c, bb, c; Hilario et al., 2022). APT as an indicator 

of wet scavenging also relies on the correct detection of precipitation and retrievals of amounts, which are challenging during both 

light (Nadeem et al., 2022; Kidd et al., 2021) and intense precipitation events (Chen et al., 2020a; Gupta et al., 2020) and even 

show disagreements between different satellite precipitation products (SPPs) and reanalyses (Cannon et al., 2017; Jiang et al., 

2021; Alexander et al., 2020; Chen et al., 2020b; Barrett et al., 2020). Furthermore, precipitation from SPPs such as the 95 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks – Climate Data Record 

(PERSIANN-CDR) (Ashouri et al., 2015; Nguyen et al., 2018) and the Integrated Multi-satellitE Retrievals for the Global 

Precipitation Measurement (GPM) mission (IMERG) (Huffman et al., 2020) refer to total column precipitation that have been 

validated mainly with surface measurements (Sapiano and Arkin, 2009; Nicholson et al., 2019; Wang et al., 2021a) and 

consequently may not detect precipitation that evaporates before reaching the surface (e.g., virga) (Wang et al., 2018). 100 

Given the uncertainties of estimating wet scavenging from precipitation, we present a flexible, computationally inexpensive 

method to identify alternative meteorological variables that can be used to better estimate wet scavenging. We combine curve-

fitting and k-fold cross-validation to evaluate an array of meteorological variables from aircraft, satellite, and reanalysis data to 

answer the following: 

(1) What meteorological variables can estimate wet scavenging trends better than APT? Since precipitation frequency has 105 

been shown to exert significant control over aerosol scavenging (Wang et al., 2021b), we hypothesize that predictors that 

account for the frequency of scavenging-conducive conditions (e.g., frequency of high relative humidity (RH) conditions 

along trajectories) will be able to capture wet scavenging trends better than APT. 

(2) How can APT be filtered or changed to better estimate wet scavenging? We hypothesize that considering precipitation 

intensity and/or trajectory altitude thresholds when calculating APT will improve its ability to estimate wet scavenging. 110 

We also hypothesize that calculating APT using SPPs will perform better than APT from reanalysis. 

The presented method may be repeated over different regions to identify region-specific wet scavenging indicators. This can 

inform scavenging parameterization development for models by providing guidance on what meteorological variables are needed 

to properly capture wet scavenging processes over a specific region. Future studies can also use the best-performing variables 

identified in this study as alternatives to APT when estimating the extent of wet scavenging. 115 
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2 Data & Methods 

2.1 Aircraft data 

Much of the methodology and instrument details in this study are detailed elsewhere (Hilario et al., 2021) but are summarized 

here. We utilize aircraft measurements from NASA’s Cloud, Aerosol, and Monsoon Processes-Philippines Experiment 

(CAMP2Ex; 24 August to 5 October 2019) over the tropical West Pacific (5 – 20°N, 117 – 127°E) (Reid et al., 2023), which hosts 120 

a dynamic transport environment rich in aerosol sources and cloud-precipitation systems. 

Black carbon (BC)-equivalent concentrations (particle diameters: 100 – 700 nm; units: μg m-3) were measured with a Single-

Particle Soot Photometer (SP2) (Moteki & Kondo, 2007, 2010) with an uncertainty of 15% (Slowik et al., 2007) and lower detection 

limit of 10 ng m-3 verified by filter-blank measurements as well as observations in the clean free troposphere. To eliminate in-

cloud sampling artifacts such as droplet shattering on the inlet (Murphy et al., 2004), we use only data collected outside of clouds. 125 

All BC concentrations are reported at standard temperature and pressure (273 K, 1013 hPa). Carbon monoxide (CO; ppm) was 

measured using a dried-airstream near-infrared cavity ringdown absorption spectrometer (G2401-m; PICARRO, Inc.), with an 

uncertainty of 2% and precision of 0.005 ppm. As an in situ (i.e., at the aircraft’s position) contrast to moisture-based variables 

along trajectories, relative humidity (RHW, DLH) was derived from absolute water vapor concentrations that were retrieved by a 

diode laser hygrometer (DLH) (Livingston et al., 2008) on the aircraft. 130 

2.2 Calculation of eEnhancement ratios calculation 

To relate wet scavenging to meteorological conditions during transport conditions, previous studies used calculated 

enhancement (Δ) ratios of BC and carbon monoxideCO (CO) (ΔBC/ΔCO; Hilario et al., 2021; Kanaya et al., 2016; Oshima et al., 

2012) which can then be used to quantify the transport efficiency of BC (TEBC) (Kanaya et al., 2016, 2020; Oshima et al., 2012), 

discussed more in Sect. 2.5.  By using the enhancement above a local background, ΔBC/ΔCO accounts for spatial variations in the 135 

background levels concentrations of BC and CO at a receptor site ((
Δ𝐵𝐶

Δ𝐶𝑂
)

𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
) and is better able to detect a transportedn air 

mass containing BC and CO above local background levels. This ratio can be used as an indicator of wet scavenging because BC 

is relatively chemically inert and is mainly removed from the atmosphere via wet scavenging (Moteki et al., 2012). While CO is 

also relatively chemically inert, CO has a lifetime between 30 to 90 days (Seinfeld and Pandis, 2016) that is mainly controlled by 

photochemistry rather than wet scavenging due to its low solubility.  Because of this, we use ΔBC/ΔCO as our proxy for wet 140 

scavenging and the predictand for our regression models. 

Enhancements were defined as the difference between species concentrations and the lowest 5th percentile species 

concentration for all CAMP2Ex data for every 5 K potential temperature bin (Koike et al., 2003; Matsui et al., 2011). As CAMP2Ex 

spanned the late southwest monsoon and early monsoon transition, background concentrations (i.e., lowest 5th percentile) were 

calculated for each monsoon phase using 20 September 2019 to divide the two monsoon phases. Only data with ΔCO > 0.02 ppm 145 

were included to reduce uncertainties caused by low denominator values in the ΔBC/ΔCO ratio (Kleinman et al., 2007; Kondo et 

al., 2011; Matsui et al., 2011). When calculating transport efficiency (Sect. 2.5), we converted ΔCO (from the receptor) from ppm 

to μg m-3 using the ambient pressure and temperature measured by the aircraft such that ΔBC/ΔCO would be unitless.  

As ΔBC/ΔCO is expected to vary by source region, Fig. S1a shows source-resolved distributions of ΔBC/ΔCO (unitless) based 

on source regions identified by (Hilario et al. (, 2021), which classified backward trajectories into source regions using bounding 150 

boxes over major source regions established in previous literature. In addition to passing over source region bounding boxes, the 

source classification also considered (1) trajectory altitude, specifically whether or not the trajectory was below 2 km AGL which 

Formatted: Subscript

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Not Highlight

Formatted: Not Highlight



6 

 

 

conservatively approximates climatological boundary layer heights over the region (Chien et al., 2019), as well as (2) trajectory 

residence time within each bounding box (minimum residence time: 6 hours). As described in Hilario et al. (2021), ΔBC/ΔCO is 

higher for air masses coming from East Asia or the Maritime Continent (Fig. S1a), which suggests a low degree of aerosol 155 

scavenging during transport, while lower ΔBC/ΔCO are seen for air from the Peninsular Southeast Asia, indicating scavenging 

had occurred(Hilario et al., 2021). More information on major transport patterns affecting BC and CO during CAMP2Ex are 

provided in Appendix A. 

 

2.3 Trajectory modeling 160 

Trajectory modeling is a computationally inexpensive tool for characterizing transport processes (Kanaya et al., 2016; Oshima 

et al., 2012; Moteki et al., 2012) and has been used in synergy with aircraft data (Hilario et al., 2021; Dadashazar et al., 2021). In 

this study, we use trajectories to account for meteorological conditions during air parcel transport that are expected to impact the 

scavenged aerosol fraction. Backward trajectories were spawned every minute along the aircraft flight path and run for 72 hours 

using the NOAA HYSPLIT model. Meteorological input data for the HYSPLIT model were from the National Centers for 165 

Environmental Prediction (NCEP) Global Forecast System reanalysis (GFS; 0.25° × 0.25°). Figure S1b shows the distribution of 

transport times from different source regions (Sect. 2.2) to the CAMP2Ex aircraft(Hilario et al., 2021). Generally, transit times are 

below 72 hours, indicated by 25th and 75th percentiles less than 72 hours, suggesting that 72 hours is sufficient to capture long-

range transport from major source regions into the tropical West Pacific.(Chien et al., 2019) 

2.4. Emission inventory 170 

To calculate the BC/CO emission ratio over each trajectory (𝐸𝑅𝐵𝐶/𝐶𝑂), we used data from the Copernicus Atmosphere 

Monitoring Service (CAMS) Global Anthropogenic Emissions (CAMS-GLOB-ANT) inventory, version 5.3 (Soulie et al., 2023) 

which is based on the Emissions Database for Global Atmospheric Research (EDGAR) inventory from the European Joint Center 

(Crippa et al., 2018) and the Community Emissions Data System (CEDS) from the Joint Global Research Institute (Hoesly et al., 

2018). CAMS-GLOB-ANT has a horizontal resolution of 0.1x × 0.1° at monthly resolution. CAMS-GLOB-ANT accounts for 17 175 

emission sectors, including shipping from CAMS-GLOB-SHIP v3.1, and emissions are reported in units of mass flux (kg m-2 s-1). 

(Crippa et al., 2018)(Hoesly et al., 2018)More information on CAMS global and regional emissions can be found in (Granier et al. 

(, 2019). 

2.5. Calculation of transport efficiencies 

The TEBC (unitless) was calculated for each trajectory using Eq. 1: 180 

 

wWhere (
Δ𝐵𝐶

Δ𝐶𝑂
)

𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟
 is the enhancement ratio calculated from the aircraft data (Sect. 2.2) and 𝐸𝑅𝐵𝐶/𝐶𝑂 is the weighted-average 

emission ratio of BC/CO along each 72-h trajectory, inverse-weighted by altitude and calculated using emissions from the 

CAMS-GLOB-ANT inventory (Sect. 2.4). When calculating 𝐸𝑅𝐵𝐶/𝐶𝑂 for each trajectory, we applied a weighting function (Fig. 

S2a) to assign higher weights to lower altitudes such that the resulting 𝐸𝑅𝐵𝐶/𝐶𝑂 will be mainly determined by times when 185 

trajectory altitude is low, reflecting the higher likelihood of entraining surface emissions when the trajectory is close to the 

𝑇𝐸 =
(

Δ𝐵𝐶
Δ𝐶𝑂)

𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

𝐸𝑅𝐵𝐶/𝐶𝑂
(1)
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surface. An example of the weighting function as a function of trajectory altitude is shown in Fig. S2b wherein weighting 

decreases with increasing trajectory altitude. As the 𝐸𝑅𝐵𝐶/𝐶𝑂 calculation included the entire 72 hour length of the trajectory, our 

method of computing 𝐸𝑅𝐵𝐶/𝐶𝑂 is not restricted only to source regions (e.g., East Asia) but also accounts for potential entrainment 

of BC or CO over the open ocean, where sources such as shipping could contribute BC (Lack and Corbett, 2012) and CO 190 

(Jalkanen et al., 2012). We note that 𝐸𝑅𝐵𝐶/𝐶𝑂 is not required to be an enhancement ratio because the purpose of the enhancement 

ratio is to account for local background concentrations over the receptor region (Sect. 2.2). 

We found that TEBC and ΔBC/ΔCO are strongly correlated (R2 = 0.90); however, TEBC has the added advantage of accounting 

for surface emissions of BC and CO that could have been entrained into transported air mass. ΔBC/ΔCO is assumed to be 

influenced by two main factors: (1) source emissions of BC and CO along the trajectory path, and (2) removal of BC via wet 195 

scavenging. By setting TEBC as our predictand, we account for emissions encountered during long-range transport (ERBC/CO) 

such that TEBC is expected to vary mainly via sinks (i.e., wet scavenging). 

(Lack and Corbett, 2012)(Jalkanen et al., 2012)To show the variation of 𝐸𝑅𝐵𝐶/𝐶𝑂 and TEBC with different source regions, 

Fig. S1 shows source-resolved 𝐸𝑅𝐵𝐶/𝐶𝑂 (Fig. S1c) and TEBC (Fig. S1d). Air masses from East Asia show the smallest range in 

𝐸𝑅𝐵𝐶/𝐶𝑂 while air masses from the Maritime Continent and Peninsular Southeast Asia have largely similar distributions. Lower 200 

values of 𝐸𝑅𝐵𝐶/𝐶𝑂 in air masses from the Maritime Continent are related to smoke from agricultural burning that coincided with 

the CAMP2Ex period (Ge et al., 2014). Previous emission factor measurements showed that these fires tended to be smoldering 

rather than flaming, emitting CO but notably lower BC (Stockwell et al., 2015). (Stockwell et al., 2015)(Ge et al., 2014)While 

some variation is indeed present between source regions, the distributions of 𝐸𝑅𝐵𝐶/𝐶𝑂 are generally similar with modes between 

0.22 – 0.26, which may explain the strong correlation between TEBC and ΔBC/ΔCO. 205 

2.42.6 Data for predictor variables 

Several meteorological variables (i.e., predictors) considered in this work were calculated from GFS reanalysis collocated 

along each trajectory. Though reanalysis is relatively coarse and not cloud-resolving, reanalysis variables (e.g., RH) may still be 

useful in detecting the presence of meso-to-synoptic-scale cloud fields. As precipitation is expected to be accompanied by elevated 

RH or water vapor mixing ratio (MR), these reanalysis-derived variables could serve as effective scavenging indicators in cases 210 

where precipitation may be missed or misestimated. 

In addition to APT from GFS, we calculated APT from two SPPs: PERSIANN-CDR (0.25° × 0.25°, daily resolution) (Ashouri 

et al., 2015; Nguyen et al., 2018) and IMERG Final v6 (0.1° × 0.1°, 30-min resolution) (Huffman et al., 2020). We converted 

precipitation from these products to hourly amounts to match trajectory timesteps prior to further calculation.  

Besides APT, we also calculated precipitation amount (PA; mm h-1), frequency (PF), and intensity (PI; mm h-1), which are 215 

well-established in the literature for characterizing precipitation, particularly in diurnal cycle analyses (e.g., Zhang et al., 2017; 

Hilario et al., 2020). Applying these quantities to precipitation along trajectories, PA is APT divided by the total number of hours 

along the trajectory (i.e., trajectory length) to obtain an average hourly precipitation rate, PF is the fraction of hours along the 

trajectory where the grid cell precipitation is above 0 mm h-1, and PI is the ratio of PA to PF. Table 1 shows notation used to explain 

each type of predictor and its variations. 220 

2.52.7 Curve-fitting and k-fold cross-validation 

To quantify relationships between ΔBC/ΔCOTEBC and each predictor as well as its uncertainty, we performed k-fold cross-

validation (k = 10) parallelized using the Python package Jjug,  version 2.2.2 (Coelho, 2017). This procedure was repeated for k 

iterations using a different partition for the testing set in each iteration, which provides a measure of uncertainty in the resulting 

regression statistics.  225 
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To create k distinct partitions of the data, we utilized stratified random sampling wherein random sampling was performed for 

every each 5th percentile block of the predictor such that the sampling probability better reflects the distribution of predictor values, 

which is  (e.g., important for skewed distributions such as precipitation amount, ) and the resulting k partitions capture s the 

behavior of TEBC ΔBC/ΔCO over across the whole range full spectrum of predictor values. By randomly sampling each percentile 

block for k distinct partitions, this sampling method improves the chances of capturing intra-block variability in ΔBC/ΔCOTEBC 230 

by collecting the most samples where the most highest data coverage exists. The random nature of the sampling also allows for the 

consideration of extreme values in the curve-fitting, with a sampling probability proportional to the frequency of these extreme 

values. As an example, Fig. 1a-b shows the emphasis of the stratified random sampling method on high density areas of the 

scatterplot of RHq90 and TEBCΔBC/ΔCO, denoted by dense percentile blocks (gray dashed lines). For extremely skewed 

distributions such as APT, several of the lower-value percentiles exhibited non-unique values (e.g., zero). In the case of repeated 235 

percentile values, these percentile-based groups were merged. We imposed a minimum of six distinct percentile blocks to ensure 

robust curve-fitting. 

An iterative train-test split procedure using these partitions was then performed using nine k-1 partitions as the training set 

and the remaining  partition as the testing set (Fig. 1a). For each iteration of the k-fold cross-validation, nonlinear least squares 

curve-fitting was applied to the training set (i.e., 9 partitions for a total k of 10), to determine coefficients for the equation (e.g., 240 

general exponential; discussed below) fitted onto the scatterplot of TEBC ΔBC/ΔCO and the predictor. We used these coefficients 

and the testing set (i.e., the remaining partition) as inputs for the curve-fitting equation and calculated a predicted curve of TEBC 

ΔBC/ΔCO and the predictor. To assess this predicted curve, we applied stratified random sampling on the testing set and took the 

median TEBC ΔBC/ΔCO per 5th percentile block to create observed curves of TEBC ΔBC/ΔCO as a function of the predictor that 

could be compared to the predicted curve (Fig. 1b). Because decreases in TEBC ΔBC/ΔCO are expected to be mainly from wet 245 

scavenging, the overall trend or median curve may be treated as a reasonable indicator of wet scavenging effects on TEBC 

ΔBC/ΔCO related to changes in the predictor value.  

Using a linear regression of predicted and observed median TEBC ΔBC/ΔCO per 5th percentile block of the predictor (Fig. 

1c), we calculated statistics (e.g., slope, R) to describe the performance of the how well the predictor can predict TEBC(e.g., slope, 

R). Specifically, Note that the performance of a predictor refers to how well TEBC ΔBC/ΔCO derived from the predictor matches 250 

observed TEBCΔBC/ΔCO. We also computed statistics comparing predicted and observed TEBC ΔBC/ΔCO for individual points 

(Fig. 1d) rather than medians to assess how much variability in TEBC ΔBC/ΔCO is captured by the predicted curves. The population 

in Fig. 1d visually follows the 1-to-1 line, indicating good performance of the model; however, the best-fit line on individual points 

was greatly affected by outlier points of high observed TEBC that led to poor agreement between the best-fit and 1-to-1 lines when 

the actual agreement was much better (visually). This suggests that the median-based statistics (Fig. 1c) are more robust to outliers 255 

and present a fairer evaluation of model predictions. Note that These ithe individual-point statistics (Fig. 1d) resulted in correlations 

and slopes further from ideal values compared to the median-based statistics. This is expected as individual TEBC data ΔBC/ΔCO 

points have exhibit high large variability due to the influence of factors other than wet scavenging; however, a comparison of 

comparison of our results when using individual-point and or the median-based statistics show that they qualitatively agree quite 

well qualitatively, with the relative ranking of predictors largely unchanged between the two types of statistics. In other words, the 260 

top predictors performed well whether we used median-based or individual-point statistics, implying the conclusions reached using 

our method are qualitatively unaffectedinsensitive to this choice. For simplicity, reported statistics in this study refer to median-

based statistics unless otherwise specified. 

To determine if a predicted ΔBC/ΔCO curve tended toor tended to  overestimate or underestimate observed TEBCΔBC/ΔCO, 

we calculated a weighted area difference (WAD) using Eq. 1: 265 
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𝑊𝐴𝐷 =
∑ 𝑁𝑖 ⋅ 𝑥𝑖

∑ 𝑁𝑖
(1) 

where 𝑥𝑖 is the difference between observed and predicted TEBC ΔBC/ΔCO for the 𝑖𝑡ℎ percentile block and 𝑁𝑖 is the number of 

data points in that percentile block. A positive (negative) WAD indicates an overestimate (underestimate) of observed 

TEBCΔBC/ΔCO. 

To account for differing relationships between TEBC ΔBC/ΔCO and each predictor, we fitted applied curve-fitting on the their 270 

scatterplot of each predictor and TEBC using multiple nonlinear equations (Table 2) and chose the equation that produced ing the 

highest Pearson correlation (R) between observed and predicted TEBC ΔBC/ΔCO for that predictor. We considered equations from 

two previous studies (Kanaya et al., 2016; Oshima et al., 2012) and two generalized equations (Gaussian, general exponential) to 

capture other types of relationships (Table 2). The inclusion of the latter two are to account for a wider range of possible 

relationships between predictors and TEBC, such as the case of a predictor capturing TEBC trends well but not having an inversely 275 

proportional relationship with ΔBC/ΔCO. The case of a non-inversely proportional relationship with TEBC is still interesting 

because a strong relationship implies that the variable could be used to estimate TEBC even if their relationship is nonmonotonic. 

The final assigned equations led to similar root mean squared error (RMSE) across predictors (Fig. S3) suggesting it is fair to 

compare different predictors. 

When selecting which equation to use (among those in Table 2) for fitting between the predictor and TEBC, wWe opted use 280 

for the equation that resulted in the highest R between observed and predicted TEBC (e.g., Fig. 1c). The basis of this choice on R 

was because we are more interested in our objective is to identify predictors that can at least capture trends in TEBCΔBC/ΔCO 

rather than magnitudes. After selecting which equation to use per predictor, the subsequent comparison (Sect. 3) of the performance 

of different predictors considers other statistical metrics such as slope, intercept, and WAD. For some combinations of predictors 

and curve-fitting equations, the curve-fitting did not successfully converge (< 4% of all combinations and k-fold iterations). In 285 

these cases, we did not include the predictor-equation combination in our analysis. However, curve-fitting on the predictor may 

still converge when using a different equation. In such a scenario, the predictor becomes part of our analysis. 

 

This procedure was repeated for k iterations using a different partition for the testing set in each iteration, which provides a 

measure of uncertainty in the resulting regression statistics. Sensitivity testing with the k value showed no significant effect on the 290 

general conclusions of the study when k was changed between 5 and 20 (not shown). We opted for k = 10 based on previous work 

evaluating different accuracy estimation methods which showed that k = 10 is sufficient to estimate performance metrics (e.g., R2) 

while minimizing computational expense (Breiman and Spector, 1992; Kohavi, 1995). 

Although there is no physical process built into this procedure, the strength of the method is its repeatability in different 

environments or regions with minimal changes to the overall procedure. As it requires no physical model to be run besides the 295 

trajectory calculations, the method is also relatively computationally inexpensive. Future work wanting a more physical basis may 

apply our method as a diagnostic tool to identify and narrow down a list of meteorological variables that may be relevant to wet 

scavenging and continue their analysis with a physical model using the narrowed list of variables to analyze. 

3 Results and Discussion 

3.1 Overall statistical performance 300 

Figures 2, -3, and S3 show performance comparisons of different predictors derived from linear regressions of observed and 

predicted ΔBC/ΔCOTEBC. Hereafter, the performance of a predictor in this study refers to a predictor’s ability to reproduce predict 
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observed ΔBC/ΔCOTE BC via based on curve-fitting (Sect. 2.57; Fig. 1c). To simplify these figures, only the top eight predictors 

per panel (by R) are A threshold of Pearson R > 0.71 (R2 > 0.50) colored was used to narrow to focus our analysis discussion to 

on predictors that were able to produce predicted ΔBC/ΔCOTE BCthat captured trends in observed ΔBC/ΔCO. Table S1 provides 305 

the equation and coefficients used for the top eight predictors per panel of Fig. 2. 

We note that Using no APT-related based predictors (Fig. 2a)  met this R thresholdled to moderate R between predicted and 

observed TEBC but slopes far below the ideal value of 1, which, in addition to positive intercepts and WAD (Fig. S3a), indicate 

that APT-based predictors tend to underestimate TEBC when APT is high.  

In comparison, predictors in Fig. 2b are based on RH (e.g., fRH95, RHq90) or MR (i.e., fMR15) and predicted TEBC much better 310 

in terms of trends (high R) and magnitude (slopes close to 1),  suggesting that these predictors (Fig. 2b) could be better at estimating 

TEBC than APT (Fig. 2a)may not be a good predictor of ΔBC/ΔCO and, by extension, aerosol scavenging. One explanation 

possibility for this is that APT is an accumulated value that does not account for different precipitation characteristics such as 

precipitation frequency or intensity, both of which have been argued to be important for regulating aerosol scavenging (Hou et al., 

2018; Wang et al., 2021c). To explore this possibility further, we calculated PA, PF, and PI for each trajectory (Figs. 2c-eSect. 315 

2.4). Among these three, PF (Fig. 2d) and PF PI (Fig. 2e) resulted in the most predictors satisfying the minimum R of 0.71the best 

slopes and R, with PI showing slightly better slopes and R than PF. In comparison, PA performed poorly, similar to APT, which 

is expected as both are related to summed precipitation amount. Comparing the PI variables with the highest R (i.e., colored points 

in Figs. 2e), the majority of these good-performing PI variables were filtered for heavier or more intense precipitation (i.e., > 0.2 

mm). This filtering for heavier precipitation was done by including only grid cells with precipitation > 0.2 mm when calculating 320 

PI. A similarly good performance was observed for PF variables that also filtered for more intense precipitation. Several PF-related 

variables in Fig. 2 have R over 0.71, even when accounting for the 25th and 75th percentile error bars derived from k-fold cross-

validation. In comparison, only one PA-related predictor (PA48H, IMERG; Fig. 2a) and one PI-related predictor (PIPCP > 0.2mm, 48H, P-CDR; 

Fig. 2b) pass the R > 0.71 threshold, which indicates that ΔBC/ΔCO predicted by PA- or PI-related variables do not track observed 

ΔBC/ΔCO as well as PF-predicted ΔBC/ΔCO. These results suggest that PF PI (and to a lesser degree PF) may be more important 325 

than must be accounted for when PA and PI for predicting aerosol scavenging over the tropical West Pacific. This further implies 

that even though precipitation may be occurring, it may not be efficiently scavenging aerosol. 

Comparing which precipitation products among the top predictors (by R), most good-performing precipitation-based 

predictors used SPP-based precipitation such as IMERG or PERSIANN-CDR (Fig. 2c-e).Noticeably, only one precipitation-related 

predictor calculated from GFS met the R threshold (PIPCP > 0.mm2, 72H, GFS; Fig. 2b).  This suggests that GFS-derived precipitation 330 

variables are not as able to capture observed TEBC ΔBC/ΔCO trends in contrast to several SPP-based precipitation variables that 

showed moderate to strong R (> 0.71) with ΔBC/ΔCO. The poor performance of GFS-derived precipitation is reflective of past 

studies showing disagreements in precipitation characteristics between satellite and reanalyses (Cannon et al., 2017; Jiang et al., 

2021) and even divergent precipitation trends and amounts among individual reanalysis products (Alexander et al., 2020; Chen et 

al., 2020b; Barrett et al., 2020). Our results suggest corroborates previous work that precipitation from GFS reanalysis is not a 335 

reliable predictor of aerosol scavenging compared to precipitation from SPPs. Future studies relating precipitation to aerosol 

scavenging are recommended to instead rely on in situ or satellite retrieved precipitation rather than precipitation from reanalysis. 

Predictors based on quantiles quantiles of RH (e.g., RHq90) (Fig. 2b) perform quite well, with high based on R and , slope (Fig. 

2e) and , intercept , and WAD consistently close to 0 regardless of quantile (Fig. 32be). RHq90 performs slightly better in terms of 

R than other RH thresholds (Fig. 2be); however, this difference is minor as shown by the overlapping 25th-75th percentile error bars 340 

between the different RH thresholdsquantiles. The similar performance between different RH quantiles suggests consistency in 

their ability to predict TEBCΔBC/ΔCO trends (high R; Fig. 2b) while doing reasonably better than other types of predictors when 
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estimating TEBC ΔBC/ΔCO magnitudes across the spectrum of predictor values (intercepts closer to 0, slopes closer to 1). 

Maximum RH along trajectories was used by Kanaya et al. (2016) in their analysis of ΔBC/ΔCO scavenging to detect the role of 

clouds in BC removal. Our findings suggest that top quantiles of RH, including its maximum, are a good choices for predicting 345 

scavengingestimating TEBC trends. 

Compared to variables directly linked to precipitation (PA, PF, PI, APT), the slopes from RH quantiles are noticeably closer 

to the ideal value of 1 (Fig. 2be) while their intercepts from RH quantiles are closer to the ideal value of 0 (Fig. 2be), meaning 

TEBCΔBC/ΔCO predicted by RH quantiles more closely matches the magnitude of observed TEBC ΔBC/ΔCO compared to than 

TEBC ΔBC/ΔCO predicted by precipitation. We hypothesize that the better performance of RH-related predictors over those more 350 

directly related to precipitation (e.g., APT) may be explained by instances of precipitation that is are missed (or misestimated) by 

SPP retrievals that is are indirectly detected by reanalysis as high humidity conditions. This possibility is supported by previous 

literature showing the tendency of SPPs to misestimate light (Nadeem et al., 2022; Kidd et al., 2021) or intense precipitation (Chen 

et al., 2020a; Gupta et al., 2020); however, we cannot rule out the possibility of the hygroscopic growth(Kanaya et al., 2016), in-

cloud activation (high RH), and subsequent removal of BC during transport. Thus, our hypothesis of the connection between RH 355 

from reanalysis and capturing missed precipitation from SPPs requires further investigation in future work. 

Of all the fractional predictors considered in this study, fMR15 and fRH95 perform the best (Fig. 2bd). fMR15 and fRH95 reflect the 

frequency of occurrence of scavenging-conducive conditions during transport. A high frequency of high MR or RH may indicate 

that air masses passed through large areas of clouds and/or precipitation during long-range transport. Interestingly,fRH95 has a 

median slope of 0.99 (Fig. 2b), a the 25th-75th percentile range in slope of slopes from fRH95 (0.81 92 – 1.0220 (Fig. 2b); Fig. 2d), 360 

and  a median intercept of 0.01 overlaps with the ideal value of 1 and its intercepts ((~0.25; Fig. 32bd) are lower than the other 

predictors in Fig. ,2. These slope and intercept statistics indicating that e that fRH95 is capable estimating the magnitude of ΔBC/ΔCO 

throughout the spectrum of fRH95 values, meaning that fRH95 can be used to capture TEBCΔBC/ΔCO trends and magnitudes for for 

a wide range of TEBCboth high-ΔBC/ΔCO (fresh) and low-ΔBC/ΔCO (scavenged) air masses. A similar performance is observed 

for fMR15. fMR15 and fRH95 are similar to PF, which was the best-performing category of precipitation-related predictors, in that PF, 365 

fMR15, and fRH95 represent the occurrence frequencies of some condition along each trajectory (e.g., non-zero precipitation or RH > 

95%). The better good performance of fMR15 and fRH95 these frequency-related predictors compared to other types of predictors 

suggests  that the frequency of precipitation or high-RH of scavenging-conducive conditions may be more reliable indicators of 

aerosol scavenging than the magnitude of precipitation amount (e.g., APT, PI, PA). 

One limitation of our analysis is the goodness-of-fit achieved during the k-fold cross-validation process as the goodness-of-fit 370 

affects the validity of interpreting the resulting performance statistics (e.g., slope). Fig. S1 of the Supplementary Information (SI) 

shows no large difference in the goodness-of-fit between different predictors based on R and RMSE. Similar magnitudes of RMSE 

(Fig. S1) suggest that the interpretation of performance statistics derived from the curve-fitting procedure is equally valid across 

the discussed predictors. 

3.2 Nonlinear sensitivity of TEBCΔBC/ΔCO to meteorological variables 375 

Although the predictors in Figs. 2 – 3 exhibit the highest R of all predictors considered in this study, their slopes are generally 

below 1 (Fig. 2) while their intercepts and WAD are generally positive (Fig. 3). The combination of these statistics implies that 

predictions of TEBC ΔBC/ΔCO using our method tend to overestimate observed TEBC ΔBC/ΔCO across the spectrum of predictor 

values (indicated by WAD > 0) with maximum overestimations occurring when observed TEBC ΔBC/ΔCO is low (indicated by 

slopes < 1 and intercepts > 0). This points to a nonlinear sensitivity of TEBC ΔBC/ΔCO to these predictors as the degree of 380 

scavenging increases. Dadashazar et al. (2021) observed a similar nonlinear response to APT by a ratio of particulate matter below 
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2.5 µm to CO (ΔPM2.5/ΔCO), where ΔPM2.5/ΔCO was most responsive to APT when APT was below 5 mm and less sensitive to 

APT when APT exceeded 5 mm. 

Investigating this sensitivity further, Fig. 4 shows that PF-predicted TEBC ΔBC/ΔCO does not capture the trends of observed 

TEBC ΔBC/ΔCO for highly scavenged air masses. In other words, PF loses its predictive power as the degree of scavenging 385 

increases, implying that PF is most important for the scavenging of fresher air masses (high-TEBCΔBC/ΔCO). This nonlinear 

sensitivity of TEBC ΔBC/ΔCO ttoo PF hints at the possibility that other meteorological variables may become important for further 

scavenging of highly scavenged air (low-TEBCΔBC/ΔCO). In contrast to predictors directly related to precipitation (Fig. 4d-f), the 

predicted curves of RHq95 (Fig. 4a), fRH95 (Fig. 4b), and fMR15 (Fig. 4c) visibly track the trends of observed TEBCΔBC/ΔCO with 

approximately half the difference between predicted and observed TEBC ΔBC/ΔCO when TEBC ΔBC/ΔCO is low. The capability 390 

of RHq95, fRH95, and fMR15 to predict TEBC ΔBC/ΔCO across a wider range of values is further reflected by generally lower intercepts 

and WAD (Fig. 3) than precipitation-related predictors, which suggests promising alternative indicators of aerosol scavenging. 

However, we also note that such differences could arise partly from the limitations of curve-fitting, wherein fitted curves naturally 

capture gradual changes (e.g., Fig. 4b) better than sharp ones (e.g., Fig. 4d). 

3.3 Effect of filtering APT on performanceApplying filters to improve the predictive power of precipitation-related 395 

variables 

In this section, we examine the predictive power of precipitation-related variables when applying the following filters:To 

improve the predictive performance of precipitation-related variables, we applied combinations of filters for (1) precipitation 

intensity, (2) trajectory altitude, (3) data product, and (4) trajectory length, with . the objective to identify what factors are important 

when relating precipitation along trajectories to TEBC. Filtering for precipitation intensity isolates the contribution of higher 400 

precipitation intensities towards a precipitation-related predictor’s ability to predict TEBCΔBC/ΔCO. Intense precipitation has been 

shown to be more efficient at scavenging aerosol particles (Zhao et al., 2020) and may be important when estimating aerosol 

scavenging. Filtering for trajectory altitude (i.e., considering precipitation only when the trajectory altitude is below 1.5 km AGL) 

tests the hypothesis that air masses within the boundary layer will be most susceptible to wet scavenging. Grythe et al. (2017) 

demonstrated that below-cloud scavenging (i.e., impaction by precipitation) accounted for majority of scavenging events below 1 405 

km. We selected 1.5 km based on previous work on the marine boundary layer over the tropical West Pacific (Chien et al., 2019). 

We repeated the analysis for three precipitation products (one reanalysis and two SPPs) to capture variability in our results due to 

the choice of data product which has been shown to be important for precipitation (Alexander et al., 2020). Finally, we tested the 

effect of trajectory length on the performance of APT as a predictor of TEBCΔBC/ΔCO. We performed these sensitivity tests on 

APT (Fig. 5), PI (Fig. S4), PF (Fig. S5), and PA (Fig. S6). 410 

In general, we found that applying altitude and/or precipitation filters negatively affected the performance of APT (Fig. 5b-

d), PF (Fig. S5b-d, except for PERSIANN-CDR), and PA (Fig. S6b-d),, leading to lower R between predicted and observed TEBC 

ΔBC/ΔCO compared to the case the case without any filters applied (Fig. 5a). Two exceptions were: PF from PERSIANN-CDR 

(colored yellow in Fig. S5), which could be used to estimate TEBC if we applied both an altitude filter (< 1500 m) and a precipitation 

intensity filter (> 0.2 mm h-1) over longer back trajectory times (> 48 hours) (Fig. S5d), and PI, which could be used to estimate 415 

TEBC when filtering for precipitation intensities (> 0.2 mm h-1) and along trajectories longer than 48 hours (Fig. S4b). The better 

performance of PI across multiple SPPs (Fig. S4) is an encouraging sign that this improvement is robust and points to the 

contribution of higher precipitation intensities towards total scavenging.The poorer performance of precipitation filtered for higher 

intensities (Fig. 5b) suggests that these higher intensities may not be as important for estimating wet scavenging compared to low 

intensity precipitation, consistent with previous work showing that light rain exerts more control over the global aerosol burden 420 
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(Wang et al., 2021b) and that precipitation over the tropical West Pacific is typically high in frequency and low to moderate in 

intensity (Biasutti et al., 2012).  

Applying a filter for trajectory altitude prior to calculating APT also did not lead to large improvements in R (Fig. 5c). This 

was surprising because, when using total column precipitation from SPPs, a maximum altitude filter should reduce errors from 

cases where precipitation occurs below the air mass and no scavenging occurs. Since the SPPs used in this study have been 425 

validated using surface measurements (Sapiano and Arkin, 2009; Nicholson et al., 2019; Wang et al., 2021a), precipitation from 

SPPs should be reflective of precipitation that reaches the surface, implying a susceptibility of these SPPs to errors related to virga 

(Wang et al., 2018). However, Wang et al. (2018) also showed that virga occurrence over the tropical West Pacific is also 

infrequent. An alternative explanation for the poor performance of altitude-filtered predictors APT is uncertainties related to 

trajectory altitude (Harris et al., 2005), such that an air parcel may have actually been traveling at a lower altitude than its modelled 430 

trajectory and underwent more scavenging than predicted using APT.  

An examination of trajectory altitudes (Fig. S75) revealed that filtering for trajectory altitudes below 1.5 km excluded the 

majority (~70%) of precipitating grid cells encountered by trajectories, which likely negatively impacted the predictive ability of 

altitude-filtered predictors. 

Longer trajectories resulted in slightly higher R between observed and APT-predicted predicted TEBC using APT from 435 

PERSIANN-CDR or IMERG ΔBC/ΔCO (Fig. 5a-b), increasing from R ~0.5 to ~0.6; however, this difference is not large, as 

shown by overlapping 25th-75th percentile error bars. Interestingly, this increase in R for longer trajectories was more evident when 

filtering for precipitation intensities > 0.2 mm h-1 when calculating APT (Fig. 5b) or PI (Fig. S2bS4b), but not when applying this 

intensity filter on PF (Fig. S3b) or PA (Fig. S4b). Further interpretation likely requires a physical model in future work to explain 

why the performance of intense precipitation (Fig. 5b) benefits from a longer trajectory more than total precipitation does (Fig. 440 

5a). 

4 Limitations 

TEBC ΔBC/ΔCO as a wet scavenging proxy: In this study, we treat TEBC ΔBC/ΔCO as a proxy for wet scavenging (i.e., 

predictand) and base our conclusions on which variables (i.e., predictors) best predict TEBCthis ratio (i.e., predictors).  An 

underlying assumption is that there is negligible emission of BC or CO after initial emission and after wet scavenging occurs. 445 

Dilution or entrainment during transport is expected to influence the ΔBC/ΔCO ratio and therefore TEBC. While the use of the 

CAMS-GLOB-ANT emission inventory (Sect. 2.4) when calculating ERBC/CO (Sect. 2.5) reduces this uncertainty by accounting 

for potential surface influence during transport close to the surface, the resolutions of both the trajectory meteorological input (0.25 

×x 0.25°) and the emission inventory (0.1 ×x 0.1°) remain limiting factors. Thus, our analysis assumes that wet scavenging is the 

main driver of changes in TEBC and chemical transport modelling in future work is needed to quantify the effect of mixing on 450 

TEBC. Consequently, this method is expected to work well in outflow regions such as the tropical West Pacific and not well where 

additional BC and/or CO are likely to be after initial emission or wet scavenging has occurred (e.g., continental region). 

ΔBC/ΔCO depends on air mass type: The ΔBC/ΔCO quantity is also affected by air mass type. For example, biomass 

burning and anthropogenic/industrial emissions will have different ΔBC/ΔCO values (e.g., Hilario et al., 2021). The mixing state 

and composition of BC-containing particles will also affect its hygroscopicity and by extension its rate of wet scavenging (Liu et 455 

al., 2013). Although these factors are expected to influence ΔBC/ΔCO, we assume the response of ΔBC/ΔCO to the predictor will 

be chiefly determined by scavenging-related processes. While the response of ΔBC/ΔCO to APT in Hilario et al. (2021) was quite 

similar across different air mass origins (their Fig. 9), this may not be always the case. However, this origin-independent 
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relationship does allow for the option of curve-fitting without differentiating between individual sources. Beneficially, this choice 

to aggregate the data rather than resolving by source increases the number of data points available for curve-fitting, which improves 460 

the robustness of the resulting statistics and adds strength to our conclusions on which meteorological variables are most relevant 

for aerosol scavenging. 

Specific processesMethod does not discriminate between in- or below-cloud scavenging:: The conclusions of our study 

are based on the relative ability of different variables to predict TEBCΔBC/ΔCO, our proxy for wet scavenging. This approach does 

not isolate individual processes that are usually parameterized by global circulation models (e.g., impaction, nucleation) (Croft et 465 

al., 2009, 2010; Ryu and Min, 2022) and does not discriminate between in-cloud or below-cloud scavenging. However, through 

our proposed framework, we can still gain qualitative insights into which meteorological variables are relevant for estimating 

aerosol scavenging, which can inform future studies as well as developments in model parametrization. 

Single predictor method: The method presented here assesses the one-to-one relationship between a single predictor and 

TEBC ΔBC/ΔCO repeated individually for several predictors. We expect that using a combination of predictors may lead to better 470 

predictions of TEBC ΔBC/ΔCO while providing a more physical picture of relative contributions of different meteorological 

variables towards wet scavenging. Future work may utilize multiple linear regression or more sophisticated methods such as 

machine learning to consider different combinations of predictors with the objective of identifying a combination that predicts 

TEBC ΔBC/ΔCO well and extracting further information on what physical mechanisms may be relevant for the removal of TEBC 

ΔBC/ΔCO based on relative coefficients or weightings of different predictors. 475 

Curve-fitting: The results can depend on the curve-fitting function used. Different variables are expected to have different 

relationships with ΔBC/ΔCOTEBC. Thus, if we considereding only one function for curve-fitting, it would favors variables that 

have a specific relationship with TEBCΔBC/ΔCO. To reduce this bias, we applied four different curve-fitting functions (Table 2) 

on each predictor based on two equations from previous studies (Kanaya et al., 2016; Oshima et al., 2012) and two equations of 

generalized form (Table 2) that accounted for possible relationships between TEBCΔBC/ΔCO and each predictor. We then chose 480 

the curve-fitting function that produced the highest R between observed and predicted TEBCΔBC/ΔCO. However, we note that this 

does not completely remove the bias as specific functions were still selected. 

 

Trajectory modeling: Vertical motion through convection, entrainment, and detrainment processes are known uncertainties 

in trajectory modeling, which increase with trajectory length (Harris et al., 2005). The spatial and temporal resolutions of the 485 

meteorological input used for the HYSPLIT model are also limiting factors as meteorology along HYSPLIT trajectories do not 

account for sub-timestep or sub-grid processes.  

5 Conclusions 

We present a method to identify meteorological indicators of aerosol scavenging using a combination of aircraft, satellite, and 

reanalysis data coupled with HYSPLIT backward trajectories. We apply this method to the CAMP2Ex field campaign over the 490 

tropical West Pacific, which hosts a wide range of cloud fractions and precipitation characteristics as well as an environment 

characterized by long-range transport of aerosol and trace gas species. Since ΔBC/ΔCO is mainly affected by scavenging, we treat 

ΔBC/ΔCO as an in situ proxy for aerosol scavenging and We evaluate the responses of which meteorological variables can be used 

to predict TEBCΔBC/ΔCO to different meteorological variables (i.e., predictors). The main conclusions of the study are the 

following: 495 
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1. Although APT has been utilized in several studies as an indicator of aerosol scavenging, we demonstrated  that APT does 

poorly when -predicting ed TEBC ΔBC/ΔCO (e.g., does not track observed ΔBC/ΔCO wellweak correlations, 

underestimates TEBC). Furthermore, the application of altitude or precipitation intensity filters negatively impacted the 

performance of APT in predicting TEBCΔBC/ΔCO trends. Since APT is an accumulated precipitation amount over the 

whole trajectory, APT does not account for other precipitation characteristics such as intensity or frequency, which have 500 

been shown to be relevant for aerosol scavenging. This shortcoming may explain the overall poor relative performance 

of APT in predicting TEBCΔBC/ΔCO. 

2. To investigate which precipitation characteristics are most relevant for predicting aerosol scavenging, we calculated PA, 

PF, and PI along trajectories using precipitation from reanalysis (GFS) and SPPs (IMERG, PERSIANN-CDR). While 

several precipitation-related predictors calculated from SPPs were able to predict ΔBC/ΔCO reasonably well, only one 505 

precipitation-related predictor from GFS correlated with ΔBC/ΔCO (R > 0.71), suggesting that precipitation from SPPs 

may be better at predicting aerosol scavenging than precipitation from reanalysis. The poorer performance of precipitation 

from reanalysis in predicting ΔBC/ΔCO than from SPPs is corroborated by previous studies that found larger misestimates 

of precipitation by reanalysis than by SPPs. Because of our results and those of past studies, we recommend relying on in 

situ or SPP precipitation rather than precipitation from reanalysis, particularly when relating precipitation to aerosol 510 

scavenging. 

3. Frequency-related predictors such as PF, fMR15, and fRH95 performed much better than APT in predicting ΔBC/ΔCO trends 

and magnitudes. PF, fMR15, and fRH95 represent the frequencies of occurrence of some meteorological condition along 

trajectories such as non-zero precipitation (PF) or RH exceeding 95% (fRH95). The relatively better performance of these 

frequency-related predictors over those related to PA or PI suggests that the frequency of precipitation or high-RH 515 

conditions may be a more reliable indicator of aerosol scavenging than the magnitude of precipitation. 

2. Predictors based on specific quantiles or the mean of RH (e.g., RHq90) also performed quite well in predicting both TEBC 

ΔBC/ΔCO trends and magnitudes (intercepts close to zero, WAD close to zero, slopes close to 1, R close to 1). We found 

find only minor differences in the performance depending on the exact quantile used, suggesting the RH distribution 

during transport is a robust way to estimate TEBC. We hypothesize the outperformance of RH quantiles over predictors 520 

more directly related to precipitation (e.g., APT) to be due to missed precipitation in SPP retrievals that was indirectly 

represented in reanalysis as high humidity conditions. Such a possibility is supported by previous literature demonstrating 

that SPPs tend to misestimate light precipitation  (Nadeem et al., 2022; Kidd et al., 2021); however, further work is 

required to explore this hypothesispossibility. 

3. Frequency-related predictors such as fMR15 and fRH95 performed better than APT in predicting TEBC trends (higher R) and 525 

magnitudes (slopes closer to 1). fMR15, and fRH95 represent the frequencies along 72-h trajectories of MR exceeding 15 g 

kg-1 and RH exceeding 95%, respectively. The abilities of fMR15 and fRH95 to predict TEBC suggests that the frequency of 

humid conditions should be considered when estimating aerosol scavenging. 

4. To investigate which precipitation characteristics are most relevant for predicting TEBC, we quantifiedy PA, PF, and PI 

along trajectories and fouind that PI wais the most effective at estimating TEBC when we calculated PI over longer 530 

trajectories (> 48 h) and only includinge grid cells with precipitation > 0.2 mm h-1 in our calculation. This points to the 

contribution of intense precipitation and the importance of accounting for air mass history when estimating aerosol 

scavenging. 

4.5. We fouind that precipitation from SPPs (IMERG, PERSIANN-CDR) is generally better at predicting TEBC (higher R) 

than precipitation from reanalysis (GFS). This is corroborated by previous studies that found larger misestimates of 535 
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precipitation by reanalysis than by SPPs. Because of our results and those of past studies, we recommend relying on in 

situ or SPP precipitation rather than precipitation from reanalysis, particularly when relating precipitation to aerosol 

scavenging. 

 Given these findings, we recommend the following alternatives to APT when estimating aerosol scavenging: (1) RH 

quantiles (e.g., 90th percentile of RH along trajectories), (2) fMR15 or fRH95, and (3) PI from SPPs filtered for grid cells with 540 

precipitation > 0.2 mm h-1. These variables were found to be able to predict TEBC more accurately than APT; thus, future scavenging 

parametrizations should consider these meteorological variables along air mass histories. 

By identifying which meteorological variables are relevant for predicting ΔBC/ΔCO trends (and by extension, aerosol wet 

scavenging), the findings of this study may be useful for informing future aerosol scavenging studies. Furthermore, these results 

may also aid in improving scavenging parametrization schemes in models. Future work is encouraged to The method presented in 545 

this study is repeatable apply this method over a variety of environments (e.g., using other data from other field campaigns), and 

is relatively computationally inexpensive to apply. Future work may utilize machine learning to identify assess what combinations 

of meteorological variables are relevant for to predicting  aerosol scavenging,  and apply our this method to different other regions 

to identify determine if there are region-specific al differences in indicators of aerosol scavenging. Furthermore, CAMP2Ex 

included a rich dataset on cloud water composition (Crosbie et al., 2022; Stahl et al., 2021) that can be explored, as in past work 550 

for other regions (MacDonald et al., 2018), to gain additional insights into aerosol wet scavenging processes. 

Appendix A: Describing the transport of BC and CO during CAMP2Ex 

During the CAMP2Ex field campaign, BC and CO originated from several sources. Long-range transport patterns during 

the campaign and associated air mass composition are described in (Hilario et al. (, 2021) but here we present a summary of their 

findings related to the transport of BC and CO. The CAMP2Ex field campaign 555 

 overlapped with the end of the southwest monsoon and the beginning of the monsoon transition (Reid et al., 2023). 

Because of this, a synoptic shift occurred during the campaign ((Hilario et al., 2021; ) their Figs. 2-3) that allowed for the sampling 

of transported air masses from different source regions such as East Asia and the Maritime Continent. Hilario et al. (2021) identified 

four major source regions for long-range transport: East Asia (e.g., China, Korea), the Maritime Continent (e.g., Indonesia, 

Malaysia), Peninsular Southeast Asia (e.g., Vietnam), and the West Pacific (i.e., ocean). The presence of long-range transport was 560 

detected throughout the whole campaign (their Fig. S2). 

The Maritime Continent during the campaign was undergoing its burning season which is well-established in the literature 

to lead to high aerosol loadings that can be transported over large distances (Xian et al., 2013). Hilario et al. (2021) showed that 

air masses from the Maritime Continent and East Asia were transported under relatively dry conditions, which in this study 

manifested as higher ΔBC/ΔCO (Fig. S1a) and TEBC (Fig. S1d), and were associated with southwesterly monsoon flow and the 565 

passage of typhoons, respectively. These conditions were conducive for long-range transport and led to the sampling of higher 

concentrations of BC and CO in air from East Asia (BC: 87.29 ng m−3; CO: 0.16 ppm) and the Maritime Continent (BC: 71.81 ng 

m−3; CO: 0.18 ppm) than in air from Peninsular Southeast Asia (BC: 24.90 ng m−3; CO: 0.10 ppm) or the West Pacific (BC: 1.03 

ng m−3; CO: 0.08 ppm). We note that Hilario et al. (2021) kept CO in units of ppm while we converted CO to mass concentration 

units such that ΔBC/ΔCO would be unitless. Hilario et al. (2021) demonstrated that the scavenging of air from Peninsular Southeast 570 

Asia was related to convective lofting as air from Peninsular Southeast Asia sampled in the free troposphere (> 1.5 km) had much 

lower aerosol concentrations than air from the region sampled in the boundary layer (< 1.5 km) (their Fig. S6). These findings 

point to the active role of scavenging in determining aerosol loadings in transported air masses during CAMP2Ex. 
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Table 1: Examples of notation used in this study. 

Predictor Description Variations 

fRH95 
Fraction of hours along trajectories where GFS relative 

humidity (RH) > 95% 
fRH85, fRH90 

fMR15 
Fraction of hours along trajectories where GFS water 

vapor mixing ratio (MR) > 15 g kg-1 dry air 
fMR17 

RHq95 95th percentile of RH along trajectories RHq50, RHq85, RHq90, RHq100, RHmean 

RHw, DLH RH over water measured by DLH onboard the aircraft - 

APTPCP > 0.2 mm, 48H, GFS, < 1500m 

Accumulated precipitation calculated along 48-h 

trajectories where GFS precipitation is above 0.2 mm 

and trajectory altitude is below 1500 m 

• Trajectory duration: 12H, 24H, 48H, 72H 

• Precipitation product: GFS, IMERG, 

PERSIANN-CDR 

• Maximum altitude filter: no filter, < 1500 m 

• Minimum precipitation filter: no filter, > 0.2 

mm 

• Other precipitation variables: PA, PF, PI 

 885 
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Table 2: Curve-fitting equations considered where x is the predictor variable and y is the observed ΔBC/ΔCO while a, b, c, and d are 

best-fit parameters determined via least-squares regression. 

 

Name Equation Source 

Gaussian y =  a ⋅  exp(−
(x − b)2

2 ⋅ c2
 )  +  d - 

General Exponential 𝑦 =  𝑎 ⋅  𝑒𝑥𝑝(−𝑏 ⋅  𝑥)  +  𝑐 - 

Oshima 𝑦 =  𝑏 −  𝑎 ⋅ log10(𝑥) Oshima et al. (2012) 

Kanaya 𝑦 =  𝑐 ⋅ 𝑒𝑥𝑝(−𝑎 ⋅  𝑥𝑏) Kanaya et al. (2016) 
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(Hilario et al., 2021) 

 

Figure 1: An example of the curve-fitting procedure on ΔBC/ΔCOTEBC with RHq95 as the predictor fitted with a Ggaussian function. (a) 

Training (gray graey dots) and testing sets (orange dots) for the 10th iteration of the k-fold cross-validation procedure selected using 895 
stratified random sampling. Percentile blocks of each X-axis variable are denoted by vertical gray greygray lines with observed (black) 

and predicted curves (blue) also plotted for all 10 iterations. (b) Same as (a) but only showing observed (black) and predicted curves 

(blue) for all 10 iterations to highlight variations between the k iterations. (c) Scatterplot comparing RHq95-predicted ΔBC/ΔCO and 

observed median TEBCΔBC/ΔCO per 5th percentile block of the predictor. Note that (c) is simply the linear regression of the observed 

and predicted curves in (b). (d) Same as (c) but comparing RHq95-predicted and observed TEBCΔBC/ΔCO for individual points. In (c-d), 900 
only training set data are used, Y-axes are the same, the best-fit line is shown as a black line, and the 1:1 line is the red, dashed line.  
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Figure 2: Slope and Pearson correlation (R) values derived from linear regressions of observed (x) and predicted (y) ΔBC/ΔCO TEBC 

with error bars representing the 25th and 75th percentile values derived from k-fold cross validation (k = 10) using stratified random 

sampling (Sect. 2.75). Ideal values are denoted by the red dashed lines such that a better predictor would fall closer to the intersection of 

the two lines. Top eight predictors per group (panel) are colored non-gray while Only pthe rest of the predictors are plotted redictors 910 
with median R > 0.70 are shownin gray to show the relative performance of all predictors. Note that PERSIANN-CDR has been 

abbreviated to P-CDR (b-c). Panels share the same X- and Y-axis limits. 
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Figure 3: Same as Fig. 2 but comparing intercept and weighted area difference (WAD, Sect. 2.57). 

  

Formatted: Indent: First line:  0"



37 

 

 

 

Formatted: Justified



38 

 

 

 

Figure 4: Median values of observed (black) and predicted ΔBC/ΔCOTEBC (redblue) as a function of selected predictors for 10 iterations 920 
during k-fold cross-validation. Pearson correlations are annotated as 25th/50th/75th percentiles from k-fold iterations (k=10) calculated in 

two ways: comparing predicted and observed median TEBCΔBC/ΔCO per 5th percentile block of the predictor (R) and comparing 

predicted and observed TEBCΔBC/ΔCO for individual points (Rindiv). Panels share the same Y-axis limits. Percentile blocks for each xX-

axis variable are denoted by vertical graaey lines. 
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Figure 5: Pearson correlations (R) between observed ΔBC/ΔCOTEBC and ΔBC/ΔCO TEBC predicted by accumulated precipitation along 

trajectories (APT) for different trajectory lengths and precipitation data products. Each panel refers to a combination of altitude and 930 
precipitation intensity filters. Panels share the same X- and Y-axis limits. 
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