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Manuscript ID: egusphere-2023-726 

TITLE: Assessing Potential Indicators of Aerosol Wet Scavenging During Long-Range Transport 

 

We thank the handling editor and the two referees for their helpful comments. We have provided our responses to 

reviewer comments below in blue. One major change we want to mention is that we now set the transport efficiency 

of black carbon (TEBC) as the predictand of our method rather than the enhancement ratio of black carbon and 

carbon monoxide (ΔBC/ΔCO) in response to major comments from both reviewers. 

 

Comments on “Identifying Better Indicators of Aerosol Wet Scavenging During Long-Range Transport” by 

Hilario et al. 

 

General 

This paper describes the results from the data analyses of the wet scavenging of black carbon (BC) aerosols. The 

authors attempted to seek possible good indicators to describe the wet removal of BC during transport. In previous 

studies, the precipitation amount accumulated along backward trajectories (APT) has been analyzed as one of the 

indicators.  Beside this, the authors suggested that the other several indicators related to the precipitation and 

humidity along the backward trajectories can well account for the variation of the degree of the removal of BC 

which is defined as the enhancement of BC to CO (ΔBC/ΔCO ratio). The major results and discussion in this study 

meet the scope of Atmospheric Measurement Technology. Despite the significance of this study, there are several 

important issues to be addressed before accepting the manuscript. Please consider the following comments and 

necessary revisions of the data analyses and the descriptions in the manuscript. 

 

Major comments 

1. Calculations of the enhancement ratio of BC to CO (ΔBC/ΔCO) 

The serious mistake is the choice of the enhancement ratio “ΔBC/ΔCO” for the quantitative investigations of wet 

scavenging of BC. This is because (1) the degree of the removal depends on the emission ratio of BC to CO 

(ERBC2CO ≡ ΔBC/ΔCO at the emission), (2) the background levels of BC and CO can vary with the air mass 

origins, and (3) ΔBC/ΔCO can vary with the air mass mixing during the long-range transport. As to (1), authors 

also stated this point in section 4 (Limitations). Authors can take care of this point by analyzing the ERBC2CO 

from the observation data sets. In many previous studies using APT, this kind of adequate data preparations were 

conducted. For this purpose, the observed air masses need to be separated according to the air mass origins and/or 

emission sources as shown in Hilario et al. (2021), and then the variability of ERBC2CO (not ΔBC/ΔCO–APT 

relationship) during the CAMP2Ex campaign needed to be analyzed. The authors must justify the important and 

critical assumption that the variability is enough small among the air mass origins and/or emission sources to use 

ΔBC/ΔCO as a unified indicator for the removal of BC. Separation of air mass types can lead to decrease the 

number of data to be analyzed, as discussed in section 4. However, if the authors do not show that the observation-

based ERBC2CO did not largely vary among the different air mass origins/emission sources in the study region, 

this is not a factor of the methodological limitations but it is just one of large error sources in the data analyses and 

the following interpretations. Please justify this assumption.  If it were not for the validity, the data sets could 

not be suitable for the validation of authors’ proposed method.  

Response: Thank you for the suggestions. We have taken your suggestion and incorporated emission values of BC 

and CO from the Copernicus Atmosphere Monitoring Service (CAMS) Global Anthropogenic Emissions (CAMS-

GLOB-ANT) version 5.3 (Soulie et al., 2023) which has a spatial resolution of 0.1x0.1° and a temporal resolution 

of one month. Emissions from CAMS-GLOB-ANT account for 17 emission sectors, including shipping, and are 
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reported in units of mass flux (kg m-2 s-1). These details have been added to the Methods section (Sect 2.4). 

To combine the emission fluxes with the HYSPLIT backward trajectories, we calculated the mean BC/CO 

emission ratio (𝐸𝑅𝐵𝐶/𝐶𝑂) along each 72-h trajectory, inverse-weighted by altitude. The weighting function (below, 

left) reflects the higher likelihood of surface influence when the trajectory is at a lower altitude. An example of the 

weighting function as a function of trajectory altitude is shown below (right), wherein the trajectory ascends from 

1 km to 6 km and weights decrease in response to higher altitudes. As a result, the trajectory’s mean 𝐸𝑅𝐵𝐶/𝐶𝑂 will 

be determined mainly by timesteps when the trajectory is close to the surface. We note that we did not restrict the 

calculation of 𝐸𝑅𝐵𝐶/𝐶𝑂 to source regions but included all points along the trajectories such that 𝐸𝑅𝐵𝐶/𝐶𝑂 in this 

study represents the weighted-average emission ratio of BC and CO encountered by the transported air mass over 

the past 72 hours. 

 

Figure S2: (a) Weighting function used when calculating average emission ratios along trajectories. (b) An example of the 

inverse relationship between trajectory altitude (left y-axis, blue) and assigned weight (right y-axis, orange). The x-axis of 

(b) is trajectory timestep where a timestep of zero is when the trajectory reaches the aircraft. 

We can then quantify the transport efficiency of BC (TEBC) using Eq. 1: 

 

In our original submission, (
Δ𝐵𝐶

Δ𝐶𝑂
)
𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

 was in units of μg m-3 ppmv-1. To ensure TEBC would be unitless, 

we converted Δ𝐶𝑂 from ppmv to μg m-3 using ambient pressure and temperature measured by the aircraft (added 

to Sect. 2.2). We note that 𝐸𝑅𝐵𝐶/𝐶𝑂 is not required to be an enhancement ratio. The enhancement calculation is 

only necessary at the receptor site (i.e., (
Δ𝐵𝐶

Δ𝐶𝑂
)
𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

) to account for the local background concentrations over the 

tropical West Pacific.  

𝑇𝐸 =

(
Δ𝐵𝐶
Δ𝐶𝑂)𝑟𝑒𝑐𝑒𝑝𝑡𝑜𝑟

𝐸𝑅𝐵𝐶/𝐶𝑂
(1) 
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The TEBC and ΔBC/ΔCO are strongly correlated (R2 = 0.90), suggesting that the updated results from using 

TEBC as the predictand will be quite similar to our prior results when we used ΔBC/ΔCO as the predictand. This 

suggests that the major conclusions of the paper will be largely unchanged. Details of the emission inventory and 

its incorporation into our calculation of emission ratios have been added to Sect. 2.4-2.5. 

To show the variation of 𝐸𝑅𝐵𝐶/𝐶𝑂 with source region, we provide below 𝐸𝑅𝐵𝐶/𝐶𝑂 (Fig. S1c) and TEBC (Fig. 

S1d) resolved by source region (East Asia (EA); Maritime Continent (MC); Peninsular Southeast Asia (PSEA); 

West Pacific (WP)). The source identification was performed in Hilario et al. (2021) which classified backward 

trajectories into source regions using bounding boxes over major source regions established in previous literature. 

In addition to passing over source region bounding boxes, the source classification also considered (1) trajectory 

altitude, specifically whether or not the trajectory was below 2 km AGL which conservatively approximates 

climatological boundary layer heights over the region (Chien et al., 2019), as well as (2) trajectory residence time 

within each bounding box (minimum residence time: 6 hours). These details are now included in Sect 2.2. 

The resulting source-resolved distributions of the BC/CO emission ratio and TEBC show some variation by 

source region; however, ERBC/CO across source regions (Fig. S1c) generally falls within 0.23 - 0.26. The resulting 

TEBC values (Fig. S1d) are generally below 0.1, which mean less than 10% of the emitted BC/CO reaches the 

receptor site. The similarities between ERBC/CO per source region may explain the strong correlation between TEBC 

and ΔBC/ΔCO (R2 = 0.90).  
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Figure S1: (a) The enhancement ratio of black carbon (BC) to carbon monoxide (CO) (ΔBC/ΔCO; unitless) per source 

region (EA: East Asia, MC: Maritime Continent, PSEA: Peninsular Southeast Asia, WP: West Pacific; identified in Hilario 

et al. (2021)), (b) transit times (in hours) from major source regions, (c) emission ratios of BC/CO (ERBC/CO) along each 

trajectory using the CAMS-GLOB-ANT emissions (Sect. 2.4-2.5), and (d) transport efficiencies of BC (TEBC). Boxplots for 

WP in (a) and (d) were removed due to a low number of data points (N = 2) remaining after the ΔCO > 0.02 ppm filter 

(Sect. 2.2). 

As to (2), authors determined the background levels of BC and CO by analyzing the potential temperature profiles 

based on some previous studies. Currently, only the seasonal transition of background levels is considered by 

separating the periods to be analyzed. Are there any possibilities that the background levels vary depending on 

the air mass origins?  

Response: As we aim to study scavenging during transport, the background refers to local concentrations of BC 

and CO assuming no transport event is taking place. Because of this, the background levels of a receptor site do not 

vary with air mass origin. In our response to your comment on considering source regions, we have adjusted our 

analysis to be source-resolved and focusing on predicting the transport efficiency of BC instead of ΔBC/ΔCO.  

As to (3) , this effect depends on the time scale of the transport. The current manuscript is lacking in this 

information.  

Response: We have added this information to the Limitations section: 

“An underlying assumption is that there is negligible entrainment of additional BC and CO during transport. 

Dilution via mixing during transport is also expected to influence the ΔBC/ΔCO ratio. Thus, our analysis assumes 

that wet scavenging is the main driver of changes in ΔBC/ΔCO and chemical transport modelling in future work 

is needed to quantify the effect of mixing on ΔBC/ΔCO.” 

Also regarding (1) and (2), it is needed to describe and discuss the observed feature of BC in the CAMP2Ex 

campaign such as the relationship between the observed enhancements of BC and CO concentrations and backward 

trajectories (e.g., air mass origins) and typical transport time from the source regions. The former can affect the 

variabilities of ERBC2CO. The latter can provide the insight into the adequate integration time for calculating the 

APT. Kanaya et al. (2016) indeed set 3 days for the integration time to calculate the APT by considering typical 

transport time from the source regions (e.g., central China) to the observation site (remote island in western Japan). 

Response: We have calculated and plotted transport times from source regions and included it as Fig. S1b (provided 

above in response to major comment #1). We note that the application of our method was done on all CAMP2Ex 

data, not just data where a source region was identified. Generally, the distribution of transit times across all source 

regions shows values below 72 hours, suggesting that 72 hours is sufficient to capture long-range transport from 

major source regions. We added this description to Sect. 2.3 of the paper. 

2. The criteria to evaluate the performance of the predictors 

In section 2.5, authors stated “We use R because we are more interested in ~”. The performance of the combination 

of the predictors and fitted functions was evaluated by comparing the Pearson correlation coefficients (R) of the 

correlations to account for the variations of the observed ΔBC/ΔCO. Therefore, the accuracy of the predication 

(i.e., slope and WAD) was not weighted in this study, resulting in the inaccurate performance of almost all the 

predictions that seriously overestimate the observed values of ΔBC/ΔCO especially for their low value ranges 

(positive values of the WAD and intercepts). To me as a potential reader of this paper, this fact suggests that the 

approach proposed in this study is not always better than the previous works. The APT approach used in the 

previous studies showed the better performance to predict the ΔBC/ΔCO or transport efficiency (TEBC = 

(ΔBC/ΔCO)/ERBC2CO) using the long-term averaged data sets (e.g., Kanaya et al., 2016; Choi et al., 2020). 
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Although the correlation of the TEBC and APT was not so good, based on the binned average data sets of TEBC-

APT relationship, the decreasing tendency of the TEBC during the transport was successfully predicted by the 

APT in their studies. In this study, the APT-based prediction skills were not fully described.  The predictions 

with the lower R should be discussed for the fair and comprehensive evaluations of the accuracy of all the 

predictions tried in this study. 

Response: Thank you for the suggestions. To clarify what we meant by “We use R because we are more interested 

in~”, we performed curve-fitting using the different equations in Table 2 and selected the equation that gave the 

best R between predicted and observed TEBC. The comparison of different predictors in Sect. 3 considers all 

statistical metrics such as WAD and intercept. The new text reads: 

“When selecting which equation to use (among those in Table 2) for fitting between the predictor and TEBC, we 

opted for the equation that resulted in the highest R between observed and predicted TEBC (e.g., Fig. 1c). The basis 

of this choice on R was because our objective is to identify predictors that can at least capture trends in TEBC. After 

selecting which equation to use per predictor, the subsequent comparison (Sect. 3) of the performance of different 

predictors considers other statistical metrics such as slope, intercept, and WAD.” 

To show the relative performance of all predictors (not just those with the best statistical metrics), we have edited 

Figs. 2, 3, S3 to show all predictors including those that had lower R (in grey). The updated Fig. 2 is provided 

below. To simplify the plot while still showing all predictors, we colored only the top eight predictors with highest 

R per panel. The new figures show the difference in performance across predictors and the comparatively better 

performance of predictors we discussed in the previous iteration of the draft. We have added more discussion to 

the text to consider multiple statistical metrics when assessing performance (slope, WAD, intercept, etc.). 

We have added more discussion on the APT-based prediction skills in Sect. 3.1 and 3.3. However, as we have a 

total of 204 variables that we tested in our study, a comprehensive discussion of all 204 predictors is not possible 

which is why we focused our discussion on the best-performing predictors. 
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Figure 2: Slope and Pearson correlation (R) values derived from linear regressions of observed (x) and predicted (y) TEBC 

with error bars representing the 25th and 75th percentile values derived from k-fold cross validation (k = 10) using stratified 

random sampling (Sect. 2.5). Ideal values are denoted by the red dashed lines such that a better predictor would fall closer 

to the intersection of the two lines. Top eight predictors per group (panel) are colored non-grey while the rest of the 

predictors are plotted in grey to show the relative performance of all predictors. Note that PERSIANN-CDR has been 

abbreviated to P-CDR (b-c). Panels share the same X- and Y-axis limits. 

3. Calculating the APT and other indicators 

Authors might misunderstand the previous studies to apply the APT in their data analyses. As an example of 

ground-based studies, Kanaya et al. (2016) defined the length of the total backward time to calculate the trajectories 

(5 days) and integration time to calculate the APT (3 days) by considering the typical source areas (East Asian 

continent) affecting the observation site (a remote island in western Japan) and the typical meteorological field. 

Oshima et al. (2012; 2013) analyzed the aircraft observation data sets of BC and CO for uplifted air parcels sampled 

at the upper atmosphere (3–6 km), and investigated the effect of upward transport of air masses associated with 

the precipitation. The APT for uplifted air masses were calculated by integrating the precipitation water content 

from the uplifted location to the sampling point (Oshima et al., 2012). Depending on the definitions of the APT, 

the sensitivity of the precipitation to the transport efficiency of BC was significantly different from those from 

ground-based investigations (e.g., Kanaya et al., 2016). What I would like to claim is that possible indicators for 

the wet removals of BC should be designed by the careful consideration of the actual atmospheric conditions (i.e., 

meteorology) and the observation types (e.g., ground vs. aircraft). 

In this study, the basic characterizations of how the air parcels sampled at the aircraft observatory were transported 

from where (i.e., transport pathway), and the atmospheric transport time scale from the possible source area/region 

of BC and CO are critically missing (Referring Hilario et al. (2021) in section 2.1 is insufficient.). In section 3 

“Results and discussion part”, author should prepare additional subsection to describe the observed features of BC 

aerosols during CAMP2Ex campaign to clarify the above points (This was also pointed out in the comment 1). 

Based on the descriptions about the basic data analyses of the BC and CO enhancements, authors should define 
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the proper length of the backward calculations of the trajectories and integration time for calculating various 

parameters in relation to the removal of BC. 

Response: The objective of our study is to demonstrate a method for identifying potential predictors of wet 

scavenging. A characterization of transport patterns during the CAMP2Ex field campaign was done in our past 

study (Hilario et al., 2021) which included CO and BC. To provide information on the basic characteristics of BC 

and CO during CAMP2Ex, we have provided a description of the transport of BC and CO in Appendix A. To justify 

the choice of the 72-hour backward trajectories, Fig. S1b shows the distribution of transport times from different 

source regions (Sect. 2.2) to the CAMP2Ex aircraft. Generally, transit times are below 72 hours suggesting that 72 

hours is sufficient to capture long-range transport from major source regions into the tropical West Pacific. We 

added this information on transit times in Sect. 2.3. 

 

4. Curve-fitting equations 

The authors prepared 4 equations in the data analyses. Two of them (Oshima and Kanaya (stretched 

exponential)) were derived from the previous studies analyzing the TEBC–APT relationship. What was the basis 

to apply the remaining two? In this study, four types of parameters other than APT were analyzed, however two 

types of the equations were applied to these. Are there needs to apply and test more equations to these various 

indicators? Please clarify the reason why the authors decide to select these two equations for the non-APT 

parameters. 

Response: The two equations (Gaussian, general exponential) were selected as they represent typical statistical 

distributions. For some predictors (e.g., precipitation), we expected a general exponential relationship wherein 

higher precipitation leads to exponentially lower TEBC. For RHq, its relationship with TEBC appeared Gaussian 

where TEBC was highest at around RH = 85% (Fig. 1b). As none of the other equations in Table 1 captured this 

relationship well, we opted to include a Gaussian function in our equations. We note that, as we aim to find good 

meteorological predictors of TEBC, these predictors do not necessarily need to have an inversely proportional 

relationship with TEBC. Thus, the Gaussian and general exponential functions were included to consider a wider 

range of potential predictors of TEBC. We have added this explanation to the text in Sect. 2.5 and Sect. 4. 

 

5. How should we judge as “Better” when the performance to predict the removal of BC from atmosphere 

is evaluated? 

In relation to the above comments, I strongly suggest not to use “identifying” and “better” in the title of the current 

manuscript. At least, the proposed approaches are not better than the previous works using the APT. So, the 

better indicators were not identified yet.  More careful discussion based on more careful data analyses is needed 

to justify it is “better”. Please consider the significant revisions of the data analyses and descriptions in the 

manuscript. 

Response: The updated title now reads “Assessing Potential Indicators of Aerosol Wet Scavenging During Long-

Range Transport”. In response to your major comment #1, we have updated the method to predict the transport 

efficiency of black carbon (TEBC) instead of ΔBC/ΔCO by incorporating emission ratios from the CAM-GLOB-

ANT inventory (described in Sect. 2.4). By accounting for emissions along the trajectory (described in Sect. 2.5), 

this new method focused on TEBC has reduced uncertainties regarding the confounding influence of source 

emissions during transport. We have updated our figures and writing accordingly. 

We have also updated the text to explain more clearly why we wrote that some predictors performed better than 

others by mentioning statistical metrics (e.g., slope, R) derived using the regression, curve-fitting, and k-fold cross-
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validation procedure. Examples: 

“Predictors based on specific quantiles of RH (e.g., RHq90) also performed quite well in predicting both TEBC trends 

and magnitudes (intercepts close to zero, WAD close to zero, slopes close to 1, R close to 1)” 

“Frequency-related predictors such as fMR15 and fRH95 performed better than APT in predicting TEBC trends (higher 

R) and magnitudes (slopes closer to 1).” 

 

Minor comments 

P5, L146. Please clarify how authors determined the number of k for k-fold cross validation analyses. 

Response: The decision of what value of k to use relates to the bias-variance tradeoff (Hastie et al., 2009). A low 

value of k such as 5 would lead to cross-validation results (e.g., R2 between observed and predicted TEBC) that have 

low variance but potentially high bias due to the splitting of the dataset into five parts wherein 80% of the data are 

used for the training set and 20% are used for the testing set. For the opposite case (e.g., k = 20), the cross-validation 

results may have low bias but high variance. Previous work evaluating different accuracy estimation methods 

showed that k = 10 is sufficient to estimate performance metrics (e.g., R2) while minimizing computational expense 

(Breiman and Spector, 1992; Kohavi, 1995). We have added this information to Sect. 2.7 to explain our choice of 

k. 

We performed sensitivity testing by repeating our k-fold cross validation for different values of k (5, 10, 15, 20) 

and saw that there were minimal changes between k = 10 (Fig. 2) and other k values (k = 5 and 20 are provided 

below). We have added a summary of our sensitivity tests to the text in Sect 2.7, which reads: 

“Sensitivity testing with the k value showed no significant effect on the general conclusions of the study when k 

was changed between 5 and 20 (not shown). We opted for k = 10 based on previous work evaluating different 

accuracy estimation methods which showed that k = 10 is sufficient to estimate performance metrics (e.g., R2) 

while minimizing computational expense (Breiman and Spector, 1992; Kohavi, 1995).” 

 

Same as Fig. 2 but for k = 5: 
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Same as Fig. 2 but for k = 20: 

 

 

P5, L147. “jug” should be “Jug”. What is the version of Jug used in this study? 

Response: jug has been updated to Jug. Version number (2.2.2) has been added to the text. 
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P7, L232–L234. “We hypothesize ~” High RH condition is also related to in-cloud condition as well as 

precipitation as suggested. It is well known that BC can be activated to form cloud droplets as CCN. This results 

in the removal of BC from atmosphere (into hydrometeor).  Needs to be revised accordingly. 

Response: In our explanation of the high RH, we have updated the text to: 

“This possibility is supported by previous literature showing the tendency of SPPs to misestimate light (Nadeem et 

al., 2022; Kidd et al., 2021) or intense precipitation (Chen et al., 2020a; Gupta et al., 2020); however, we cannot 

rule out the possibility of the in-cloud activation (high RH) and subsequent removal of BC during transport. Thus, 

our hypothesis of RH from reanalysis capturing missed precipitation from SPPs requires further investigation in 

future work.” 

 

P20, Table 2. The curve-fitting equation which produces the highest value of R should be added with each 

predictor listed in Table 2. This will help us to easily find which equation works well with which indicator. 

Adding typical values of the coefficients in the fitted curves to the list is highly recommended for the clarity of the 

shape of the determined curves. 

Response: We have added a table in the SI (Table S1) that shows the top 8 predictors for each panel in Fig. 2 (40 

predictors total) as well as their equation and coefficients. We reference Table S1 in Sect. 3.1 to provide readers 

with this information. 

 

P22, Figure 1b. To clarify the percentile blocks, please consider to modify the figure style of the lines between 

points to the lines between markers especially for the predicted traces. 

Response: We have updated Fig. 1b to show the different percentile blocks used during curve-fitting: 
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P25, Figure 4. Same as the comment to Figure 1b. 

 

Response: We have updated Fig. 4: 
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Figure 4: Median values of observed (black) and predicted TEBC (blue) as a function of selected predictors for 10 iterations 

during k-fold cross-validation. Pearson correlations are annotated as 25th/50th/75th percentiles from k-fold iterations (k=10) 

calculated in two ways: comparing predicted and observed median TEBC per 5th percentile block of the predictor (R) and 

comparing predicted and observed TEBC for individual points (Rindiv). Panels share the same Y-axis limits. Percentile blocks 

for each X-axis variable are denoted by vertical grey lines. 
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Referee 2:  

 

This study aims to identify meteorological variables affecting precipitation scavenging of atmospheric aerosols 

using a combination of aircraft, satellite, and reanalysis data augmented by trajectory modeling to account for air 

mass history. In literature, key variables controlling below-cloud aerosol scavenging have been well documented, 

although existing parametrizations still have large uncertainties (especially for particles in the submicron size range). 

This study addresses the former (key variables), but added little knowledge on the latter (how to reduce the 

uncertainties in parametrizations). The analysis approach is also subject to large uncertainties. I only provided a few 

comments related to the science of precipitation scavenging for the authors to consider in improving the quality of 

the manuscript. 

Lines 25-28: Most existing parameterizations for precipitation scavenging of atmospheric aerosols have considered 

precipitation intensity, precipitation amount, and raindrop and aerosol size distributions, etc. It is not clear what 

(additional) variables this study proposes (after reading the whole abstract) for better parametrizing wet scavenging 

of atmospheric aerosols. The authors are encouraged to provide an explicit recommendation instead of a general 

statement.  This comment also applies to the Conclusions section (the last paragraph) since no clear message of their 

recommendations is provided.   

Response: We have reworded the conclusions and abstract to be clearer on our recommendations given our findings. 

 

Section 2.2: If BC and CO have the same sources but different sinks (one is wet scavenged and the other is not), 

then using this ratio approach is reasonable in tracking the wet scavenging of BC. However, if they have different 

sources along the air mass trajectory (which is likely the case), this approach would cause very larger uncertainties. 

Response: The BC to CO ratio will indeed vary by source and was an important uncertainty in our original method. 

In our original method, ΔBC/ΔCO is assumed to be influenced by two main factors: (1) source emissions of BC and 

CO along the trajectory path, and (2) removal of BC via wet scavenging. In response to one of Reviewer #1’s major 

comments, we have updated our method with TEBC as the predictand instead of ΔBC/ΔCO. TEBC is defined in Eq. 

(1) (Sect. 2.5) and involves the mean BC/CO emission ratio (ERBC/CO) along each trajectory. ERBC/CO represents the 

weighted-average surface emission ratio of BC and CO encountered by the transported air mass over the past 72 

hours. To calculate ERBC/CO, we use emissions from the CAMS-GLOB-ANT emission inventory (Sect. 2.4) and 

calculate ERBC/CO that is inverse-weighted by trajectory altitude to reflect the higher likelihood of surface influence 

when trajectories are close to the surface (Sect. 2.5). By using TEBC that accounts for ERBC/CO, we reduce 

uncertainties from sources along the trajectory path such that TEBC is reasonably expected to vary mainly via sinks 

(i.e., wet scavenging). 

 

Lines 78-92: In Chemical transport models, time splitting approach is used for calculating each physical and 

chemical process (emission, transport/diffusion, chemical transformation, deposition (in-cloud nucleation, below-
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cloud scavenging, and dry deposition)). Each process needs to be calculated or parametrized as accurate as possible. 

To improve the parameterization of below-cloud aerosol scavenging, collecting field data through measuring aerosol 

concentrations before and after precipitation events covering different precipitation types and intensities would be 

the best approach, in my opinion. The approach used in this study involves both in-cloud and below-cloud 

scavenging contributions as well as additional entrainment of pollutants along the air mass trajectory, and is not 

possible to quantify precipitation scavenging. I have difficulties in finding the true scientific value in such an 

analysis for improving our understanding in below-cloud aerosol scavenging (which seems to the major goal of this 

study). 

Response: As noted in the Limitations section (Sect. 4), this method cannot isolate specific processes such as in-

cloud or below-cloud scavenging. Because of this limitation, the objective of our study is not solely below-cloud 

scavenging but to identify potential indicators for aerosol scavenging (including both in- and below-cloud 

scavenging). The novelty of the study includes the following: 

- It uses aircraft field campaign data collected over the West Pacific that hosts a wide range of transport 

patterns, aerosol sources, and cloud-precipitation systems. This presents the opportunity to use this aircraft 

data to study scavenging during long-range transport, which is currently a large uncertainty in chemical 

transport models. 

- Since we found that APT inaccurately predicts TEBC, our study recommends alternative meteorological 

variables that future scavenging studies can use instead (RHq90, fRH95, fMR15, and PI). This information is 

important when high-resolution aerosol chemical transport modeling is not feasible/accessible for relating 

aerosol scavenging to meteorology. Furthermore, this suggests the possibility that models should also 

consider RH in addition to precipitation when estimating scavenging. 

- The method we present in this study can be applied on multiple environments (e.g., multiple field campaign 

datasets) to identify potential scavenging indicators that could vary regionally. 

 

Line 11 and line 31:  This sentence implies that wet scavenging is the only dominant sink for aerosol particles. I 

would consider both dry deposition and wet scavenging as dominant sinks. Maybe change to “As one of the 

dominant sinks”. 

Response: The phrasing has been updated. 

 

Lines 43-44: You should also include “precipitation intensity, amount, frequency, type”. Precipitation type includes 

liquid and solid (snow) precipitation. 

Response: The updated sentence now reads “The efficiency of below-cloud scavenging depends on raindrop size 

distributions, aerosol composition (Lu and Fung, 2018; Grythe et al., 2017), the amount of in-cloud condensed water 

(Luo et al., 2019) as well as precipitation characteristics (i.e., frequency, intensity, amount, and type).” 

 

Lines 41-50: I would like to draw your attention of a series of studies on below-cloud aerosol scavenging conducted 

by a group in Environment Canada to enhance the discuss presented in this paragraph. They not only systematically 

assessed important parameters affecting below-cloud aerosol scavenging (Wang et al., 2010, ACP, 10, 5685-5705; 

Wang et al., 2011, ACP 11, 11859-11866; Zhang et al., 2013, ACP 13, 10005-10025), but also developed a new set 

of semi-empirical parameterizations (Wang et al., 2014a, GMD, 7, 799–819; 2014b, JAMES, 6, 1301-1310).    

Response: Thank you for the references. We have added these studies to the discussion in the Introduction, which 
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now reads: 

“Wang et al. (2010) determined the below-cloud scavenging coefficient is influenced by (1) raindrop-particle 

collection efficiency, (2) raindrop size distribution, and (3) raindrop terminal velocity. These factors were associated 

with differences in particle concentrations by a factor of 2 for sub-10 nm particles and a factor of >10 for particles 

larger than 3 µm; however, their combined uncertainty was insufficient to explain the discrepancy between 

theoretical and field measurements of the below-cloud scavenging coefficient. Wang et al. (2011) demonstrated that 

this discrepancy can be largely explained by the vertical turbulence as it determines which particles are subjected to 

impaction scavenging. This impact was most pronounced for submicron particles under weak precipitation 

intensities. 

Given these uncertainties, Wang et al. (2014a) developed a new semi-empirical, size-resolved parametrization 

based on an percentile-logarithmic power-law relationship between the below-cloud scavenging coefficient and 

particle size that is applicable to both rain and snow across different particle sizes and precipitation intensities. 

Based on the size-resolved parametrization of Wang et al. (2014a), a bulk or modal parametrization for fine (PM2.5), 

coarse (PM2.5-10), and giant particles (PM10+) was presented by Wang et al. (2014b).” 

 

Line 97: Was the experiment cover one single site or one big area? 

Response: Flights were conducted within a domain spanning 5 – 20°N, 117 – 127°E. The text has been updated to 

reflect this information. 

 

Lines 229 and below: RH is identified as a key variable, but it is likely because its directly link with precipitation. In 

this case, there is no need to include this additional variable in precipitation scavenging parameterization. If the 

effect of the high RH is through hydroscopic growth of particles, then this needs to be mentioned. 

Response: While RH is indeed related to precipitation, the poorer performance of APT (lower correlation, greatly 

underestimates TEBC, higher intercept/bias) compared to RH variables such as RHq90 indicates that data products that 

are used to calculate APT (i.e., satellite retrievals or reanalysis) may be missing instances of precipitation where 

scavenging is happening. The ability of RHq90 to predict TEBC suggests that perhaps these instances of missed 

precipitation appear to satellite or reanalysis products as areas of high humidity. This is a possibility that could be 

explored in future work.  
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