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Annex 2: Bibliometric analyses of included articles

Figure S1 shows the increasing number of articles resulting from the search queries in from 2011 to
2021. The number of records increased from 171 in 2011 to 400 in 2021 (the last access: 21.9.2021).
The proportion of records when including the variants of the ‘uncertainty’ search term was about 60%
and did not change considerably with the years. This proportion indicates that “uncertainty” has been

playing a stable and important role in the studies of remotely sensed evapotranspiration.
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Figure S1: The number of records from search query 1 which includes variants of “Remote sensing”, “evapotranspiration”,
and “Uncertainty” search terms, and the proportion of records from query 1 over records from query 2 which excludes
‘Uncertainty’ search terms.

The articles included in the quantitative synthesis were published in 134 journals. shows the journals
with the most articles included. Altogether, these journals made up about 62% of the total articles.

Remote Sensing (MDPI) ranked first with 101 articles (16.8% of the total, indicating that uncertainty in

Proportion
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RS-ET is discussed more in remote sensing than in agriculture and hydrology journals, which are the

main fields where RS-ET is applied.

Table S1: The journals with the most included articles.

Number of % of all included
No. Journal articles articles
1 Remote Sensing (MDPI) 101 16.8%
2  Remote Sensing of Environment 42 7.0%
3 Agricultural and Forest Meteorology 36 6.0%
4 Hydrology and Earth System Sciences 31 5.2%
5  Journal of Hydrology 31 5.2%
6 International Journal of Remote Sensing 27 4.5%
7 Agricultural Water Management 26 4.3%
8  Water Resources Research 19 3.2%
9  Water (MDPI) 15 2.5%
10 Journal of Applied Remote Sensing 14 2.3%
11  Hydrological Processes 10 1.7%
International Journal of Applied Earth
12 Observation and Geoinformation 10 1.7%
IEEE Journal of Selected Topics in Applied
13 Earth Observations and Remote Sensing 8 1.3%
14 Hydrological Sciences Journal 6 1.0%
15 Advances in Meteorology 5 0.8%
Other journals 36.6%

Figure S2 shows the co-author network of the included articles. The size of the circle represents the
number of articles per author, with a threshold of at least 10 articles per author. The links represent the
number of studies each collaborated in. Each cluster is often led by the first author of a particular RS-
ET model. For example, Anderson M.C and Kustas W.P. have published mainly about ALEXI and
TSEB models, Senay G.B. about SSEBop, Fisher J.B. about PT-JPL, and Miralles D.G. about GLEAM.
The clusters of Yao Y., Zhang X., Chen X., and co-authors had more publications in later years (with

an average publication year > 2017).
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Figure S2: Network of co-authors of included articles (N=601) and the average year of publication generated using

VOSviewer software (Eck and Waltman, 2009)

Supplementary Tables

Table S2: Focus of the previous literature reviews on RS-derived ET estimation and the uncertainty and validation of spatial

data and RS-derived data in general

Topic References | Focus of the review

ET Kustas and Describing techniques used in evaluating ET with remote sensing at

estimation Norman, hourly to daily time frame, with a summary of 16 model types.

methods 1996

based on

satellite data | Courault et Reviewing different approaches to estimate ET from remote sensing

al., 2005 data and discussing the main physical bases and assumptions of various

models, and proposing to classifying methods into 4 categories:
empirical direct, residual of energy balance, deterministic, and
vegetation index methods.

Gowda et Reviewing 6 common remote sensing-based land surface energy balance

al., 2007 algorithms for mapping regional ET and their limitations, data needs,
knowledge gaps, and future opportunities and challenges with respect to
agriculture.

Kalma et al., | Reviewing methods for estimating evaporation from landscapes,

2008 regions, and larger geographic extents, with remotely sensed surface
temperatures, and highlighting uncertainties and limitations associated
with those estimation methods based on the results of 30 validation
studies.

Lietal, Providing an overview of 10 commonly applied ET models using

2009 remotely sensed data in terms of theories, inputs, assumptions, the




accuracy of results, and advantages and drawbacks of models.

Glennetal., | Examining the role and utility of methods that use VVegetation Indices
2010 (V1) from satellites to estimate ET over a wide range of scales of
measurements, discussing limitations and accuracy of these methods.
Glennetal., | Reviewing ground methods used to estimate local ET and remote
2011 sensing methods developed for regional and continental scales, also
discussing sources of error or uncertainty inherent in the estimates,
lessons learned from ET research in Australia
Senay et al., | Reviewing methods to estimate basin-scale ET, including satellite-based
2011 methods
Wang and Surveying the basic theories, observational methods, satellite algorithm
Dickinson, and land surface models for terrestrial ET
2012
Liou and Reviewing 6 common surface energy balance algorithms regarding their
Kar, 2014 main assumptions, advantages and disadvantages.
Zhang et al., | Summarizing the underlying theories, development history, advantages
2016 and limitations of 7 groups of remote sensing based evapotranspiration
estimation methods
Mohan et al., | Summarizing approaches to estimate sensible heat flux in RS-ET
2020 models
Chen and Providing key milestones in history of remote sensing ET model
Liu, 2020 development in 2 categories: temperature-based and conductance-based
models
Uncertainty | Zengetal., | Assessing how European initiatives approach the validation of Essential
and 2015 Climate Variables (ECVs) Climate Data Records (CDRs) with 3
validation of examples of soil moisture, fAPAR and sea ice; discussing aspects of
spatial data validation process and proposing a generic validation process for ECVs
and RS- CDRs
derived data
in general Mayr etal., | Reviewing validation of temporally dense time-series of land surface
2019 geo-information products that cover the continental to global scale, in
terms of utilized validation data, validation methods, development trend.
Wu et al., Reviewing the development of validation methodologies worldwide in
2019 terms of principles and approaches, recent progress of validation in
China, the shortcomings of the current status of validation; providing
outlook and forecasting development trend of validation
Bielecka and | Providing a survey on spatial data quality and uncertainty research
Burek, 2019 | production in the last 30 years, highlighting that remote sensing and
geography were the main research subject categories where quality and
uncertainty are of greatest importance at all stages from data acquisition
to information retrieval.
Bayat et al., | Investigating level of readiness for operation validation of 7 global long-
2021 term satellite-based terrestrial ECVs including ET




Uncertainty | Allen etal.,

or accuracy | 201la

of ET

estimation
Allen et al.,
2011b
Karimi and
Bastiaanssen
, 2015

Describing common ET measuring systems including
in situ and remote sensing techniques, and the sources and typical range
of their errors.

Providing recommendations for documentation and description of
information that should accompany ET estimates reported in ET-related
articles.

Reviewing the reliability of remote sensing algorithms to accurately

determine the spatial distribution of ET (and rainfall and land use) by
synthesizing mean error of seasonal ET reported in 31 papers that use
remote sensing ET algorithms.

Table S3: In situ methods to measure Evapotranspiration (ET) or Latent Heat Flux (LE). N/A: Not Applicable

Method | Instruments Measurement Intermediate Method to derive
calculations ETor LE
. Infrared Gas Analyser Water vapor Calculation of mixing Derivation of LE
8 (IRGA) concentration ratio of water vapor from eddy
g and dry air covariance using
e Reynolds averaging
2 Sonic anemometer 3-direction wind Calculation of (Foken et al., 2012;
g speed covariance of vertical Montgomery, 1948)
3 wind velocity and
g‘ mixing ratio
Weighing lysimeter, Soil weight or Soil Calculation of change | Derivation of ET as
Drainage lysimeter or Soil | water content in soil water storage residual of soil water
water content sensor (e.g. balance (e.g.,
neutron probe) Teuling, 2018)
;‘ Rain gauge Rainfall Calculation of water
e inflow
'% Flow meter Irrigation
Large Aperture Log-variance of the | Calculation of structure | Derivation of
Scintillometer (LAS) intensity variations parameters of refractive | sensible heat (H)
- Transmitter of the received light | index, temperature, and Latent heat flux
- Detector beam signals specific humidity (LE) based on
Monin-Obukhov
- Similarity Theory
g Temperature probe Air temperature at Determination of (Frehlich, 1992;
= different heights sensible heat (H) Hill, 1997)
= direction based on
c temperature gradient
[&]
n
Temperature probe, Gradient of Calculation of Bowen Derivation of H and

energy balance

Bowen ratio
(BREB)

Relative humidity probe,
Barometer

atmospheric
temperature, air
moisture content
(actual water vapor
pressure)

ratio

LE from Bowen
ratio and surface
energy balance




Net radiometer, Wind

speed and direction sensor

Net radiation

Soil heat flow plates, Soil

moisture probe

Soil heat flux

Calculation of sum of
H and LE from surface
energy balance
equation

Fine-wire thermocouple

High frequency
temperature
fluctuation

Calculation of sensible
heat (H) based on a
solution of the scalar
conservation

Derivation of LE as
residual of surface
energy balance (Paw
Uetal., 1995)

Sap flow

sap

transpiration (Lu et al.,
2004)

°_§ Net radiometer, Wind Net radiation Calculation of sum of
% speed and direction sensor H and LE from surface
= energy balance
S Soil heat flow plates, Soil Soil heat flux equation
S | moisture probe
n L
Anemometer Windspeed Calculation of wet Derivation of ET
. Pressure sensor Air pressure surface ET (P-T), based on
S Thermometer Air temperature potential ET (Penman), | complementary
g2 Hygrometer Relative humidity and relative relationship
% = ? evaporation (Brutsaert and
a5 Stricker, 1979)
Anemometer Windspeed Calculation of LE and | Derivation of LE
Pressure sensor Air pressure H without stability using stability
- Thermometer Air temperature correction correction (Thom et
S Hygrometer Relative humidity al., 1975; Zhong et
‘g al., 2019)
3 § _ | Temperature probe, Net radiation Calculation of stability
€ % = | Net radiometer Soil heat flux function
0el
o Net radiometer Net radiation Calculation of FAO-56 | Derivation of ET
o Anemometer Windspeed potential ET for using crop
O€ Pressure sensor Air pressure reference crop coefficients (*need
$ :5 Thermometer Air temperature crop information)
9( = Hygrometer Relative humidity (Allen et al., 1998)
o
L o
Class A pan Depth of water Calculation of N/A
S evaporation of open
'g water
o
g c
o8
Thermal dissipation probe | Movement of xylem | Calculation of plant N/A




Table S4: Metrics used for uncertainty assessment in the reviewed articles.

determination (R?)

_ 2?:1(3/1' - x;)*

R?=1 —
! YN (g —%)?

Name Formula Unit Best
value
Standard deviation (o) Unitof |0
X
Variance (0;) Squared | 0
unit of x
Mean error (ME), Mean Unitof |0
bias error (MBE), Bias X
Relative error (RE) or % 0
Mean error percentage
(MEP) or Percent Bias
(PBIAS)
Normalized mean bias - 0
NMB = —
(NMB) o
Mean absolute error 1 N Unitof |0
(MAE) or Mean MAE = Nlei_}’il X
absolute difference i=1
A MAE
Mean absolute % 0
percentage error MAPE = ——x 100
(MAPE) or Mean
absolute percentage
difference
(MAPD)
Pearson’s coefficient of cov(x,y) N i =0y — ) - 1
correlation (p) T oo
B - 02 - 9
Regression coefficient: CNZE L Gay) B () T () - 1
slope a a= " P 2
N Y, (x)? (B4 ()
Regression coefficient: = 200 B 00)? — Bl () Bl Geay) - 0
intercept b = 2
P NI, ()2 (S ()
Coefficient of - 1




Z?’:1(3’i - x)?

R =S
fE (- 0)?

YL — 02 (v — 7)?

RZ — pZ — —
° YL = D2 RN, (v — 7)?
RZ—1_ Z]iv=1(yl' - x;)? -
7 {V=1(‘xl)2
Mean squared error 1 N Unit of
(MSE) MSE = NZ(}IL — Xi)z X
i=1
Systematic MSE 1= Squared
MSE, = NZ@ —x;)? unit of x
i=1
Where
y;: estimate of y; based on the ordinary least-squares
regression y; = a + bx;
Unsystematic MSE 1w Squared
MSE, = NZ(}“Q —y,)? unit of x
i=1
Where
¥;: estimate of y; based on the ordinary least-squares
regression y; = a + bx;
Root mean squared error N Unit of
(RMSE) 1 X
RMSE = |2 (3 = x)?
N
=1
Systematic RMSE N Unit of
1 X
RMSE, = | @ - x)?
N 4
=1
Where
y;: estimate of y; based on the ordinary least-squares
regression y; = a + bx;
Unsystematic RMSE N Unit of
1 X
RMSE, = | 5 =y
i=1
Where
y;: estimate of y; based on the ordinary least-squares
regression y; = a + bx;
Normalized RMSE or RMSE -
fractional RMSE RMSEy, =
i RMSE 0
Relative RMSE RMSE, = - % 100 Yo
Centered or Unbiased N Unit of
RMSE 1 o X
RMSEc = |2 ) [0 = %) = O = 7)]
i=1




Coefficient of variation
(CV)

o
cv, = =

Nash-Sutcliffe
Efficiency (NSE)

Yy
Zliv=1(xi - )’i)z

NSE =1-— —

Index of agreement (d)

Yy iy — xp)?
YL wi(ly; = ¥ + |x; — %])?
w;: irregularly weight that represent relative size of the i"
interval or cell size.

d2=1_

Modified index of
agreement (d)

Y wily; — xil

Liwi(ly; =y + lx — %)
w;: irregularly weight that represent relative size of the i"
interval or cell size.

d1=1_

Taylor skill score (TSC)

4(1+p)

TSC = 2
6+7) 1+ pg)
(f Or 0
Where
o
s~ _ Y
O'f—o_x

po:  Maximum attainable correlation (6 — 1, p — po)

Kling-Gupta Efficiency
(KGE)

= 2

=1 o174 (2-1) + (21

Standard error (SE)

Z]iv=1(xi — ¥i)?

E =
S N-1

Unit of
xandy

Similarity index (2)

0 mof — o?
~ (m—1)02

Where

m: number of ensemble members

o?: total variance of all members concatenated

aZ: variance of the time series that results from calculating

the ensemble mean of each time step

Spatial Efficiency
(SPAEF)

2

v,
SPAEF =1 — (p—1)2+(——1> F(y—1)2
v,

Ly min(K;, Ly)

N
i=1 Ki

Where

y: histogram matching term
K: histogram of reference map
L: histogram of simulated map

Median symmetric
accuracy (MSA)

MSA = 100(9M(|(Q) D_ 1)
Where
M: median of the data

R

%




Degree correlation (r;) 1 L
n= E z (CAlmCBlm + SAlmSBlm)
m=0

l l
n= z (CAlzm + SAlzm) Z (CBlZm + SBlzm)
m=0 m=0
Where
Capy @nd S, .. are spherical harmonic coefficients of

degree [ and order m of dataset A
Cg,,, and Sg, . are spherical harmonic coefficients of

degree [ and order m of dataset B
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