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Annex 2: Bibliometric analyses of included articles 

 Figure S1 shows the increasing number of articles resulting from the search queries in from 2011 to 

2021. The number of records increased from 171 in 2011 to 400 in 2021 (the last access: 21.9.2021). 

The proportion of records when including the variants of the ‘uncertainty’ search term was about 60% 

and did not change considerably with the years. This proportion indicates that “uncertainty” has been 

playing a stable and important role in the studies of remotely sensed evapotranspiration.    

 
Figure S1: The number of records from search query 1 which includes variants of “Remote sensing”, “evapotranspiration”, 

and “Uncertainty” search terms, and the proportion of records from query 1 over records from query 2 which excludes 

‘Uncertainty’ search terms. 

The articles included in the quantitative synthesis were published in 134 journals. shows the journals 

with the most articles included. Altogether, these journals made up about 62% of the total articles. 

Remote Sensing (MDPI) ranked first with 101 articles (16.8% of the total, indicating that uncertainty in 
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RS-ET is discussed more in remote sensing than in agriculture and hydrology journals, which are the 

main fields where RS-ET is applied.  

Table S1: The journals with the most included articles. 

No. Journal 
Number of 

articles 

% of all included 

articles 

1 Remote Sensing (MDPI) 101 16.8% 

2 Remote Sensing of Environment 42 7.0% 

3 Agricultural and Forest Meteorology 36 6.0% 

4 Hydrology and Earth System Sciences 31 5.2% 

5 Journal of Hydrology 31 5.2% 

6 International Journal of Remote Sensing 27 4.5% 

7 Agricultural Water Management 26 4.3% 

8 Water Resources Research 19 3.2% 

9 Water (MDPI) 15 2.5% 

10 Journal of Applied Remote Sensing 14 2.3% 

11 Hydrological Processes 10 1.7% 

12 

International Journal of Applied Earth 

Observation and Geoinformation 10 1.7% 

13 

IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing 8 1.3% 

14 Hydrological Sciences Journal 6 1.0% 

15 Advances in Meteorology 5 0.8% 

  Other journals   36.6% 

Figure S2 shows the co-author network of the included articles. The size of the circle represents the 

number of articles per author, with a threshold of at least 10 articles per author.  The links represent the 

number of studies each collaborated in. Each cluster is often led by the first author of a particular RS-

ET model. For example, Anderson M.C and Kustas W.P. have published mainly about ALEXI and 

TSEB models, Senay G.B. about SSEBop, Fisher J.B. about PT-JPL, and Miralles D.G. about GLEAM. 

The clusters of Yao Y., Zhang X., Chen X., and co-authors had more publications in later years (with 

an average publication year > 2017). 



  
Figure S2: Network of co-authors of included articles (N=601) and the average year of publication generated using 

VOSviewer software (Eck and Waltman, 2009) 

Supplementary Tables 
Table S2: Focus of the previous literature reviews on RS-derived ET estimation and the uncertainty and validation of spatial 

data and RS-derived data in general 

Topic References Focus of the review 

ET 

estimation 

methods 

based on 

satellite data 

Kustas and 

Norman, 

1996 

Describing techniques used in evaluating ET with remote sensing at 

hourly to daily time frame, with a summary of 16 model types. 

Courault et 

al., 2005 

Reviewing different approaches to estimate ET from remote sensing 

data and discussing the main physical bases and assumptions of various 

models, and proposing to classifying methods into 4 categories: 

empirical direct, residual of energy balance, deterministic, and 

vegetation index methods. 

Gowda et 

al., 2007 

Reviewing 6 common remote sensing-based land surface energy balance 

algorithms for mapping regional ET and their limitations, data needs, 

knowledge gaps, and future opportunities and challenges with respect to 

agriculture. 

Kalma et al., 

2008 

Reviewing methods for estimating evaporation from landscapes, 

regions, and larger geographic extents, with remotely sensed surface 

temperatures, and highlighting uncertainties and limitations associated 

with those estimation methods based on the results of 30 validation 

studies. 

Li et al., 

2009 

Providing an overview of 10 commonly applied ET models using 

remotely sensed data in terms of theories, inputs, assumptions, the 



accuracy of results, and advantages and drawbacks of models. 

Glenn et al., 

2010 

Examining the role and utility of methods that use Vegetation Indices 

(VI) from satellites to estimate ET over a wide range of scales of 

measurements, discussing limitations and accuracy of these methods. 

Glenn et al., 

2011 

Reviewing ground methods used to estimate local ET and remote 

sensing methods developed for regional and continental scales, also 

discussing sources of error or uncertainty inherent in the estimates, 

lessons learned from ET research in Australia 

Senay et al., 

2011 

Reviewing methods to estimate basin-scale ET, including satellite-based 

methods 

Wang and 

Dickinson, 

2012 

Surveying the basic theories, observational methods, satellite algorithm 

and land surface models for terrestrial ET 

Liou and 

Kar, 2014 

Reviewing 6 common surface energy balance algorithms regarding their 

main assumptions, advantages and disadvantages. 

Zhang et al., 

2016 

Summarizing the underlying theories, development history, advantages 

and limitations of 7 groups of remote sensing based evapotranspiration 

estimation methods  

Mohan et al., 

2020 

Summarizing approaches to estimate sensible heat flux in RS-ET 

models 

Chen and 

Liu, 2020 

Providing key milestones in history of remote sensing ET model 

development in 2 categories: temperature-based and conductance-based 

models 

Uncertainty 

and 

validation of 

spatial data 

and RS-

derived data 

in general 

Zeng et al., 

2015 

Assessing how European initiatives approach the validation of Essential 

Climate Variables (ECVs) Climate Data Records (CDRs) with 3 

examples of soil moisture, fAPAR and sea ice; discussing aspects of 

validation process and proposing a generic validation process for ECVs 

CDRs 

Mayr et al., 

2019 

Reviewing validation of temporally dense time-series of land surface 

geo-information products that cover the continental to global scale, in 

terms of utilized validation data, validation methods, development trend. 

Wu et al., 

2019 

Reviewing the development of validation methodologies worldwide in 

terms of principles and approaches, recent progress of validation in 

China, the shortcomings of the current status of validation; providing 

outlook and forecasting development trend of validation 

Bielecka and 

Burek, 2019 

Providing a survey on spatial data quality and uncertainty research 

production in the last 30 years, highlighting that remote sensing and 

geography were the main research subject categories where quality and 

uncertainty are of greatest importance at all stages from data acquisition 

to information retrieval. 

Bayat et al., 

2021 

Investigating level of readiness for operation validation of 7 global long-

term satellite-based terrestrial ECVs including ET 



Uncertainty 

or accuracy 

of ET 

estimation 

Allen et al., 

2011a 

Describing common ET measuring systems including 

in situ and remote sensing techniques, and the sources and typical range 

of their errors. 

Allen et al., 

2011b 

Providing recommendations for documentation and description of 

information that should accompany ET estimates reported in ET-related 

articles. 

Karimi and 

Bastiaanssen

, 2015 

Reviewing the reliability of remote sensing algorithms to accurately 

determine the spatial distribution of ET (and rainfall and land use) by 

synthesizing mean error of seasonal ET reported in 31 papers that use 

remote sensing ET algorithms.  

 

Table S3: In situ methods to measure Evapotranspiration (ET) or Latent Heat Flux (LE). N/A: Not Applicable 

Method Instruments Measurement Intermediate 

calculations 

Method to derive 

ET or LE 

E
d

d
y
 c

o
v
a
ri

a
n

ce
 (

E
C

) 
 Infrared Gas Analyser 

(IRGA) 

 

Water vapor 

concentration 

 

Calculation of mixing 

ratio of water vapor 

and dry air 

 

Derivation of LE 

from eddy 

covariance using 

Reynolds averaging 

(Foken et al., 2012; 

Montgomery, 1948) 
Sonic anemometer 3-direction wind 

speed 

 

Calculation of 

covariance of vertical 

wind velocity and 

mixing ratio 

 

L
y
si

m
et

ry
  

Weighing lysimeter, 

Drainage lysimeter or Soil 

water content sensor (e.g. 

neutron probe) 

Soil weight or Soil 

water content 

Calculation of change 

in soil water storage 

Derivation of ET as 

residual of soil water 

balance (e.g., 

Teuling, 2018) 

Rain gauge 

 

Rainfall Calculation of water 

inflow 

Flow meter Irrigation 

S
ci

n
ti

ll
o
m

et
ry

 

 

Large Aperture 

Scintillometer (LAS) 

- Transmitter 

- Detector   

Log-variance of the 

intensity variations 

of the received light 

beam signals 

 

Calculation of structure 

parameters of refractive 

index, temperature, 

specific humidity 

 

 

Derivation of 

sensible heat (H) 

and Latent heat flux 

(LE) based on 

Monin-Obukhov 

Similarity Theory 

(Frehlich, 1992; 

Hill, 1997) 
Temperature probe Air temperature at 

different heights 

Determination of 

sensible heat (H) 

direction based on 

temperature gradient 

 

B
o
w

en
 r

a
ti

o
 

en
er

g
y
 b

a
la

n
ce

  

(B
R

E
B

) 

Temperature probe, 

Relative humidity probe, 

Barometer 

Gradient of 

atmospheric 

temperature, air 

moisture content 

(actual water vapor 

pressure) 

 

Calculation of Bowen 

ratio 

 

 

Derivation of H and 

LE from Bowen 

ratio and surface 

energy balance 

 



Net radiometer, Wind 

speed and direction sensor 

Net radiation 

 

 

Calculation of sum of 

H and LE from surface 

energy balance 

equation Soil heat flow plates, Soil 

moisture probe 

Soil heat flux 

S
u

rf
a

ce
 r

en
ew

a
l 

(S
R

) 

Fine-wire thermocouple High frequency 

temperature 

fluctuation 

Calculation of sensible 

heat (H) based on a 

solution of the scalar 

conservation 

Derivation of LE as 

residual of surface 

energy balance (Paw 

U et al., 1995) 

Net radiometer, Wind 

speed and direction sensor 

Net radiation 

 

 

Calculation of sum of 

H and LE from surface 

energy balance 

equation Soil heat flow plates, Soil 

moisture probe 

Soil heat flux 

A
d

v
ec

ti
o

n
-

a
ri

d
it

y
 

(A
A

) 

Anemometer 

Pressure sensor 

Thermometer 

Hygrometer 

Windspeed 

Air pressure 

Air temperature 

Relative humidity 

Calculation of wet 

surface ET (P-T), 

potential ET (Penman), 

and relative 

evaporation 

Derivation of ET 

based on 

complementary 

relationship 

(Brutsaert and 

Stricker, 1979)  

C
o
m

b
in

a
to

ry
 

m
et

h
o
d

  

(C
M

) 

Anemometer 

Pressure sensor 

Thermometer 

Hygrometer 

 

Windspeed 

Air pressure 

Air temperature 

Relative humidity 

 

Calculation of LE and 

H without stability 

correction 

Derivation of LE 

using stability 

correction (Thom et 

al., 1975; Zhong et 

al., 2019) 

Temperature probe, 

Net radiometer 

Net radiation 

Soil heat flux 

Calculation of stability 

function 

F
A

O
-5

6
 C

ro
p

 

co
ef

fi
ci

en
t 

Net radiometer 

Anemometer 

Pressure sensor 

Thermometer 

Hygrometer  

Net radiation 

Windspeed 

Air pressure 

Air temperature 

Relative humidity 

 

Calculation of FAO-56 

potential ET for 

reference crop 

 

 

Derivation of ET 

using crop 

coefficients (*need 

crop information) 

(Allen et al., 1998) 

E
v
a
p

o
ra

ti
o
n

 

p
a
n

 

 

Class A pan 

 

Depth of water Calculation of 

evaporation of open 

water  

 

 

 

N/A 

S
a

p
 f

lo
w

 

 

Thermal dissipation probe Movement of xylem 

sap 

Calculation of plant 

transpiration (Lu et al., 

2004) 

N/A 

 
 

 

 

 

 

 

 



Table S4: Metrics used for uncertainty assessment in the reviewed articles.  

Name Formula Unit Best  

value 

Standard deviation (𝜎𝑦) 

𝜎𝑦 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̅)2

𝑁

𝑖=1

 

Unit of 

x 

0 

Variance (𝜎𝑦
2) 

𝜎𝑦
2 =

1

𝑁
∑(𝑦𝑖 − 𝑦̅)2

𝑁

𝑖=1

 
Squared 

unit of x 

0 

Mean error (ME), Mean 

bias error (MBE), Bias 𝑀𝐸 =
1

𝑁
∑ 𝑦𝑖 − 𝑥𝑖

𝑁

𝑖=1

 
Unit of 

x 

0 

Relative error (RE) or 

Mean error percentage 

(MEP) or Percent Bias 

(PBIAS) 

𝑀𝐸𝑃 =
𝑀𝐸

𝑥̅
× 100 

% 0 

Normalized mean bias 

(NMB) 
𝑁𝑀𝐵 =

𝑀𝐸

𝜎𝑥
 

- 0 

Mean absolute error 

(MAE) or Mean 

absolute difference 

(MAD) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖−𝑦𝑖|

𝑁

𝑖=1

 
Unit of 

x 

0 

Mean absolute 

percentage error 

(MAPE) or Mean 

absolute percentage 

difference 

(MAPD) 

𝑀𝐴𝑃𝐸 =
𝑀𝐴𝐸

𝑥̅
× 100 

% 0 

Pearson’s coefficient of 

correlation (𝜌) 𝜌 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦
=

∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑁
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

 
- 1 

Regression coefficient:  

slope 𝑎 𝑎 =
𝑁 ∑ (𝑥𝑖𝑦𝑖)𝑁

𝑖=1 ∑ (𝑥𝑖)𝑁
𝑖=1 ∑ (𝑦𝑖)𝑁

𝑖=1

𝑁 ∑ (𝑥𝑖)2𝑁
𝑖=1 (∑ (𝑥𝑖)𝑁

𝑖=1 )
2  

- 1 

Regression coefficient: 

intercept 𝑏 𝑏 =
∑ (𝑦𝑖)𝑁

𝑖=1 ∑ (𝑥𝑖)2𝑁
𝑖=1 − ∑ (𝑥𝑖)𝑁

𝑖=1 ∑ (𝑥𝑖𝑦𝑖)𝑁
𝑖=1

𝑁 ∑ (𝑥𝑖)2𝑁
𝑖=1 (∑ (𝑥𝑖)𝑁

𝑖=1 )
2  

- 0 

Coefficient of 

determination (R2) 𝑅1
2 = 1 −

∑ (𝑦𝑖 − 𝑥𝑖)2𝑁
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

 

 

- 1 



𝑅2
2 =

∑ (𝑦𝑖 − 𝑥̅)2𝑁
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

 

 

- 1 

𝑅6
2 = 𝜌2 =

∑ (𝑥𝑖 − 𝑥̅)2(𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2𝑁

𝑖=1

 
- 1 

𝑅7
2 = 1 −

∑ (𝑦𝑖 − 𝑥𝑖)2𝑁
𝑖=1

∑ (𝑥𝑖)2𝑁
𝑖=1

 

 

- 1 

Mean squared error 

(MSE) 𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 
Unit of 

x 

0 

Systematic MSE 

𝑀𝑆𝐸𝑠 =
1

𝑁
∑(𝑦̂𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 

Where 

𝑦̂𝑖: estimate of 𝑦𝑖 based on the ordinary least-squares 

regression 𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖 

Squared 

unit of x 

0 

Unsystematic MSE 

𝑀𝑆𝐸𝑢 =
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

Where 

𝑦̂𝑖: estimate of 𝑦𝑖 based on the ordinary least-squares 

regression 𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖 

Squared 

unit of x 

0 

Root mean squared error 

(RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑁
∑(𝑦𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 

Unit of 

x 

0 

Systematic RMSE 

𝑅𝑀𝑆𝐸𝑠 = √
1

𝑁
∑(𝑦̂𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 

Where 

𝑦̂𝑖: estimate of 𝑦𝑖 based on the ordinary least-squares 

regression 𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖 

Unit of 

x 

0 

Unsystematic RMSE 

𝑅𝑀𝑆𝐸𝑢 = √
1

𝑁
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 

Where 

𝑦̂𝑖: estimate of 𝑦𝑖 based on the ordinary least-squares 

regression 𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖 

Unit of 

x 

0 

Normalized RMSE or 

fractional RMSE 
𝑅𝑀𝑆𝐸𝑛 =

𝑅𝑀𝑆𝐸

𝜎𝑥
 

- 0 

Relative RMSE 
𝑅𝑀𝑆𝐸𝑟 =

𝑅𝑀𝑆𝐸

𝑥̅
× 100 

% 0 

Centered or Unbiased 

RMSE 
𝑅𝑀𝑆𝐸𝑐 = √

1

𝑁
∑[(𝑥𝑖 − 𝑥̅) − (𝑦𝑖 − 𝑦̅)]2

𝑁

𝑖=1

 

 

Unit of 

x 

0 



Coefficient of variation 

(CV) 
𝐶𝑉𝑦 =  

𝜎𝑦

𝑦̅
 -  

Nash-Sutcliffe 

Efficiency (NSE) 𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1

∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

 
- 1 

Index of agreement (𝑑2) 
𝑑2 = 1 −

∑ 𝜔𝑖(𝑦𝑖 − 𝑥𝑖)2𝑁
𝑖=1

∑ 𝜔𝑖(|𝑦𝑖 − 𝑦̅| + |𝑥𝑖 − 𝑥̅|)2𝑁
𝑖=1

 

𝜔𝑖: irregularly weight that represent relative size of the ith 

interval or cell size. 

- 1 

Modified index of 

agreement (𝑑1) 𝑑1 = 1 −
∑ 𝜔𝑖|𝑦𝑖 − 𝑥𝑖|𝑁

𝑖=1

∑ 𝜔𝑖(|𝑦𝑖 − 𝑦̅| + |𝑥𝑖 − 𝑥̅|)𝑁
𝑖=1

 

𝜔𝑖: irregularly weight that represent relative size of the ith 

interval or cell size. 

- 1 

Taylor skill score (TSC) 
𝑇𝑆𝐶 =

4(1 + 𝜌)

(𝜎̂𝑓 +
1
𝜎̂𝑓

)
2

(1 + 𝜌0)

 

Where 

𝜎̂𝑓 =
𝜎𝑦

𝜎𝑥
 

𝜌0:   Maximum attainable correlation (𝜎̂𝑓 → 1,  𝜌   → 𝜌0) 

 

- 4 

Kling-Gupta Efficiency 

(KGE) 𝐾𝐺𝐸 = 1 − √(𝜌 − 1)2 + (
𝜎𝑦

𝜎𝑥
− 1)

2

+ (
𝑦̅

𝑥̅
− 1)

2

 

- 1 

Standard error (SE) 

𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1

𝑁 − 1
 

 

Unit of 

x and y 

0 

Similarity index (𝛺) 
𝛺 =

𝑚𝜎𝑏
2 − 𝜎2

(𝑚 − 1)𝜎2
 

 

Where 

𝑚: number of ensemble members 

𝜎2: total variance of all members concatenated 

𝜎𝑏
2: variance of the time series that results from calculating 

the ensemble mean of each time step 

- 1 

Spatial Efficiency 

(SPAEF) 𝑆𝑃𝐴𝐸𝐹 = 1 − √(𝜌 − 1)2 + (
𝐶𝑉𝑦

𝐶𝑉𝑥
− 1)

2

+ (𝛾 − 1)2 

𝛾 =
∑ 𝑚𝑖𝑛 (𝐾𝑖, 𝐿𝑖)𝑁

𝑖=1

∑ 𝐾𝑖
𝑁
𝑖=1

 

Where 

𝛾: histogram matching term 

𝐾: histogram of reference map 

𝐿: histogram of simulated map 

- 1 

Median symmetric 

accuracy (MSA) 
𝑀𝑆𝐴 = 100(𝑒𝑀(|(𝑄) |) − 1) 

Where 

M: median of the data 

𝑄 =
𝑦

𝑥
 

% 0 



Degree correlation (𝑟𝑙) 

𝑟𝑙 =
1

𝜂
∑ (𝐶𝐴𝑙𝑚𝐶𝐵𝑙𝑚 + 𝑆𝐴𝑙𝑚𝑆𝐵𝑙𝑚)

𝑙

𝑚=0

 

𝜂 = √ ∑ (𝐶𝐴𝑙𝑚
2 + 𝑆𝐴𝑙𝑚

2 )

𝑙

𝑚=0

√ ∑ (𝐶𝐵𝑙𝑚
2 + 𝑆𝐵𝑙𝑚

2 )

𝑙

𝑚=0

 

Where 

𝐶𝐴𝑙𝑚 and 𝑆𝐴𝑙𝑚 are spherical harmonic coefficients of 

degree 𝑙 and order 𝑚 of dataset A 

𝐶𝐵𝑙𝑚 and 𝑆𝐵𝑙𝑚 are spherical harmonic coefficients of 

degree 𝑙 and order 𝑚 of dataset B 

- 1 
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