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Abstract. Satellite remote sensing (RS) data are increasingly being used to estimate total evaporation, often referred to as or 10 

evapotranspiration (ET), over large regions. Since RS-based ET (RS-ET) estimation inherits uncertainties from several 

sources, many available studies have assessed these uncertainties using different methods and reference data. However, the 

suitability of methods and reference data subsequently affects the validity of these evaluations. This study summarizes the 

status of the various methods applied for uncertainty assessment of RS-ET estimates, discusses the advances and caveats of 

these methods, identifies assessment gaps, and provides recommendations for future studies. We systematically reviewed 601 15 

676 research papers published from 2011 to 2021 that assessed the uncertainty or accuracy of RS-ET estimates. We categorized 

and classified them based on (i) the methods used to assess uncertainties, (ii) the context where uncertainties were evaluated, 

and (iii) the metrics used to report uncertainties. Our quantitative synthesis shows that the uncertainty assessments of RS-ET 

estimates are not consistent and comparable in terms of methodology, reference data, geographical distribution, and uncertainty 

presentation. Most studies used validation methods using Eddy Covariance (EC) based ET estimates as reference. However, 20 

in many regions such as Africa and the Middle East, other references are often used due to the lack of EC stations. The accuracy 

and uncertainty of RS-ET estimates are most often described by Root-Mean-Squared Error (RMSE). When validating against 

EC-based estimates, the RMSE of daily RS-ET varies greatly among different locations and levels of temporal support, ranging 

from 0.01 to 6.65 mm/day with a mean of 1.12 18 mm/day. We conclude that future studies need to report the context of 

validation, the uncertainty of the reference datasets, the mismatch in temporal and spatial scales of reference datasets to that 25 

of the RS-ET estimates, and multiple performance metrics with their variation in different conditions and statistical 

significance to provide a comprehensive interpretation to assist potential users. We provide specific recommendations in this 

regard. Furthermore, extending the application of RS-ET to regions that lack validation will require obtaining additional 

ground-based data and combining different methods for uncertainty assessment. 
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1 Introduction 30 

Evapotranspiration (ET) is the key variable linking the water, energy, and carbon cycles of the Earth (Fisher et al., 2017). In 

the continental terrestrial water cycle, it is the second-largest flux after precipitation (Korzoun et al., 1978), which predominates 

the demand side of water resources. It is associated with latent heat flux in the surface energy balance. ET combines evaporation 

of water from soil, free water surfaces and plants and thus, depends on many factors, such as the atmospheric and vegetation 

conditions, the availability of water in the soil, water bodies, canopy, and surface roughness (Monteith, 1965; Shuttleworth 35 

and Wallace, 1985). The complexity of measuring ET directly makes it difficult and expensive to routinely measure and capture 

its spatial variation, as this requires a dense network of in-situ gauging stations. Therefore, satellite remote sensing (RS) 

observations have been increasingly used for estimating ET spatially.  

As ET cannot be directly measured by sensors from space, retrieval algorithms or models are needed to estimate ET from other 

variables observed by RS (Fisher et al., 2017). These models estimate ET from optical visible and/or thermal infrared RS data, 40 

and include now well-known models such as SEBAL (Bastiaanssen et al., 1998), TSEB (Kustas and Norman, 1999), SEBS 

(Su, 2002), METRIC (Allen et al., 2007), and ALEXI (Anderson et al., 2011), PT-JPL (Fisher et al., 2008), and GLEAM 

(Miralles et al., 2011a). These diverse The diversity of models, parameters, input RS data sources, and processing techniques 

result in a wide range of RS-based ET estimates (Jimenez et al., 2011, Long et al., 2014, Chen et al., 2014).  

While many studies have evaluated the performance of RS-based ET (RS-ET) models, none of them has concluded that a 45 

single model performs best in all situations (e.g., Ferguson et al., 2010; Vinukollu et al., 2011a). Furthermore, the accessibility 

and uncertainty lead to significant challenges to operational applications (e.g., irrigation scheduling and drought monitoring) 

using output from these models. For some models, rretrieving ET estimates requires access to the data, software or source 

code, and , and expertise in, these models. The limited accessibility of RS-ET models leads to significant challenges to 

operational applications of RS-ET estimates (e.g., irrigation scheduling and drought monitoring). Driven by community needs, 50 

several projects have provided platforms to increase public access to various RS-ET data products which are generated by 

these RS-ET models. These projects and outputs include MODIS16 (Mu et al., 2011), SSEBop (Senay et al., 2013), GLEAM 

(Miralles et al., 2011a), WaPOR (FAO, 2018), ECOSTRESS (Fisher et al., 2020), and OpenET (Melton et al., 2021). 

With the evolution of these now widely accessibleGiven that more RS-ET data products are becoming available, characterizing 

and quantifyinginformation about the uncertainties associated with these data productsin RS-ET estimates becomes is 55 

important for data users (i.e., water managers and policymakers) to apply them properly. Uncertainty assessment helps data 

users know what level of confidence they can have in ET estimates and the inferred information about water resources (e.g., 

crop water consumption, water depletion). Inferences based on RS-ET data products are limited by their spatio-temporal 

resolution, latency, and specifications. 

Previous reviews have discussed RS-ET estimates and uncertainty, which are relevant to this review (Figure 1). Table S2 in 60 

Supplementary Information summarizes the focimain topics of these reviews. Many of these reviews focused on outlining the 

methods to estimate ET using RS-based models (e.g., Kustas and Norman, 1996; Courault et al., 2005; Wang and Dickinson, 
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2012; Zhang et al., 2016) and sometimes discussed the uncertainties in the estimation (Kalma et al., 2008; Glenn et al., 2011; 

Karimi and Bastiaanssen, 2015). However, none of these explored how uncertainties of RS-ET estimates are currently being 

assessed, which is an important issue in remote sensing and the production of spatial data production (Bielecka and Burek, 65 

2019; Wu et al., 2019; Mayr et al., 2019). In an overview of global RS-based Essential Climate Variables (ECVs), Bayat et al. 

(2021) concluded that RS-ET data products lack a good practice protocol for operational validation, compared to other 

ECVsvariables. Meanwhile, in-situ measurements of ET also suffer from errors and uncertainty (Allen et al., 2011a) and, thus, 

require complete documentation that provides sufficient information to ascertain the expected accuracy and representativeness 

of the reported ET estimates (Allen et al., 2011b).  70 
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Figure 1: Previous literature reviews on RS-ET estimation, uncertainty, and validation of RS-derived data. 

These reviews highlight the need to better advance the uncertainty assessment of RS-ET, leading to the following research 75 

questions:  

• What are the common and emerging methods used to assess uncertainty in RS-ET estimates? 

• In which contexts are the uncertainties of RS-ET assessed with these methods? 

• What is the typical range of uncertainty in RS-ET estimates globally based on previous studies? 

To answer these questions and build on existing literature, we surveyed previous studies that assessed the uncertainty or 80 

accuracy of RS-ET models or the output data products of these models. Given that many literature reviews on the uncertainty 

or accuracy of ET estimation have been published until 2011 (Figure 1), we focus on the period from 2011 to evaluate whether 

the studies in this period adopted the valuable contributions and recommendations from these previous reviews. Given the 

growing volume of literature published in the field, we followed a systematic quantitative review approach to avoid subjectivity 

or a bias towards particular products, authors or approaches. We identified research articles with a set of predetermined criteria 85 

and categorized these articles based on (i) the methods used to assess uncertainties, (ii) the context where uncertainties were 

evaluated, and (iii) the metrics used to report uncertainties. We then quantified the number of articles per category to identify 

any trends or gaps in literature. Furthermore, we appraised the advances and caveats of the existing methods and provided 

recommendations for future studies. 

The rest of this paper is organized as follows: Section 2 provides the theoretical basis for the research and clarifies the key 90 

terms that we use to analyze literature using the methods described in Section 3. The results of the literature analysis, 

concerning assessment methods and the context when these methods are used are discussed in Section 4 and 5. Based on the 
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categorized literature, Section 6 discusses the use of uncertainty metrics and shows the typical range of uncertainty in RS-ET 

estimates. Finally, Section 7 summarizes the key points and recommendations for future research. 

2 Theoretical frameworks 95 

2.1 Uncertainty definition and representation 

Uncertainty is generally defined as the state of being not completely confident or sure of something. The terms ‘error’, 

‘accuracy’, ‘bias’, and ‘precision’ are sometimes used to characterize the uncertainty associated with a measurement or model 

output. In this study, we consider aAll these terms asare quantifiable information about what is certain or uncertain. However, 

it is important to clarify these terms since they are different from ‘uncertainty’ by definition (Foody and Atkinson, 2003; 100 

Heuvelink, 1998; Loew et al., 2017). ‘ 

Error’ represents the difference between what is measured and its true value in metrology (i.e., the science of measurement) 

(JCGM, 2012). The true value is the exact (but mostly unknown) value according to the theoretical definition of the variable 

being measured or estimated. If a true value is perfectly known, the error of a measurement is surely known. Then, there cannot 

be any uncertainty because we are certain of all values. ThereforeIf we perfectly know the true value, we have no measurement 105 

error, which eliminates uncertainty. Therefore, uncertainty is associated with a set ofstems from unknown true values and 

unknown errors.. Since the true value of a quantity intended to be measured or estimated is practically unknown  

When a measurement can be repeated, Titshe uncertainty (described by inaccuracy and imprecision) of a measuring instrument 

can be described using probability distributions of the measured values or measurement errors compared to a reference 

(Montanari, 2007; Foody and Atkinson, 2003; Povey and Grainger, 2015)estimated from repeated measurements of a known 110 

quantity (standard reference), before measuring an unknown quantity. Figure 2 illustrates the relationship how other terms are 

related to between uncertainty and other related terms (i.e.when uncertainty is described by the probability distribution of 

measured value or error). , ‘error’ and ‘uncertainty’ are often used interchangeably (e.g. in the work of Heuvelink, 1998). 

TheWhen definition of ‘accuracy’ seems more disputable than ‘error’. Loew et al. (2017) used a definition grounded in 

metrology (JCGM, 2012) and noted that accuracy is not given a numerical value. Meanwhile,  ‘accuracy’ is Foody and 115 

Atkinson (2003) defined accuracy as “the expectation (i.e., expected value) of overall error” (e.g., Foody and Atkinson, 2003),. 

Both Foody and Atkinson (2003) and Heuvelink (1998) considered the Root Mean Squared Error (RMSE) as a measure of 

accuracy.  ‘bBias’ (i.e., the difference between the expected value of an estimator and the true value of a parameter) (i.e., the 

difference between the expected value of an estimator and the true value of a parameter) is considered  considered a measure 

of inaccuracy. High bias indicates inaccuracy and low bias indicates better accuracy. Likewise, ‘precision’ can be described 120 

using we consider standard deviation and variance as numerical quantities of imprecision of the probability distribution of 

measured values since theyse both describe denote error spread around the meanthe spread of errors around the mean error..  

Formatted: Space Before:  12 pt
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Because uncertainty is related to unknown errors in many fields of science, it is often described using probability distributions 

(Montanari, 2007; Foody and Atkinson, 2003). In metrology, measurement uncertainty is a non-negative parameter that 

determines the probability distribution of the (possible) values attributed to the measurand (i.e., the quantity intended to be 125 

measured) (JCGM, 2012; Loew et al., 2017). Uncertainty can also be characterized by the probability distribution of the error 

(instead of the measured value) (Povey and Grainger, 2015). The uncertainty (described by inaccuracy and imprecision) of a 

measuring instrument can be estimated from repeated measurements of a known quantity (standard reference), before 

measuring an unknown quantity. Figure 2 illustrates how other terms are related to uncertainty (i.e. the probability distribution 

of measured value or error).  130 

 

Figure 2: Uncertainty as described by the probability distribution of measured values. Adapted from Povey and Grainger (2015) 

and JCGM (2012). 

Some Uuncertaintiesy cannot always be described using a probability distribution function in modeling or measurement. These 

are called . Povey and Grainger (2015) called these types of uncertainty in remote sensing the ‘known, unquantifiable 135 

unknowns’ (i.e., what we know to exist but are not able to quantify) and the ‘unknown unknowns’ (i.e., what we do not know 

to exist because we cannot observe) (Povey and Grainger, 2015). The suitability of probability theory to for quantifying 

uncertainty has been intensively discussed by many authorsis widely debated in hydrological science (e.g., Beven, 2016; 

Nearing et al., 2016). For example, Nearing et al. (2016) argued that there is epistemological uncertainty preceding the moment 

at which we selectbefore selecting probability theory as the framework (i.e., our choice of epistemology) to estimate epistemic 140 

uncertainty (i.e., what we do not know certainly). Their classification of uncertainty classification includes philosophical and 

linguistic types of uncertainty, which are that are hardly quantifiable. Quantifiable errors are a consequence of intrinsic 

variability in the observation and propagated errors from auxiliary data. The ‘unknown’ errors are due to model approximation, 
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simplification of reality, and sampling resolution of an instrument. Typically, uncertainty reported with Uncertainty assessment 

of satellite remote sensing data typically reports only represents the quantifiable errors but not the ‘unknown’ and 145 

‘unquantifiable’ errors (Povey and Grainger, 2015). 

2.2 Sources of uncertainties in RS-ET data production 

Raw satellite imagery undergoes a chain of processing and analysis (retrieval model) to generate useful data and information 

for applications (Figure 3). The ET are is not directly measured by sensors but is derived result from models; thus, it is  or 

reanalyzes, and thus, RS-ET data products are considered high- level of processing by data providers (ESA, 2021; NASA, 150 

2021)). Satellite sensors measure the radiation reflected or emitted from the earth’s surface or atmosphere in different regions 

of the electromagnetic spectrum. . The retrieval models of It should also be noted that ‘directly measured’ also involves a 

measurement model (i.e., the way we relate the numerical output of a measuring instrument to the underlying physical state of 

the object that we want to measure). Raw digital imagery acquired by sensors on satellites must undergo a chain of processing 

and analysis to derive useful data and information for applications (Figure 3). low-level data (e.g., radiance, vegetation indices) 155 

share common formulas and usually requires only raw satellite images. High-level data like RS-ET relies on various models 

with different concepts, assumptions and data sources. Therefore, the uncertainty of RS-ET data products is strongly 

linkedstrongly links to with the total uncertainty in the model model uncertainty (from model conceptualization and 

parameters) and in the used satelliteinput data uncertainty.  

RS-ET data are typically acquired during satellite passes over specific areas of interest, resulting in essentially instantaneous 160 

estimates of remote sensing-based evapotranspiration (RS-ET). Because many operational applications necessitate ET 

estimates over longer time intervals, such as daily, 10-day, or monthly totals, various methods have been developed to upscale 

these instantaneous RS-ET estimates to daily values (Jiang et al., 2021). Moreover, the designated resolution and the return 

interval of satellites might not be suitable for operational applications, thus, gap-filling and spatial downscaling steps are 

common in many RS-ET retrieval models. 165 

Uncertainty in input data and model parameters can propagate through model to output. In addition, uncertainty due to the 

cChanges of spatial and temporal support scale1(i.e., the area and time period over which a variable is measured) , and gap 

filling can occur during data pre-processing or/ post-processing steps also depending on the modelsintroduces more 

uncertainty. Modeled estimates are typically validated with aagainst a more accurate reference that is considered the “true” 

value. The differences errors between the former and the lattercompared to the reference is referred to as ‘compound 170 

uncertainty’ in this research since it compounds aggregates all sources of uncertainty.  Meanwhile, if the modeled estimates 

                                                           
1 Scale (both spatial and temporal) is best described as a triplet of support (or grain), spacing and extent. Support is the volume, 

shape, size, and orientation that a measurement represents. In the realm of RS, the spatial support of pixel values can be 

equivalent to the resolution of RS image, which is the (average) size of its constituent pixels.  
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arecomparison compared with other equivalent estimates, the differences are considered result in ‘relative uncertainty’. 

AlthoughSince reference data is imperfect validation essentially yields ‘relative uncertainty’ due to imperfection in reference 

data, compound uncertainty is essentially relative uncertainty except that we trust our referenceit to represent “true” 

value‘compound uncertainty’ more than other estimates. 175 

 

 

Figure 3: The sources of uncertainty in ETT estimates from the typical workflow in remote sensing-based models. Compound 

uncertainty is the aggregation of all uncertainties from input data, change of temporal and spatial scale, gap filling, model 

parameterization, and model conceptualization.  180 

2.3 Uncertainty assessment 

Uncertainty assessment refers to the estimation of quantifiable uncertainties. The uncertainty from input factors (e.g., 

parameters and input data) can be quantified with uncertainty analysis, also called uncertainty propagation or error propagation 

(Crosetto et al., 2001; Heuvelink, 1998; Wadoux et al., 2020). There are many techniques for uncertainty propagation and their 
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suitability depends on several factors, including the number of uncertain inputs, uncertainty distribution and correlation of 185 

input variables, and model linearity (Mohammadi and Cremaschi, 2022). For RS-based models, analytical techniques which 

are based on the law of variance propagation of moments formulas (Taylor, 1997) are often not suitable because these models 

are essentially nonlinearhave complex relationships and input uncertainty is not always normally distributed functions. 

Numerical techniques that use such as the Monte Carlo method (MCM), numerical approximation for uncertainty propagation 

are generally applicable to RS-based models (Heuvelink, 1998, Crosetto et al., 2001). In MCM, the model inputs are randomly 190 

sampled from their distributions and fed into the model to generate outputs repeatedly. The variance of the output distribution 

will be then considered the uncertainty in the model output (i.e., ET estimate) associated with the input variables.  

The contribution of each input factor to the total uncertainty in the model output is determined by sensitivity analysis (Crosetto 

et al., 2001; Saltelli et al., 2021). Such analysis is primarily used to identify the factors that contribute most to the model 

uncertainty (Saltelli et al., 2019). There are two main approaches to sensitivity analysis (SA): local and global sensitivity 195 

analysis. Local sensitivity analysisSA (LSA) defines the model’s sensitivity to an input factor (e.g., parameter or variable) as 

the first-order partial derivative of the model with respect to this input factor (Saltelli et al., 2019). In contrast, global SA 

(GSA)sensitivity analysis explores the whole variation range of the input factors (Razavi and Gupta, 2015). Several global SA 

techniques have been developed and used in scientific modeling (Razavi and Gupta, 2015; Saltelli et al., 2008).  

Due to large volumes of data and spatio-temporal dimensions, vValidation is often applied to confirm a data product’s fit-for-200 

purpose instead of sensitivity analysis and uncertainty analysis of its retrieval model (Crosetto et al., 2001). Validation, by 

common sense, is proving the validity of something. However, theThe definition of validation in modeling is context-

dependent and has changed become more well-defined over time and is context-dependent (Bellocchi et al., 2011). The RS-

derived data products are often the output of models, but validation often only refers to the data itself and not the model (Bayat 

et al., 2021; Loew et al., 2017; Wu et al., 2019a). Model validation does not prove that the model is true but rather proves that 205 

it is empirically adequate (Oreskes et al., 1994). A valid model is one that does not contain known or detectable flaws and is 

internally consistent, rather than being an assertion of the actual reality. Meanwhile, validation of model results Validation of 

RS-derived data products involves quantifying the accuracy compared to a reference (often in-situ datasets), which proves the 

validity of the data for its intended application. In RS, validation often only refers to the data itself and not the model (Bayat 

et al., 2021; Loew et al., 2017; Wu et al., 2019a). Because RS-derived data products are model results, their validation depends 210 

on the quality and quantity of input parameters and the accuracy of auxiliary hypotheses that were used to derive them (Oreskes 

et al., 1994).  Therefore,  

Since RS-ET retrieval models can be used with different sets of satellite data, model validation and data (i.e., model result or 

output) validation should be distinguished. Scientific models are often considered hypotheses, and thus, can only be falsified 

rather than proven. Therefore, model validation does not prove the model is true but rather proves that it is empirically adequate 215 

by evaluating its relative performance with respect to observations, other models, and theoretical expectations (Oreskes et al., 

1994). A valid model means that the model does not contain known or detectable flaws and is internally consistent. Meanwhile, 

validation of model results depends on the quality and quantity of input parameters and the accuracy of auxiliary hypotheses 
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that were used to derive them (Oreskes et al., 1994).  If a model was validatedvalidating a RS-ET model using a set of input 

satellite data, it does not guarantee imply that the model output can be applied with any forcing data or settings to produce 220 

accurate outputwill have the same quality when it is applied using a different dataset. Therefore, RS-derived data product 

validation is still needed even if the retrieval model has been "validated" before. 

3 Systematic quantitative literature review method 

In this literature review, we specifically focus on how the quantifiable uncertainty in the RS-ET estimate has been assessed in 

recent years (2011-2021). In this paper, we employed There are various literature review methods that differ in search, 225 

appraisal, synthesis, and analysis approach (Grant and Booth, 2009). T Pickering and Byrne’s (2014)he systematic quantitative 

literature review (SQLR) method described by Pickering and Byrne (2014), which can consider a large body of research 

literature tby applyingincludes a systematic search, and literature categorization and quantification of literature. We chose this 

approach to objectively highlightThe quantitative results from SQLR provide subjective evidence of the trends and gaps in the 

literature. Therefore, this approach was selected to evaluate the current RS-ET uncertainty assessment methods to assess the 230 

uncertainty in RS-ET estimationthrough quantitative results. The literature search is systematic, but undeniably not exhaustive; 

thus, certain papers may be omitted if they do not meet the specified inclusion criteria. 

3.1 Identification and database search 

The academic electronic databases Web of Science (WoS) and Scopus were searched (last access: 24/07/2023 21.9.2021) using 

the combination of the three search terms: “evapotranspiration”, “remote sensing”, and “uncertainty”, or their variants (Table 235 

1). The term “transpiration” and “interception” were not used since they only represent components of total evaporationET, 

which is often referred to as evapotranspiration in remote sensing. Since different authors might use different terms for satellite 

remote sensing, evaporation, and uncertainty can be used in the title and abstract, the variants of search terms were identified 

based on a set of 34 prior articles (Annex 1 in Supplementary Information).  

Table 1: Search terms and variants. Search terms were combined using AND operator and variants were combined using OR 240 
operator. The asterisk * was used to include similar terms. 

 Search terms combined by < AND > 

Variants combined 

by < OR > 

Evaporation 

Evapotranspiration 

Latent heat 

Remote sensing 

Remotely-sensed 

Remotely sensed 

Earth observation 

Satellite* 

Global ** product 

Global ** data* 

Uncertainty 

Accuracy 

Data quality 

Variability 

Reliability 

Evaluat* 

Validat* 

Performance 

 

Formatted Table
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Since different authors might use different terms for satellite remote sensing, evaporation, and uncertainty in the title and 

abstract, the variants of search terms were identified based on a set of 34 prior articles (Annex 1 in Supplementary Information). 

The search result was limited to a publication date from 2011 onward to 2021 and duplicates were removedand then refined 245 

using the available filters of Scopus and WoS. Only English articles (>99% of results) that reported original research and were 

published in scientific peer-reviewed journals were considered. Review papers,  and conference proceedings and gray literature 

were not included because they have different formats and provide no or fewlimited details of the methods used for uncertainty 

assessment. Gray literature was not included since its quality was not assured by the scientific peer-reviewing system. Finally, 

we removed duplicates from the search result. 250 

3.2 Relevance and eligibility screening 

From the search result, we identified papers that attempted to assess the accuracy or uncertainty of one or more satellite remote 

sensing-based estimations, models, or datasets of terrestrial ET, either from model simulations or analysis-ready data products. 

The models of interest were diagnostic RS-ET models2, such as the models that were reviewedas defined by Courault et al. 

(2005), Zhang et al. (2016), and Chen and Liu (2020). We screened the title and abstract of each paper tTo identify the objective 255 

and methods of the researchrelevant papers, we screened the title and abstract .  

Due to the large number of articles in our search results, we applied a screening process using the ASReview software, a semi-

automated screening system that incorporates an active learning classifier to predict rank the order of papers based on their 

relevance from textto the articles that were included previously (van de Schoot et al., 2021) [Website: https://asreview.nl/]. 

ASReview can help find 95% of the eligible studies after screening between only 8% to 33% of the studies (van de Schoot et 260 

al., 2021). Based on the number of articles and the efficiency of ASReview,In the ASReview screening interface, the user 

decides whether an article is relevant based on only the title and abstract, then ASReview shows the next articles in the order 

of relevance to the selected articles. The screening interface does not show authors and affiliations to avoid subjective bias. 

Moreover we established criteria to stop screening , we could find relevant articles from the search result faster by stopping 

the screening process when predefined criteria are met. These “stopping” criteria are based on the number of articles and the 265 

efficiency of ASReview. Since ASReview can help find 95% of the eligible studies after screening between only 8% to 33% 

of the studies (van de Schoot et al., 2021), we stopped screening when 100 (3%) irrelevant records had been found 

consecutively (3% of the total records)  and at least 10% of the total records had been screened. By After screening titles and 

abstracts, we found 639 relevant articles from 3276 records (Figure 4).Even when screened with both abstract and title, without 

reading the full-text articles some non-eligible papers were still included. For example, some studies used handheld 270 

radiometers, tower remote sensors, or airborne sensors, but only mentioned “remote sensing” in the abstract and title. 

Therefore, we assessed the eligibility of each paper by reading 639the full-text articles and finally included 601676 articles in 

                                                           
2 Diagnostic RS-ET models are static models that estimate ET at single period of time (snapshot) using satellite data as the 

primary inputs for independent variables in the models.  
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our review (Figure 4). For more information about the journals, authors, and year of publication, aA brief bibliometric analysis 

of these 601 articles is provided in Annex 2 (Supplementary Information). 

 275 
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Figure 4: Results of article selection from database search (identification), title and abstract screening (screening), and full-text 

assessment (eligibility). 

Even when screened with both abstract and title, without reading the full-text articles some non-eligible papers were still 280 

included. For example, some studies used handheld radiometers, tower remote sensors, or airborne sensors, but only mentioned 
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“remote sensing” in the abstract and title. Therefore, we assessed the eligibility of each paper by reading 639 full-text articles 

and finally included 601 articles in our review (Figure 4). For more information about the journals, authors, and year of 

publication, a brief bibliometric analysis of these 601 articles is provided in Annex 2 (Supplementary Information). 

3.3 Article organization and analysis 285 

From eEach included article, the items of information about the paper were recorded in a spreadsheet and were was classified 

into categories based on methods, subject objectives of researchthe study, and results (Table 2). The total number and 

percentage of research papers per category were then synthesized from the literature database, and the patterns and trends in 

assessing the uncertainty of RS-ET were discerned. In addition, the most common method for uncertainty assessment was 

identified and articles that used this method were included in a metanalysis to derive the typical range of uncertainty in RS-290 

ET estimates. 

Table 2: Categories and subcategories used to organize the included papers. 

Category groupType of 

categories 

Categories 

Objective of the study 

Full reference details 

Year 

Journal title 

Authors 

Model development, Model improvement, Model implementation, 

Product evaluation, Models evaluation 

 

 

 

Sources of uncertainty Compound uncertainty, Relative uncertainty, 

Change of spatial scale, Change of temporal scale, Model 

parameterization, Input data, Gap filling 

Objective of the study 

 

 

Types of 

approachSources of 

uncertainties 

Model development 

Model improvement 

Model implementation 

Product evaluation 

Models evaluation 

Sensitivity analysis, Uncertainty propagation, Validation, Inter-

comparison, OthersCompound (Compared to reference) 

Relative (Compared to other estimates) 

Change of spatial support 

Change of temporal support 

Model parameterization 

Input data 

Gap filling 

Uncertainty 

metricsTypes of 

approach 

 

 

RMSE, bias, variance, …Sensitivity analysis 

Uncertainty analysis 

Validation 

Inter-comparison 

Others 

Formatted Table
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Types of 

referenceUncertainty 

metrics 

Types of reference 

 

In-situ measurement (EC, lysimeter…) 

Catchment water balanceRMSE, bias, variance, … 

In-situ measurement (EC, lysimeter…) 

Water balance 

Temporal 

supportTemporal 

support 

 

Sub-daily, daily, from 5 to 16 days, monthly, season, annualSub-daily, 

daily, from 5 to 16 days, monthly, season, annual 

Spatial supportSpatial 

support 

 

Less than 100 m, from 100 m to 500 m, from 500 m to 5km, from 5 

km to 1o, more than 1o, basin, continent, global.Less than 100 m, from 

100 m to 500 m, from 500 m to 5km, from 5 km to 1o, more than 1o, 

basin, continent, global. 

Spatial coverageSpatial 

coverage 

 

Field, region, continent, globalField, region, continent, global 

4 Review of methods for RS-ET uncertainty assessment 

The selected articles assess uncertainty in RS-ET using mainly 8 approaches: (1) validation, (2) intercomparison, (3) sensitivity 

analysis, (4) evaluation of input data, (5) uncertainty propagation, (6) three-cornered hat and triple collocation (TCH/TC), (7) 295 

physical consistency, (8) ensemble of estimates. Figure 5 shows the upset plot (Lex et al., 2014) of all reviewed articles by the 

approach of uncertainty assessment and the intersections of more than one approach. The majority of articles (532 out of 601) 

used a validation approach. There are a few Oother approaches that were much less frequently used and often in combination 

with validation, as shown by the number of intersections with ‘Validation’ (Figure 5).   

 300 
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Figure 5: Uncertainty assessment Aapproaches used in the reviewed articles (N=601676). The horizontal bar chart displays the 

number of articles using specific approaches (categories), while the vertical bar chart represents article counts within the 

intersections of multiple categories. Each vertical bar corresponds to an intersection in the column beneath it. Black circles denote 305 
the categories on the respective rows present in the intersection, while gray circles signify categories absent from the intersection. 

Intersections with less than 3 2 articles were excluded from the graph for improved presentation. TCH/TC stands for ‘Three-

Cornered Hat/Triple Collocation’. ‘Others’ are approaches that are used only once, which are recorded in Data Availability. 

Except for the validation and intercomparison approach, other approaches showed no increasing or a decreasing proportion in 

selected literature from 2011 to 2021 (Figure 6). Approaches other than validation and intercomparison have only been used 310 

by a small group of researchers and not applied widely or increasingly. This The following sub-sections will discuss the 

application of these the most common uncertainty assessment approaches. 
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 315 

Figure 6: The proportion of reviewed articles per year for each approach to assessing RS-ET uncertainties. 

4.1 Validation 

In validation, RS-ET model results are compared to a ‘reference’ method that is considered by the researcher as the ‘best’ or 

most valid measure. The choice of the ‘reference’ method introduces subjectivity into the model evaluation (Melsen et al., 

2019). In the case of RS-ET, three types of ‘reference’ are typically used: 1) in-situ measurements (N = 572), 2) catchment 320 
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water balance (N = 83) (e.g., river basin, agricultural district), and 3) output from models run with ground-based input data (N 

= 9). Almost all articles that used the validation approach considered an in-situ measurement as their reference (Figure 7) (509 

out of 532), while other types of reference data were much less considered. 

 

Figure 7: Different reference data and in-situ methods used for RS-ET validation in reviewed articles (N = 600). *Other methods for 325 
in-situ ET estimation include volumetric soil water content difference (N = 1), canopy temperature and meteorology monitoring 

system (N = 1), portable chamber (N = 1), atmometer (N =1), Open Top Chamber (N = 1), and crop coefficient method using 

Reference ET equations other than FAO-56 (N = 1).  

 

4.1.1 Using in-situ measurement as the validation reference 330 

Several in-situ methods have been developed to observe estimate ET on the ground, including Eddy Covariance (EC), 

lysimeters, the Bowen ratio energy balance system (BREBS), etc. (Table S3 in Supplementary Information). These 

measurements are often considered the ‘observation’ or ‘reference’ to validate RS-ET. Among these, EC is the predominant 

method for validation and was considered in 386 424 out of 509 600 articles (Figure 7). Four factors explain the popularity of 

the EC method: 1) its relatively large network of stations, 2) long-term temporal coverage of flux towers, 3) open access of 335 

data (e.g., FLUXNET, EuroFlux, AmeriFlux, and OzFlux) and 4) direct measurement of water vapor concentration and vertical 

wind speed of the air parcels to calculate latent heat flux. 
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Figure 7: Different in-situ methods used in reviewed articles (N = 509). 340 

Using in-situ methods for validation faces three main challenges: 1) the cost to set up and maintain measuring stations; 2) the 

mismatch between the source area of measurement and the spatial resolution of an RS-based estimate, and 3) errors in 

measurements and assumptions. For example, the cost of a complete EC system is about ten times the cost of a weather station 

with basic meteorological instruments. Although the EC method can be used to monitor other fluxes (e.g., carbon dioxide and 

nitrogen oxide), the high cost of the EC system still limits the number of sampling points and regions (Oliphant, 2012; 345 

FLUXNET, 2017). The low sampling density can be compensated with low-cost systems (Markwitz and Siebickeor, 2019) 

but at the expense of lower accuracy. In order to obtain validation data at global scale, EC networks need to be expanded in 

many regions (e.g., Africa, South Asia, the Middle East, and South America). 

Spatial support of in-situ measurements often does not overlap with the pixel footprint of the RS images (i.e., the area the pixel 

value represents). The spatial support of in-situ measurements varies among methods, from 1 m2 (micro-lysimetry) to a few 350 
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km2 depending on wind speed and wind direction (eddy covariance and scintillometry). Certain methods for measuring 

components of ET have more limited spatial support (e.g., sap-flow measurement for transpiration). For homogeneous pixels 

(with the same geophysical and ecological characteristics), in-situ measurements can be representative of an entire pixel. 

However, when the pixel covers a large area, RS-ET validation frequently involves heterogeneous pixels. Therefore, multiple 

sites and upscaling methods are required to best aggregate site-specific to pixel-scale information (e.g., Liu et al., 2016; Li et 355 

al., 2018).  

Every in-situ measurement technique is subject to uncertainty and error. Even the most widely used technique, the EC flux 

tower, has limitations in terms of measurement (10–20% error) and spatial support (Glenn et al., 2011; Wang et al., 2015). All 

methods have common sources of error and uncertainty, such as sensor response (detection limit), calibration error (sensor 

drift over time), noise (spurious random spikes in the signal from the sensor), and poor installation and maintenance (Allen et 360 

al., 2011a). Additionally, each method has specific sources of error and uncertainty due to its theoretical assumptions. For 

example, the EC method requires fully developed turbulent fluxes to ensure that the net vertical transfer of water vapor is 

caused by eddies, and the area must be horizontal and uniform. Moreover, the lack of energy balance closure in EC 

measurements needs particular attention, since the gap can be up to 30% of available energy (Wilson et al., 2002; Vendrame 

et al., 2020, Bambach et al., 2022, Allen et al., 2011b). The problem is due to scale mismatch of energy balance components 365 

and unaccounted exchange fluxes on heterogenous landscapes (Foken, 2008). 

Dealing with scale mismatch and uncertainty of reference in-situ measurements is challenging and there is no consistent 

method in the reviewed literature. Some studies only mentioned these issues when discussing the validation result. The 

information about the spatial support and uncertainty of in-situ measurements is not always available to researchers if they 

acquire reference data from other sources. However, without reporting the spatial support and uncertainty of measurements, 370 

we might easily draw biased conclusions: when the validation results are good, we conclude that the model is good without 

questioning the quality of our reference, but when the results are not so good, we conclude that it is because of the imperfect 

reference measurements that the model still is good. Hence, it is important to accompany validation results with the best 

knowledge about the uncertainty and scale mismatch of reference datasets. 

4.1.2 Using the residual of the water balance as the validation reference 375 

ET of an area can be estimated as the residual of the water balance (WB) when the inflow (e.g., precipitation, irrigation supply), 

change in storage, and outflows of water (e.g., runoff, water conveyance) of that area are known. This approach is mainly used 

for assessment at a river basin scale. It assumes that the residual from the basin WB should be the total ET of the basin: ET = 

P - Q - dS/dt, whereP is precipitation, Q is river discharge, and dS/dt is the total change in basin water storage over the time 

period. This water balance approach assumes that there are no other water inflow or outflow across the catchment boundary. 380 

In some studies, dS/dt is assumed to be negligible over a long period of time (a year or longer), which results in a more 

simplified water balance ET = P - Q. 
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For long-term periods (e.g., years, decades), total water storage change (TWSC) over time (dS/dt) is assumed to be zero, such 

that ET estimates are then validated with only P-Q (e.g., Vinukollu et al., 2011a). However, this assumption does not hold true 

in many regions of the world where groundwater is being overexploited at an accelerated rate. For short-term periods (i.e., 385 

months), TWSC is often estimated from GRACE RS-based total water storage anomaly (TWSA) products. However, the 

GRACE TWSA products only cover the period from 2002 with a gap of 11 months from 2017 to 2018 due to the 

discontinuation of between the GRACE and GRACE-FO missions. Although Some techniques are beinghave been developed 

to reconstruct this gap in the GRACE time series (e.g., Yang et al., 2021). However, the the uncertainties accuracy ofin gap-

filled dS/dt estimates from GRACE is are still less known than uncertainties in the initial estimates from GRACE and GRACE-390 

FO (Boergens et al., 2022).. 

The uncertainty in ET estimated by this approach depends on the choice and data quality of other variables (e.g., precipitation 

and river discharge) in the WB (Senay et al., 2011). Lehman et al. (2022) have compared the residual calculated from 1694 

combinations of P, Q, and ET datasets with dS/dt derived from GRACE and found that none of these combinations can close 

the WB in all tested basins. They also suggested that using some combinations of P, Q, and ET datasets cancels out their errors 395 

in the GRACE-based WB. Because of the errors in the P, Q, and dS/dt components, studies that use WB-derived ET as a 

reference to validate ET without accounting for uncertainties in the P, Q, and dS/dt components risk biased conclusions.  

In order to account for errors in P, Q, and dS/dt, some researchers have tried to use multiple datasets (e.g., Weerasinghe et al., 

2020). Recently, Schoups and Nasseri (2021) proposed treating uncertainties in datasets as unknown random variables. Instead 

of using the WB to determine these uncertainties, they estimated ET (and other water fluxes) by combining WB constraints 400 

and uncertainty estimation into a comprehensive probabilistic model. Although only applicable for river basins where GRACE 

resolution is suitable, this could be a good direction for future research on these water fluxes. 

4.2 Intercomparison 

Intercomparison is the second most widely used method (195 212 out of 60176 studies). In intercomparison, the RS-ET 

estimates from multiple models are compared without assuming a superior one. This approach is mainly used to evaluate the 405 

relative uncertainty of a model compared to others (155 170 out of 195 212 studies). Intercomparison has also been used to 

evaluate other sources of uncertainty. For example, uncertainty from a change of spatial support can be evaluated by comparing 

model outputs using different input upscaling methods (e.g., Ershadi et al., 2013; Sharma et al., 2016). Intercomparison has 

also been used to evaluate uncertainty due to the choice of input datasets (e.g., Long et al., 2011; Wang et al., 2016; Badgley 

et al., 2015).  410 

Since the RS-ET datasets have both temporal and spatial dimensions, comparing RS-ET models or products is usually done 

by aggregating over one or two dimensions (i.e., resampling to a lower resolution). The simplest method of intercomparison 

involves aggregating ET estimates both temporally and spatially into one value (e.g., global annually averaged ET) and then 

comparing this value from different models or products (e.g., Mueller et al., 2013; Pan et al., 2020). Other methods of 

intercomparison involve comparing time series of spatially aggregated ET (e.g., monthly basin-scale ET). Aggregating over 415 
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one of the two spatial dimensions is sometimes applied (e.g., Pan et al., 2020; Chen et al., 2019). The time series can also be 

aggregated by land cover classes (e.g., Weerasinghe et al., 2020) or climate zones (e.g., Trambauer et al., 2013), describing 

how RS-ET uncertainty varies in different conditions. For spatial intercomparison, temporally aggregated RS-ET maps can be 

compared visually (e.g., Weerasinghe et al., 2020) or by using simple map algebra (e.g., Jung et al., 2019). Only a few studies 

have applied metrics to evaluate the spatial similarity between two datasets, such as the Spatial Efficiency metric (SPAEF) 420 

(Stisen et al., 2021; Jung et al., 2019) and the degree correlation measure of spherical harmonic coefficients (López et al., 

2017). None of these methods can characterize uncertainty in RS-ET fully, thus, combining them would provide a more 

comprehensive intercomparison. 

4.3 Sensitivity analysis and uncertainty propagation 

Sensitivity analysis (SA) is the third most used approach in the reviewed literature, but is only applied a in a small proportion 425 

of the reviewed studies (53 61 out of 60176 articles). Out of these, only 67 studies applied global sensitivity analysis (GSA). 

Sobol’s (2001) method was applied to the parameters of the MODIS16 algorithm (Zhang et al., 2019), the TSEB model 

(Burchard-Levine et al., 2020), and three RS-ET models (PT-DTsR, MODIS16 algorithm, and PML) (Cao et al., 2021). This 

method was also applied to input variables of RS-ET models alone (e.g., Gomis-Cebolla et al., 2019). Elhag (2016) applied a 

similar variance-based sensitivity measure for the SEBS model but did not refer to Sobol’s method. The Extended Fourier 430 

Amplitude Sensitivity Test (EFAST) has also been applied for GSA (García et al., 2013). This limited number of studies shows 

the application of GSA onto RS-ET models has been under-researched during the last decade, despite the importance of GSA 

in environmental modeling (Saltelli et al., 2021). 

The majority of articles that applied sensitivity analysis (47 54 out of 6153) did not mention or apply a GSA method and thus, 

were considered to be local sensitivity analysis (LSA). In most of these studies, LSA was done by changing one parameter at 435 

a time (One-at-A-Time or OAT) and calculating the ratio of change in ET over change in parameter (e.g., Long et al., 2011). 

In the reviewed articles, the One-at-A-Time OAT method has been implemented differently in terms of three factors: 1) the 

selection of parameters for LSA according to their importance judged by the researchers, 2) the range of values over which 

parameters are allowed to vary, and 3) the calculation of sensitivity for specific land covers. This suggests that LSA is 

influenced by the subjectivity of the researchers. 440 

4.4 Evaluation of input data 

The uncertainties of key input datasets are sometimes evaluated by researchers in studies that assess uncertainty in RS-ET 

without explicitly being propagated to model outputs. This approach ranked fourth in the number of articles with 12 20 out of 

601676. The key input datasets considered by researchers include air temperature, incoming shortwave radiation, incoming 

longwave radiation, wind speed, and land surface temperature (e.g., Vinukollu et al., 2011; Pardo et al., 2014; Peng et al., 445 

2016; Li et al., 2017). Input datasets were evaluated through validation with their in-situ counterpart. Although other input 

datasets like Vegetation Indices are also important in RS-ET models, the in-situ measurements of these are often not available 
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for evaluation (Vinukollu et al., 2011). Some of the forcing datasets of RS-ET models are not remotely sensed data but are 

products from atmospheric data assimilation systems (e.g., Global Land Data Assimilation System (GLDAS) and ECMWF 

atmospheric reanalysis (ERA)), which are sometimes provided with uncertainty estimates from data providers. Evaluating the 450 

input data provides crucial a priori information for propagating uncertainty to ET estimates. Furthermore, even if uncertainty 

propagation is not conducted, these assessments can help to identify sources of uncertainty in RS-ET; as the saying goes, 

“garbage in, garbage out”.  

4.5 Uncertainty propagation 

Only 8 out of 676 articles applied the uncertainty propagation approach, mainly the Monte Carlo Methods (MCMs), to evaluate 455 

uncertainty in RS-ET. In MCMs, the model inputs are randomly sampled from their distributions and fed into the model to 

generate outputs repeatedly. The variance of the output distribution will then be onsidered the uncertainty in the model output 

(i.e., ET estimate) associated with the input variables. The limited application of uncertainty propagation can be attributed to 

its complexity and computational demand. Sensitivity analysis and uncertainty propagation are ideally carried out in tandem 

(Crosetto et al., 2001; Saltelli et al., 2019), but only 5 out of 8 articles combined these approaches. The uncertainty propagation 460 

approach was also used for investigations beyond uncertainty quantification. For example, Talsma et al. (2018) used MCM to 

determine the uncertainties in ET partitioning (i.e., soil evaporation, interception, and transpiration) in 3 RS-ET models 

(MOD16, PT-JPL, and GLEAM) due to the relative uncertainty in the key variables. 

In the reviewed studies, uncertainty propagation was done only at one or a few fixed locations by assuming the probability 

distribution of the input variables, then simulating a range of ET values at these locations. This approach is computationally 465 

inexpensive but does not fully characterize uncertainties in a spatial field of ET. To fully quantify uncertainty in a scene, 

Cawse-Nicholson et al. (2020) introduced a method based on MCM and spatial-statistical models (Cressie, 1993). With this 

method, the probability distribution of ET per pixel in a satellite scene can be quantified and presented as percentile maps. 

This distribution was almost always non-Gaussian for all pixels in ET scenes, which means simple linear error propagation is 

not possible (Cawse-Nicholson et al., 2020). Future studies of RS-ET would benefit from the development of new methods to 470 

quantify uncertainty spatially. 

4.6 Triple Collocation and Three-cornered hat method 

The Three-cornered Cornered hat Hat method (TCH) (Premoli et Tavella, 1994) and triple Triple collocation Collocation (TC) 

(Stoffelen, 1998; McColl et al., 2014) are related to the intercomparison approach in the sense that these techniques assess the 

relative uncertainty of three datasets without assuming one is the best. Therefore, these techniques are useful when there lacks 475 

a high-quality reference dataset. Both TC and TCH methods require a set of three datasets with the assumption that their errors 

are independent (Sjoberg et al., 2021). The difference between TCH and TC is that TC can only be used to assess uncertainties 

of uncorrelated datasets, while TCH can be used when there are correlations with proper constraints (Xu et al., 2019; Sjoberg 

et al., 2021).  However, to date few studies have evaluated uncertainties in RS-ET using TC (Miralles et al., 2011b; Barraza 
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Bernadas et al., 2017; Khan et al., 2018; and Kibria et al., 2021) and TCH (Long et al., 2014; Xu et al., 2019; and He et al., 480 

2020). The proportion of studies that used these methods is less than 52% of the total reviewed articles and is not increasing 

(Figure 6). This low adoption might be attributed to the limitations of these methods: 1) the lack of information about biases 

and only estimation of random errors (e.g., RMSE, standard deviation, or variances), 2) the required conditions to achieve 

reliable error estimates (large samples, similar scales and magnitudes of errors between datasets) (Sjoberg et al., 2021), and 3) 

the reliability of TCH as an alternative to direct validation (Wu et al., 2019b).  485 

4.6 7 Physical consistency  

Physical consistency can be understood as the plausibility that an ET estimate is consistent with the physical conditions or 

characteristics of the area it represents. Consistency check or physical validation was proposed by Zeng et al. (2015) as the 

final step in a general validation process for big remote sensing datasets. When there is limited reference data and ground-

based measurements, physical validation is critical to assess the quality of data products (Blatchford et al., 2020). Although 490 

physical validation does not quantify uncertainty using metrics, it provides an evaluation of the data quality. This is useful to 

identify the regions and conditions in which RS estimates are more uncertain and where more effort in direct validation 

approaches is required. 

Only 6 studies in the selected literature have attempted to quantify this plausibility (Figure 6), but they defined physical 

consistency differently.  For example, Rwasoka et al. (2011) used FAO Penman-Monteith potential ET estimates as a threshold 495 

to decide whether ET estimates from the SEBS model were physically inconsistent. Blatchford et al. (2020) used the ET/P 

ratio and water availability (P-Q) to evaluate the physical consistency of the WaPOR ET product. López et al., (2017) 

developed a technique to assess the hydrological consistency of ET by transforming both ET and P data into spherical 

harmonics and then using spherical harmonic coefficients to calculate the degree correlation. These studies are not the same 

as validating RS-ET with P-Q or P-Q-dS/dt as discussed previously, since these residuals were not considered the best 500 

reference of ET.  

Another method to assess physical plausibility without explicit water balance is through the Budyko curve. The Budyko curve 

describes the semi-empirical relationship between long-term ET and its limiting factors, i.e., precipitation and potential ET 

(PET), for river basins (Budyko, 1974). Koppa et al., (2017) validated the physical consistency of ET by calculating the RMSE 

of the Euclidean distance between the data points and the Budyko curve in ET/P and PET/P space. Weerasinghe et al., (2020) 505 

simply calculated the mean difference (bias) between RS-ET and Budyko-derived ET to evaluate which RS-ET product 

exceeds the energy and water limit defined by the Budyko curve. They also noticed that if a data point does not align with the 

Budyko curve, it might also mean that the ET of the basin exceeds the water or energy limit, for example, due to human 

activities. Therefore, the interpretation of physical plausibility needs to consider the actual knowledge about water resources 

in the basin, instead of focusing only on model generated numbers. 510 
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4.7 8 Using Eensemble of RS-ET estimates 

Intercomparison studies sometimes lead to ensemble-mean products of all available products, on the basis of the assumption 

that no model performs best, so an ensemble of them would be preferable (Bhattarai et al., 2019; Elnashar et al., 2021). This 

approach has been used the least in the reviewed articles (Figure 6). Some researchers have evaluated the uncertainty in an 

ensemble (a set) of RS-ET estimates from different models by calculating the average and range of all members in the ensemble 515 

(Vinukollu et al., 2011b; Elnashar et al., 2021; Guo et al., 2020). This approach is the same as the multi-model ensembles in 

climate modeling. The model structural uncertainty can only be quantified if independent models are sampled from the entire 

possible model space and avoid the over-representation of one model structure (Abramowitz and Gupta, 2008). For example, 

Vinukollu et al. (2011b) selected three RS-ET models, namely SEBS (Su, 2002), PM-Mu or MODIS16 (Mu et al., 2007), PT-

Fi or PT-JPL (Fisher et al., 2008), which are based on distinct equations used to estimate ET.  520 

The ensemble approachUsing ensemble of RS-ET estimates provides uncertainties of the ensemble but not each individual 

member of the ensemble. Thus, some studies went further by merging the datasets of the ensemble and calculating the 

difference between this merged dataset with each ensemble member (Baik et al., 2018; Elnashar et al., 2021). If simply 

averaging all the ET products, the bias of different models can be canceled in regions where they perform differently but 

accumulated in regions where they perform in the same manner. Hence, the ensemble products may arguably produce better 525 

estimation in some areas (Yao et al., 2017), but not a better understanding of the physical processes and drivers needed to 

improve RS-ET (Yao et al., 2014; Zhang et al., 2016). Therefore, it is considered more useful to use the range of the ensemble 

to identify the outlier data products or the uncertainty of all data products. 

5 Context of RS-ET uncertainty assessment 

The context in which the uncertainty of RS-ET is assessed determines which method is selected and how it is applied. This 530 

context includes the objective of the RS-ET estimates, the spatial and temporal support at which ET is assessed, geographic 

location, and the availability of reference datasets. This section describes the context in which 601 676 reviewed articles 

assessed uncertainties in RS-ET. 

5.1 Research oObjectives of the reviewed articles 

The review shows that uncertainties in RS-ET estimates were assessed at all stages, from developing a new model to evaluating 535 

its data product. Uncertainty in RS-ET was assessed in the context of model implementation (343% of reviewed articles), 

model development (1213% of all reviewed articles), model improvement (17%), model evaluation (19%), and product 

evaluation (1716%) (Figure 8). Here, model implementation means that a pre-existing model was applied to new case studies 

or to achieve some specific research objective without considerable modification or further development of the model. The 

prominence of model implementation as the main objective in the reviewed articles could be due to a perceived need to assess 540 

the uncertainty of RS-ET estimates for each application despite previous validation. This is an important attitude in the research 
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community since it helps to provide feedback on appropriate application, and improvement of RS-ET models. Therefore, 

studies in the context of model implementation should not be overlooked. 

 

 545 

Figure 8: Research objective of the reviewed articles (N=601676). 

5.2 Sources of uncertainty evaluated 

The reviewed articles evaluated all sources of uncertainty as categorized in the theoretical framework (Figure 3), with strong 

focus on compound uncertainty. Figure 9 shows that the majority (360 406 out of 601676) of reviewed articles assess only 

compound uncertainty without disaggregating into other sources. The second largest set of articles assessed both compound 550 

uncertainty and the relative uncertainty of RS-ET estimates. Other sources of uncertainty are remarkably less evaluated in the 

selected literature. According to the number of articles in each set (Figure 9), the level of interest in different sources of 
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uncertainty can be ranked as follows: compound, relative, input data, model parameterization, change of spatial support, 

change of temporal support, and finally gap filling. This does not necessarily show the ranking of importance of the uncertainty 

sources, but rather the availability of methods and data needed to assess them. 555 
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Figure 9: The source of uncertainty assessed in reviewed articles (N=601676). The horizontal bar chart displays the number of 

articles assessing specific sources of uncertainty (categories), while the vertical bar chart represents article counts within the 

intersections of multiple categories. Each vertical bar corresponds to an intersection in the column beneath it. Black circles denote 560 
the categories on the respective rows present in the intersection, while gray circles signify categories absent from the intersection.  

Intersection with less than 3 2 articles were excluded from the graph for improved presentation. 

The uncertainties due to temporal upscaling are affected by several factors related to location (Jiang et al., 2021). These factors 

includes vegetation cover, soil moisture (Gentine et al., 2007, and Hoedjes et al., 2008), cloud coverage (as discussed in 

research by Van Niel et al., 2012), cloud frequency (as explored in studies by Xu et al., 2015), air pollution effects (as indicated 565 

in research by Zhang et al., 2013), the return interval of the satellite (Alfieri et al., 2017), the timing-of-overpass (Jiang et al., 

2021), and the number of instantaneous values used for upscaling (Liu et al., 2021). Consequently, applying a single temporal 

upscaling method for the entire globe results in spatially varying uncertainties in RS-ET estimates. 

 

5.3 Spatial and temporal support of uncertainty assessment 570 

Uncertainties in RS-ET estimates are specific for different spatial and temporal supports. The reviewed studies evaluated RS-

ET uncertainties at spatial supports ranging from less than 100 m up to global, and temporal support ranging from sub-daily 

to annual (Figure 10). Most studies evaluated RS-ET uncertainties at spatial supports of 500 m to 5 km (244 268 out of 60176) 

and less than 100 m (19164 out of 601676). This can be attributed to the availability of RS datasets that are widely used to 

estimate ET, such as MODIS (250 m to 1 km) and Landsat (30 m to 100 m). In the case of validation, the spatial support of 575 

uncertainty assessment was determined by the spatial support of the ground truth reference. For temporal support, uncertainty 

was mostly evaluated by daily ET (32865 out of 60176), although RS datasets provide observations at the time of satellite 

overpass with a temporal resolution of 5-16 days. Thus, RS-ET models must estimate instantaneous ET and then upscale to 

daily ET, which is more useful in ET applications (e.g., irrigation monitoring). This shows that the temporal support of 

uncertainty assessment is driven more by practical needs and less by the availability of datasets.  580 
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Figure 2010: Number of articles per range of spatial and temporal support at which uncertainty in RS-ET was assessed (total number 

of articles N=601676). 585 

5.4 Geographical distribution 

Assessment of RS-ET uncertainties is not evenly distributed over the globe. The number of articles per country where 

uncertainties in RS-ET were assessed is shown in Figure 11. Each article was tagged by the country where the sites of study 

is located. The highest number of articles assessed ET in China. Because the most common approach is validation and the 

most common reference used is EC measurements, ET was mainly assessed where there are EC stations (i.e., AmeriFlux, 590 

AsiaFlux, ChinaFlux, OzFlux, EuroFlux, FLUXNET). Even when the studies aimed to validate RS-ET globally, the estimated 

uncertainty is not universal since these networks do not cover many regions. These studies were also included in Figure 11. 
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Figure 11: Number of articles per country where uncertainties in RS-ET were assessed. 595 

Based on its popularity, EC can be considered the de facto standard ET estimation approach for validation of RS-ET. However, 

this popularity is mainly driven by the number of publications in countries where EC towers are more densely distributed (e.g., 

China and the United States of America). In countries where there are very few or no EC towers available, the most common 

reference used for validation of RS-ET is the water balance method (Figure 12). In a few countries in North Africa and the 

Middle East, the most common method is to use the FAO-56 method (Allen et al., 1998) in combination with crop coefficients 600 

to estimate ground-based references for validation (e.g., Egypt and Iran).   



33 

 

 

 

Figure 12: The most common reference used for validation of RS-ET per country. 

6 Results of RS-ET uncertainty assessment 605 

6.1 Uses of uncertainty metrics 

The reviewed articles that assess uncertainty in RS-ET mainly report accuracy (RMSE), bias (mean error), and the goodness-

of-fit with a reference dataset (R2) (Figure 13). Although quantifiable uncertainty in measurement is theoretically represented 

as a probability distribution, this has rarely been done in the literature. The reviewed studies used a wide range of metrics to 

report their uncertainty assessment (33 metrics). Most studies used three metrics, while some used up to twelve. Larger number 610 

of metrics provide more description of uncertainty, but some metrics might be challenging to interpret. 
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Figure 13: Number of studies per choice of metric to report uncertainty and the number of metrics used. 

Root Mean Square Error (RMSE) is the most widely used metric in the reviewed articles (467 531 out of 60176 articles). 615 

Metrics related to RMSE include normalized RMSE (normalized by standard deviation) and relative RMSE (as a percentage 

of mean ET). Very few studies (13 17 articles) used modified RMSE to report more robust results and few consider random 

error and systematic error, such as robust RMSE (Bisquert et al., 2016), systematic and unsystematic RMSE (Yebra et al., 
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2013), biased and unbiased RMSE (Martens et al. 2017). RMSE has the unit of the estimates, so it can be expressed in mm for 

ET or Wm-2 for latent heat flux. Therefore, to compare reported RMSE between different studies, unit conversion is needed.  620 

Inconsistent use of metrics such as R2 might cause misinterpretation of results, especially when comparing studies. For 

example, the second most used evaluation metric was referred to using many names including mean error, mean difference, 

bias error, or bias. Meanwhile, the coefficient of determination (R2) has the opposite issue, in which the same term was used 

with different formulas. R2 is a measure of goodness-of-fit for regression models. There are at least 8 formulas for R2 in the 

literature (Kvålseth, 1985), but only one formula can be used for any type of model fitting (i.e., 𝑅1
2  in Kvålseth, 1985). Since 625 

many studies did not report which formula they used, we did not distinguish between different R2 formulas in Figure 13. 

Nevertheless, we observed that at least four different formulas of R2 were used in the reviewed articles including the squared 

coefficient of correlation (Table S4 in Supplementary Information).  

No matter which metrics are used, the validation metrics that compare estimate with reference only represent actual error if 

the reference is the absolute truth. This is never the case because in-situ measurements and upscaling methods are never perfect. 630 

Wu et al. (2019a) suggested that validation should be performed in conjunction with uncertainty associated with in-situ 

measurements and the statistical significance of performance metrics. 

6.2 Synthesizing reported RS-ET uncertainty from reviewed studies 

Although there are a large number of papers assessing uncertainty of RS-ET data, only a few attempted to synthesize their 

results. For example, a review by Karimi and Bastiaanssen (2015) used meta-analysis (i.e., using statistical methods to 635 

synthesize results of independent studies) to estimate the probability density function of mean absolute percentage error 

(MAPE) in 46 studies that validate RS-ET estimates in seasonal cycles. Kalma et al. (2008) summarized the relative error and 

RMSE of RS-ET reported in 30 studies. These syntheses are limited in number of studies (<50) and the selection of studies 

were not systematic. Another limitation of synthesizing these results is that the selected studies used different validation data 

and field instruments, which do not have equivalent spatial support and accuracy.  640 

Synthesizing results of the reviewed articles in this study will provide a useful reference for future studies to evaluate the 

results of RS-ET uncertainty assessment. For a meta-analysis, selected studies should use the same validation data and report 

the same metric, thus, we selected the most used validation data and metric. Since the majority of studies used EC flux towers 

and RMSE to report uncertainty (337 372 out of 601676), we selected these studies for meta-analysis of reported RS-ET 

uncertainty. From 337 372 articles, 31848 articles that reported RMSE of RS-ET from validation with EC flux tower were 645 

included. The remainder were excluded because the RMSE was not reported in figures with extractable values (Figure 4). 

RMSE values in units other than mm/day were converted to mm/day assuming constant rate of ET over the temporal support. 

For example, 365 mm/year was converted to 1 mm/day and 0.1 mm/hour was converted to 2.4 mm/day. 
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The reported RMSE values for daily ET (N = 23,407167) range from 0.01 to 6.65 mm/day with the mean value of 1.128 

mm/day (Table 34), which is comparable with RMSE previously reported by Kalma et al. (2008). When converting RMSE 650 

values from the reported unit to a common unit of mm/day, the mean RMSE is the highest for validation of instantaneous RS-

ET (2.81 mm/day) and the lowest for monthly (0.50 78 mm/day). In general, studies with larger temporal support of validation 

have lower mean RMSE in mm/day. For the validation at temporal support of 3-hour, 10-day, and week, less can be concluded 

due to small number of studies and records. Overall, the decrease of RMSE with increasing temporal support is due to the 

averaging and corrective effect of temporal upscaling. Therefore, improving temporal upscaling and gap-filling methods are 655 

crucial for reducing uncertainty in RS-ET estimates. 

Table 34: Descriptive statistics of reported RMSE values (in mm/day) in reviewed articles (N=317348) with validation of RS-ET with 

EC flux towers. 

Temporal 

support 

Number 

of 

records 

median mean 
standard 

deviation 
min 

25th 

percentile 

75th 

percentile 
max 

instantaneous 680703 0.932.64 2.812.81 1.461.47 0.200.20 1.671.65 3.613.62 8.638.63 

30-min 130 1.591.58 1.661.66 0.800.80 0.160.16 0.100.99 2.162.16 4.134.13 

hour 119135 0.620.56 1.030.88 1.030.97 0.160.16 0.400.35 1.291.14 6.005.99 

3-hour 18 2.482.48 2.582.58 0.800.80 1.441.44 1.921.92 3.113.11 4.544.54 

day 24073167 0.930.94 1.181.12 0.820.71 0.010.01 0.700.71 1.301.27 6.656.65 

week 13237 0.760.63 0.820.49 0.350.29 0.020.02 0.580.17 1.000.71 2.610.81 

8-day 454528 0.750.75 0.870.88 0.470.48 0.020.04 0.560.56 1.101.11 3.403.40 

10-day 1522 0.930.90 1.041.04 0.430.46 0.40.40 0.80.80 1.181.16 2.202.20 

16-day 5353 0.490.49 0.500.50 0.140.14 0.220.22 0.400.40 0.620.62 0.890.89 

month 469499 0.620.60 0.820.74 0.350.53 0.020.03 0.580.38 1.000.97 2.64.96 

year 7171 0.830.83 0.800.80 0.310.31 0.150.15 0.610.61 1.021.02 1.491.49 

overall 44295563 0.970.95 1.311.31 1.071.06 0.010.01 0.670.67 1.501.49 8.63 

 

Figure 14 shows that very high RMSE values were mainly from validation approaches that used a single EC site. Validation 660 

based onusing data from a large greater number of EC sites are more likelytends to result inyield lower RMSE values. This 

might be attributed to the fact that when papers only report average RMSE values across multiple EC sites, the average RMSE 

is lower than the highest individual RMSE. Moreover, the random errors at each site are likely to be uncorrelated or partially 

cancel each other out when averaging them and further reduces the overall RMSE. As RMSE is inherently dependent on the 

scale of ET, sites with lower ET values or the practice of averaging ET across multiple sites are more likely to exhibit lower 665 

average RMSE values. Unfortunately, only a limited number of studies provided information on relative RMSE or the average 

ET corresponding to RMSE values, which hindered the derivation of scale-independent RMSE values across all studies. 
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As shown in this study, the distribution of validation sites is concentrated in regions where EC flux towers are available. The 

results of the validation, thus, are not necessarily transferable to other areas because tThe control factors of ET and uncertainty 

in their estimates are not the same globally (Zhang et al., 2016). As the distribution of validation sites is concentrated in regions 670 

where EC flux towers are available (Figure 12), the results of the validation, thus, are not necessarily transferable to other 

areas. Therefore, when interpreting the uncertainty of RS-ET based on validation, we should consider the validation metrics 

at each site individually and the variation of these metrics among all locations. 
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 675 

Figure 14: RMSE (mm/day) of RS-ET based on validation with Eddy Covariance (EC) observations in reviewed articles (N= 31487). 

Each The scattered dots represents one RMSE values reported in articles. The dot color shows the number of EC sites used in 

validation. The green area under the curve represents the kernel density estimation of the underlying probability distribution. The 

box-and-whisker plot represents 5th, 25th, 50th (median), 75th, and 95th percentiles of the distribution. The orange circle inside the 

box-and-whisker plot represents mean value. 680 

The large range of RMSE obtained from the meta-analysis can be explained by the diversity of reviewed studies in terms of 

models, resampling methods, and validation context (e.g., temporal scales, land cover, climate, amount of data). For example, 

some studies validate RS-ET estimates from global products, while others validate RS-ET estimates from models that were 
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calibrated to reduce RMSE. Moreover, many studies reported RMSE of latent heat flux (in Wm-2 or MJm-2day-1) averaged 

from estimates at the time of satellite overpass. The accuracy of RS-ET varies at different times of the day due to weather 685 

condition, and is, thus, not representative of the entire day. We converted these values to mm/day (Table 34) only for 

comparison between different temporal supports. The range of RMSE presented in Figure 14 and Table 3 should only be 

considered as a baseline for typical error in RS-ET. Using only RMSE to compare RS-ET model performance across different 

studies or validation sites is not recommended.  

7. Summary 690 

This paper identifies and appraises methods for uncertainty assessment of RS-ET estimates. We applied by applying thea 

systematic quantitative literature review (SQLR) approach to identify the number of original research papers in distinct 

categories of studies, which includes scale, region, source of uncertainty, and method. The majority of reviewed articles assess 

uncertainty in RS-ET estimates by validation against EC measurements. In regions where in-situ measurements are limited, 

most studies used the residual of the water balance as a reference for validation. Making use of existing EC networks is 695 

important for global validation of RS-ET estimates. However, there is still a gap in the availability of in-situ data for global 

validation, as most are concentrated in North America, East Asia, and Europe. Moreover, the challenges in energy balance 

closure and scale mismatch persists through  thethrough the reviewed studies. The future of RS-ET is geared toward enhancing 

spatiotemporal resolutions (Fisher et al., 2017) thanks to progresses in thermal infrared missions (e.g., ECOSTRESS, LSTM, 

SBG, TRISHNA, and Hydrosat), along with the development of small satellite constellations (e.g., Landsat Next and 700 

Copernicus Contributing Missions). Consequently, there is a need for methods to resample in-situ measurements to the 

spatiotemporal resolution of these satellite systems to assess uncertainties of RS-ET data derived from these sources.In regions 

where in-situ measurements are limited, most studies used the residual of the water balance as a reference for validation.  

Since the uncertainty in RS-ET in literature is most often reported in terms of the RMSE of RS-ET estimates compared to EC 

observations, The uncertainties of RS-ET are not easy to quantify and characterize ina single study. Future research should 705 

combine local and global evaluation efforts. Combining multiple approaches for uncertainty assessment of spatiotemporal RS-

ET data is recommended due to limitations of validation datasets. Approaches other than direct validation includes 

intercomparison, sensitivity analysis, uncertainty propagation, physical consistency check, evaluation of input, triple 

collocation, and the ensemble of estimates. Both sensitivity analysis and uncertainty propagation approaches were shown to 

be useful for the advancement of RS-ET techniques by identifying and quantifying the sources of uncertainty. However, 710 

applying uncertainty and sensitivity analysis approaches to remote sensing retrieval models over a large spatial extent is 

computationally demanding. We showed in our review that there are very few studies that applied sensitivity analysis and 

uncertainty propagation techniques for RS-ET estimates and that their methods are limited to less computationally demanding 

options. This impedes the ability to assess a detailed spatiotemporal distribution of RS-ET uncertainty. Therefore, future 
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research on uncertainty in RS-ET estimates needs to develop and apply more advanced sensitivity analysis and uncertainty 715 

propagation methods. 

As the majority of reviewed articles used validation, wwe provide the typical range of uncertainty in RS-ET based on a meta-

analysis of 317 articles that reported this metric uncertainty in RS-ET as the RMSE compared to EC observations. The RMSE 

range reported in our study can be used in future research to compare and evaluate results with the majority of validation 

studies.  RMSE varies a lot among validation sites and temporal supportsstudies due to different models, resampling methods, 720 

and site conditions. Moreover, validation with more thanmultiple one station sites reported lower value average and smaller 

variation of RMSE than validation at single site. Therefore, validation metrics only reflect uncertainty of RS-ET at specific 

locations. While RMSE stands as the most commonly employed metric in the literature, it is unsuitable for comparing 

uncertainties in RS-ET across different studies due to its inherent scale-dependency. Therefore, validation metrics only reflect 

uncertainty of RS-ET at specific locations. The RMSE range reported in our study should be only used as a baseline for future 725 

studies that validate RS-ET estimates using EC. 

Comparing performance of RS-ET models and investigating the sources and geographical distribution of uncertainty in their 

ET estimates remains an important research for many applications. Global assessments provide a broad perspective on RS-ET 

uncertainties by considering factors that affect data quality on a large scale, such as satellite sensor characteristics, model 

characteristics, geographical and climatic factors. Local assessments, on the other hand, focus on specific study areas, which 730 

may have unique conditions and sources of uncertainty that are overlooked in global assessments. Therefore, future research 

should combine local and global evaluation efforts.  

For future researches that validatevalidation of RS-ET estimates with in-situ methods, we provide specific recommendations: 

• ● The uncertainty of the reference datasets, including correction for surface energy balance closure, should be 

evaluated and reported. 735 

• ● RS-ET estimates should be converted to values at the temporal and spatial scale of reference 

datasets.Temporal and spatial support of reference datasets should be matched as much as possible to that of the RS-

ET estimates. 

● Multiple metrics should be used to better characterize uncertainties in RS-ET estimates. 

• ● The four common metrics (RMSE, bias/mean error, correlation coefficient, coefficient of determination) 740 

and, mean ET, the number of data points, and statistical significance test should be reported in validation studies. 

• The statistical significance of validation metrics should be tested and the number of data points used should be 

reported. 

• In addition, uncertainties in RS-ET estimates should be characterized using multiple metrics that are scale-

independent to facilitate comparison of RS-ET uncertainty across regions with different ET ranges. 745 
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• Validation of RS-ET models and data products should be reported at different levels of spatial and temporal scales, 

covering multiple locations. 

We recommend combining multiple approaches for uncertainty assessment of spatiotemporal RS-ET data when validation 

datasets are limited. These approaches include intercomparison, sensitivity analysis, uncertainty propagation, physical 

consistency check, evaluation of input, triple collocation, and the ensemble of estimates. Both sensitivity analysis and 750 

uncertainty propagation approaches were shown to be useful for the advancement of RS-ET techniques by identifying and 

quantifying the sources of uncertainty. However, our review shows that there are very few studies that applied sensitivity 

analysis and uncertainty propagation techniques for RS-ET estimates and that most studies employed less computationally 

demanding options. This impedes the ability to assess a detailed spatiotemporal distribution of RS-ET uncertainty. Therefore, 

future research on uncertainty in RS-ET estimates needs to develop or apply more advanced sensitivity analysis and uncertainty 755 

propagation methods.  

 

● Validation results should be reported at various levels of spatial and temporal support and at multiple locations with 

different characteristics 

● The statistical significance of validation metrics should be tested and the number of data points used should be 760 

reported. 

Since uncertainty in RS-ET is an attribute of any spatiotemporal dataset, the remaining challenge is to characterize uncertainty 

spatially and temporally. This means not only quantifying the overall expected errors of the dataset but also identifying where 

and when high uncertainty is most likely to occur. Several studies have aimed to offer spatially explicit uncertainty in thematic 

classification, such as land cover and soil type. These studies, like the ones mentioned by Woodcock (2002), have primarily 765 

focused on qualitative mapping techniques. However, for quantitative remote sensing, which involves mapping continuous 

variables like ET, there is a need for methods that can effectively characterize spatially explicit uncertainty. Therefore, we 

strongly recommend the development and application of methods to evaluate spatiotemporal uncertainty in RS-ET datasets. 

Several studies in remote sensing have attempted to provide spatially explicit uncertainty of thematic classification (e.g. land 

cover, soil type), such as the studies listed by Woodcock (2002). For quantitative remote sensing, which is the mapping of 770 

continuous variables like ET, methods to characterize spatially-explicit uncertainty are desirable but have not been developed 

as much as thematic mapping (e.g. pattern recognition, feature extraction). Therefore, we recommend that methods that 

evaluate spatiotemporal uncertainty need to be developed and applied 615 to RS-ET datasets.  

Data availability 

The systematic categorization and analysis of the reviewed articles are available at https://doi.org/10.4121/797dcaff-56e3-775 

45ae-a931-f6f4a3135d26.v12  
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The reported RMSE data from the reviewed articles that used Eddy Covariance to validate Remote Sensing-based estimates 

of Evapotranspiration are available at https://doi.org/10.4121/e6e1713a-0c2b-4775-a7f4-9e6e0b2cf40f.v12  
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