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Response to Reviewer Comments 

We thank the reviewers for their comments, which helped to improve the quality and clarity of the 

manuscript. Below, the reviewer’s comments are repeated in the italic text. Our response follows in 

normal letters. Blue text is used to cite from the revised manuscript. When page and line numbers are 

specified, they refer to the clean version of the revised manuscript.  

 

REFEREE 1 (RC1) 

Specific comments  

1. ADS-B data provide information on the ground distance. To simulate the aircraft performance 

correctly information on Mach-Number or the True Air Speed (TAS) of the aircraft is necessary. Is 

the ERA-5 atmosphere data also used to convert ground speed to true airspeed by modifying ground 
distance with heading information and 4D real wind speed data? Or was the assumption making 

that ground speed = air speed and wind effects on aircraft performance neglected? As differences 
of EIs and inefficiency distribution with regard to head and tail wind effects are presented in detail 

(Figure 7), the referee recommends to explain how the TAS/Mach number of the total energy model 

simulation will match the waypoint profile segments based on ground distance.  

• The reviewer is correct that the 3D position of the aircraft provided by ADS-B telemetry is 

used to calculate the ground distance, and the ground speed (GS) is estimated by dividing the 

ground distance with the time elapsed between waypoints. The GS at each waypoint is 

subsequently converted to true airspeed (TAS) by using the magnitude of eastward and 

northward wind provided by the ERA5 reanalysis. The estimated TAS is then provided as 

inputs to the aircraft performance and emission models. Therefore, the estimated aircraft 

performance parameters and emission indices account for the head and tail wind effects. 

• Thank you for highlighting this missing information. A detailed description in deriving the 

TAS and Mach number is now included in the main text and Supporting Information (SI): 

o [Main text: Lines 152 – 154] “The ambient temperature and horizontal wind components 

are required to calculate the true airspeed and Mach number at each waypoint, c.f. Eq. 

(S1) and (S2) in the SI §S1.1, and we obtain these variables the local meteorology by 

performing a quadrilinear interpolation against historical weather data from the ERA5 

HRES reanalysis.” 

o [SI: Lines 70 – 82] “We also use the aircraft GPS position (longitude and latitude) 

provided by the ADS-B telemetry to calculate the segment length between 

waypoints. The ground speed (GS) is estimated by dividing the segment length by 

the time elapsed between waypoints, and a Savitzky-Golay filter is used to reduce 

the noise in the derived GS (Savitzky and Golay, 1964). The smoothed GS is 

subsequently converted to true airspeed (TAS) using the historical wind fields 

provided by the European Centre for Medium-Range Weather Forecast 

(ECMWF) ERA5 high-resolution realisation (HRES) reanalysis (ECMWF, 2021; 

Hersbach et al., 2020),   

𝐓𝐀𝐒 = √(𝐆𝐒𝐜𝐨𝐬(𝜶) − 𝑼𝐄𝐑𝐀𝟓)𝟐 + (𝐆𝐒𝐬𝐢𝐧(𝜶) − 𝑽𝐄𝐑𝐀𝟓)𝟐, (S1) 

where UERA5 and VERA5 are the eastward and northward winds at each waypoint 

that is estimated by performing a quadrilinear interpolation against the 4D wind 

fields provided by the ERA5 HRES, and 𝜶 is the angle between the flight segment 
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and the longitudinal axis. The Mach number (Ma) is then computed for each 

waypoint,  

𝐌𝐚 =
𝐓𝐀𝐒

√𝜿𝑹𝑻
, (S2) 

where 𝜿 (1.4) is the adiabatic index of air, R (287.05 m2 K-1 s-2) is the gas constant 

of dry air, and T is the ambient temperature (in units of K) that is provided by 

the ERA5 HRES.” 

o [SI: Lines 143 – 145] “On this basis, we perform a great-circle interpolation between 

the recorded waypoints to produce comparable segment lengths with dt ranging between 

40 and 60 s and recompute the TAS and Mach number at each waypoint.” 

 

2. The air traffic density in this article is announced with the dimension [km-1 h-1]. The referee 

recommends to introduce how the air traffic density is defined in this study, as it would be generally 

possible to define the air traffic density as e.g. the number of aircraft movements or passenger by 

area or volume unit and time unit.  

• Thank you for highlighting this ambiguity. The air traffic density metric used in this study was 

previously defined in previous studies (Graf et al., 2012; Teoh et al., 2020) and is calculated by 

dividing the hourly mean flight distance flown by the regional surface area.  

• We have made the following changes in the main text and Supporting Information to address 

this point:  

o [Main text: Lines 249 – 250]: “Fig. 2a shows the 2019 global air traffic density in 2019, 

defined as the total flight distance flown divided by the regional surface area and 

time.” 

o [Footnote under Table 4 (main text) and Tables S9 and S10 (Supporting Information)]: 

“The air traffic density (ATD) is defined as the total flight distance flown in the 

region divided by its surface area and time, 𝐀𝐓𝐃 [𝐤𝐦−𝟏 𝐡−𝟏] =
∑ 𝐀𝐧𝐧𝐮𝐚𝐥 𝐟𝐥𝐢𝐠𝐡𝐭 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐟𝐥𝐨𝐰𝐧 [𝐤𝐦]

𝐒𝐮𝐫𝐟𝐚𝐜𝐞 𝐚𝐫𝐞𝐚 [𝐤𝐦𝟐] ×(𝟑𝟔𝟓×𝟐𝟒 [𝐡])
.” 

 

3. The mass of NOx emissions is a mixture of several nitroxide gases and quantified as commonly 
nitrogen monoxide or nitrogen dioxide mass equivalent. The referee recommends to mention within 

the article in which way the mass of NOx emissions should be interpreted with regard to molar 

mass.  

• Thank you for this question. According to the ICAO Annex 16 Vol II document (ICAO, 2017), 

the engine specific NOX emission indices (EI) are reported as an NO2 mass equivalent which 

is now clarified in the manuscript. In addition, we also now provide a recommendation for 
future studies to break down the reported NOX emissions into individual species of nitric oxide 

(NO), nitrogen dioxide (NO2), and nitric acid (HONO). 

• The following changes have been made to the main text to address these points:   

o [Main text: Lines 34 – 37]: “NOX, emitted in the stratosphere affects concentrations of 

ozone, hydroxyl radicals and methane which includes both nitric oxide (NO) and 

nitrogen dioxide (NO2) gases, emitted in the stratosphere facilitates the production 

of: (i) ozone, which causes a warming effect; and (ii) hydroxyl radicals, which partly 

offsets this warming effect through the destruction of methane (Fuglestvedt et al., 

1999; Myhre et al., 2011).” 

o [Main text: Lines 194 – 201]: “We also highlight that the engine-specific NOX EI in 

the ICAO EDB is reported as an NO2 mass equivalent (ICAO, 2017). For future 
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studies that require cruise NOX emissions to be broken down into individual species, 

references can be made to previous in-situ measurements which assumes the engine 

exit NO2/NOX and NO/NOX molar mixing ratio to have a global mean of 0.07 and 

0.93 respectively (Schulte et al., 1997), and the nitrous acid (HONO) EI to be 0.31 g 

per kg-NO2 (Jurkat et al., 2011). For the landing and take-off cycle (LTO), existing 

studies have estimated that the NO2/NOX molar mixing ratio varies significantly 

based on engine type and thrust settings, and ranges between: (i) 0.05–0.10 during 

climb and take-off; (ii) 0.12–0.20 during the descent phase; and (iii) 0.75–0.98 during 

the taxi phase (Timko et al., 2010; Wood et al., 2008; Wey et al., 2006; Stettler et al., 

2011).” 

o [Main text: Table 3]: 

Annual statistics 2019 2020 2021 
% Change 

2020 vs. 2019 2021 vs. 2019 

Total number of flights 40,221,182 27,911,214 35,576,376 -31% -12% 

   - Jet 33,224,736 20,302,177 24,458,494 -39% -26% 

   - Turboprop 3,231,103 2,719,339 3,754,998 -16% 16% 

   - Piston 3,765,343 4,889,698 7,362,884 30% 96% 

Distance travelled (x109 km) 60.94 34.50 41.90 -43% -31% 

   - Jet 59.00 32.59 39.16 -45% -34% 

   - Turboprop 1.34 1.13 1.56 -15% 17% 

   - Piston 0.61 0.78 1.18 29% 94% 

Mean passenger load factor (%)a 83% 59% 67% -29% -19% 

Mean aircraft mass (kg) 64079 49593 46533 -23% -6.2% 

Fuel burn (Tg) 283 146 166 -48% -41% 

Fuel burn per distance (kg km-1) 4.636 4.240 3.958 -8.5% -15% 

CO2 (Tg) 893 462 524 -48% -41% 

H2O (Tg) 348 180 204 -48% -41% 

OC (Gg) 5.65 2.93 3.32 -48% -41% 

SO2 (Gg) 339 176 199 -48% -41% 

SVI (Gg) 6.92 3.58 4.06 -48% -41% 

NOX (as NO2, Tg) 4.49 2.26 2.55 -50% -43% 

CO (Gg) 400 227 272 -43% -32% 

HC (Gg) 33.9 20.9 25.0 -38% -26% 

nvPM mass (Gg) 21.4 9.93 11.0 -54% -49% 

nvPM number (x1026) 2.83 1.46 1.66 -48% -41% 

Mean EI NOX (g kg-1) 15.9 15.4 15.4 -2.8% -3.2% 

Mean EI CO (g kg-1) 1.42 1.55 1.64 9.6% 16% 

Mean EI HC (g kg-1) 0.120 0.143 0.151 19% 26% 

Mean nvPM EIm (g kg-1) 0.076 0.068 0.066 -10.4% -12% 

Mean nvPM EIn (x1015 kg-1) 1.002 0.998 1.001 -0.4% -0.1% 
a: The passenger load factor for each flight was derived using the global and regional data published by ICAO and IATA 

(refer to Section 2.2 and the SI §S3). 

 

4. Figure 2 compares the annual mean air traffic density of the year 2019 with the monthly mean air 

traffic density of 2020, the global lockdown month including depicting the difference. The referee 

wonders if a comparison between April 2020 and April 2019 as the same period of the last year 
would be better in order to isolate the Lockdown effects and to improve comparability as other 

seasonal and interannual effects of air traffic volume would be excluded.  

• Thank you for this suggestion. Figure 2 shows the: (a) annual air traffic density for 2019; (b) 

the monthly air traffic density in April-2020 where global air traffic is at a minimum; and (c) 

a comparison between the change in global air traffic density between the full year of 2019 

and 2020.  
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• The main rationale for plotting the 2019 global air traffic density in (a) and the April-2020 

global air traffic density in (b) is because these most clearly illustrate the impact of COVID-

19 on global aviation activity. We note that the air traffic density metric, now defined in Point 

(2), is normalised against time. Therefore, the air traffic density metric is independent of the 

timeframe that is selected for comparison (i.e., annual vs. monthly).   

• The main rationale for comparing the annual change in air traffic density between the full year 

2019 and 2020 in (c) is to highlight the prolonged impact of COVID-19 in different countries. 

For example, a comparison of the full year statistics clearly show that China is the only country 

that experienced growth in air traffic activity. We experimented with the referee’s suggestion 

of comparing the change in monthly air traffic density between April-2019 and April-2020. 

However, unlike the annual comparison (in the original figure), it does not show the increase 

in air traffic density over China during this month (figure below). Therefore, we have decided 

to keep the original Figure 2 unchanged.  

 

• We have updated the caption of Figure 2 for clarity improvements: 

[Main text: Lines 286 – 288]: “The global (a) annual air traffic density in (a) 2019; and (b) 

monthly air traffic density in April-2020, where air traffic activity was at a minimum due to 

the COVID-19 pandemic; and (c) the change in annual air traffic density between 2019 and 

2020. Basemap plotted using Cartopy 0.21.1 © Natural Earth; license: public domain.” 

 

5. Does the dimensionless density, shown in the colorbar of Figure 5 results from a normalization 

with the annual total NOx emission from GAIA and Quadros et al. (2022), respectively, to enable 
comparability of the latitude-altitude pattern? Summing up density values of all shown grid cells 

would be 1?  

• Thank you for highlighting this. Yes, the reviewer is correct that the value at each grid cell is 

normalised with the global annual emissions provided by each dataset.  

• We have updated the caption of this figure (now Figure 6 in the main text) for clarity 

improvements: 

• [Main text: Lines 357 – 361]: “Figure 56: Distribution of the 2019 NOX and nvPM number 

emissions by latitude and altitude from GAIA with actual flight trajectories (subplots a and c) 

versus estimates from Quadros et al. (2022) with monthly-averaged flight trajectories (subplots 

b and d). The colour bar represents the proportion of annual emissions, i.e., annual 

emissions at each grid cell divided by the global annual emissions, where the summation 

of values across all grid cells would be equal to 1.” 
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6. Figure 7e shows the distribution of fuel consumption per passenger-km. The referee wonders, where 
the information of passenger kilometre came from? The methodology of allocation of seat load 

factor was clearly described, but where does the number of seats for each aircraft come from? The 
absolute seat capacity would be required to derive the number of passengers for each mission, as 

described in SI document line 319. Or was alternatively an average seat number for the route 

London – Singapore assumed and obtained from Cirium database seat numbers? It would be 

helpful for understanding to mention this at least in the supporting information.  

• Thank you for highlighting this. We agree that this information is important and a short 

description of the methodology to estimate the fuel consumption per passenger-km is now 

included the Supporting Information (SI): 

o [SI: Lines 506 – 515] “Fig. 97 in the main text highlights the variability in flight 

trajectory, fuel consumption and emissions for eastbound and westbound flights 

between London Heathrow (LHR) and Singapore Changi Airport (SIN) in 2019-

2021, totalling 8705 unique flights. During this time, the three main aircraft types 

used for this route are the Boeing 777 (40.8% of all flights), Airbus A380 (38.6%), 

and the Airbus A350 (20.6%); and the three main airline operators are Singapore 

Airlines (65.0% of all flights), British Airways (23.9%), and Qantas Airways (8.9%). 

For each flight, the fuel consumption per passenger-km is calculated as follows: 

Fuel per passenger-km =
𝐓𝐨𝐭𝐚𝐥 𝐟𝐮𝐞𝐥 𝐛𝐮𝐫𝐧

(𝐀𝐢𝐫𝐜𝐫𝐚𝐟𝐭 𝐬𝐞𝐚𝐭 𝐜𝐚𝐩𝐚𝐜𝐢𝐭𝐲 ×𝐏𝐚𝐬𝐬𝐞𝐧𝐠𝐞𝐫 𝐋𝐅)×𝐅𝐥𝐢𝐠𝐡𝐭 𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞 𝐟𝐥𝐨𝐰𝐧
, (S8) 

where the registered seat capacity for each unique aircraft is provided by the Cirium 

global fleet database (Cirium, 2022), while the methodology to estimate the 

passenger LF is listed in the SI §S3.” 

o [Main text: Lines 421 – 425] “Figure 9: The (a) lateral and (b – c) vertical trajectory that 

is flown by flights between London Heathrow Airport (LHR) and Singapore Changi 

Airport (SIN) between 2019 and 2021 (n = 8705), and probability density function of the 

(d) lateral inefficiency, (e) fuel consumption per passenger-km; (f) EI NOX; and (g) nvPM 

EIn for westbound (SIN–LHR, in blue) and eastbound flights (LHR–SIN, in red). The 

methodology to estimate the fuel consumption per passenger-km is described in the 

SI §S5.2.” 

 

7. Supporting Information document, lines 203 – 205: Summing up the relative ratios of engine types, 

75%, 9% and 15% will be 99% in total. Did there happen an inaccuracy due to rounding? 

• Thank you for identifying this. Yes, the reviewer is correct that the discrepancy is caused by 

rounding error. To rectify this, we have now quoted the figures in the SI §S1.3 to one decimal 

place: 

o [SI: Lines 215 – 247]: “Fig. S7 presents the summary statistics for the cleaned ADS-B 

dataset and shows that:  

• 103.7 million flight trajectories are recorded between 2019 and 2021 (Fig. S7a), 

• 75.2% of all flights are carried out by jet aircraft, 9.4% by turboprops, and the 

remaining 15.4% by piston aircraft (Fig. S7b), 

• origin and destination airport metadata are available for 79.1% of all flights, and this 

figure increases to 910.9% when piston aircraft, mostly used in general aviation, are 

excluded (Fig. S7c), 

• 67.4% of all flights have full trajectory coverage, i.e., first waypoint starting from the 

origin airport and ending at the destination airport, and this figure increases to 77.68% 

when piston aircraft are excluded (Fig. S7d),  

• 5.0% of all flights are rejected from the ADS-B dataset (Fig. S7e), and  
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• at the waypoint level, 99.5% of the recorded ADS-B signals are from terrestrial 

receivers and the remaining 0.51% are provided by satellite receivers (Fig. S7f).  

The 5% of all flights that are rejected from the ADS-B dataset are caused by identified errors 

in their respective flight trajectories, for example,  

• trajectories that contain less than three waypoints (576.6% of all rejected flights), 

• trajectories with very long extrapolated segment lengths, i.e., > 90% of the distance 

between the origin-destination airport (210.6% of all rejected flights), 

• flights with unrealistic flight time (13.3% of all rejected flights), and 

• flight segments with unrealistic ground speed (9.5% of all rejected flights).” 

 

REFEREE 2 (RC2) 

This manuscript presents a new aviation emissions data based on individual flight level data and models 
of engine performance. Most of the technical details are in the supplement, and summary analysis is 

presented in the main manuscript.  

The manuscript is a good description and analysis of an important new dataset for aviation emissions 

covering the period 2019-2021, pre, beginning and mid pandemic. The analysis in the manuscript is 

well presented. It should be publishable with minor revisions. I think some of the analysis could be 
presented a little better with some more figures (in addition to tables) as noted below. The supplement 

seems correct and comprehensive. The data (low time resolution) has been posted to an available 

archive.  

Specific comments:  

8. Page 2, L31: where does the 1034 Tg number come from (reference?) 

• The source of the 1034 Tg of CO2 emissions, amounting to 2.4% of the anthropogenic 

greenhouse gas, was quoted from Lee et al. (2021), which was already cited at the end of the 

sentence.  

 

9. Page 5, L140: How does the -8% lower comparison at major airports mesh with +15% to +20% 

globally? 

• Thank you for the comment. In the main text, we compared the ADS-B dataset against three 

different sources:  

o The total number of flights in the ADS-B dataset differs by -4.7% (2019), +14% (2020), 

and +17% (2021), respectively, relative to the statistics from ICAO and IATA,  

o The annual flight distance flown in the ADS-B dataset are 8% (2019), 23% (2020), and 

24% (2021) larger than the estimates from Airlines for America, and  

o The ADS-B dataset could underestimate the 2019-2021 air traffic movements in London 

Heathrow Airport (-1.3%), New York John F. Kennedy Airport (-8.1%), and Singapore 

Changi Airport (-1.3%). 

• For comparison (i) and (ii), the increasing global coverage area of ADS-B receiver networks 

over time likely lead to more flights being captured in the ADS-B dataset from 2019 to 2021. 

In general, statistics provided by ICAO, IATA and Airlines for America should also be lower 

than the ADS-B dataset because they only account for the air traffic from scheduled flights, 

while the ADS-B dataset captures unscheduled flights such as charter flights and private 

aviation.  
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• For comparison (iii), air traffic movements provided by the ADS-B dataset is 1–8% lower than 

the official airport statistics, and this can most likely be attributed to our data cleaning 

algorithm which rejected flights with erroneous trajectories that cannot be verified.   

• We also revisited the official airport statistics (Airport Traffic Statistics, 2022) and identified 

a minor error in our earlier data compilation for New York John F. Kennedy (JFK) airport. The 

total 2019-2021 air traffic movements in JFK have been revised down from 958,420 (+8.1% 

relative to GAIA) to 946,390 (+7.0% relative to GAIA).  

• We have made the following changes in the main text for clarity improvements:  

o [Main text: Lines 127 – 140]: “As these the statistics from ICAO, IATA and Airlines 

for America only captures air traffic activity from scheduled flights, we exclude general 

aviation activity in these comparisons by omitting flights that are flown by piston aircraft. 

The total number of flights in the ADS-B dataset differs by -4.7% in (2019), +14% in 

(2020), and +17% in (2021), respectively, relative to the statistics from ICAO and IATA 

(Table S1); while the annual flight distance flown in the ADS-B dataset are 8% (2019), 

23% (2020), and 24% (2021) larger than the estimates from Airlines for America (Table 

S2). These discrepancies are likely due to: (i) an increasing global coverage area of ADS-

B receiver networks over time enabling more flights to be captured in the ADS-B 

dataset (Fig. S1); (ii) an increase in the proportion of non-scheduled flights, i.e., charter 

flights, cargo services and private aviation, from 4.1% in 2019 to 7.5% in 2020 

(Sobieralski and Mumbower, 2022; ICAO, 2021); and (iii) a higher occurrence of rejected 

flights (i.e., trajectories with less than three waypoints, unrealistic segment lengths, flight 

times and/or ground speeds) in 2019 (~6.6%) relative to 2020 (~3.3%) and 2021 (~4.5%) 

(Fig. S7e). A comparison with data traffic statistics from three major airports (London 

Heathrow, New York John F. Kennedy, and Singapore Changi Airport) suggest that the 

2019–2021 air traffic movements in the ADS-B dataset are 1–8% lower than the official 

statistics is 1.3%, 7.0%, and 1.3% lower than the official statistics from London 

Heathrow, New York John F. Kennedy, and Singapore Changi airport, respectively 

(Fig. S8), and this discrepancy can most likely be attributed to our data cleaning 

algorithm which rejected flights with erroneous trajectories that cannot be verified 

(SI §S1.2).” 

o [SI: Lines 280 – 285]: “Fig. S8 shows that the total number of aircraft movements derived 

from the processed ADS-B dataset can be between 1–78% lower when compared with 

published statistics from the three airports (-1.3% for EGLL, -7.08.1% for KJFK and -

1.3% for WSSS between 2019 and 2021). For the comparison with WSSS, we note that 

the published data does not include air traffic movements from freight operations and 

private aviation, and therefore, the monthly number of flights in the ADS-B dataset can 

be higher than the published statistics.” 

 

10. Page 5, L150: can you say what the default is and what the modifications are briefly? 

• Thank you for the comment. We have made the following changes in the main text for clarity 

improvements:  

o [Main text: Lines 149 – 151]: “For aircraft not covered by the fleet database, we assign 

the default aircraft-engine combination from provided by BADA 3 with minor 

modifications applied to the Airbus A320, Boeing B787 to select the engine option 

with the highest market share (Table S4).” 

 

11. Page 11, L255: see note on table 4. I suggest making a histogram that makes clear the differences 

between consumption and distance (and emissions) by region… 

• Please see our response to Point (12) below. 
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12. Page 13, L290: suggest that the percent values of distance, fuel and emissions by region be made 

into a histogram (grouped by region) to make deviations from say % distance travelled evident. 

• Thank you for this suggestion. We have now included a bar chart in the main text to summarise 

the distribution of the annual flight distance flown, fuel consumption and emissions for each 

region: 

o [Main text: Lines 309 – 311] 

 

Figure 4: Percentage breakdown of the 2019 global annual flight distance flown, fuel consumption, 

NOX, CO, HC, nvPM mass and number emissions by region. 

 

13. Page 11, L285: maybe figure 2c could be in percent? 

• Thank you for this suggestion. We have considered plotting Figure 2c (i.e., the change in air 

traffic density between 2019 and 2020) in percentage terms but have decided against it. This is 

because of the significant spatiotemporal variation in air traffic activity, where: (i) it is not 

possible to calculate the percentage change in grid cells that previously had no air traffic activity 

in 2019 because the denominator would be zero; and (ii) there can be grid cells with a very 

large percentage change (> 1000%) if their air traffic activity in 2019 (denominator) is small. 

 

14. Page 11, L252: for fleet composition, higher fuel use rate per km is due to more narrow body 

aircraft? 

• Thank you for this comment. We have addressed this together with Point (15) below.  

 

15. Page 15, L308: I though short haul were less efficient (kg/km) per unit distance? (E.g. discussing 

China above) Or is that not the case? Please clarify. 

• Thank you for the questions. The comparison in the fuel efficiency between short- and long-

haul flights is influenced by the selected metric, i.e., fuel consumption per passenger-km vs. 

the fuel consumption per flight distance flown. It is likely that long-haul flights are more 

efficient if the fuel consumption per passenger-km was chosen as a benchmark. However, our 
reported metric was the fuel consumption per flight distance flown, which is not normalised by 

the number of passengers.  
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• Short-haul flights have a lower fuel consumption per distance flown relative to long-haul flights 

because they are predominantly flown by narrow-body aircraft that have a lower mean aircraft 

mass relative to long-haul flights that are generally flown by wide-body aircraft (Tables 5, S11 

and S12). 

• We have made the following changes to the main text for clarity improvements:  

o [Main text: Lines 260 – 267]: “The proportion of fuel consumption in the US (19%) is 

lower than its share of aviation activity (27% of the global annual flight distance flown), 

and the mean distance-specific fuel consumption per distance flown (3.29 kg km-1) is 

29% lower than the global average (4.64 kg km-1). In contrast, the North Atlantic and 

North Pacific flight corridors have a higher share of fuel consumption (13%) than their 

distance flown (8.8%), and the mean distance-specific fuel consumption (6.61 kg km-1) 

is 43% higher than the global average (Table 3). The discrepancies in distance-specific 

fuel consumption are due to a higher proportion of short-haul domestic flights in the US 

predominantly served by smaller narrow-body aircraft, while larger and heavier wide-

body aircraft are predominantly generally used for long-haul transoceanic flights.” 

o [Main text: Lines 317 – 325]: “Globally, reductions in the annual fuel consumption and 

CO2 emissions (-48% in 2020 and -41% in 2021 relative to 2019 levels) are greater than 

the change in flight distance travelled (-43% and -31% respectively), and the mean 

distance-specific fuel consumption per flight distance flown in 2020 (4.24 kg km-1) and 

2021 (3.96 kg km-1) were 9% and 15% lower than in 2019 (4.64 kg km-1), respectively 

(Table 3). Several factors have contributed to the The lower distance-specific fuel 

consumption is most likely caused by the lower global annual mean aircraft mass (-

23% in 2020 and -6.2% in 2021 relative to 2019, Table 3) rate, including, which in 

turn, can be attributed to the: (i) the lower annual mean passenger load factor (59% in 

2020 and 67% in 2021 vs. 83% in 2019) and aircraft mass; (ii) an increase reduction in 

shortlong-haul flights (> 63 h) in 2020 and 2021 that are predominantly flown by 

widenarrow-body aircraft (883% of all flights, Tables S11 and S12) relative to 2019 

(583%, Table 5), where their mean aircraft mass is around 2–4 times larger than 

short- and medium-haul flights (< 6 h) that are generally flown by narrow-body 

aircraft (Tables 5, S11 and S12).” 

 

16. Page 20, L409: You have Fuel consumption per passenger-km: is that the same as gross fuel 

consumption? Presumably the rerouting is to save fuel, so the variance in fuel used should be 

smaller than distance? Would be interesting maybe to state total fuel per flight on this route and 

how much it varies (more or less than distance). 

• Thank you for this suggestion. To answer this question, we have performed additional post-

analysis of the GAIA outputs by grouping all flights in 2019 by their origin-destination (OD) 
airport pairs. For each OD airport pairs, we then compare the: (i) actual flight distance flown 

(dGAIA) versus the great circle distance between the OD airport (dOD); and (ii) simulated fuel 

consumption from GAIA (fGAIA) versus an estimate of the fuel consumption from the great circle 

trajectory that is derived from the European Environment Agency (EEA) emissions calculator 

(fEEA,OD). We note that the EEA calculates fuel consumption as a function of dOD and aircraft 

type. An evaluation across all OD airport pairs globally show that the variability of fGAIA/fEEA,OD 

(1.14 [0.997, 1.35], i.e., mean of 1.14 and a 5th and 95th percentile of 0.997 and 1.35 

respectively) is greater than dGAIA/dOD (1.06 [1.01, 1.16]), and this can most likely be attributed 

to the: (i) use of different aircraft types to complete the same mission; and the day-to-day 

variability in (ii) passenger load factor; and (iii) ambient wind fields.  

• For the 8,705 flights between London and Singapore, we also evaluated the difference in 

coefficient of variation (CV) between the flight distance flown versus the fuel consumption per 

passenger-km. Our results show that the CV of the fuel consumption per passenger-km (0.171) 

is around 8 times larger than the CV of the flight distance flown (0.021), and this is most likely 
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due to: (i) the use of different aircraft-engine types; (ii) variabilities in aircraft seating capacity 

between airlines; as well as the day-to-day variability in the (iii) passenger load factor; and (iv) 

ambient wind conditions.  

• We have now included these analyses in the main text and Supporting Information:  

o [Main text: Lines 403 – 414]: “We group each flight in 2019 by their origin-destination 

(OD) airport pairs to evaluate the differences in their mean: (i) historical flight 

distance flown (dGAIA) versus dOD; and (ii) simulated fuel consumption from GAIA 

(fGAIA) versus the fuel consumption from the great circle trajectory that is estimated 

from the European Environment Agency emissions calculator (fEEA,OD), where 

fEEA,OD at climb, cruise, and descent (CCD) for each flight is estimated as a function 

of dOD and aircraft type (European Environment Agency, 2019). These OD statistics 

have been made open source and are available, as described in the Data Availability 

statement. In general, there is an inverse relationship between the lateral inefficiency 

and great circle distance between the origin-destination airport (dOD) (Fig. 6b):, where the 

mean lateral inefficiency is 5.1 [0.7, 10.8] % (5th and 95th percentile) for flights with dOD 

< 1000 km, 4.4 [0.9, 10.2] % when dOD is between 1000 and 2000 km, and 2.9 [0.8, 8.6] 
% for dOD > 2000 km (Fig. 7b and Fig. 8a). Our analysis among OD airport pairs also 

suggests that: (i) the variability of fGAIA/fEEA,OD (1.14 [0.997, 1.35]) is greater than 

dGAIA/dOD (1.06 [1.01, 1.16]) (Fig. S15); (ii) dGAIA/dOD is relatively symmetrical 

between OD airport pairs irrespective of direction travelled (Fig. 8a); and (iii) there 

is a directional bias in fGAIA/fEEA,OD among OD airport pairs, e.g., westbound 

transatlantic flights to consume more fuel than eastbound transatlantic flights (Fig. 

8b), because fGAIA captures the effects of ambient wind patterns.”  

 

Figure 1: The mean ratio of: (a) the actual flight distance flown from GAIA over the great 

circle distance (dGAIA/dOD); and (b) the simulated fuel consumption from GAIA over the 

estimated fuel consumption from the great circle trajectory (fGAIA/fEEA,OD) across all flights that 

traversed between major European and North American airport pairs in 2019.  

o [SI: Lines 487 – 505] “Each flight in 2019 is also grouped by their origin-destination 

(OD) airport pairs and corresponding countries to evaluate the difference in their 

mean: (i) historical flight distance flown (dGAIA) versus the great circle trajectory 

between the origin-destination airport pairs (dOD); and (ii) simulated fuel 

consumption from the actual flight trajectory in GAIA (fGAIA) versus the estimated 

fuel consumption at climb, cruise, and descent (CCD) from the great circle trajectory 

(fEEA,OD) which is derived from an emissions calculator developed by the European 

Environment Agency using inputs of dOD and aircraft type (European Environment 

Agency, 2019). These statistics, which vary significantly between OD airport pairs 
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(Fig. 8 in the main text), have been made publicly available as described in the Data 

Availability statement (main text). Across all OD airport pairs, we estimate a mean 

dGAIA/dOD of 1.06 [1.01, 1.16] (5th and 95th percentile) and a mean fGAIA/fEEA,OD of 1.14 

[0.997, 1.35] (Fig. S15). We also note that the variability of fGAIA/fEEA,OD is greater 

than dGAIA/dOD, and this can most likely be attributed to the: (i) use of different 

aircraft types (i.e., narrow- and wide-body aircraft) to complete the same mission; 

and the day-to-day variability in (ii) passenger load factor (LF); and (iii) ambient 

wind fields (i.e., headwind and tailwind).” 

 

Figure S2: Kernel density estimate between the mean ratios of fGAIA/fEEA,OD and dGAIA/dOD for 

each origin-destination airport pairs globally in 2019 (n = 36,626).    

o [SI: Lines 515 – 519] “We note that the coefficient of variation (CV), i.e., the ratio of 

the standard deviation to the mean, of the fuel consumption per passenger-km 

(0.171) is around 8 times larger than the CV of the flight distance flown (0.021), 

which most likely arises from: (i) the use of different aircraft-engine types; as well 

as the day-to-day variability in (ii) the passenger LF; and (iii) ambient wind 

conditions.” 
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