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Abstract. We propose a new point-prediction DEep Learning WAVe Emulating model (DELWAVE) which successfully emu-

lates the behaviour of a numerical surface ocean wave model (SWAN) at a sparse set of locations, thus enabling numerically

cheap large-ensemble prediction over synoptic to climate timescales. DELWAVE was trained on COSMO-CLM and SWAN

input data during period 1971 - 1998, tested during 1998-2000 and cross-validated over the far-future climate timewindow

of 2071-2100. It is constructed from a convolutional atmospheric encoder block, followed by a temporal collapse block and5

finally a regression block. DELWAVE reproduces SWAN model significant wave heights with a mean absolute error (MAE)

between 5 and 10 cm, mean wave directions with a MAE of 10◦-25◦ and mean wave period with a MAE of 0.2 s. DELWAVE

is able to accurately emulate multi-modal mean wave direction distributions, related to dominant wind regimes in the basin. We

use wave power analysis from linearized wave theory to explain prediction errors in the long-period limit during southeasterly

conditions. We present a storm analysis of DELWAVE, employing threshold-based metrics of precision and recall to show10

that DELWAVE reaches a very high score (both metrics over 95%) of storm detection. SWAN and DELWAVE time series

are compared against each other in the end-of-century scenario (2071-2100), and compared to the control conditions in the

1971-2000 period. Good agreement between DELWAVE and SWAN is found when considering climatological statistics, with

a small (≤5%), though systematic, underestimate of 99th percentile values. Compared to control climatology over all wind

directions, the mismatch between DELWAVE and SWAN is generally small compared to the difference between scenario and15

control conditions, suggesting that the noise introduced by surrogate modeling is substantially weaker than the climate change

signal.

1 Introduction

The multi-decadal characterisation of wave climate is a primary requirement for a number of applications. Coastal erosion,

particularly in sandy, low-lying beaches, is largely dominated by wave-induced sediment transport at multiple time scales, with20
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a short-term response at the seasonal, or even at the event scale, mainly given by cross-shore fluxes, and a long-term response

at the annual to decadal scale resulting from the modulation of long-shore sediment fluxes and their spatial gradients (USACE,

2002). In transitional environments, wave climate can significantly affect morphodynamic processes both directly, by locally

reworking morphological features such as shoals and salt marshes (Friedrichs, 2011), or indirectly, by controlling the potential

sediment supply from the open coast (Di Silvio et al., 2010; Tognin et al., 2021). Wave climate is also an important factor25

controlling the safety and durability of human infrastructures, along the coast as well as offshore. Not least, in the framework

of an ever-increasing demand for energy availability, particularly from renewable sources, information on wave climate and

its variability is crucial for assessing the feasibility and improving the design of wave energy converter facilities (Astariz and

Iglesias, 2015).

30

In recent decades, the progressively deeper understanding of the physical mechanisms underlying wave dynamics, together

with an increasing availability of computational power, have contributed to making wave modelling the reference tool for a

number of applications at different scales, from short-term forecasting to multi-decadal hindcasting and climate predictions

(Cavaleri et al., 2007; Morim et al., 2020). Nonetheless, surface ocean wave modeling in particular is very numerically expen-

sive. This is related to the fact that surface waves typically span deeply subgrid short spatial and temporal scales which are35

very far from being resolved in most ocean general circulation models. Modeling surface waves therefore typically translates

into solving evolution equations of the directional wave-energy spectrum, requiring direction and frequency discretization at

each model grid point, thus inflating computational demand. Furthermore, notwithstanding the continuous improvements, and

particularly when dealing with long-term projections, numerical modelling maintains an intrinsic uncertainty at different lev-

els. This impacts the very evolution of the global climate but also the propagation of the climate signal through different scales40

and systems, as well as the numerical description and parameterization of the processes involved. Part of this uncertainty can

be addressed by means of an ensemble approach, in which multiple model descriptions are provided by considering different

physical characterisations and different composition of the modelling chain (Parker, 2013). This approach comes at the cost

of multiplying, usually by an order of magnitude, the requirements for computational power and data storage. This tends to

limit the feasibility of extensive studies on future wave climate, particularly at the regional to local scale, and can require some45

heavy trade-off in terms of resolution, geographical and temporal coverage, or size of the model ensemble.

Deep learning has been shown to promise great potential to address these issues across multiple fields of science, including

machine vision, natural language processing, and, more recently, in various subfields of meteorology (Janssens and Hulshoff,

2022; Beucler et al., 2021; Rasp et al., 2018) and oceanography (Rus et al., 2023; Sonnewald et al., 2021; Boehme and Rosso,50

2021; Žust et al., 2021; Mallett et al., 2018). With particular reference to wave dynamics applications, James et al. (2018)

proposed a machine learning system for predicting the steady-state response of the sea state in a coastal area to a given wind

configuration, whereas Rodriguez-Delgado and Bergillos (2021) developed a framework for propagating onshore the open-

sea information on incoming waves for renewable energy production purposes. In specific cases and for specific tasks deep

learning methods have been shown to achieve state-of-the-art performance while keeping numerical costs low. This allows for55
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performance gains which are often welcome, especially when considering computational requirements of classical geophysical

numerical models on high spatial resolutions and on climate timescales.

In this paper we present a newly developed deep learning method, named DELWAVE, for emulating non-locationary mod-

elled surface sea states, such as those produced by SWAN, albeit at a computational price smaller by several orders of mag-60

nitude, in response to given wind fields. The study site is the Adriatic Sea, a 200 km wide and 800 km long elongated

epicontinental basin in the north-central Mediterranean. It is surrounded from all sides by the mountain ridges (Apennines in

the west, Alps in the north and Dinaric Alps in the east) which topographically constrain winds over the basin (Figure 1).

From a modelling point of view, this condition requires a high-resolution description of the atmospheric dynamics and a fine

tuning of the physical parameterizations both at the air-sea and at the land-sea interfaces (Cavaleri et al., 2018). Dominant65

wind-wave forcings consist of the cold northeasterly Bora and warmer southeasterly Scirocco winds. Bora events are pre-

dominantly winter occurrences (November through March) of cross-basin continental air flow through the Dinaric orographic

barriers over the Adriatic Sea. Scirocco is on the other hand a southerly wind transporting warm and moist air masses from

northern Africa over the Adriatic, which can persist for several days and is channeled by the Apennines and Dinaric alps into

an along-axis wind with a fetch much longer than in case of Bora. Wave dynamics in the Adriatic Sea are thus controlled by70

short-fetched wind seas and long-fetched swells, occasionally coexisting, propagating over a broad and shallow continental

margin, and characterised by different multi-decadal trends (Pomaro et al., 2018) and possibly different responses to climate

change (Bonaldo et al., 2020). As a typical example of some major challenges associated with wave modelling in semi-enclosed

and coastal seas, the Adriatic Sea appears as a suitable testing site for wave model emulation within the DELWAVE framework.

75

DELWAVE is based on well established network architecture components, adapted to the field of wave forecasting, and it is

benchmarked against SWAN performance, both models being forced by the COSMO-CLM atmospheric climate model of the

far future climate (2071-2100) in the Adriatic basin (Bonaldo et al., 2020).

While DELWAVE model, presented in this manuscript, has been trained and tested on the outputs of COSMO-CLM and

SWAN models, the model can be used with any regional atmospheric and wave modeling setup, or their ensembles, provided80

that available model results span a large enough time window to make DELWAVE training meaningful.

The paper is organized as follows. Classical geophysical models, COSMO-CLM for atmosphere and SWAN for surface

wave modeling, are described in Section 2. DELWAVE deep network is thoroughly discussed in Section 3. Results and the far

future climate simulations are presented in Section 5.

2 Numerical Models and Datasets85

The wind and wave fields used as a reference for this application were retrieved from the numerical modelling chain described

by Bonaldo et al. (2020) for the projection of future wave climate in a severe climate change scenario.
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Figure 1. Topography and bathymetry of the Adriatic region. Abbreviations used on the map are as follows: AA - Acqua Alta tower, OB

(2,3) - Ortona Buoy (2,3), MB - Monopoli Buoy. Directions of Bora and Scirocco are marked with beige arrows. The image was created by

the authors based on EMODnet bathymetry data, available at https://portal.emodnet-bathymetry.eu/ (last access: 8 June 2022) and Coperni-

cus European Digital Elevation Model, available at https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1-0-and-derived-products/

eu-dem-v1.0 (last access: 8 June 2022).

2.1 Atmospheric Climate Model COSMO

The wind fields used for the present applications were retrieved from an implementation of the regional climate model (RCM)90

COSMO-CLM (Bucchignani et al., 2016), the climate version of the operational forecast model COSMO-LM (Steppeler et al.,

2003), implemented over Italy and central Europe at a 0.0715◦ horizontal resolution (approximately 8 km, total 224 × 230

grid points), forced by the general circulation model (GCM) CMCC-CM (Scoccimarro et al., 2011). In that implementation the

analysed period spanned from 1971 to 2100 reproducing first the CMIP5 historical experiment in the 1971-2005 period, and

subsequently parting into two independent runs representing respectively the IPCC RCP4.5 (intermediate) and RCP8.5 (severe)95

scenarios. The evaluation of the model showed particularly good skills in reproducing the climatic features of air temperature

and precipitation over Italy (Bucchignani et al., 2016; Zollo et al., 2016). A subsequent focus on the wind fields over the

Adriatic sea (Bonaldo et al., 2017), whose reproduction is a challenging task also for hindcast and operational models due to

the geometry of the basin and its complex coastal orography, highlighted outstanding skills for both intensity, although with

some tendency to overestimate mean wind energy, and direction. Most interestingly for ocean modelling applications, COSMO-100

CLM proved capable of capturing the bimodality of Bora (north-easterly) and Sirocco (south-easterly) in the northernmost part

of the basin, impossible to reproduce with previous climate models (Bellafiore et al., 2012). In a recent work (Benetazzo et al.,
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2022) COSMO-CLM was also used to quantile-adjust near-surface wind speeds from ECMWF ERA5 reanalysis, thus merging

the accuracy of the former with the higher temporal resolution and the synchronization with observed variability of the latter.

For the wave modelling experiment described by Bonaldo et al. (2020) and for the present work the COSMO-CLM wind fields105

over the Adriatic Sea were retrieved for two 30-year periods in control conditions in the recent past (CTR, 1971-2000) and in

the future in a severe RCP8.5 climate scenario (SCE, 2071-2100).

2.2 Wave Model SWAN

The modelling run described by Bonaldo et al. (2020) and providing wave data for this application was thus implemented

in SWAN with reference to the Adriatic Sea in the CTR and SCE periods. SWAN provides a phase-averaged description of110

wind-generated sea states by solving a non-locationary wave action balance equation (Booij et al., 1999):

∂N

∂t
+

∂cxN

∂x
+

∂cyN

∂y
+

∂cσN

∂σ
+

∂cθN

∂θ
=

Sw

σ
(1)

N represents the action density, namely, the wave energy density divided by the relative frequency, and t is time. The prop-

agation of N (second to fifth term in Eq. 1) is described in 2-D space (x and y, expressible in both Cartesian and spherical

coordinates, with speed respectively cx and cy), and spectral space (radian frequency σ, relative to a frame moving with the115

ocean current, and angle θ normal to the wave crest, speed respectively cσ and cθ). Sw represents sources and sinks of wave

energy density associated with generation, dissipation, and non-linear wave-wave interactions.

For the application presented here, the domain was discretised into an orthogonal curvilinear structured grid with horizontal

resolution ranging from approximately 2 km in the northern region to 8-10 km in the southeasternmost part of the study area.120

Calm conditions were prescribed at the open boundary at the Otranto Strait, where waves generated within the basin were

nonetheless permitted to radiate out of the domain. This assumption was made necessary by the lack of available wave fields

consistent with the atmospheric forcing at the Mediterranean scale, but the validation confirmed that no major drawbacks in the

results could be found beyond 100-200 km from the boundary. Wave spectra were discretised into 25 logarithmically-distributed

frequencies ranging between 0.05 and 0.5 Hz and 36 directional sectors, whereas the timestep was set to 360 s. The bathymetry125

was reinterpolated from a 1-km resolution dataset used in previous applications (Benetazzo et al., 2014; Bonaldo et al., 2016)

and obtained by merging recent surveys in the shallow northern basin and in the southern continental margin into previous

basin-scale information. Sea level rise between the CTR and SCE period was taken into account by increasing the water depth

in the latter scenario by 0.70 m, based on estimates by Antonioli et al. (2017), for the sake of simplicity uniformly distributed

throughout the domain. As wind forcings from COSMO-CLM were provided with 6-hourly timestep, the same interval was130

maintained for the output, in which the main spectral parameters were saved for each grid point and the full spectra were saved

for approximately 600 points along the Adriatic coast. The model validation was based on directional wave recordings from

three observatories off the Italian coast along the main axis of the basin, namely the Acqua Alta oceanographic tower (AA,
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Figure 2. Geographical domain, validation locations and locations considered in SWAN and DELWAVE modeling.

12.51 ◦E, 45.31 ◦N, see Pomaro et al. 2018), and the Ortona and Monopoli buoys (respectively OB, 14.51◦E, 42.42◦N, and

MB, 17.38◦E, 40.98◦N, Figure 2).135

The comparison against observational data (carried out in statistical terms, as climate models are not synchronised with ob-

served variability) was focused on significant wave height (HS) and mean direction showed overall satisfactory performances

for the SWAN implementation. The reported tendency of COSMO-CLM to overestimate mean wind energy had actually a

moderate impact on wave modelling, being partially compensated by other factors such as the southern boundary conditions

and some residual limitations in reproducing orographic jets, and its more marked effect was a partial overestimate of signifi-140

cant wave height statistics in the southernmost regions of the basin.

The end-of-century projections in a severe climate change condition outlined a composite scenario. While HS in mean and

stormy conditions appeared to decrease in most of the basin and for most directions, the effect of storms from the southern

quadrant (southwest to southeast) on the northern Adriatic Sea expected to intensify. This result, interpreted as a consequence145

of a northbound shift of the storm tracks (Trenberth et al., 2003; Giorgi and Lionello, 2008) in the Mediterranean region, was

shown to have significant implications for the coastal regions. Besides the obvious impact of stronger storms where this will

happen, and besides the baseline sea level rise exacerbating the effect of storms even when their intensity are expected to de-

crease (Lionello et al., 2017), the spatial variability in the impact of climate change will result in a modification of the patterns

of energy fluxes onto and along the Adriatic coast, thus modifying the sediment transport rates and gradients and ultimately150

coastal morphodynamic processes.
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2.3 Training and evaluation datasets

Training and the application of DELWAVE was based on basin-wide wind fields from COSMO-CLM and pointwise wave time

series at six locations exposed to different wave climates (Figure 2). AA (12.51 ◦E, 45.31 ◦N), OB (14.51 ◦E, 42.42 ◦N), and155

MB (17.38 ◦E, 40.98◦N) which coincide with the observation points used for the SWAN model validation in Bonaldo et al.

(2020) and are representative of nearshore conditions respectively along the northern, central and southern Italian coast. Grado

(13.45 ◦E, 45.68 ◦N) lies at the edge of the gulf of Trieste in the northernmost end of the Adriatic Sea, facing south and is

partially sheltered by the Istrian peninsula. OB2 (15.35 ◦E, 42.97 ◦N) and OB3 (16.00 ◦E, 43.37 ◦N) are located along an ideal

transect off Ortona respectively in the middle of the basin and along the Croatian coast. Wind fields are provided as six-hourly160

meridional and zonal components, whereas wave data, also six-hourly, are given in terms of significant wave height (HS),

mean wave direction (d), and energy period (Tm−1,0). The model data from the control (CTR) period (1971-2000) were used

for the network training, whereas future scenario (SCE, 2071-2100) data were used as a reference for assessing the network

skills, particularly in terms of its capability to capture the features of the climate signal.

3 DELWAVE165

In this section we present our DEep Learning WAVe Emulator (DELWAVE). DELWAVE is constructed from three logically

separate parts. We proceed by providing an overview of the model input fields. Following that, we describe the DELWAVE

architecture in detail and further argument specific model architecture decisions using ablation studies. Lastly, we provide a

description of the training procedure.

3.1 Model input tensor170

The data DELWAVE uses to conduct both training and inference is available in the form of a tensor, which contains three

logically separate fields: spatial wind field, location encoding, and grid encoding. Each of this parts serves a specific purpose

and we elaborate on each in the following subsections.

3.1.1 Wind field

Let’s begin by first defining the input (wind) fields from which core information for surface wave prediction is extracted. Let175

It denote the spatial wind field over the Adriatic basin at time t. Then,

It ∈ R2×nx×ny , dim(It) = [2,nx,ny], (2)

where the first dimension corresponds to either u or v components of the wind vector, while the last two correspond to the

zonal (nx) and meridional (ny) spatial dimensions of the modeled wind field, in our case nx = 90, ny = 89.
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Figure 3. The visualization of the spatial encoding matrices for each location (the coastline is added for clarity). Each plot corresponds to

one location encoding matrix which forms a part of the input sample tensor Il.

3.1.2 Location encoding and grid encoding180

We further complement the wind field input tensor It by a spatial encoding matrix. The purpose of this matrix is to provide

the network with information about the specific location for which we wish to predict surface wave attributes. This approach

allows us to easily add new locations into the training procedure by simply defining new spatial encoding matrices, without the

need for any other modifications to the algorithm or model architecture.

Let Ll denote the location encoding sparse matrix for location l. Then185

Ll ∈ Rnx×ny , dim(Ll) = [nx,ny]. (3)

We now denote each ith row (i= 1, . . . ,nx) and jth column (j = 1, . . . ,ny) entry of Ll as Ll,(i,j) and compute the matrix

entries as

Ll,(i,j) =
1√
2πς

exp

[
−1

2

(li − i+1)2 +(lj − j+1)2

ς2

]
, (4)

where we set the spatial variance to ς2 = 20. This variance corresponds to a standard deviation of
√
20∼ 4− 5 grid cells or190

0.45◦ in longitude and latitude, as shown on Figure 3. We determined the value of the spatial variance empirically, by testing

multiple value configurations where we finally selected the spatial variance value which produced the best results. The variables

li and lj denote the corresponding l location’s position in the spatial field, expressed in terms of row and column indices. We

illustrate examples of multiple encodings for different locations in Figure 3.
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Finally, we normalize the matrix entries to the range [0,1] by195

L̃l,(i,j) =
Ll,(i,j) −min(Ll)

max(Ll)−min(Ll)
. (5)

We use this normalized location encoding matrix to augment the input wind field tensor to form the wind-location input tensor

Itl , where the tensor is now given for a specific location target and time. Here, the augmentation denotes the concatenation of

the starting input tensor and the location encoding along the first dimension. This entails that dim(Itl) = [3,nx,ny], where the

increased size of the first dimension corresponds to this augmentation. To create training samples for all k locations, based on200

the same wind field, we use the following approach: we first randomly sample a wind field from the dataset. Then we augment

the wind field with the k location matrices, where each individual augmentation produces its own Itl corresponding to a location

l. This way, each training sample contains the wind field, together with a spatial encoding of a specific location. As we train

the model, the training takes into account all different locations and all time steps during the same training process.

This input provides the necessary information for the model to distinguish between the different locations for which we205

require surface wave predictions. Without this encoding the model would most likely gravitate towards an average prediction

at a specific time t for all locations, as it would not be able to distinguish between them. During DELWAVE training, we

minimize the root mean squared differences loss function defined as

L=

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (6)

where yi denotes the SWAN values for sample i, and ŷi DELWAVE’s predictions. If we were to omit the location encoding210

from the input tensor for time t, then each location would share the same input tensor at time t (the location encoding is

what differentiates input tensors for each target location), however the wave field attributes of each location are not the same.

Therefore, the average prediction of all target locations is the minimizer in this case.

The final transformation of the input tensor is the concatenation of the grid encoding. A building block of DELWAVE’s

architecture is the convolution operation, which is, by design, translation invariant. This implies that same signal at different215

spatial locations produces the same output response. Since the location of specific wind patterns with relation to the target

location of interest is important (wind fetch), we have to go against this inherent invariability of the convolution operation to

translations. We do this using the grid encoding which assigns a unique value to each spatial location inside the input field. This

enables the network to learn wind features in specific regions of the input. We denote the grid encoding matrix as C ∈ Rnx×ny .

Individual entries of the matrix are computed as220

C(i,j) =
(i− 1)ny + j− 1

nxny
, (7)

where i is the index to the row and j to the column. We augment the wind-location tensor with the above defined grid matrix

to produce the final wind-location tensor (we do not explicitly denote the grid encoding presence inside the tensor) in the same

way as we did in the case of the location encoding. We end up with a tensor containing 4 input fields (zonal wind, meridional

wind, location encoding, grid encoding) of dimension [nx,ny]:225

dim(Itl) = [4,nx,ny]. (8)
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3.1.3 Temporal extent

The surface wave field at a specific location consists of the local wind sea and of the incoming swell, generated remotely in

the hours preceding forecast time t. Consequently, predictions at time t require additional wind inputs from times preceding

t. The number of preceding timesteps was estimated using a deep-water dispersion relation for gravity waves σ2(k) = gk and230

the corresponding gravity wave phase speed

cf = σ/k = (g/k)1/2 = (gλ/2π)1/2. (9)

Using an estimate of surface wave wavelength λ= 40 meters, indicates that such waves traverse basin scale distances in about

a day and a half. We consequently estimate that the wave field at a given location can be influenced by remotely generated

swell over distances, traversed by swell waves in about 1 to 1.5 days, corresponding to about 10−14 timesteps in three-hourly235

resolution input. We rounded this down to 10 temporally preceding timesteps.

We therefore take 10 preceding wind inputs from consecutive time instants leading up to t, namely [It−10
l ,It−9

l , . . . ,It−1
l ,Itl ].

Repeating this for over 4 fields contained in the Itl tensor (zonal wind, meridional wind, location encoding, linear grid encod-

ing), we end up with 11 timesteps of 4 fields over a spatial grid of nx ×ny cells. Hence the dimensions of final concatenated

input tensor are240

dim(Il) = [11,4,nx,ny] = [11,4,90,89]. (10)

3.2 DELWAVE model architecture

DELWAVE is composed of three logically distinct components, each responsible for a specific processing task, as depicted in

Figure 4. The atmospheric encoder is responsible for encoding the input fields for each timestep into high dimensional vectors.

These vectors are then passed to the temporal collapse block where they are merged into a single vector, attenuated based on the245

temporal importance of the individual inputs, as explained in subsection 3.2.2 bellow. Finally, the regression block transforms

this vector into the three required outputs. Individual blocks are described in more detail in the following subsections.

Additionally, let us define the notion of an encoder. An encoder is a sequence of transformations, a sub neural network,

which maps a specific input to a, usually, high dimensional vector. This vector is said to be an encoding of the provided input,

carrying information about it, albeit in a obtuse way. The encoder-decoder structure Cho et al. (2014), for example, is a common250

paradigm in machine learning leveraging this terminology.

3.2.1 Atmospheric encoder block

The atmospheric encoder block, displayed in Figure 5, is constructed from three sub-components: the per input atmospheric

encoder, the joint atmospheric encoder, and the output atmospheric encoder.

Input atmospheric encoder: The input atmospheric encoder encodes each timestep individually before passing them to the255

joint atmospheric encoder. Each per-timestep input tensor has its own input atmospheric encoder block. This is to ensure that

the initial processing of the wind field with the location encoding is unique to each timestep. The per-timestep encodings of

10
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Temporal
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Atmospheric
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Atmospheric
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Atmospheric
encoder t1
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Figure 4. DELWAVE architecture overview. The network is comprised of three logically distinct sections. Each section is denoted using a

different color. The information in the network flows from left to right. Inputs ti denote the n timesteps passed to the network, while MWP,

SWD, and MWD denote mean wave period, significant wave height, and mean wave direction, respectively.

spatial locations might be important for predicting wave characteristics at different timesteps, therefore per input encoders add

to the flexibility of the model being able to adapt to such requirements. However, using completely separate encoders for each

timestep would result in slow, hard to scale architectures with overfitting issues. Therefore, a shallow initial encoder structure260

for each timestep is a good compromise between the two approaches. Here, shallow denotes a architecture with only a few

layers, as is denoted in Figure 5. Conversely, a deep neural network architecture constitutes of many tens of layers.

To be more formal about the atmospheric encoders, define as Aj the jth atmospheric encoder, in our case one of 11, each

corresponding to one consecutive timestep. Then, DELWAVE proceeds by encoding each timestemp of the input tensor with

its corresponding atmospheric encoder. this results in a set of atmospherically encoded input tensors265

{A1(Il,(1)), . . . ,A11(Il,(11))}, (11)

where Il,(j) denotes the jth timestep from the input tensor Il and Aj(Il,(j)) denotes the encoded tensor. This set is then passed

to the next transformation, the joint atmospheric encoder.

Joint atmospheric encoder: The joint atmospheric encoder is the primary extractor of important wind field features as it is

also the encoder with the most layers. It is shared between timesteps (we use the same joint atmospheric encoder to transform270

each per-timestep output of the previous block), since we care to locate important wind features independently of the time at

which they occurred. For example, a specific wind pattern can occur at different timesteps. Therefore, we can use the same
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Figure 5. DELWAVE atmospheric encoder block sub-components. Each sub-component is shown in a separate row. The variable f denotes

the number of output features of that operation and kernel denotes the kernel size of the convolution operation. Stride is always one for the

convolution layers and two for the max pool layers. The activation function of choice is the Sigmoid Linear Unit (SiLU) (Hendrycks and

Gimpel, 2016).

wind pattern detector to locate and recognize the pattern irrespective of the time of occurrence. The approach of weight sharing

between timesteps also reduces the computational complexity, the number of required parameters, and acts as a regularizing

method preventing overfitting. We denote this encoder as Ajoint which is applied to all output of the individual atmospheric275

encoders

Ajoint(A1(Il,(1)), . . . ,A11(Il,(11))), (12)

and results in a single output tensor.

Output atmospheric encoder: The output atmospheric encoder selects the recognized wind features important for each

timestep. We do this using a convolution operation with a kernel size of one, signifying a linear combination of the input280

features. The resulting per-timestep tensors of dimension [b,256,4,4], where b denotes the batch size, are summed across

their last two dimensions, resulting in a 256 dimensional vector as the final output of this layer. These vectors serve as high

dimensional weather descriptors for individual timesteps and contain wind information at each timestep.

3.2.2 Temporal collapse block

The temporal collapse block, displayed in Figure 6, collects the individual atmospheric vectors and encodes them into a single285

256 dimensional vector. This is done by a sequence of two one-dimensional convolution operations Conv1d, where we set the

the kernel size and output feature count to one for the later of the two. This essentially achieves a linear combination of the
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f =

Conv d1
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1

Figure 6. DELWAVE temporal collapse block. The variable n denotes the number of time steps used to train the model, b denotes the batch

size. The n weather feature vectors of dimension [b,256] are stacked into a single tensor which is then reduced to a single 256 dimensional

vector by passing through the convolutional operations. Stride is always one for the convolution layers. The activation function of choice is

the Sigmoid Linear Unit (SiLU) (Hendrycks and Gimpel, 2016).

3x

Regression
block f = 256

Linear

f = 3
Linear + SiLU

MWP

SWH

MWD

Dropout: 0.2

Figure 7. DELWAVE regression block reduces the output of the temporal collapse block into the final outputs: MWP, SWH, and MWD.

The regression is conducted by a cascade of three dense skip connections followed by the final dense connection with three outputs. The

activation function of choice is the Sigmoid Linear Unit (SiLU) (Hendrycks and Gimpel, 2016).

inputs across the timestep dimension. The first convolution produces a new set of interleaved temporal feature vectors. The

second block reduces these temporal feature vectors into a single vector by means of a linear combination.

3.2.3 Regression block290

Finally, the regression block, displayed in Figure 7, comprises of consecutive fully connected layers with skip connections.

This block produces the final outputs: MWP, SWH, and MWD. To prevent overfitting and improve performance over unseen

data in the cross-validation dataset, a dropout with a removal probability of 0.2 is applied between each fully connected layer,

except the last two (the output layer and the penultimate layer).

3.3 Training protocol295

The CTR period was used for training while the SCE period was used for testing the final, developed model. The CTR data

was further split into two parts: the actual training dataset (CTRtrn) and the validation dataset (CTRvld). CTRtrn contains the

first 80 percent of the training data, while CTRvld contains the remaining 20 percent. The data for each location and for each

variable (significant wave height, mean wave period, mean wave direction) is separately standardized to exhibit zero mean and

variance one. Prior to the standardization we log-transform significant wave heights by ln(SWH+1). We give arguments for300
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Figure 8. Random importance-sampling’s effect on the batch constitution over training. The row on the left with orange columns repre-

sent the distributions of all three target variables in a random training batch without importance-sampling. The right three rows display

importance-sampled batches, each row belonging to a specific variable that was importance-sampled. The histograms colored in blue contain

those variables that were importance-sampled. Importance-sampling results in more uniform distributions for the sampled variables, which

indicates a more equal sampling of the target variable realization space.

this transformation in the following paragraphs. Then at each training iteration a random batch of training samples is collected

and the model loss function, the root mean squared difference, defined in Equation (6), is used to optimize DELWAVE’s

parameters, evaluated at these batches.

Neural networks often have difficulties predicting extreme events in the tails of the distributions, because these events are by

definition rare and the network rarely encounters them in the training set. To better learn and model underrepresented values of305

the target variables we increased their presence in the training set by employing the so-called random importance-sampling. We

illustrate random importance-sampling in Figure 8. If we observe the distributions of the three target variables in a randomly

sampled batch (left panel in Figure 8) we can see that these are skewed. For example, the significant wave height is distributed

similarly to a left slanted gamma-like distribution with a very long tail. Therefore, the model is not exposed to the tail of the

distribution frequently which inhibits efficient training in that part of the distribution. This results in systematic errors, where310

the regression accuracy for significant wave height drops with increasing height. This is understandable as samples with wave

heights above two meters constitute only a small fraction of the dataset, contributing less during training compared to samples

with smaller wave heights.
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Our implementation of importance-sampling is conducted on-the-fly at batch acquisition. The reasons we do this on-the-fly

as opposed to conducting this statically (oversampling before training and saving the new samples on disk) is this: oversampling315

highly skewed distributions to a point of close uniformity would require a large amount of additional samples. Since we had

limited disk space this was not an option. Therefore, we implemented single variable importance sampling that over-samples

one of the target variables at random for a given training batch. However, when we over sample one of the variables, the

remaining usually remain biased. We can observe this effect in the skewed green histograms in Figure 8, while the blue

histograms are more uniform. To alleviate this issue, we alternated the sampling between the three target variables randomly320

to eliminate single variable importance sampling bias.

Furthermore, we alternated between regular sampling and importance-sampling, where every second batch was randomly

importance sampled. This compromise offered the best performance out of the two approaches. We believe that this is due to

the majority of data taking on only a small subset of values, thus these values influence the loss more than the rare events. This

is especially true for significant wave heights where only five percent of all samples across all locations exhibit wave heights325

above two meters. Additionally, since fitting unbiased estimates of the tail of the distribution for significant wave heights was

still challenging, we also penalized the network for miss-classifying significant wave height twice as much as for the remaining

two variables.

We conducted our training procedure in two stages. Since we trained our model on the Vega cluster (Institute of Information

Science, 2023) we were limited by the maximum time our training could take up. A single run could last up to two days330

maximum therefore, we first trained our model using the Adam (Kingma and Ba, 2014) solver with default Pytorch parameters,

learning rate of 10−3, and a weight decay of 10−6 for two days. Following this period, we extracted the model that best

performed on the validation dataset, reinitialized the learning procedure with a reduced learning rate of 10−5, and retrained for

600 more epochs. We again took the model that best performed on the validation dataset and used it to compute the test dataset

results we present in the following sections.335

4 Temporal ablation study of the input

In this section, we investigate the impact of the number of timesteps on the performance of the model. Adding multiple

timesteps results in inputing more information into the model, therefore training performance might increase. However, due

to overfitting this performance might not be reflected in the actual accuracy on unseen data. Therefore, we conducted a pre-

liminary comparison of five DELWAVE variants, each trained with a different number of input timesteps. These variants are340

DELWAVE2, DELWAVE4, DELWAVE8, DELWAVE11, and DELWAVE16, where the subscript denotes the number of used

timesteps. Here, each of the five variants uses n+1 timestemps, where n denotes the number of previous timesteps (in case of

DELWAVE8 this means seven previous timesteps with the addition of the current one). Results of this study are presented in

Table 1 and their validation loss during training in Figure 9.

We can observe the diminishing returns nature of adding timesteps beyond the 11th timestep: the performance seems to be345

roughly identical between the DELWAVE16 and DELWAVE11. Note also that DELWAVE16 contains more trainable parame-
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ters and is also slower to train comapred to DELWAVE11. DELWAVE11 exhibits the best performance in four cases, equal to

DELWAVE16, followed by DELWAVE8 with two cases. Similarly, we can observe that after the threshold of 11 time samples

is reached we enter the diminishing returns domain, where DELWAVE16 offers negligible or even worse performance in some

cases compared to DELWAVE11. Therefore, we concluded that DELWAVE11 is the most promising network variant for further350

training.

AA MB OB

DELWAVE2 RMSheight 0.145 0.134 0.072

DELWAVE4 RMSheight 0.091 0.078 0.034

DELWAVE8 RMSheight 0.065 0.082 0.033

DELWAVE11 RMSheight 0.067 0.083 0.032

DELWAVE16 RMSheight 0.073 0.079 0.032

DELWAVE2 RMSperiod 98.279 44.930 107.135

DELWAVE4 RMSperiod 82.057 30.432 76.555

DELWAVE8 RMSperiod 50.457 24.402 55.783

DELWAVE11 RMSperiod 43.546 24.407 55.614

DELWAVE16 RMSperiod 44.056 25.084 58.559

DELWAVE2 RMSdirection 22.057 69.798 25.836

DELWAVE4 RMSdirection 19.877 62.432 22.065

DELWAVE8 RMSdirection 16.504 57.108 19.985

DELWAVE11 RMSdirection 16.775 54.720 19.626

DELWAVE16 RMSdirection 16.270 55.614 18.961

Table 1. Table containing the performance evaluations of DELWAVE which we constructed by varying the amount of timesteps used during

training, for three training locations: AA, MB, and OB. RMS denotes the root mean squared error and the best performing (with the lowest

RMS) variant is in bold.

5 Results

In order to assess the potential and the possible limitations of the DELWAVE network, the analysis of the results is divided into

three phases. After an overview of the performance of the network in reproducing the main overall properties of the SWAN time

series (Sec. 5.1), the analysis will focus on two aspects of particular relevance for practical purposes, namely the capability of355

reproducing storms (including, but not only, extreme events, Sec. 5.2) and their main properties, and the capability of capturing

the main features of the climate change signal (Sec. 5.3).
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Figure 9. Root mean squared error on the validation dataset (averaged over all three variables) for all DELWAVE temporal ablation variants.

The cut off number of epoch is the amount achieved by DELWAVE16 in two days of training since it is the slowest of all the variants.

5.1 Deep Network vs SWAN under far future climate 2071-2100

In this section we present DELWAVE performance during the far future period of 2071-2100, as benchmarked against SWAN

simulations. In other words: SWAN simulations represent the ground truth DELWAVE aims to model. Figure 10 depicts360

DELWAVE-SWAN heatmaps of HS , d and Tm−1,0 at the locations of Acqua Alta oceanographic tower (AA) and the Ortona

and Monopoli buoys (respectively OB and MB, see Figure 2 for locations). Results for other locations are provided in the

Supplementary material.

We will proceed by analyzing DELWAVE performance using three related Figures. Figure 10 depicts DELWAVE predictions

for HS , d and Tm−1,0 compared to those from the SWAN model, obtained from the same wind fields, i.e. obtained for the same365

forecasting time window. Figure 11 shows the overlaps of histograms of HS , d and Tm−1,0 from both DELWAVE and SWAN

model. Note that close overlap of the distribution histograms from both models does not guarantee a good forecast since this

overlap does not tell anything about the synchronicity of both forecasts - one therefore needs to view Figure 11 in conjunction

with Figure 10. Additionally, Figure 11 illustrates how DELWAVE forecasting mean absolute errors change depending on

which part of distribution we are modeling. Here mean errors imply error averaging over all the forecasting samples in a370

specific distribution bin. Consequently the error values are well defined only in the bins containing a large enough (e.g. over

100) number of samples. In what follows we will be basing our remarks on an interplay of messages from all three Figures.

Location AA in the northern Adriatic (off the Venetian shore, see Figure 2 for location) is marked by an excellent perfor-

mance in HS and d prediction, indicated by the near linear scatter plot displayed in Figure 10. The same aspect of DELWAVE

performance is illustrated via histogram distribution for the same three parameters on Figure 11. d (Figure 11, top row, right375

column) exhibits two maximums related to two dominant Adriatic winds, northeasterly Bora at roughly 75◦ and southeasterly
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Figure 10. A scatter plot of DELWAVE forecasts (y-axis) compared to their SWAN targets (x-axis) for mean wave period [s] (1st column),

significant wave height [m] (2nd column) and mean wave direction [◦] (3rd column) at locations AA (1st row), OB (2nd row), MB (3rd

row), and GD (4th row). Mean wave directions are listed in nautical notation (0◦ = North, 90◦ = East, etc.). Dashed diagonal line in each

plot indicates a perfect forecast.
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Figure 11. Histograms of DELWAVE-vs-SWAN distributions of HS (left column), d (middle column) and Tm−1,0 (right column) from

DELWAVE (turquoise bars) and SWAN model (brown bars) during the 2071-2100 timewindow at AA (1st row), OB (2nd row), MB (3rd

row), and GD (4th row) location. Light blue lines are scaled on the y axis and depict MAE, averaged over number of samples in each bin.

Scirocco at roughly 135◦. Short wave periods at AA location on the other hand seem to be the hardest to predict, as can be

seen from in the left column in either of the Figures 10 or 11. This is to some extent expected: long wave periods correspond to
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longer waves and consequently windy atmospheric conditions. Short periods on the other hand correspond to calm conditions

where the network is essentially modelling low amplitude, short wavelength, stochastic sea surface behaviour.380

Similar observations can be made for OB and MB locations. SWAN HS is modelled very reliably with DELWAVE. Multi-

modal direction histograms at all locations are also reproduced to a high degree of accuracy, as can be seen from the middle

column of Figure 11. On the other hand, the network seems to be struggling to reproduce northerly directions (rougly 0◦±10◦)

at this location. This leads to horizontal strips of incorrect predictions displayed in the scatter plot of the right column, middle

row in Figure 10 and to a bump in mean absolute error in the histogram displayed at the same location in Figure 11.385

Figure 11 also hints at quantitative estimates of DELWAVE performance. When it comes to HS predictions (middle column)

errors at all locations grow with significant wave height from errors below 5 cm for HS below 1 m to errors of order 10-15 cm

for HS over 3 m. DELWAVE predictions of mean wave direction d (right column) exhibit the smallest errors in the directional

bins corresponding to prevalent wind patterns. In general directional errors are below 25◦, at AA even lower. High directional

errors at 0◦ and 360◦ stem at least partly from the algorithm’ s false distinction between 0◦ and 360◦ directions.390

Wave period Tm−1,0 predictions are illustrated in the left column of Figure 11. At all locations, periods below 6 s are

captured well by DELWAVE, with prediction errors below 0.25 s. Longer periods, likely corresponding to an incoming swell,

however exhibit more diverse behaviour. MB location wave periods seem to be captured more accurately in the long period

limit, with forecast error dropping below 0.1 s. At OB location the errors in the long period limit slightly rise, from 0.2 s to

0.3-0.5 s. AA location on the other hand indicates a sharp rise of Tm−1,0 prediction error which reaches 1 s for period above 8395

s.

The error behaviour at the AA location is possibly explained by the differing roles played by the basin geometry, the local

wind sea and swell. location AA is prevalently exposed to northeasterly Bora (blowing from roughly 75◦) and to southeasterly

Scirocco (blowing from 135◦). In case of Bora the fetch is quite limited since Bora is a cross-basin wind. Therefore we do not

expect swell to play a major role at AA location during Bora conditions: the wave field at AA location must be determined400

by local wind conditions. The case of Scirocco is very different. Scirocco is an along-axis wind with the largest fetch in the

Adriatic basin. This means that during Scirocco, swell field at AA is determined to a large extent by non-local wind patterns

in the south of the basin. Local wind conditions at AA location are furthermore often a poor proxy for winds in the south

Adriatic. Bora in the north (promoting short fetch and shorter wave periods) coinciding with Scirocco in the south (promoting

long period swell arriving at AA) is, for example, not unusual. These circumstances likely pose a challenge for the DELWAVE405

deep network, resulting in growing errors at longer wave periods (which most likely occur during Scirocco).

This explanation can be further substantiated by comparing wave period MAE to Hs, Tm−1,0 and wave power. The latter is

computed from the linear theory to be

P =
ρg2

64π
H2

sTm−1,0, (13)

with ρ being the water density and g the acceleration due to gravity. This comparison is depicted in Figure 12, which corrobo-410

rates this interpretation and constrains DELWAVE limitations in capturing the basin-scale dynamics.
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Figure 12. Comparison of wave period (indicated by color) relationship to significant wave height Hs (left column, y-axis) and to wave

power (right column, y-axis) at all directions (x-axis) for AA (top row), OB (middle row) and MB (bottom row). The white parts in the plot

refer to combinations of direction and variable for which no occurrence was found in the data.

Concentration of the highest values of MAE at low values of Hs and P (left and right columns respectively) confirms that

largest errors tend to be associated with low-energy, nearly random sea states, even in the presence of relatively long waves

(middle column) along the main basin axis (Scirocco at AA), thus with limited impacts on possible practical applications. It

is further worth mentioning that a separate analysis, carried out by independently considering the rising and declining phases415

of the sea states (not shown), did not exhibit any preferential concentration of the higher values of MAE in either phase. Wave

period error is therefore not systematically larger during either onset or calming of the storm, suggesting that it is not directly

related to the sequential and monotonous temporal encoding of inputs within DELWAVE. Had this not been the case, we would

have expected some error asymmetry with regard to the timing of the storm.

5.2 Storm analysis420

The analysis of the storms was carried out by comparing the DELWAVE results against the SWAN time series during period

2071-2100. For each time series, the storms were identified following the method proposed by Boccotti (Boccotti, 2000),

namely (i) finding the events with Hs larger than 1.5 times the mean value Hs of each respective series, (ii) merging the events
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parted by less than 10 hours and (iii) discard those overall shorter than 12 hours. Figure 13 compares SWAN and DELWAVE

peak Hs and directions for each storm at AA, OB, and MB (the same is shown for the other locations in the supplementary425

material), considering separately the whole sets of storms occurring during the period and the annual maxima for each series.

While the former provides a broader view on how DELWAVE reproduces the whole meteo-marine climate at each location, the

latter aims at assessing its capability of addressing extreme events. The picture is flanked by a quantification of the DELWAVE

precision (how many DELWAVE-predicted storms are actually present in the SWAN time series) and recall (how many SWAN-

modelled storms are retrieved by DELWAVE). These two metrics are computed as430

Precision =
TP

TP +FP
, Recall =

TP

TP +FN
, (14)

where TP,FP and FN denote true positive (storm present in SWAN and predicted by DELWAVE), false positive (storm pre-

dicted by DELWAVE but not present in SWAN) and false negative (storm present in SWAN but not predicted by DELWAVE)

classifications. Figure 14 shows an example of the application of Boccotti’s method to SWAN and DELWAVE storms and the

occurrence of false negatives and false positives.435

All considered sets exhibit a satisfactory performance with very high scores (Precision, Recall ≥ 0.95) when all the storms

are considered. When only annual maxima are taken into account, precision and recall are lower, though fairly high (≥ 0.8), and

without an evidently prevailing directional offset. Considering the whole storm sets, most of the false negatives and positives are

generally clustered among the weakest events. This can be explained by considering that, for particularly weak or short events,440

small absolute errors can mean large relative errors. Therefore in small Hs limit, already a small error in the reproduction of

Hs can significantly impact whether the criteria for the identification of storms are met or not (Figure 14).

This result seems to be in contradiction with the results for the yearly maxima sets, where prediction and recall scores

decrease and the number of false negatives and positives increases. This contradiction is however only apparent and is related

to the propagation of Hs prediction errors downstream into the identification of the yearly maxima. More precisely, in this445

case the mismatch does not seem related to the classification of an event as a storm, but rather to its classification as an yearly

maximum: in fact, a slight error in predicting the peak height of storm events can introduce some noise in the ranking of the

events, and in particular in the identification of the yearly maxima, leading to a mismatch between DELWAVE and SWAN.

Nonetheless, as far as small errors in the prediction of the peak Hs are the cause for this mismatch, even if the events retrieved

by DELWAVE are not exactly the ones resulting from the SWAN time series, their properties (or at least their peak Hs) should450

be quite close, which should be sufficient for most practical applications.

5.3 Climate change features

One of the main scopes of DELWAVE is to provide a computationally cheap model emulation system capable of providing

large ensemble predictions for wave climate at a multi-decadal scale. This kind of applications is to some extent complementary

to the event-scale analysis of single storms, and requires a specific assessment of the network capability of capturing the455

main statistical features of the climate signal. Figure 15 provides a twofold comparison of the climatological normals of the
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Figure 13. Comparison of SWAN and DELWAVE peak Hs value at AA, OB, and MB during all the storms (top row) and for the annual

maxima (bottom row). Dashed diagonal line indicates a perfect match. The colormap represents the directional offset during the peak of each

storm. Pluses and crosses along the plot axes represent false negatives (+) and false positives (×).

monthly mean, median and 99th percentile of Hs at AA, OB, and MB (the same values for the other locations are provided

as supplementary material) provided by SWAN and reproduced by DELWAVE. The statistics resulting from the SWAN and

from the DELWAVE time series are compared against each other in the end-of-century scenario (2071-2100, SCE), and both

are compared against the statistics from the control condition (CTR), available only for SWAN in the 1971-2000 period. The460

good agreement between DELWAVE and SWAN is confirmed also when considering climatological statistics, with a small

(≤5%), though systematic, underestimate of 99th percentile values, reflecting what was discussed in Section 5.1. Compared to

the CTR climatologies, the mismatch between DELWAVE and SWAN is generally small compared to the difference between

SCE and CTR conditions, suggesting that the noise possibly introduced by the model mimicking is weaker than the climate

change signal in the considered locations. Not surprisingly, the only way in which the performance seems partially affected465
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Figure 14. Examples of false negatives (left) and false positives (right) in the identification of storms (thick lines) following the method by

Boccotti (2000) in the DELWAVE and SWAN HS time series (thin lines). Dotted lines represent the reference threshold of 1.5HS for each

time series.

by seasonality is through the modulation of significant wave height and the tendency of the network to underestimate higher

(and therefore wintry) values. Nevertheless, Figure 15 shows that the potential modeling errors, introduced by the DELWAVE

model, are substantially smaller than the difference between scenario (2070-2100) and control periods (1970-2100).

Following a similar approach for the directional wave climate, the linearized wave roses in Figure 16 show that the agreement

between DELWAVE and SWAN allows to capture important impacts of climate change in the wave regime not only in absolute470

terms, but also in response to projected shifts in the wind regimes. This is for instance the case of the slight weakening of Bora

(NE) storms associated with an intensification of Scirocco (SE) events in the northern Adriatic Sea in the broader framework of

a tendency towards an overall decrease of the storminess in most of the basin, suggested by Bonaldo et al. (2020) and confirmed

by the DELWAVE projections.

6 Conclusions475

We have presented a new point-prediction deep learning method for surface gravity wave emulation in epicontinental Adriatic

basin, which took about two and a half days to train and can process more than 100 wind fields per second, to be used for large-

ensemble prediction over synoptic to climate timescales. DELWAVE input set consists of atmospheric winds during 1998-2000

and cross-validation period is the far-future climate timewindow of 2071-2100. We have thoroughly analyzed which architec-

ture yields best results for wave emulation and these efforts led us to presented architecture of a convolution-based atmospheric480

encoder block, temporal collapse block and finally a regression block. We introduced random importance-sampling for im-

proved modeling of underpopulated tails of variable data distributions. Detailed ablation studies were performed to determine

optimal performance regarding input fields, temporal horizon of the training set and network architecture. We demonstrated

that DELWAVE reproduces SWAN model significant wave heights with a mean absolute error (MAE) between 5 and 10 cm,

mean wave directions with a MAE of 10◦-25◦ and mean wave period with a MAE of 0.2 s. The network is able to accurately485
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Figure 15. Comparison of SWAN (SW) and DELWAVE (DW) mean, median and 99th percentile Hs climatologies statistics in the future

scenario (2071-2100, SCE) against the SWAN-modelled statistics referred to the control period (1971-2000, CTR), respectively at AA, OB,

and MB.

emulate multi-modal distributions of mean wave directions, which are related to dominant wind regimes in the basin. An anal-

ysis of DELWAVE performance during storms was performed by employing threshold-based metrics of precision and recall.

DELWAVE reached a very high score (both metrics over 95%) of storm detection.

SWAN and DELWAVE time series are further compared against each other in the end-of-century scenario (2071-2100),

and both are compared to control period of 1971-2000. Compared to control climatology over all wind directions, the mis-490

match between DELWAVE and SWAN is generally small compared to the difference between scenario and control conditions,

suggesting that the noise introduced by surrogate modeling is substantially weaker than the climate change signal. There is a

number of things we would like to explore further: it is currently not clear how to leverage gaussian (or other) spatial encoding

to generate, if possible, reliable predictions for locations which lie outside of the training set. This might open the door for
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Figure 16. Comparison of SWAN (SW) and DELWAVE (DW) directional Hs statistics in the future scenario (2071-2100, SCE, black and

grey bars respectively) against the same quantities modelled by SWAN with reference to the control period (1971-2000, CTR, coloured bars),

respectively at AA, OB, and MB.

dense predictions of the wave field, at least in the vicinities of input data locations. It would furthermore be interesting to495

introduce temporal dependence of the Gaussian variances in the spatial encoding matrix to help the network focus on wider

areas of input data as we feed it data from a more distant past.

Future research and potential applications may also focus on the larger scales, for example the entire Mediterranean Sea

basin, using high-resolution wind and waves model to boost DELWAVE training. The objective would be to explore the

behaviour of numerical and machine learning models in diverse wind and wave regimes, as well as wind and marine storms,500

which exhibit distinct physical characteristics in a basin with highly diverse morphological and dynamic features.

Last but not least, another promising venue is offered by recent developments in the field of physics-informed machine

learning. Here, the solution subspace is further constrained by additional loss terms which nudge the learning process towards
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physically consistent solutions. Since the physical aspects of wind driven surface gravity waves are known in substantial detail,

we expect there to be some immediate benefits to introducing dynamics laws into the training. Last but not least, it would be505

interesting to study how well the network generalizes to other domains and other models. All these will be topics of further

research.

Code and data availability. DELWAVE model code is available publicly on GitHub: https://github.com/petermlakar/DELWAVE. Raw COSMO

dataset can be found at the following repository, maintained by CMCC: https://doi.org/10.25424/cmcc-3hph-jy15. Preprocessed COSMO
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Bellafiore, D., Bucchignani, E., Gualdi, S., Carniel, S., Djurdjević, V., and Umgiesser, G.: Assessment of meteorological climate models as

inputs for coastal studies, Ocean Dynamics, 62, 555–568, https://doi.org/10.1007/s10236-011-0508-2, 2012.

Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F., Sclavo, M., Langone, L., and Carniel, S.: Response of the Adriatic Sea

to an intense cold air outbreak: Dense water dynamics and wave-induced transport, Progress in Oceanography, 128, 115–138,530

https://doi.org/10.1016/j.pocean.2014.08.015, 2014.

Benetazzo, A., Davison, S., Barbariol, F., Mercogliano, P., Favaretto, C., and Sclavo, M.: Correction of ERA5 Wind for Regional Climate

Projections of Sea Waves, Water, 14, https://doi.org/10.3390/w14101590, 2022.

Beucler, T., Ebert-Uphoff, I., Rasp, S., Pritchard, M., and Gentine, P.: Machine learning for clouds and climate (invited chapter for the agu

geophysical monograph series “clouds and climate”), Earth and Space Science Open Archive, 27, 2021.535

Boccotti, P.: Wave Mechanics for Ocean Engineering, Elsevier Science, Oxford, 496 pp., 2000.

Boehme, L. and Rosso, I.: Classifying oceanographic structures in the Amundsen Sea, Antarctica, Geophysical Research Letters, 48,

e2020GL089 412, 2021.

Bonaldo, D., Benetazzo, A., Bergamasco, A., Campiani, E., Foglini, F., Sclavo, M., Trincardi, F., and Carniel, S.: Interac-

tions among Adriatic continental margin morphology, deep circulation and bedform patterns, Marine Geology, 375, 82–98,540

https://doi.org/10.1016/j.margeo.2015.09.012, 2016.

Bonaldo, D., Bucchignani, E., Ricchi, A., and Carniel, S.: Wind storminess in the adriatic sea in a climate change scenario, Acta Adriatica,

58, 2017.

Bonaldo, D., Bucchignani, E., Pomaro, A., Ricchi, A., Sclavo, M., and Carniel, S.: Wind waves in the Adriatic Sea under a severe climate

change scenario and implications for the coasts, International Journal of Climatology, 40, 5389–5406, https://doi.org/10.1002/joc.6524,545

2020.

Booij, N., Ris, R. C., and Holthuijsen, L. H.: A third-generation wave model for coastal regions: 1. Model description and validation, Journal

of Geophysical Research, 104, 7649, https://doi.org/10.1029/98JC02622, 1999.

Bucchignani, E., Montesarchio, M., Zollo, A. L., and Mercogliano, P.: High-resolution climate simulations with COSMO-CLM over

Italy: Performance evaluation and climate projections for the 21st century, International Journal of Climatology, 36, 735–756,550

https://doi.org/10.1002/joc.4379, 2016.

Cavaleri, L., Alves, J. H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T. H.,

Hwang, P., Janssen, P. A., Janssen, T., Lavrenov, I. V., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W. E.,

Sheremet, A., McKee Smith, J., Tolman, H. L., van Vledder, G., Wolf, J., and Young, I.: Wave modelling - The state of the art, Progress

in Oceanography, 75, 603–674, https://doi.org/10.1016/j.pocean.2007.05.005, 2007.555

28

https://doi.org/10.1016/j.quascirev.2016.12.021
https://doi.org/https://doi.org/10.1016/j.rser.2015.01.061
https://doi.org/10.1007/s10236-011-0508-2
https://doi.org/10.1016/j.pocean.2014.08.015
https://doi.org/10.3390/w14101590
https://doi.org/10.1016/j.margeo.2015.09.012
https://doi.org/10.1002/joc.6524
https://doi.org/10.1029/98JC02622
https://doi.org/10.1002/joc.4379
https://doi.org/10.1016/j.pocean.2007.05.005


Cavaleri, L., Abdalla, S., Benetazzo, A., Bertotti, L., Bidlot, J. R., Breivik, Carniel, S., Jensen, R. E., Portilla-Yandun, J., Rogers, W. E.,

Roland, A., Sanchez-Arcilla, A., Smith, J. M., Staneva, J., Toledo, Y., van Vledder, G. P., and van der Westhuysen, A. J.: Wave modelling

in coastal and inner seas, Progress in Oceanography, 167, 164–233, https://doi.org/10.1016/j.pocean.2018.03.010, 2018.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y.: Learning phrase representations using

RNN encoder-decoder for statistical machine translation, arXiv preprint arXiv:1406.1078, 2014.560

Conv1d: PyTorch implementation, https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html.

Di Silvio, G., Dall’Angelo, C., Bonaldo, D., and Fasolato, G.: Long-term model of planimetric and bathymetric evolution of a tidal lagoon,

Continental Shelf Research, 30, 894–903, https://doi.org/10.1016/j.csr.2009.09.010, 2010.

Friedrichs, C. T.: Tidal Flat Morphodynamics: A Synthesis, vol. 3, Elsevier Inc., https://doi.org/10.1016/B978-0-12-374711-2.00307-7, 2011.

Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean region, Global and Planetary Change, 63, 90–104,565

https://doi.org/10.1016/j.gloplacha.2007.09.005, 2008.

Hendrycks, D. and Gimpel, K.: Gaussian error linear units (gelus), arXiv preprint arXiv:1606.08415, 2016.

Institute of Information Science, G. o. t. R. o. S.: IZUM, https://izum.si/en/home, online; accessed 3 March 2023, 2023.

James, S. C., Zhang, Y., and O’Donncha, F.: A machine learning framework to forecast wave conditions, Coastal Engineering, 137, 1–10,

https://doi.org/10.1016/j.coastaleng.2018.03.004, 2018.570

Janssens, M. and Hulshoff, S. J.: Advancing Artificial Neural Network Parameterization for Atmospheric Turbu-

lence Using a Variational Multiscale Model, Journal of Advances in Modeling Earth Systems, 14, e2021MS002 490,

https://doi.org/https://doi.org/10.1029/2021MS002490, e2021MS002490 2021MS002490, 2022.

Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.

Lionello, P., Conte, D., Marzo, L., and Scarascia, L.: The contrasting effect of increasing mean sea level and decreasing storminess on the575

maximum water level during storms along the coast of the Mediterranean Sea in the mid 21st century, Global and Planetary Change, 151,

80–91, https://doi.org/10.1016/j.gloplacha.2016.06.012, 2017.

Mallett, H. K. W., Boehme, L., Fedak, M., Heywood, K. J., Stevens, D. P., and Roquet, F.: Variation in the Distribution and Properties of

Circumpolar Deep Water in the Eastern Amundsen Sea, on Seasonal Timescales, Using Seal-Borne Tags, Geophysical Research Letters,

45, 4982–4990, https://doi.org/https://doi.org/10.1029/2018GL077430, 2018.580

Morim, J., Trenham, C., Hemer, M., Wang, X. L., Mori, N., Casas-Prat, M., Semedo, A., Shimura, T., Timmermans, B., Camus, P., Bricheno,

L., Mentaschi, L., Dobrynin, M., Feng, Y., and Erikson, L.: A global ensemble of ocean wave climate projections from CMIP5-driven

models, Scientific Data, 7, 1–10, https://doi.org/10.1038/s41597-020-0446-2, 2020.

Parker, W. S.: Ensemble modeling, uncertainty and robust predictions, WIREs Climate Change, 4, 213–223,

https://doi.org/https://doi.org/10.1002/wcc.220, 2013.585

Pomaro, A., Cavaleri, L., Papa, A., and Lionello, P.: Data Descriptor : 39 years of directional wave recorded data and relative problems ,

climatological implications and use, Scientific Data, 5, 1–12, https://doi.org/10.1038/sdata.2018.139, 2018.

Rasp, S., Pritchard, M. S., and Gentine, P.: Deep learning to represent subgrid processes in climate models, Proceedings of the National

Academy of Sciences, 115, 9684–9689, https://doi.org/10.1073/pnas.1810286115, 2018.

Rodriguez-Delgado, C. and Bergillos, R. J.: Wave energy assessment under climate change through artificial intelligence, Science of The590

Total Environment, 760, 144 039, https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144039, 2021.

29

https://doi.org/10.1016/j.pocean.2018.03.010
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://doi.org/10.1016/j.csr.2009.09.010
https://doi.org/10.1016/B978-0-12-374711-2.00307-7
https://doi.org/10.1016/j.gloplacha.2007.09.005
https://doi.org/10.1016/j.coastaleng.2018.03.004
https://doi.org/https://doi.org/10.1029/2021MS002490
https://doi.org/10.1016/j.gloplacha.2016.06.012
https://doi.org/https://doi.org/10.1029/2018GL077430
https://doi.org/10.1038/s41597-020-0446-2
https://doi.org/https://doi.org/10.1002/wcc.220
https://doi.org/10.1038/sdata.2018.139
https://doi.org/10.1073/pnas.1810286115
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144039
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