REVIEW #1

General comments

This work presents novel and interesting results that will be of interest to the readers
of this journal and the manuscript is well written. The authors have presented a
well-informed investigation and conducted a thorough examination of relevant
datasets. | can find no major problems. There are a number of issues and corrections
that should be addressed before publications though I consider these minor and that
the work is substantially complete.

The work is an event attribution study of the 2022 West-Central European soil drought,
focussing on types of drought relevant to ecology and agriculture. The authors
perform a detailed review of the state of the science including an assessment of
impacts and the work is well targeted in this sense. The chosen methodology is that of
the World Weather Attribution group, designed for rapid attribution and hence highly
prescriptive but also by now applied in publication a number of times. This study is
complex, providing analyses of a large number of different models of various types,
different estimates of observed soil moisture, all over two different regions and with
supporting analyses of temperature and precipitation. While clarification on points of
methodology is sometimes required | judge that the application of the methodology
has been appropriate, successful and useful. The authors are at pains to emphasise the
sources of uncertainty in the analysis, not least of which arise from the observations or
observations-based products. This uncertainty is explored at length and conclusions
have been well phrased in light of this. The authors provide a convincing argument that
robust yet conservative conclusions about the change in soil drought can be made and
highlight that with lower confidence stronger statements are possible.

We thank the reviewer for their positive and thorough assessment of our work, and
reply individually to all specific questions below using blue font.
Specific questions

1. L313 “three multi-model ensembles using different framings”. These models are

all used as part of a single multi-model ensemble and (as far as | can see) are
treated equally. As this involves a parametric fit to all of the residuals to the



same covariate then the framing referred to appears to be the same for every
model. If I'm right then the statement would better be along the lines of “three
multi-model ensembles of different types of models that are combined into a
single multi-model ensemble treated under the same framing.”

We agree that the reviewer’s suggestion more accurately describes our
approach, which indeed relies on three multi-model ensembles consisting of
different model types that are combined into a single ensemble after the model
evaluation. We have edited the text as follows:

We use several climate modelling experiments in this study, building on eenststing-efthree
multi-model ensembles of using different framings model types (Philip et al., 2020a): coupled
global circulation models (GCMs), high-resolution models, and sea surface temperature (SST)
driven GCMs. andhighresotuttonrmodets: All models are evaluated, and the simulations of

models that pass the required checks (Sect. 3.4) are combined into a single multi-model ensemble
that is subsequently treated under the same framing.

L316 Use of SSP5-8.5 scenario. Given that use of this scenario can be criticised
for certain uses, it might be worth a comment that as the future scenario is
based on a fixed warming level (2°C) not tied to timing of when that level is
reached, then the use of this scenario is defensible.

Thank you for this clarifying suggestion. We believe it fits best in Section 3.3,
where the statistical approach is described, rather than where the different

model ensembles are introduced. The text has been extended and edited as
follows:

We note that, regardless of the underlying emission scenario, model data from 1850 to 2022 and
from 1850 to 2050 are used to conduct the present-vs-past and future-vs-present climate analyses,
but these time periods only indicate the amount of data used to fit the statistical model and hence
infer the relationship between event indices and GMSTs. We then rely on global warming levels
Weto calculate the return periods, the probability ratio (PR — the factor-change in the event's
probability) and change in intensity of the drought event.--erderte-eompare-the-ehmate-efnow

httpsHwww-globatwarmingindexcorg). For our comparison of the present (2022) to the past
(1850=1900) climate, the GMST changes with respect to the present amount to -1.2 © C according
to the Global Warming Index (https://www.globalwarmingindex.org), and for comparing
additional changes in the future to the present, we use +0.8 © C relative to the 2022 GMSTs (+2.0
° C with respect to pre-industrial conditions). In other words, we are conditioning the analysis on

observed and simulated global warming levels and not on specific time frames. As such, it does




not matter when the future warming is reached in any given model simulation, which allows us to
combine models with different emission scenarios and still perform a consistent analysis.

L324 So is the AMIP model over-represented by 10x compared to the CMIP6
models (which use 1 member each) or is there an inverse ensemble size weight
applied to each model?

Following the World Weather Attribution protocol, multiple ensemble members
are pooled together for the statistical analysis, such that the synthesis is based
on different estimates per model, regardless of the underlying number of
ensemble members. In this sense, no ensemble size weighting is applied, and
models with several ensemble members are not over-represented. The following
sentence has been added to Sect. 3.3:

Where applicable (see Sect. 3.3), multiple initial condition ensemble members are pooled together
for the statistical evaluation and analysis (e.g., the 10-member AMIP AM2.5C360 ensemble).

L348 Use of GWI. Obviously other estimate of the change in GMST attributable to
human influence are available, though | don't expect this to make a substantial
difference to the conclusions. Has GWI been used for this purpose in another
study using the WWA protocol?

The Global Warming Index (GWI) is only used to estimate the current warming
level compared to the pre-industrial baseline. This warming level is then used to
calculate the return periods and changes in event probability and magnitude in
the present climate compared to the preindustrial past using the already
calibrated statistical models. The covariate used to fit the models, GMST, is taken
from GISTEMP in the case of observations, or the respective model. We note that
GISTEMP, processed as described in the manuscript (with a 4-year moving
average), is 1.15 °C warmer in 2022 than 1879-1900, which is close to the 1.2 °C
we employ with respect to 1850-1900. Whereas employing slightly lower or
higher GMST changes than 1.2 °C would act to decrease or increase the
estimated changes in probability ratio and magnitude, our conclusions would
remain unchanged.

Since the usage of GWI is standard practice in WWA analyses, there are many
examples of other studies using this index,, such as the study on the 2021 Pacific
Northwest heatwave (Philip et al., 2022), the 2022 India-Pakistan spring



heatwave (Zachariah et al., 2023), or the ensuing heavy rainfalls and floods in
Pakistan in the 2022 summer (Otto et al., 2023).

L355 Fit of Gaussian to soil moisture residuals to covariate. It is stated here that
all the “variable of interest are reasonably Gaussian distributed” but | can't find a
goodness of fit assessment other than what is implicit in the return level figures.
(Note this is a different matter to how well the fitted parameters agree between
observations-based products and models.) Looking at the fit uncertainty lines
displayed in, for e.g., Fig. 4 I'm not very concerned that the tails are badly
represented, though a comment on the fit shown in the left hand panel of Fig.
5(a) (ERA5-Land, NHET root-zone) might be due as there is obvious non-trivial
behaviour suggested in the residuals to the covariate.

First, the reviewer is right in that we do not provide other means for assessing
the goodness of fit than the return level figures. Nevertheless, the WWA
workflow includes a thorough assessment whether a given distribution is a good
fit (e.g., by also considering Q-Q plots; citing Philip et al., 2020):

“Depending on the interest field, several distributions can be tested on how well the
sample data are fitted by these different distributions by evaluating a
quantile-quantile plot or, equivalently, a return time plot that shows the same
information but emphasizes the tail. Gaussian distributions are often seen not to
describe the tails well. A choice is made based on the comparison.”

As stated above, the misuse of a Gaussian distribution is often most apparent
for the tails, which does not seem to be a problem for our analysis. Therefore,
and considering the fact that we analyse spatiotemporally large averages, we
believe our choice of statistical distribution is adequate.

Second, we appreciate that the reviewer asks about the “non-trivial” behaviour
shown in Fig. 5a, which likely refers to the fact that observations tend to cluster
below [< 0 °C | >0.6 °C] or above [> 0 °C & < 0.6 °C] the best estimate of the
location parameter). To explore the likely causes, we present Figs. R1 and R2:



b) Northern extratropics
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Fig. R1: Summer mean soil moisture for the northern extratropics, identical to Fig. 1b
from the manuscript and pasted here for a more convenient comparison to Fig. R2.
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Fig. R2: Summer mean temperature and precipitation averaged over the land masses of
the northern extratropics, based on ERA5 (1950-2022). The warming stalled until the
1980s due to aerosol emissions (e.g., Wild et al., 2007), and the precipitation timeseries
evidences variability at decadal and multidecadal timescales yet no clear trends across
the entire available time period.

When visually comparing the ECMWF soil moisture estimates to these ERA5
temperature and precipitation timeseries above, it may seem that only
precipitation matters (which indeed exerts strong control on interannual
variability). Throughout the entire timeseries, there is no clear decline in
precipitation (which is confirmed by our trend analysis), but there seems to be



an increase until right about the year 2000, followed by a noticeable jump
around 2000/2001. According to Hersbach et al. 2020, this decline is not in
agreement with observations from GPCC and GPCP (Fig. 23 therein) and might be an
artefact. However, the fact that the amount of precipitation is quite comparable
in the first 20 and last 20 years of the timeseries also suggests that the overall
soil moisture changes are not predominantly precipitation-driven, but rather a
consequence of the strong warming. However, due to the lack of warming in
about the first half of the timeseries, which is accompanied by precipitation
increases, NHET root-zone soil moisture in both ERA5 and ERA5-Land is likely
dominated by precipitation rather than GMST (which slightly increases in this
period), and actually increases. At some point, and this appears to be once
precipitation drops around 2000 and then remains rather stable, the drying
signal emerges clearly, fuelled by strong warming.

Since we model changes in intensity (or the location parameter) solely in
dependence of GISTEMP GMST and hence do not capture the (multi-)decadal
variability of ERAS precipitation, the residuals in Fig. 4a (left hand side) are
mainly found above the location parameter for GMST anomalies (with respect to
1951-1980, which we now also mention in the description of GISTEMP ) between
0 °Cto about 0.6 °C.

. L369 Here it is stated that the Gaussian for precipitation scales with GMST, while
in the caption to Figure S3 states constant dispersion parameter (which it would
be helpful to define). Meanwhile evaluation tables S1 - S4 state a single value of
sigma for precipitation. Given that the large area mean precipitation is being
modelled as a Gaussian | am not entirely sure what to expect but a simple shift
with GMST, like the temperature, might be reasonable. Indeed Fig. S3 left panels
seem to suggest a simple shift with GMST. Which of these three options (just
scale, shift and scale or just shift) is being applied to the precipitation in this
analysis? Is this a deviation from or addition to the WWA protocol?

We use a Gaussian distribution that, following the WWA terminology (Philip et
al., 2020), “scales” with GMST for precipitation and soil moisture in our analysis,
which means both the location and scale parameters depend on GMST (but their
ratio, the dispersion parameter, is assumed to remain constant). (As a side
comment, in Philip et al. (2020), the term “shifting and scaling” is used to



distinguish an approach in which the location and scale parameters are
estimated independently, unlike for the regular “scaling”). We are grateful that
the reviewer spotted a typo in evaluation tables S1 - S4; for precipitation, we
indeed provide the dispersion parameter, and not sigma. We also noticed that
not all the data was copy-pasted correctly from our analysis sheets to create
tables S2-S4, and have corrected all resulting errors. Our analysis is not affected
by this.

As for the decision to model precipitation with a distribution whose location and
scale parameters depend on GMST, each modelled with an exponential function
depending on GMST similar to the exponential dependence of saturation vapour
pressure on air temperature (Philip et al., 2020), this assumption has been
employed and validated in earlier studies (e.g., Otto et al., 2018; Philip et al.,
2018.). Despite the use of an exponential function, the resulting fit of the
location (and scale) parameters to GMST is nearly linear. This explains why In
early stages of the study, we repeated part of the attribution analysis for soil
moisture with a Gaussian shifting approach (as employed for temperatures), and
obtained similar results. Additionally, following the WWA protocol, we evaluate
for all observational datasets and models whether the assumptions required for
the statistical model hold; to provide an example, for precipitation, we check the
dispersion parameter calculated for (15-yr) moving windows (Fig. R3) .
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Fig. R3: Running dispersion of summer (JJA) mean precipitation for WCE, based on ERAS5.
There is no clear long-term trend in the dispersion parameter, and hence we deem our
assumption of a constant dispersion ratio appropriate. Produced with the Climate

Explorer.

L386 The phrase “natural variability” refers to internally generated variability
here. | appreciate that this phrase is in conventional use (and used as such in the


https://climexp.knmi.nl/
https://climexp.knmi.nl/

protocol paper, Philip at al., 2020) but always feel it is bound to cause confusion
with “natural variability” from solar and volcanic external forcing, which is most
certainly not internally generated. Maybe a parenthesis “(internally generated)”
or some such would be helpful to readers familiar with other uses of the term
“natural”.

We believe the reviewer's suggestion could indeed prevent confusion among
readers, and include “(internally generated)”. The corresponding section has
been edited based on reviewer #2's question 6, and is pasted in our response
further below in this rebuttal.

L604 Only reference to important begged question: why is the choice of
covariate GMST rather than NHET or WCE mean JJA mean temperatures? Is there
a physical motivation the authors can make that global annual mean
temperature is an appropriate covariate to choose? Without some defence of
this choice we could imagine that a soil moisture response to a different
temporal evolution in JJA could change the results. | have taken a look at NHET
mean JJA mean temperatures (on Climate Explorer, using GISS 1200km monthly
fields) and can see that the temporal evolution is so similar to annual mean
GMST that | doubt using this as a covariate would make any difference to the
results, so | am not concerned, but a brief defence should be made.

The main reason for using GMST as covariate is that its increase since
pre-industrial times has been attributed to human influences, since natural
factors only account for + 0.1 °C since 1850-1900 (Eyring et al., 2021), and thus
serves as a reliable indicator for anthropogenic climate change (Gudmundsson &
Seneviratne, 2016; Wartenburger et al., 2017; Quilcaille et al., 2021).

We also note that the mean temperature increases of a ‘small’ region such as
WCE may not only indicate the effects of anthropogenically induced climate
change (i.e., the response to an external forcing), but can also be impacted by
atmospheric circulation changes, which in turn are considered to be
manifestations of (multi-decadal) internal variability. At very large (hemispheric
and global) scales, the warming signal emerges more clearly, and we apply a
4-year running mean to GMSTs to dampen the influence of El Nifio (Philip et al.,
2020). The practice of regressing a local (or regional) climate variable onto a
global climate variable, typically GMST, is not only extremely common in



10.

attribution science (all attribution studies cited in this rebuttal use GMST as a
covariate), but also forms the backbone of pattern scaling (e.g., Tebaldi &
Arblaster, 2014).

Therefore, by statistically exploiting the relationship between summer mean soil
moisture and GMST, we arrive at estimates of how human influences shape the
probability and magnitude of soil drought. Our approach allows us to
communicate our results effectively: we can make attribution statements that
directly relate to the pre-industrial, comparatively less human-influenced
climate, as well as future climate states (here at a global warming level of 2.0 °C).

L629 This section is very brief and you have to strain your eyes a little to see the
origin of the numbers “2-30 fold” for projections in Fig. S13 - S16. | can see
combined model best estimates from around 1.5 to what may be around 30 in
Fig. S16 if | read the scale right. A statement of the values in the text would make
this more transparent. It might also be worth noting that, again, PR lower
bounds include 1 in every case.

We agree that especially for Figs. S15-S16 (owing to the wide uncertainty bars
and hence plotting ranges), the visual extraction of values such as the best
estimates is challenging, and thank the reviewer for bringing this to our
attention. We now provide the best estimates of the probability ratios shown in
Fig. S13 - S16 in the main text:

For all event definitions, a further increase in intensity as well as a ~2-30-fold further increase in
the frequency of such an event is found (Suppl. Figs. 13-16): for WCE (NHET) and in terms of

best estimates, the PR of root-zone and surface soil moisture droughts amount to 1.6 and 2.3 (14.6
and 32.4), respectively.

L629 811.6.1.3 of AR6 (AR6 chapter 11) points out that “There is evidence [in
ESMs] that surface soil moisture projections are substantially drier than total soil
moisture projections, and may overestimate drying of relevance for most
vegetation”, citing Berg et al., (2017). This contrasts with the state of affairs
pointed to in L610 pertaining to historical times described as “largely consistent”.
| note that the largest PR in the projections is for surface, NEHT, perhaps
suggesting that the models used here concur with this expectation. Is this the
case?



We thank the reviewer for pointing out this apparent inconsistency. Berg et al.
(2017) investigate soil moisture projections of CMIP5 models, and interpret the
gradient between surface and deeper soil moisture , with stronger drying near
the surface, as the consequence of “the physical asymmetry between winter
precipitation/inflitration” and summer evaporation. If this is the case, we would
indeed expect to see stronger surface drying in our observation-derived data,
although we also remark that Berg et al. (2017) compare 2070-2099 to
1976-2005, whereas we rely on 1950-2022 to state that the temporal evolution
of soil moisture has been “largely consistent” between the surface and
root-zone. Using only ERA5-Land and GLDAS-CLSM, the main observation-based
datasets used for the attribution of root-zone and surface soil moisture drought,
we express surface and root-zone soil moisture as changes with respect to the
mean state of 1950-1980:
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Fig. R4: ERA5-Land and GLDAS-CLSM surface and root zone soil moisture, expressed in
changes (%) with respect to the 1950-1980 average. Using the entire available time
series to center the data yields similar results; whereas GLDAS-CLSM points to slightly
stronger surface drying in NHET compared to the root-zone, only minor differences
emerge for ERA5-Land as well as both datasets and WCE.

A visual comparison of the root-zone and surface soil moisture changes (Fig. R4)
suggests that the decline in soil moisture is either very similar, or slightly

stronger for the surface in the case of NHET and GLDAS-CLSM. Nevertheless, we
do not consider this sufficiently strong evidence to confirm the stronger surface
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11.

soil drying noted by Berg et al. (2017) for climate projections. We also note that
CMIP6 models (and hence most likely also earlier generations such as CMIP5)
tend to rely too much on shallow compared to root-zone soil moisture to extract
water for transpiration (e.g., Dong et al., 2022; Zhao et al., 2022), and as such,
the vertical gradient found by Berg et al. (2017) could be aggravated by model
deficiencies.

We added a brief discussion to the manuscript, and include a figure very similar
to Fig. R4 in the Supplementary Information (new Fig. S1):

Nevertheless, the overall temporal evolution of summer soil moisture in the surface layer and
root-zone is consistent in both regions for all main datasets, which is plausible given that soil
moisture near the surface and in deeper layers is inherently connected through infiltration and
diffusion processes (e.g., Albergel et al., 2008). Considering that Berg et al. (2017) reported
stronger surface drying than in deeper soil layer for CMIPS5 projections, we also compare the
historic long-term changes of surface and root-zone soil moisture by representing the respective
timeseries as percentage changes for both domains and GLDAS-CLSM and ERAS5-Land (Suppl.
Fig. 1). While there is a stronger decrease in surface than root-zone soil moisture for NHET based
on GLDAS-CLSM, comparatively minor drying gradients between the surface and root-zone
emerge for NHET using ERAS5-Land, and similarly for WCE with both datasets. Our findings
thus suggest that soil moisture decreased more near the surface than in deeper layers during the
1950-2022 period, yet the extent of this surface drying gradient remains unclear and might be
negligibly small.

L634 Despite stressing that the study uses three different types of models
(coupled, atmosphere-only and high resolution) there is no discussion of what
these different model types have contributed and whether the evaluation and
results appear to vary between model types. | appreciate the analysis is already
complex but a comment on whether there is anything obvious going on would
help. Referring back to my comment on L313, as these different models are all
being treated under the same framing then perhaps this lessens the importance
of combining different model types. It is also relevant to my comment to L629
concerning the separation of surface and soil moisture projections in ESMs.

We refrain from a detailed discussion of how the different model types fare with
respect to their evaluation and results for a multitude of reasons; first, the
HighResMIP SST-forced model ensemble unfortunately does not provide
root-zone soil moisture, which is the main focus of our analysis, and is therefore
only used for the surface soil moisture analysis.

11



12.

Second, for WCE and root-zone soil moisture, the two AM2.5C360 and FLOR
models (with 10 ensemble members each) from the second multi-model
ensemble and most of the 20+ CMIP6 models did not pass the validation, and
the outcome for surface soil moisture and the same domain is similar. Because
we employ a strict model validation based at least on temperature and
precipitation, and also soil moisture when available (in spatially explicit form and
year-round, as is the case for the CMIP6 models), it is not surprising that for
WCE, only a few CMIP6 models yet none of the (far fewer) models part of the 2
other ensembles pass the validation. A systematic analysis would be required to
find out if the CMIP6 multi-model ensemble actually performed ‘better’ in terms
of validation.

Third, we believe such an in-depth analysis is beyond the scope of our study,
which we agree is already complex. Consequently, since the results are
exclusively and largely based on observation-derived estimates and validated
CMIP6 models for WCE and NHET, respectively, it is also difficult to comment on
how the results might differ across the different model types.

Since all the different models are indeed treated under the same framing, which
is now hopefully conveyed more clearly in the main text (see our response to
question 1), we believe our choice of considering simulations from different
model types for validation & potentially analysis, each of which should in
principle be able to capture the relevant physical processes and interactions that
lead to summer soil drought, makes the study more robust.

L640 PR of “summer drought” in WCE is “about 5”. Is this a rounding down of the
mean over synthesised best estimates of the 1850- and 1950- WCE root-zone
analyses (0.5*(2.8 + 8.8) = 5.8)?

Yes, that is indeed how we arrived at the PR of “about 5”. Note that even though
we have updated the GLDAS-CLSM dataset (which only affects part of the
summer 2022 data rather than the entire time series; see also our response to
the other reviewer's first question), the associated probability ratios remain so
high that we limit them to 10’000 for the synthesis, and therefore our
synthesised best estimates of the PR are still 2.8 (1850-) and 8.8 (1950-). We
have adjusted our text to make it more clear where the “about 5” comes from:
Our analysis suggests that the large uncertainties, also due to a lack of in-situ root-zone soil moisture

observations except for a few hundred stations, make it difficult to communicate precise numbers.
Nevertheless, butthe synthesised probability ratio for a 2022-like summer drought in West-Central
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Europe is likely larger than 1 and amounts to about 5 (2.8 when using 1850—2022 model data, and 8.8
for 1950-2022).

13.L643 PRinc. 1, “this also applies to the northern extratropics” - but Fig. 8 shows
that NHET root-zone PR has both lower bounds > 1.

Yes, the sentence is indeed misleading, thanks for spotting this. We have revised
the text:

Fhis-atse-apphestoFor the northern extratropics, s#here-our analysis suggests a stronger overall warming
signal, =—with a probability ratio of at least 20,—— and associated decline in root-zone soil moisture.

14.L668 Again the origin of the numbers requires a bit of work, given that brief
section 5.5 simply stated a single PR range of 2 - 30 concerning four analyses. |
think that the numbers ‘10 years’ and ‘every year’ have been arrived at by
dividing 20 year return times for each region by the average of PR estimates
over surface and root-zone best estimates (about 2, and about 20). Is this the
case?

This is the case, yes, we converted our results to changes in the return period
using rough numbers. The accurate averages of surface and root-zone soil
moisture drought PRs for WCE and NHET are (1.6 + 2.3)/2=1.95and (14.6 +
32.4)/ 2 = 23.5, respectively. We believe communicating rough values is
appropriate here, since a PR of, e.g., “1.95" could convey a higher impression of
accuracy than is justified for our analysis. We added an additional sentence such
that it hopefully becomes more clear where the “every 10 years” and “every
single year” come from:

Moreover, the models analysed also show that soil moisture drought will continue to increase
with additional global warming — in West-Central Europe, a 2022-like event or worse is
expected to occur about every 10 years once a warming level of 2 °C is reached, and nearly every
single year in the northern extratropics. In other words, for 0.8 °C additional warming compared

to the present, the mean probability ratios of surface and root-zone soil moisture drought in
West-Central Europe and the northern extratropics amount to about 2 and 20, respectively.

Technical corrections

L115 “crushed” - typo?

13



Thanks, we have rephrased the sentence as follows:
[...] and by late June, Italy had surpassedertshed its historical wildfire average threefold.

L240 “of” a “over” or “for” would be better?

We appreciate this suggestion and have edited the sentence:
The E-OBS dataset is a 0.25° x 0.25° gridded temperature and precipitation dataset foref Europe, |...]

L337 Statistical methods: this section could do with a sentence stating that the 2022
event is characterised by taking the return time of the event in the observations-based
products and then querying the model distributions at the corresponding return level.
Those already familiar with the WWA method will know already but | can’t find that this
essential aspect of the method is explicitly stated anywhere. It may also then make
more sense why later in L476 we are happy to take the two estimates for the
observations based return times and simply average and round them.

Thank you for pointing this out, we agree that such a sentence is helpful for readers
unfamiliar with the WWA approach and have, based on the reviewer's suggestion,
edited the section:

The essence of the approach we employ here is that event indices — regional summertime averages of
soil moisture, precipitation, temperature — are represented with continuous probability distributions
conditional on GMST, which enables us to estimate how the event magnitude and probability of
occurrence have changed under human-induced climate change. We characterise the 2022 summer
drought by first determining the return time of the event with the observations-based products and then
querying the model distributions at the corresponding return level. The analysis steps include: [...]

L401 Typo: | think “Note that as to” should be “Note that so as to”.
Thank you, the missing “so” has been inserted.
L483 Type: | think “inform on” should probably be “concern”

We believe “inform on” is not wrong since the intensity changes we communicate, using
a simple example, essentially “contain” the same information as the slope of the linear
regression of the index onto GMST: e.g., the roughly 1.8 °C of synthesised intensity
change for WCE summer temperatures (present-vs-past) imply a slope of ~1.5 (1.8 °C
regional warming / 1.2 °C GMST change). Nevertheless, to avoid confusion since we do
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indeed first determine the slope (and other parameters) and only then obtain the
mean intensity changes, we rephrase this sentence:

[...] of mean intensity changes. The latter are less sensitive than the probability ratios to the inferred
relationships between global warming and long-term soil moisture changes, since they mferm-en-the-are
derived fromstepe-ef the linear trend between the covariate (here GMST) and the index (here regional
summer mean root-zone soil moisture) rather than athe ratio of occurrence probabilities, for which the
denominator — the probability of the event for the past climate — can become very small, as is the case

for GLDAS-CLSM.

L497 | had to look “Mio” up, it being short hand for 1 million in German. Might best be
just “million™?

Thank you for the suggestion, we now use “million” instead.
L499 Type: “2002" should be “2022".

Thanks for spotting this typo.

L504 “excessive” seems a strange adjective. Suggest “very large™?
We also gladly accept this suggestion, thank you.

L548 repeated use of “fairly” is ambiguous language.

We agree that some editing is required here, and change the text as follows:
#s-aeConsequentlyee, everat-the model probability ratios are fairbymore consistent with ERA5-Land, although
GLDAS-CLSM still features a much stronger warming signal. In terms of the more robust changes in intensity,

GLDAS-CLSM is fetrby-similar to MPI-ESM1-2-LR, [...]

L583 “temperature surpluses” is a strange phase, something like “positive temperature
anomalies” would be better.

We agree that ‘'surplus’ makes more sense for a variable like precipitation. We use
“positive temperature anomalies” now.

L592 Apparent error in statement of uncertainty bounds for NHET change in intensity
compared to Fig. S9.

Thanks for catching this error, the text is now consistent with Fig. S9 (which has been
correct in the first place):
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Similarly, forFer the northern extratropics, the change in intensity is 1.98 (1.74 to 2.12) °Crand-thus-very

L6714 “Appendix” here | assume refers to the SI, Fig. S17 and S18.

Thank you, this relic has been removed and the text now refers to Fig. S17 and S18.
L629 Typo: “0.80C” should be “0.8°C”"

Thanks, fixed.

L649 declining root-zone soil moisture in the 21st century in “the entire northern
extratropics” - we don't have a figure showing this. Perhaps a reference to the
literature?

We think this sentence may have been misleading, as we intend to communicate that
the average soil moisture in the northern extratropics has declined. This does, however,
not imply soil drying everywhere in the northern extratropics, hence the use of “entire
northern extratropics” is not ideal. We thus changed the sentence:

Similarly, nearly all CMIP6 models display declining summertime root-zone soil moisture throughout the
21st century in West-Central Europe and the-entireaveraged over the northern extratropics, [...]

Table S6 units for temperature intensity change: are the numbers really in % or are
they °C? The numbers seem consonant with L489.

Another great catch, thank you for noticing this typo. The numbers are indeed in °C.

The quality of some figures is too low, e.g. Fig. S9 and S10, perhaps Figures 4 and 5 as
the 2022 data point is hard to see.

We agree, and will improve the quality of the mentioned figures in the revised
manuscript and supplemetary information.

Table S4 is for surface soil moisture but the column heading says root-zone.
Thanks for noticing this error and being such an attentive reviewer.
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REVIEW #2

The author conducted attribution analysis of a soil moisture drought event in

West-Central Europe in 2022 based on a large number of soil moisture estimates. It is

found that the return period of the drought event is decreased substantially in current

climate as compared with that in pre-industrial climate, although there are

uncertainties in soil moisture estimates. The manuscript is well written and easy to

follow, and there are only a few minor comments below.

We appreciate the positive assessment of our work and the questions listed below, to

which we reply individually in blue font.

1.

GLDAS_ CLSM data includes v2.0 (1948-2014) and v2.1 (2000-2022). Is v2.0 and
v2.1 used together in the article? How are they merged? Have corrections been
made before merging? Only the June data was used in 2022? How about July and
August?

Thank you for this comment; in short, we have repeated much of our analysis
for an updated GLDAS-CLSM dataset, and explain the merging procedure in the
following. We use GLDAS-CLSM data forced with Princeton v2.0 meteorological
forcing and without data assimilation (i.e., open loop, available for 1948-2012),
and then ECMWF-analysis forced CLSM output obtained with GRACE data
assimilation from 2003 onwards. The latter is scaled to Princeton-forced data
based on 2003-2012 (that is, mean and standard deviation are matched),
employing a 7-day moving window. Since GRACE data was not available for July
and August 2022 when we performed the initial analysis, CLSM was originally
run in open-loop mode for those months instead (but still driven by the ECMWF
analysis fields).

We have since updated our CLSM dataset, such that the entire summer of 2022
is now based on CLSM with GRACE data assimilation. For both WCE and NHET,
the updated mean June-August 2022 soil moisture is slightly higher than the
initial version without GRACE data assimilation for July and August 2022, but the
differences are so small that they are not visible in most figures. A noteworthy
exception concerns the event return periods, which remain nearly unchanged
for NHET (root-zone: 7 years— 6 years, surface: 17 years — 14 years), but
decrease a bit for WCE (root-zone: 33 years — 23 years, surface: 47 years — 33

19



years), consistent with the slightly higher summer 2022 soil moisture (i.e., a bit
less dry and hence less extreme). Since this only results in minor changes of the
average 2022 soil moisture drought return periods (always based on
GLDAS-CLSM and ERA5-Land, and additionally ERA5 for surface soil moisture),
we keep a return period of 20 years for the models in all our soil moisture
analyses.

Even though the probability ratios of GLDAS-CLSM decreased, they are still
(more than) high enough to be limited to 10’000 (as described in the Methods).
Consequently, the PRs in the present-vs-past synthesis figures remain
unchanged. The more robust intensity changes of GLDAS-CLSM differ only
slightly from our initial analysis, such that the synthesised values barely change
compared to our first analysis.

We updated all the text, figures and tables that relate to or make use of
GLDAS-CLSM data, and edited the description of GLDAS-CLSM to hopefully make
the scaling procedure more clear:

The 2003 to present data is scaled elimatetogy-isseated-to the open loop, using scaling factors determined
for each grid cell and with a 7-day moving window such that the mean and standard deviation of soil
moisture obtained with GRACE data assimilation across 2003—2012 matches the Princeton-forced
(1948-2012) climatology in the same period prier-te-eomputing-dronghtivetnessndieators-(Houborg et al.,
2012). For some grid cells in high latitudes, this results in negative and hence not physically meaningful
values, which we remove for our analysis of the northern extratropics.

. Why does CMIP6 use SSP585 and historical scene splicing (usually SSP245), while
CMIP5 uses RCP4.5 and historical splicing?

We appreciate the reviewer's question and remark that the choice of future
scenario is not as important as it may seem in our analysis framework, although
this was not clearly described in the initial manuscript. We employ global
warming levels, -1.2 and +0.8 °C with respect to 2022 in our analysis. Therefore,
it is not problematic if we fit our statistical model for a GMST range slightly larger
than what we ultimately need for our evaluation, which is in fact even desirable
(unlike the opposite case, i.e. fitting the statistical model for say -1.2 to only +0.1
°C, and then querying the fitted model at +0.8 °C).
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We have edited Sect. 3.3 as follows to make our approach more clear:

We note that regardless of the underlying emission scenario, model data from 1850 to 2022 and
from 1850 to 2050 are used to conduct the present-vs-past and future-vs-present climate analyses,
but these time periods only indicate the amount of data used to fit the statistical model and hence
infer the relationship between event indices and GMSTs. We then rely on global warming levels
Weto calculate the return periods, the probability ratio (PR — the factor-change in the event's
probability) and change in intensity of the drought event.-in-erderto-compare-the-elimate-of now

httpsAwww-globabwarmingindexsorg). For our comparison of the present (2022) to the past
(1850=1900) climate, the GMST changes with respect to the present amount to -1.2 © C according
to the Global Warming Index https://www.globalwarmingindex.org), and for comparing
additional changes in the future to the present, we use +0.8 ° C relative to the 2022 GMSTs (+2.0

° C with respect to pre-industrial conditions). As such, it does not matter when the future

warming is reached in any given model simulation, which allows us to combine models with
different emission scenarios and still perform a consistent analysis.

. The uncertainty range for the surface and rootzone soil moisture anomalies
(Figures 1a and 3a) could be shown in the supplement materials.

Only GLDAS-CLSM is a good candidate to supplement Fig. 1a (global 1950-2022
data available), and the anomaly patterns are generally similar to ERA5-Land
(used for Fig. 1a). We provide a comparison below for root-zone soil moisture (cf.
Fig. R5 & R6):
June-August 2022 root-zone SM anomalies
GLDAS-CLSM | baseline 1950-2022

180° 120°W 60°W 0° 60°E 120°E 180°
900N 1 1 1

60°N 1 =

23.5°N +

R — R

—0.04 —-0.02 0.00 0.02 0.04

Fig. R5: 2022 summer root-zone soil moisture anomalies based on GLDAS-CLSM and
using 1950-2022 as a baseline.
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Summer root-zone soil moisture
ERA5-Land (2022)
180° 120°W 60°W 0° 60°E 120°E 180°

23.5°N -

Fig. R6: Fig. 1a from the manuscript; like Fig. R5, but using ERA5-Land.

Besides West-Central Europe, where both datasets point to widespread negative
anomalies, drought conditions were also reported by other regions, such as the
central and southwestern United States or China. Both ERA5-Land and
GLDAS-CLSM indicate soil moisture deficits in these areas.

We also show GLDAS-CLSM based surface soil moisture anomalies below (Fig.
R7), which also does not agree with ERA5-Land everywhere, but certainly
supports the main message of Figs. 1a and 3a: West-Central Europe experienced
a strong soil drought in the summer of 2022, and despite positive soil moisture
anomalies in regions such as northeastern North America or parts of Siberia, soil
moisture deficits also dominated the northern extratropics as a whole.

June-August 2022 surface SM anomalies
GLDAS-CLSM | baseline 1950-2022
180° 120°W 60°W 0° 60°E 120°E 180°
900N 1 1 1 1

60°N -Q't‘ P

23.5°N -

—0.04 -0.02 0.00 0.02 0.04

Fig. R7: Fig. 1a from the manuscript; like Fig. R6, but for surface soil moisture.

We believe that the different timeseries in Figs. 1b-c and 3b-c are more efficient
to convey the “observational” uncertainties, since they make use of several (and
not just two) datasets, and additionally show that the uncertainty decreases in
time.

4. What is the definition of Intensity in this study?
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The intensity corresponds to the mean event magnitude, which changes as our
climate warms. In other words, climate change affects the expected magnitude
of an event with any given return period (which is a different but equally viable
perspective as considering how the probability of an event with a given
magnitude changes). Technically, the intensity is represented by the location
parameter of the scaling and shifting Gaussian distributions that we employ,
which in turn is modelled as a function of global mean temperature changes,
and has the same units as the index of interest (e.g., summer mean root-zone
soil moisture).

We use magnitude and intensity synonymously throughout the text, and have
edited the first occurrence as follows to hopefully make it more clear:

The essence of the approach we employ here is that event indices — regional summertime
averages of soil moisture, precipitation, temperature — are represented with continuous
probability distributions conditional on GMST, which enables us to estimate how the intensity
(event magnitude) and probability of occurrence have changed under human-induced climate
change.

Line 479: Does -9% (-13%.. -4%) refer to a change in intensity? Please explain in
detail.

Yes, this does refer to a change in intensity. As stated in our response above, the
intensity or event magnitude has the same units as the respective index. We
communicate changes in intensity in °C for temperature, and use percentages
for precipitation and soil moisture. This is motivated by the fact that the
implications of absolute temperature changes are intuitive, whereas relative
changes can easily be interpreted even without knowledge of the respective
total (or, in this case, past climate state) such as, e.g., the mean volumetric
root-zone soil moisture of the northern extratropics.

We edited the text to make it more clear that we do indeed refer to a change in
intensity:

We also estimate the mean change in WCE summer root-zone soil moisture from the past to the
present climate, and-ebtaitnwhich yields intensity changes with best estimates (confidence
intervals) of -9% (-13% .. -4%) for ERAS5-Land and -14% (-16% .. -11%) for GLDAS-CLSM.

. What is the physical meaning of representation error? Perhaps only when the
minimum value of Representation error is significantly greater than 1 (less than
0) can the impact of anthropogenic climate change on Probability ratio (change
in intensity) be considered significant?
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In the WWA framework, observations — or in the case of this study,
observation-derived estimates (of soil moisture) — are considered as equally
valid representations of the same climate realisation (i.e., reality), and hence
sample the same (true) underlying natural variability. If the observations were
perfect, we would expect them to indicate identical best estimates, but this is
clearly not the case. Therefore, the mean discrepancy of individual best
estimates of observations to the observational mean best estimate serves as a
“representation” error.

In the context of the last question (8.), we would like to emphasise here that the
observation-derived soil moisture estimates are associated with a large
representation error compared to temperature or precipitation (cf. Fig 6 or 7
and Fig. S7, S8). This error is primarily large not because the datasets do not
agree on the presence of a clear warming footprint in soil moisture, but rather
because they either point to a signal consistent with the models (ERA5-Land) or
an even stronger one (GLDAS-CLSM).

We thank the reviewer for their question and think that our revised text pasted
below makes the approach more clear:

To combine the two lines of evidence into a synthesised assessment, first, a representation error is
added (in

serEceRs-Eased-datas serrebeesplaned-brmadnralsasn s e s e, Bk
15~ The rationale behind this is that we consider observations as equally valid representations of a
singular climate realisation with the same underlying true natural (internally generated)
variability. Therefore, the mean deviation of individual datasets to the overall mean best estimate
indicates a representation error (of observations with respect to reality), shown in the synthesis
figures as white boxes around the natural — that is, internally generated — variability (light blue
bars). The dark blue bar shows the average over the observation-based products (black marker)
and the total uncertainty (width of the bar) based on natural variability and representation errors.
Instead of representation errors, next, a term to account for intermodel spread is added (in
quadrature) to the natural variability of the models. Note that while this term is based on the
scatter of model means (analogous to the representation error for observations), we interpret
model simulations as independent climate realisations. Consequently, we only add this term
granted that the differences between models cannot solely be explained by natural variability,
which is the case here. #hisThe intermodel spread is shown in the synthesis figures as white
boxes around the light red bars.

. There are a total of 25 models, but only 7 models in Figures 6-7 have passed the
test. How about using all models? This may increase the reliability of the results.
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Thank you for the suggestion. This study closely follows the WWA approach
(Philip et al., 2020) that has been used for numerous rapid attribution and also
many peer-reviewed publications. In this detailed protocol, the model validation
and subsequent restriction to validated models is pivotal to ensure the main
goal of extreme event attribution to human-induced climate change using both
observations and climate models: to make the analysis more robust, as climate
models have the advantage of providing alternative realisations of climate
variability that can supplement observational records (e.g., Perkins & Fischer,
2013). However, since models are necessarily stark simplifications of our
complex climate system and their performance depends both on the variable
and region of interest, considering models without validation could decrease
rather than increase the reliability of an attribution study.

We thus think that our focus should remain on synthesised estimates of
probability ratios and changes in intensity. Nevertheless, we already provide a
statement in the main text that is based on all (CMIP6) models:

“Finally, we remark that among the 25 available CMIP6 models used here (of which 7 passed the
validation), all agree that based on 1950-2022, the best estimate of the probability ratio is at least
1, and oftentimes on the order of 10 or higher.*

In Figures 6 and 7, the attribution results of the probability ratio are not
significantly greater than 1 (the minimum value of the confidence interval is less
than 1), which does not seem to suggest that the impact of anthropogenic
climate change on drought in 2022 is significant. Please explain.

The probability ratios shown in Figs. 6 and 7 suggest that human influence has
most likely increased the probability of the event, but the reviewer is right in that
we cannot entirely exclude the possibility that this influence is relatively weak or
even renders the event slightly less probable. However, we think that other
factors are also relevant here. Firstly, the “observational” uncertainty, which
contributes to the synthesised uncertainty together with the model uncertainty
(see also response to question 6), is primarily high because the different
datasets indicate either a moderate (ERA5-Land, ERAS) or strong (GLDAS-CLSM)
warming imprint, and not due to, e.g., opposing signals.

Moreover, the lower bound of the more robust intensity changes is clearly >0

for Fig. 7 (1950 onwards for models, as for observations), and only very slightly <
0 for Fig. 6.
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Furthermore, widespread (summer) soil drying is also clearly expected due to
our changing climate: mainly because strong warming increases evaporation
which, unless counteracted by changes in precipitation [and/or runoff], causes
soil desiccation. Particularly the dependence of soil moisture on precipitation,
characterised by large internal variability, greatly increases the uncertainty,
whereas the temperature signal is comparatively obvious.

We believe that we already clearly communicate the high level of uncertainty
compared to more standard attribution analyses of, e.g., heatwaves. To quote
the other reviewer:

“The authors are at pains to emphasise the sources of uncertainty in the
analysis, not least of which arise from the observations or observations-based
products. This uncertainty is explored at length and conclusions have been
well phrased in light of this. The authors provide a convincing argument that
robust yet conservative conclusions about the change in soil drought can be
made and highlight that with lower confidence stronger statements are

possible.”

For all the reasons outlined above, we think that our conclusions are not
nullified by the fact that the results for WCE point to a low, but non-zero
probability that the anthropogenic impact did/does not exacerbate the event’s
probability of occurrence, and are hence adequate.
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