

1 **SUPPLEMENTARY MATERIAL Detailed description of our themes**

2
3 These three themes are moving in order of 'predictive' power for recognizing cause and
4 effect, or power of realization – so can be written in this way.

5
6 'Turning points' In narratology a 'turning point' is an event or circumstance that has a
7 decisive role in the plot (Prince, 2003). Unsurprisingly in this context it is a synonym for 'crisis'
8 which is also the word commonly applied to the entire sequence of events during volcanic
9 eruptions. It also has parallels with the 'moment of change' seen as integral to generating
10 interest in stories by Storr (2019) and is an essential element of all autobiography. So they
11 are important in making the story interesting or memorable. In the context of our storytellers
12 there are three ways in which turning points have value in sharing or generating new
13 knowledge: (A) volcanic turning points – by definition these defined the choices of the stories
14 told (Figure 1). In our dataset these are often specific or memorable types of eruptive
15 behavior (see Table 1 and Appendix 3).

16 (B) individual turning points – there are moments of personal realization, and analysis of
17 consequences. Includes Limitations (often risk-taking), recognition of intuitive approach,
18 importance of other dimensions of knowledge in crisis situations.

19 (C) group turning points. A realization that has generalizable consequences for volcanological
20 knowledge or disaster risk reduction (DRR) , or a realization or change made across a group of
21 scientists or different actors in that moment. (coproductive knowledge, knowledge
22 limitations and power dynamics).

23
24
25 'Counterfactual analyses' A powerful value of storytelling is its capacity to describe cause and
26 effect in a given situation and over a defined timescale. The greatest inherent value in our
27 stories would come in being able to provide this explanation in a way that is generalizable, so
28 that it can be recognized in other situations (predictive). In chaotic multivariate natural
29 systems this is notoriously hard to do but a first step on this pathway can be considered a
30 counterfactual analysis of events that transpired. A causal relationship would be able to state
31 that A will be true if we do B. A counterfactual analysis recognizes that A would have been
32 different were it not for B. With a limited and often poorly repeatable series of well described
33 events to draw on volcanologists are increasingly recognizing the power of counterfactual
34 analysis in searching for the underlying causes of disaster (Woo, 2018, 2019), even when it
35 has not necessarily occurred. Seeking causal inference in 'near misses' was a common feature
36 of our storylines too.

37 In this dataset volcanologists tended to reflect on 'what could have gone wrong' or near
38 misses. This and the related theme of recognizing 'what went right' are gaining prominence
39 as an important feature of improving future response to eruptions (Aspinall and Woo, 2019) .
40 These usually centred around reflections unnecessary personal risk-taking, shifting
41 perception of what the experience of 'maximum expected behaviour' might be, and
42 imagining standing up more strongly to the politicization of decision-making, or reinforcing
43 ideas of how to this reflection to be better prepared (for example for equipment to fail).

44
45 'Improvements in knowledge' these often emerged as storytellers were either prompted to or
46 spontaneously reflected on the value of that story to them. Many focused on offering causal
47 insights into the key drivers of volcanic risk during the crisis situation described. We took an

48 inductive approach to the development of the subthemes used here but drew on other
49 synoptic analyses of the drivers of risk and death in volcanic eruptions (Brown et al., 2015;
50 Barclay et al., 2019 and insights into political influences on decision-making in crises
51 (Donovan et al., .
52 These themes are illustrated in Table 2. This centres on role of science in decision-making (as
53 a knowledge base and as a trusted entity). Variance in behaviours. Interdependence of the
54 hazards context and the socio-cultural landscape – what is most important about that.
55 Sometimes these improvement are evolutionary in this respect, rather than revolutionary.
56
57 Finally, '*knowledge shaping and propagation*' – Here we used the aspirations of the UNDRR
58 Sendai Framework for Disaster Risk Reduction, and descriptions of the circulation of
59 knowledge in practice as a starting point with which to create the categories. Answers within
60 this theme typically arose from the questions we asked during interview about how, where
61 and why stories were told. These were usually straightforward description of who the stories
62 were consciously being told to in what context, and with what lesson in mind. Our analysis
63 also included implicit lessons in the stories – intuition value, coproduction of social and
64 natural knowledge, value of listening and lessons about democratization of scientific
65 knowledge with other things that are important in this context. Here the focus group
66 conversation demonstrated that comparison and questioning of one another's stories makes
67 the value of these stories even stronger. This hints at a greater value to this process if we
68 present it as a formalized way to capture these experiences and their rationalization.
69

70 Interview protocol

71 **Scientists as Story-tellers: Interview Template**

72
73 An overall aim of our UK Arts and Humanities Research Council project is to try to
74 understand the various ways that the recounting and recalling of events during volcanic
75 eruptions happen. We want to explore the value the information in these stories brings
76 to volcanic risk reduction. We wish to understand how **scientists** transmit important
77 knowledge about risk reduction through the stories they tell *one another* as part of this.
78 This is not about the 'story' of research findings but the sharing of experience and
79 important knowledge about how to manage and cope with volcanic crises.

80
81 We want to understand how, where, when and why these stories are told. By doing this
82 we want to understand what scientists regard as valuable about these 'stories'; and the
83 role they might play to help reduce volcanic risk.

84
85 A secondary purpose of these interviews is to gather some of the unwritten information
86 about events during the Soufriere Hills Volcanic crisis. With your permission only,
87 distilled or full versions of these stories will be contributed to the Montserrat Volcano
88 Observatory archive.

89
90 We estimate the interview will take around 40 minutes to one hour of your time, and it
91 will largely focus on stories you tell about the crisis so you might want to think about
92 those in advance.

93
94 Jenni Barclay, Richie Robertson, Teresa Armijos
95

96 **Questions**

97 *About the Stories*

100 1. During what time periods have you worked on SHV? What were your
101 principle roles and how has this changed over time?
102 2. Can you share three of the favourites 'stories' you share with other
103 scientists when you are re-collecting times when you were involved in the
104 SHV crisis? *Make sure you ask them to tell it as much as they can in the way*
105 *they would share them with another scientist? [If you don't tell stories can you*
106 *tell me a little bit about why not – and then finish].*
107 3. Can you explain why you chose these stories?
108 4. Is there any element of these stories that relates to materials either you
109 have published or that have been published elsewhere? (*is your experience*
110 *wholly consistent with the published accounts – if they say yes*)
111 5. Has your 'story' changed in anyway over the years (*or changes with the*
112 *audience*). Do you have any idea why?
113 6. Does the content of the story vary according to whom you are telling it?
114 What do you change about the wording?
115 7. Does it strike you there are phrases or words you tend to use to begin and
116 end your story i.e. what sort of words or phrases do you use to begin and end
117 the story.

118 *The when, where, and what of the stories*

121 1. When and where do these stories get told? (*if stuck examples might be: in*
122 *the field, while working on other volcanic systems, while teaching students –*
123 *graduate or undergraduate*). Is this different between the exemplars you have
124 given us?
125 2. What sort of people are in these stories? (*not necessary to ask if apparent*
126 *from the story itself*)
127 3. Who do you tell these stories to? (*again not necessary if apparent from 1*).
128 4. Do you think there is anything important in these stories and why (*or why*
129 *not*)?
130 5. Is there a particular lesson you want to convey when you recollect and tell
131 any of these stories?
132 6. Are there reasons other than 'lessons' for you to tell these stories?

134 **'Volcanic Turning Point's as Story Exemplars**

136 **Story 1**

138 I often tell people when I'm talking about volcanoes and volcano hazards was actually how
139 Soufrière Hills helped me grow up...

140 when the cold density surge came over Montserrat, over the Plymouth area, over the rim.
141 The observatory had been in Plymouth and we moved the observatory to the Vuepoint. And
142 I'm of course just like, wow, something's happening, this is cool and kind of in this very
143 jazzed, totally scientific thinking of the volcano. And there was a woman who was basically a

144 cleaner there who was... vacuum cleaning the room and I went over to her and I said, 'Wow,
145 isn't this really cool, isn't this interesting and exciting?' And she burst into tears and said,
146 'What will become of my home?' And that was, to me, probably one of the most profound
147 actually interactions, even though short, that I've ever had in really putting the human face
148 on what a crisis is all about

149
150

151 Story 3

152

153 So the Boeing 747 coming into Redoubt on December 14th or 15th I guess, of 1989 is
154 another big one that we use. We all, I think, use 'cause many of us were involved in
155 that eruption. But we talk about that one a lot because we talk about the difficulty of
156 being in aircraft and clouds and not being able to distinguish in a low light, typical
157 Alaska day, kind of what the difference between an ash cloud would look and a
158 weather cloud

159 Story 5
160

161 [activity] leading up to the pyroclastic flow which happened on the 25th of June 1997, which
162 caused 19 deaths. So this is very much an iconic moment, really, a sort of benchmark
163 moment in the history of the eruption, really, because it was the first time there'd
164 been fatalities, or the first time... I think, certain fatalities had occurred

165

166 let's be honest, it was an absolutely iconic moment. And I actually struggled, and I think a lot
167 of other people who worked in Montserrat in those early days did struggle.

168 Story 8

169 And when the explosion happened they had to respond, and they did. Fortunately people got
170 out quickly, no pyroclastic flows came out of the northern flank. Everything went
171 down towards the Eastern side out of its way and nobody got hurt, but it really was a
172 significant event.

173 I think, yeah ... I'd say it taught you a lot about how you have to operate. I think for
174 me it personally gave me a lot of confidence in my being –

175

176 . I think it's something important to me. I mean when this eruption started I think I was fairly
177 inexperienced and young. I think having survived September 17th I had a lot of
178 confidence in terms of what I could do and what I could do and what ... there's a lot
179 more belief in yourself because in the end, despite the fact that lots of things happen,
180 it was probably managed ...reasonably well,

181

182 Story 9

183 Now at the time we had never had, I mean I personally had never seen a pyroclastic
184 flow. I'm a volcanologist but I've never seen anything like this. So you began to see
185 this event, this cloud coming towards you. So I'm chatting to the guys and the guys ...
186 in those days, as it is now, most people felt that once a scientist it was there it was
187 safe. So the guys are chatting to me, 'Oh yeah man ...' So I then told them, 'I'm not
188 sure what this is, you know.'

189 'But if it is what I think it might be ...' because I didn't know there would be a surge, 'I
190 think we'd basically ...'

191 I: It's gonna be hot!

192 P: Gonna be hot, yeah. This is not a good position to be in.

193 Story 10

194

195 Right. It was those periods when you had those explosions, right? And the explosions got so
196 regular that we figured out a pattern, it was really good. I mean it was wonderful
197 being able to predict an eruption because we could predict when the eruption was
198 going to be. In fact people used to set up right where the observatory is now – no
199 Flemings, where the observatory is now. Because we told them exactly when the
200 explosion was going to be, they would set up their cameras. And they would get a
201 fantastic shot, right? So we had a protocol for when these explosions happened, so
202 what happened during the time of just before the explosion ... so we had developed a
203 procedure where prior to an explosion we would reduce the staff at the MVO, at the
204 observatory, because we wanted to expose less people to the danger, so we stripped
205 it down to probably Chief Scientist and one or two other people.'

206 Story 12

207 Yeah, and not only that, these little things, 'cause I would have never known about the siren,
208 it was the first time I heard that the helicopter had a siren. Yes, we did our intro and
209 whatnot, we did it for helicopter safety, so the siren wasn't something I was familiar
210 with until then. So learning about, so there are things I guess sometimes in the
211 transferring of knowledge, or if you have to hand over to somebody, there are certain
212 things that might take priority, and then there are certain little things that get left
213 back, and these are things that become important!

214

215

216

217 Story 15

218

219 the volcanic unrest in 1992 and so this is interesting, initially you are thinking it's going to be
220 like all the other periods of unrest, that the activity will start and subside within
221 months and that will be it. But then you find it's not subsiding, and it is just going on
222 and on

223 Story 17

224

225 And then you come to Holy Thursday, so the tradition at that time was that you have the
226 holiday the next day, cricket the evening before, so we planned cricket and we started
227 seeing the small earthquakes during the course of the day, so like in the afternoon
228 you're seeing these small earthquakes

229 I: This is after lunch or

230 P: After lunch.

231 I: By then you had signals coming in directly?

232 P: Yeah, yeah.

233 I: By radio?

234 P: Yeah.

235 I: OK.

236 P: So the drums, three drums in technical office, so yes, so we are seeing these on
237 Wallibou station. And as the time going by, so we are playing cricket and [Scientist X
238]and [Y] are coming in every time and they are looking at the drums and they're
239 commenting that they're bigger. I was a student at the time, I was working on my
240 bachelors, so I was normally here up until ten o'clock anyway, so –

241 I: Ten o'clock night?

242 P: In the night, . So I would go have supper and come back and work up until ten. So you
243 are there and you're seeing this thing happening, the cricket is over and so I am there
244 –

245 I: So when the cricket over, they didn't go, they were liming still?

246 P: limed a little, then they went but they kept coming back every half hour.

247 I: realised something was changing.

248 P: Yeah, something was building up. So by, well of course I stayed later than ten that
249 night, so by 9:30 they are discussing it and saying we have to advise the Prime
250 Minister this is looking, it is intensifying too rapidly to say wait until tomorrow. So by
251 10 o'clock they called the Prime Minister and advised him that we are seeing these
252 unusual signals under the volcano and there is the potential for there to be an
253 eruption. I don't think that they were thinking it would happen that night....

254 And because it was, the onset was rapid. Onset and culmination was so rapid. And that we
255 were saying something happen beforehand and it did

256

257
258
259

260 So I am heating up the lunch and Scientist is outside looking at the volcano, and Scientist said,
261 '.. come! Come fast! See this!' So you're standing there and you're seeing the cloud
262 going up and you're seeing the sun being blocked out and you're seeing the day going
263 to dusk, going to night. So we come inside and then he said, 'Oh ... ' he's anxious now
264 to get back onto the Observatory, but his bald head, he has no hat <laughs>, so I gave
265 him, I said, 'OK, take this umbrella, go with the umbrella.'

266 I: Was it ashing by then?

267 P: Mhm. Yes, it was ashing . So he went down and well, I finished have my lunch and
268 then I went down and joined them. And when I went down now, so we go into the
269 Observatory, I said, 'Is there anything we can get you, do you need anything,
270 something to drink, whatever?' So then we had to go out and get drinks, so Scientist
271 and I went out, so that was ... oh, that was like winter. Everything was covered,
272 blanketed in this grey ash, it was like winter. It was quite an experience just to see it.
273 And then when we heard that the people had died, it was all very, very sobering.

274
275
276 Story 19

277 I think one of the bits I sort of concentrate on is the period after the September 21st collapse
278 in '97, which was a big collapse which destroyed the airport, burnt it out and then
279 there was a month of explosions after that. And from what I gather that's probably
280 about the low point in the population on the island. It was a period that was, you
281 know, it was immensely depressing on the island when everything was grey, covered
282 in rocks. I mean I tell the students about it just trying to convey the reality of it.

283

284 ... and it had been a big change in the monitoring when essentially everything was helicopter
285 based, there was no more bombing round to Whites or round to O'Garra's or
286 something in your car. Everything became helicopter based, so by definition it's a big
287 deal doing any aspect of field work. You could have observations from JackBoy Hill
288 and stuff like that but it was...

289 .. And it did feel remote, it felt very remote and quite unpleasant really and realistically if
290 you're sensible about it and you've got your visuals and cameras and so on you can
291 monitor perfectly well from that distance. But for us, and at the time, it did feel
292 remote and a bit weird.

293 Story 23

294 I'm starting with the Boxing Day [event] because it's sort of somewhat easier to tell the story,
295 but I think that's a very nice story in its own ... some of the issues around managing
296 volcanic crises, because in I think October 1996 we'd got what we call the Galway's
297 Wall Crisis, the southwestern side of the volcano was becoming unstable, there was

298 faults and earthquakes going on and little avalanches down there, and I remember
299 being on the island [Scientist], I think around October '96, and then there was some
300 quite large earthquake swarms, and [scientist] and I went up to look at Galway's Wall
301 with [scientist] I remember, one of the local staff. And I remember one particular visit
302 because there was really intense earthquakes, felt earthquakes going on, swarms, and
303 when you went up to the Wall, we knew from communication with the observatory
304 that when there was an earthquake we could actually see the avalanches going down
305 the wall. So that was both ... and you could also see the dome growing and poking its
306 head above the wall. And so we were at that stage very concerned about a Mount St
307 Helens type collapse or flank failure, at the time, and that this would lead to
308 something pretty devastating

309 Story 25

310

311 So, we went down the caldera and we waited carefully, so you know that this two hour
312 period was over OK, so we had another puff, that was fine, we waited, another two hours
313 and then... puff.. so right after this puff we went up and it was easy to go up with the jeep
314 there so we just climbed up the stairs, the concrete stairs to the crater rim and so we had a
315 good hour and a half to map the crater rim, and so we did. We were just half way through
316 when we heard this rumble, and we saw this cauliflower thing basically just coming out
317 Completely out of the blue as it were, because it didn't .. it didn't [fit] fit to the timing that
318 we had observed for at least two or three days

319 Story 26

320

321 Then Boxing Day Even happened and I saw the same ridge... and that was a few months
322 later... and the same ridge was completely blown away... there was not a single bush standing
323 where we had parked our helicopter....

324

325 Story 32

326 'And there was everyone there watching actually this amazing spectacle of lava flows
327 knocking down buildings. The remarkable thing was that its very slow but steady and it just
328 kind of pushes it over, it doesn't flow over, it just kind of knocks it over. And so there was
329 maybe 150-200 people around. We parked our car about 500 m away. And we were
330 watching it, pretty much like tourists, I mean it was an incredible thing. But, what we did not
331 know was that within one of the buildings that had been knocked over there was a big metal
332 tank, a water tank.

333 This was obviously, had been heating up. And, the water vapour was turning to steam, the
334 water was turning to steam... and eventually, it exploded. So this lava flow, suddenly out of
335 the blue when it had looked like it had been a peaceful situation..'

336

337

338

339

340

341

342

343

