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Abstract. The capability of chemical transport models to represent fine particulate matter (PM2.5) over the course of 

a day is of vital importance for air quality simulation and assessment. In this work, we used the nested GEOS-Chem 

model at 0.25°× 0.3125° resolution to simulate the diel (24 h) variation in PM2.5 mass concentrations over the United 

States (US) in 2016. We evaluate the simulations with in situ measurements from a national monitoring network. Our 

base case simulation broadly reproduces the observed morning peak, afternoon dip and evening peak of PM2.5, 5 
matching the timings of these features within 1-3 hours.  However, the simulated PM2.5 diel amplitude in our base 

case was 106% biased high relative to observations. We find that temporal resolution of emissions, subgrid vertical 

gradient between surface model level center and observations, as well as biases in boundary layer mixing and aerosol 

nitrate are the major causes for this inconsistency. We applied an hourly anthropogenic emission inventory, converted 

the PM2.5 mass concentrations from model level center to the height of surface measurements by correcting for 10 
aerodynamic resistance, adjusted the boundary layer heights in the driving meteorological fields using aircraft 

observations, and constrained nitrate concentrations using in situ measurements. The bias in the PM2.5 diel amplitude 

was reduced to -12% in the improved simulation. Gridded hourly emissions rather than diel scaling factors applied to 

monthly emissions reduced biases in simulated PM2.5 overnight. Resolving the subgrid vertical gradient in the surface 

model level aided capturing timings of PM2.5 morning peak and afternoon minimum. Based on the improved model, 15 
we find that the mean observed diel variation in PM2.5 for the US is driven by 1) building up of PM2.5 by 10% in early 

morning (4:00 - 8:00 local time, LT) due to increasing anthropogenic emissions into a shallow mixed layer, 2) 

decreasing PM2.5 by 22% from mid-morning (8:00 LT) through afternoon (15:00 LT) associated with mixed layer 

growth, 3) increasing PM2.5 by 30% from mid-afternoon (15:00 LT) though evening (22:00 LT) as emissions persist 

into a collapsing mixed layer, and 4) decreasing PM2.5 by 10% overnight (22:00 - 4:00 LT) as emissions diminish. 20 

1 Introduction 

Airborne fine particulate matter (PM2.5) affects human health (GBD 2019 Risk Factor Collaborators, 2020), visibility 

(Malm et al., 1994; Li et al., 2016) and the climate system (Pörtner et al., 2022). Accurately representing the diel PM2.5 

variation, its variation over the course of a day, is essential for exposure assessment, air quality modeling and relating 
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PM2.5 concentrations at a specific time of day to daily averages (van Donkelaar et al., 2010; Manning et al., 2018). 25 
Ground-level observations have revealed similar bimodal diel PM2.5 variations across the world, in which the mass 

concentrations typically peak in morning and late evening, with minima near daybreak and late afternoon (Manning 

et al., 2018). How well chemical transport models (CTMs) reproduce this variation has not been fully investigated. 

Previous modelling studies over major anthropogenic source regions found mixed levels of skill in resolving diel 

PM2.5 variation. CTMs generally well capture the observed mid-morning and late evening peaks in PM2.5 (Tessum et 30 
al., 2015; Bessagnet et al., 2016; Du et al., 2020). The peak in mid-morning is commonly attributed to enhanced 

anthropogenic emission activities and the peak in late evening ascribed to collapse of the planetary boundary layer 

(Zhao et al., 2009; Rattigan et al., 2010; Tiwari et al., 2013). Biases in simulated diel PM2.5 variation have also been 

identified and investigated. Du et al. (2020) used the WRF-Chem model (Grell et al., 2005) with the MOSAIC (Model 

for Simulating Aerosol Interactions and Chemistry) scheme and the CBM-Z (carbon bond mechanism) photochemical 35 
mechanism to simulate diel PM2.5 variation over East Asia and found nighttime overestimation, possibly due to 

insufficient boundary layer mixing. Simulations from multiple CTMs in the EURODELTA III intercomparison study 

(Bessagnet et al., 2016) found notable underestimation of PM2.5 concentrations in the afternoon over Europe. Lack of 

unspeciated organics and incomplete chemical mechanisms for the formation of secondary organic aerosols were 

proposed as the driving forces. 40 

Global anthropogenic emission inventories are generally available at monthly mean resolution (Janssens-Maenhout et 

al., 2015; Huang et al., 2017; McDuffie et al., 2020). These monthly inventories are often applied as is for a wide 

range of studies. Some national emission inventories (e.g., NEI) contain local species- and sector-specific diel 

variation. Such national information for a specific country has in some instances been applied to provide diel 

information for global inventories in some models. There is need to explore the effects of these different approaches 45 
upon the diel variation in PM2.5 concentrations. 

The vertical extent of the lowest model level in CTMs is typically tens of meters above ground, while ground-based 

measurements are taken at around two meters. As subgrid vertical gradients exist between model level center and 

surface observations, CTM simulation and in situ measurements represent PM2.5 at different altitudes. This so-called 

vertical representativeness difference can affect model evaluation. Previous modeling studies have estimated subgrid 50 
vertical gradients in HNO3 and O3 within the first model level using dry deposition velocity and aerodynamic 

resistance (Zhang et al., 2012; Travis and Jacob, 2019). How such differences in vertical representation affect 

simulated diel PM2.5 has not been investigated.  

Aerosol dry deposition, defined as the removal of aerosols by gravitational settling, by Brownian diffusion, or by 

impaction and interception resulting from turbulent transfer (Beckett et al., 1998), is an important sink process. Recent 55 
investigations have examined developments to the dry deposition scheme used in CTMs. Petroff and Zhang (2010) 

developed a sized-resolved particle dry deposition scheme with a new surface resistance parameterization by 

simplification of a one-dimensional aerosol transport model. Kouznetsov and Sofiev (2012) proposed a comprehensive 

particle dry deposition scheme which accounts for physical properties of the air flow, surface and depositing particles. 

Zhang and Shao (2014) improved the modeling of particle dry deposition on rough surfaces by treating gravitational 60 
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settling analytically and considering the roughness in particle diffusion and surface collection. Emerson et al. (2020) 

revised size-resolved particle dry deposition through constraining the surface resistances using particle flux 

observations. The impacts of recent updates on PM2.5 mass concentrations and its diel variation remains unclear. 

Aerosol nitrate, mainly formed chemically from ammonia and nitric acid, is an important component of PM2.5. 

Previous studies reported aerosol nitrate as overestimated in models, including GEOS-Chem (Heald et al., 2012), 65 
PMCAMx (Fountoukis et al., 2011) and WRF-Chem (Tuccella et al., 2012). Uncertainties in the heterogeneous uptake 

coefficient of N2O5 and NO2, dry deposition velocity of nitric acid, and nighttime boundary layer has been investigated 

as potential factors causing the overestimation (Miao et al., 2020; Zhai et al., 2021; Travis et al., 2022). The 

overprediction of nitrate in GEOS-Chem was found most prominent during the night (Travis et al., 2022), which can 

affect the diel variation of PM2.5. 70 

In this work, we use the GEOS-Chem CTM, initially described by Bey et al. (2001), to investigate the diel variation 

in simulated PM2.5. We focus on the US in 2016. In Sect. 2, we introduce the GEOS-Chem model and the 

configurations of our base simulation. In Sect. 3, we describe the in situ measurements of PM2.5. The rest of the paper 

is organized by themes, each of which contains its own methodology, results and discussions. In Sect. 4, we evaluate 

and identify biases of the simulated diel PM2.5 variation in our base GEOS-Chem simulation. Multiple physical and 75 
chemical processes affecting the diel PM2.5 simulation are explored in Sect. 5 by developing the model and conducting 

sensitivity simulations, based on which we describe the revised diel simulation with discussions in Sect. 6. Sect. 7 

concludes this study. 

2 The GEOS-Chem model and the base simulation 

2.1 General description 80 

We use the GEOS-Chem chemical transport model version 12.6.0 (www.geos-chem.org) driven by the GEOS-5 

Forward Processing (GEOS-FP) assimilated meteorology from the NASA Global Modeling and Assimilation Office 

(GMAO) to examine the factors controlling the diel PM2.5 mass variations. Prior applications of the model to PM2.5 

studies include but are not limited to evaluating and improving mechanisms affecting PM2.5 (Zheng et al., 2015; Marais 

et al., 2016; Song et al., 2021; Travis et al., 2022), source attribution (Meng et al., 2019; McDuffie et al., 2021; Pai et 85 
al., 2022), assessments of the effects of horizontal transport on local air quality (Lang et al., 2012; Zhang et al., 2019; 

Xu et al., 2023) and exposure assessments (Kodros et al., 2016; van Donkelaar et al., 2021). 

GEOS-Chem simulates detailed tropospheric aerosol-oxidant chemistry which includes the sulfate-nitrate-ammonium 

system (Park et al., 2004; Fountoukis and Nenes, 2007), black carbon (Wang et al., 2014), organic carbon, secondary 

organic aerosol (Pai et al., 2020), mineral dust (Fairlie et al., 2007) and seasalt (Jaeglé et al., 2011). The so-called 90 
“simple” scheme (Kim et al., 2015) is used for simulating secondary organic aerosol (SOA). Absorption of radiation 

by brown carbon is implemented following Hammer et al. (2016). We use nested simulations over the US in 2016 at 

0.25° × 0.3125° over 47 vertical layers extending from the surface up to 0.1 hPa. The surface level extends from 

ground to about 120 meters. GEOS-FP is used for meteorological inputs, which includes hourly surface variables and 
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3-D variables at every 3 hours. A global simulation at 2° × 2.5° is used to provide boundary conditions for the nested 95 
domain. The non-local scheme implemented by Lin and McElroy (2010) is used for boundary layer mixing. 

In this work, we first evaluate the base simulation of GEOS-Chem (denoted as GC_Base in Table 1). We identify the 

biases of diel PM2.5 variation in the base simulation by comparison with in situ observations. Then we develop different 

model components affecting PM2.5 concentrations and conduct sensitivity simulations to explore the driving forces of 

diel PM2.5 variation. Sect. 2.2 and 2.3 introduce the emission configuration and default parameterization of dry 100 
deposition in GC_Base. 

Table 1. Summary of modifications made to base GEOS-Chem simulation to investigate diel PM2.5 variation. 

 

2.2 Emissions configurations in GC_Base 

To investigate the impacts of anthropogenic emissions, we begin with the monthly version of the National Emission 105 
Inventory (NEI) in GC_Base instead of the default hourly version in the standard nested GEOS-Chem model over 

North America, which is consistent with most regions outside of the US where anthropogenic emissions at hourly 

resolution are often not readily available. We scale the NEI emissions from the base year of 2011 to 2016 using air 

pollutant emissions trend data provided by the US Environmental Protection Agency (EPA) (https://www.epa.gov/air-

emissions-inventories/air-pollutant-emissions-trends-data). Point sources in the NEI inventory are all vertically 110 
resolved, which mainly include large industrial facilities, power plants and airports. Nonpoint sources mainly include 

residential heating, transportation, commercial combustion and solvent use. We do not use the NEI 2016 inventory 

since that inventory is only available at monthly resolution in GEOS-Chem. For wildfires, we use GFED4 (Giglio et 

al., 2013) 3-hourly emissions. For dust, we use the hourly offline inventory developed by Meng et al. (2021). 

GEOS-Chem 
simulation 

Temporal 
resolution of 

emissions  

Vertical 
representativeness 

Aerosol dry 
deposition 

Boundary layer 
mixing 

Nitrate 
constrained 

GC_Base NEI monthly Lowest model 
level center Default Default No 

GC_Emis NEI hourly Lowest model 
level center Default Default No 

GC_Drydep NEI hourly Lowest model 
level center Revised Default No 

GC_2m NEI hourly Corrected to 2m Revised Default No 

GC_2m_PBLH NEI hourly Corrected to 2m Revised PBLH adjusted No 

GC_2m_PBLH_NIT NEI hourly Corrected to 2m Revised PBLH adjusted Yes 
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2.3 Dry deposition parameterization in GC_Base 115 

Dry deposition of PM2.5 in our base GEOS-Chem simulation generally follows the Zhang et al. (2001) scheme (hence 

forth Z01), which parameterizes particle dry deposition velocities (𝑉") by accounting for gravitational settling (𝑉#), 

aerodynamic resistance (𝑅%) and surface resistance (𝑅&), as shown in Eq. (1):  

𝑉" = 𝑉# +
)

*+,*-
 ,                                                                                                                                                  (1) 

Gravitational settling represents the particle settling due to gravity. Aerodynamic resistance describes the turbulent 120 
transport of scalars within the surface layer. Surface resistance, as formulated in Eq. (2), quantifies particle-surface 

contact in close proximity to surfaces by Brownian diffusion (𝐸/), impaction (𝐸01) and interception (𝐸02).  

𝑅& =
)

345∗(89,8:;,8:<)*>
 ,                                                                                                                                      (2) 

where 𝑢∗ denotes friction velocity,  𝑅) denotes a bounce correction term and 𝜀A denotes an empirical coefficient. 

Brownian diffusion contributes to dry deposition through diffusion when particles are close to surface collectors. 125 
Impaction describes the direct collision of particles to surfaces due to inertia when particles move along the streamlines 

around collector surfaces. Interception represents the deposition by which particles are captured by surface collectors 

when their distances to the collectors are less than the radius of a single particle.  

The standard GEOS-Chem dry deposition module used in our base simulation calculates dry deposition velocity (𝑉"B) 

following Eq. (3), where gravitational settling is ignored.  130 

𝑉"B =
)

*+,*-
 ,                                                                                                                                                          (3) 

The dry deposition of PM2.5 includes sulfate, nitrate, ammonium, organics, black carbon, fine mode seasalt and fine 

mode mineral dust components. Information about particle size is important, as all terms in Eq. (1-3) are size-

dependent except aerodynamic resistance 𝑅%. The dry deposition module in the base GEOS-Chem simulation has 

inconsistencies with other GEOS-Chem modules that we address in Sect. 5.2. In the standard GEOS-Chem dry 135 
deposition module, fine mode mineral dust is considered in two size bins with mass-weighted mean diameters of 1.46 

and 2.80 µm. Other components are each considered in a single size bin with mass-weighted mean dry diameters for 

sulfate, nitrate, ammonium, organics, black carbon and fine mode seasalt of 0.5 µm. Monodisperse size distributions 

are used for all size bins. The effect of hygroscopic growth on deposition is only considered for fine mode seasalt 

following Lewis and Schwartz (2006). We use the standard GEOS-Chem dry deposition module for our base 140 
simulation. 

3 In situ measurements of PM2.5 

The in situ measurements from the United States Environmental Protection Agency’s Air Quality System (AQS) are 

used to evaluate the GEOS-Chem simulations. There were 451 sites operating in 2016 across the US which provided 

hourly PM2.5 concentrations using a Federal Equivalency Method (FEM). As depicted in Fig. 1, 66.3% of these FEM 145 
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sites are equipped with the Met One BAM-1020 Mass Monitor using Beta Attenuation, 10.0% with the Thermo 

Scientific 5014i/FH62C14-DHS Monitor using Beta Attenuation, 7.4% with the Thermo Scientific TEOM 1405-DF 

Dichotomous Monitor using FDMS Gravimetric and 6.5% with the Thermo Scientific 5030 SHARP Monitor using 

Beta Attenuation. These four types of FEM monitors are used for hourly analysis in this work. The other five types of 

FEM instruments, contributing less than 10% of all hourly measurements, are excluded to avoid risk of aliasing 150 
instrument-dependent and regionally dependent characteristics. Further detail about instrumentation is provided in 

supplemental Sect. S1. A small fraction (0.05%) of the FEM measurements exceeding ten times their standard 

deviation are indictive of strong fire contamination, present significant modulation on the regional diel variation 

pattern and are excluded as outliers from the focus of this study. Also shown in Fig. 1 are the additional 737 sites 

using Federal Reference Method (FRM) to measure 24-hour average PM2.5 concentrations which significantly improve 155 
observational coverage of the US for the evaluation of spatial distribution of GEOS-Chem simulated PM2.5. To 

compare with GEOS-Chem, each site is matched with the GEOS-Chem grid nearest box center. The FRM and FEM 

measurements used in this work are at 35±5% relative humidity (EPA, 2007; Thermo Fisher Scientific, 2013; EPA, 

2021; EPA, 2023). To match the measurement RH, the GEOS-Chem PM2.5 and its composition were calculated 

considering the corresponding hygroscopic growth following standard practice in GEOS-Chem (GEOS-Chem 160 
Aerosols Working Group, 2021). 

 
Figure 1. Spatial distribution of the US EPA PM2.5 measurements. Colored markers represent Federal Equivalency 

Method (FEM) sites equipped with different kinds of instruments which report hourly PM2.5 concentrations. Black 

squares represent Federal Reference Method (FRM) sites which report 24-hour average PM2.5. 165 
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4 Diel PM2.5 variation in the base GEOS-Chem simulation and the FEM measurements 

We first examine the diel PM2.5 variation in the base simulation. Fig. 2a shows annual-mean diel PM2.5 variation across 

the US from the FEM in situ observations and the space and time co-located base GEOS-Chem simulation. The 

observed PM2.5 exhibits a typical diel cycle consistent with previous work (Manning et al., 2018). Concentrations peak 

at 8am, diminish until late afternoon, increase in evening and remain elevated throughout the night. The base GEOS-170 
Chem simulation broadly captures these features with their timings accurate within 1-3 hours. The simulated 

concentration decreases from morning to late afternoon then increases throughout the evening, consistent with the diel 

cycle of growth and collapse of the boundary layer. However, the simulated PM2.5 is significantly overestimated at 

night, especially from midnight to early morning when the GEOS-Chem PM2.5 increases beyond the standard deviation 

of the observations during which time the observations exhibit a slight decrease. The nighttime model overestimation 175 
leads to a 106% positive bias in the PM2.5 diel amplitude, defined as the difference between the maximum and the 

minimum of the normalized diel concentration. The Root Mean Square Deviation (RMSD) of annual diel variation in 

PM2.5 between the base simulation and the observations is 2.18 µg/m3. The spatial distribution of PM2.5 in the base 

GEOS-Chem simulation is discussed in supplemental Sect. S2. 

We classify each FEM measurement and the corresponding GEOS-Chem simulation into urban and rural using the 180 
Global Rural-Urban Mapping Project (GRUMP) v1 (Balk et al., 2006) data at 30 seconds resolution. Results (Fig. S3) 

indicate that the observed diel variations of PM2.5 in urban and rural areas across the US are highly consistent (r=0.97). 

Both urban and rural sites exhibit the same bi-modal patterns with PM2.5 peaks near 8:00 LT and 21:00 LT, and minima 

near 4:00 LT and 16:00 LT. The PM2.5 dips near 4:00 LT and 16:00 LT are deeper over urban regions than over rural 

regions, which may reflect stronger vertical mixing from the urban heat island effect (Travis et al., 2022). The 185 
consistency of diel PM2.5 variation across urban and rural locations implies a dominant role from natural processes. 
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Figure 2. (a) Annual mean diel PM2.5 variation over the US in 2016. (b) Normalized annual mean diel PM2.5 from GEOS-

Chem (GC) sensitivity simulations over the US in 2016. Vertical lines indicate the spatial standard deviations of annual-

mean PM2.5 for the FEM measurements at each hour. 190 

Fig. 3a shows the annual-mean diel variation of PM2.5 chemical composition in the base GEOS-Chem simulation for 

the contiguous US. Sulfate was the least variant component throughout the day. All other components exhibit notably 

higher concentration at night than during the day. The pronounced PM2.5 accumulation overnight in the base case 

simulation is driven primarily by nitrate, of which the mass concentrations increase by 34.1% overnight (0:00 LT- 

6:00 LT). This is consistent with the reported overestimation of nighttime nitrate in GEOS-Chem by recent studies 195 
(Miao et al., 2020; Zhai et al., 2021; Travis et al., 2022).  Concentrations of ammonium and SOA, which increased by 

22.2% and 14.2% overnight (0:00 LT – 6:00 LT), contributed to the overnight PM2.5 accumulation to a lesser extent. 

Except for dust, concentrations of all other components increase from midnight to early morning, indicating there are 

uniform drivers on PM2.5 diel variation across composition. 
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 200 
Figure 3. Annual diel profiles of PM2.5 composition over the US in the GEOS-Chem simulations (Table 1). POA, SOA, BC 

refers to primary organic aerosol, secondary organic aerosol and black carbon respectively. All components represent dry 

mass. The aerosol water associated with sulfate, nitrate, ammonium, POA, SOA and seasalt is grouped into the water 

category. 

5 Development of processes affecting simulation of diel PM2.5 205 

We develop and evaluate the processes affecting the simulation of diel PM2.5 variation in GEOS-Chem with particular 

attention to the driving forces of the nighttime bias. We focus on the temporal resolution of emissions, aerosol dry 

deposition, vertical representativeness, boundary layer mixing, dew formation, and nitrate as summarized in Table 1. 

5.1 Impacts from the temporal resolution of emissions 

We initially examine the temporal resolution of anthropogenic emissions as a source of the nighttime PM2.5 positive 210 
bias identified in Sect. 4. Fig. 4 shows the normalized mean diel emission profile for different species in the hourly 

version of the NEI inventory. Anthropogenic emissions are notably higher during the day than at night, with minima 

from midnight to early morning in the emission intensities for every primary species. The diel amplitude of SO2 

emissions is weakest, driven by persistent power plant emissions. NH3 emissions have the strongest diel amplitude, 

driven by a temperature dependence for this predominantly agriculturally emitted species over the US (Zhang et al., 215 
2018). Fig. S4 depicts the normalized mean emission strengths for species in Fig. 4 both seasonally and regionally. 

The early afternoon NH3 peak is most prominent over the Central US in summertime, in accordance with the 
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temperature-dependant agricultural emissions of NH3. Primary emissions of particulate organic carbon (OC) have a 

peak near l8:00 LT (Local Time), corresponding to more intense residential heating. The OC emissions in evening are 

strongest during winter, reflecting the seasonality of residential combustion activities (Li and Martin, 2018). 220 

 
Figure 4. Normalized mean diel emission profile for different species across the US. 

To evaluate the impacts from temporal resolution of emissions, we conduct a sensitivity simulation GC_Emis (Table 

1) which replaces the monthly NEI in GC_Base with the hourly NEI. Fig. 2b shows that GC_Emis simulates a much 

weaker PM2.5 accumulation from midnight to early morning relative to GC_Base, mainly due to the lower emission 225 
intensities of aerosol sources throughout the night in the NEI hourly inventory. In the evening, PM2.5 in the GC_Emis 

simulation accumulates slightly faster than in the base case, reflecting the stronger emissions in daytime after applying 

the hourly inventory. The RMSD between GC_Emis diel PM2.5 and the FEM observations decreases from 2.18 µg/m3 

in GC_Base to 1.69 µg/m3, and the positive bias in the diel amplitude drops from 106% to 59%. In terms of 

composition (Fig. 3b), the average mass concentrations of BC and POA overnight (0:00 LT - 6:00 LT) decrease by 230 
25.7% and 12.9%, contributing the most to the reduced overnight PM2.5 accumulation. Sulfate concentrations 

overnight decrease by only 3.5% due to weak day-night contrast in SO2 emissions. Nitrate and ammonium 

concentrations decrease by only 7.1% and 6.3%, reflecting the relatively minor role of primary emissions versus  

secondary production for these two species. In GC_Emis, nitrate still accumulates notably (by 23.1%) from 0:00 LT 

to 6:00 LT, acting as the major contributor of the PM2.5 nighttime bias. Overall, the temporal resolution of emissions 235 
explains 44% of the bias in simulated diel amplitude. Daytime PM2.5 is insensitive to changes in diel emission profiles. 

During the night, the impacts of emissions on PM2.5 levels are more prominent, especially from midnight to early 

morning when the boundary layer is more stable. From this perspective, the slight overnight reduction of PM2.5 in the 

FEM measurements is likely driven by the sharp decline in anthropogenic emissions.  

The above analysis indicates the importance of using hourly emissions to simulate diel PM2.5 variation. However, over 240 
most regions worldwide, only monthly emissions are available with crude diel scaling factors from specific regions 

as a possible proxy for hourly emissions. To assess the performance of such diel scalars in simulating diel PM2.5, we 

conducted three supplementary sensitivity simulations in Table S2, in which sector or species-specific diel scaling 
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factors (Fig. S5) are applied to NEI and CEDS monthly emissions. Results (Fig. S6) show that the average PM2.5 

accumulation overnight (0:00 LT – 6:00 LT) among the supplementary cases is 2.6 times of that in GC_Emis, leading 245 
to stronger overestimation of PM2.5 overnight. To optimize the model performance in simulating diel PM2.5, hourly 

gridded emissions are preferred over using monthly emissions with scaling factors. Nevertheless, the diel emission 

profile does not fully explain the diel biases identified in Sect. 4. Other contributing factors exist. 

5.2 Impacts from the dry deposition parameterizations 

We explore dry deposition as the second potential source for the diel-varying biases in the base GEOS-Chem 250 
simulation. First, as described in Sect. 2.3, the dry deposition scheme in the base GEOS-Chem model does not account 

for gravitational settling 𝑉# , which leads to systematic underestimation in particle dry deposition velocities. To 

improve on this missing consideration, we strictly follow Eq. (1) of Zhang et al. (2001), updating the gravitational 

settling term 𝑉# to be explicitly considered when deriving the deposition velocity (Eq. 1). Second, the parameterization 

of surface resistances (Eq. 2) in the base scheme was developed when few particle deposition measurements were 255 
available. Following recent observational evidence, Emerson et al. (2020) identified that the Brownian diffusion 𝐸/ 

in Z01, as used in the standard GEOS-Chem model, is excessive while the contribution from interception 𝐸02 is too 

weak. We update the surface resistances 𝑅&  in GEOS-Chem by applying observationally-constrained Brownian 

diffusion 𝐸/, impaction 𝐸01 and interception 𝐸02 terms following observational evidence in Emerson et al. (2020). 

Formulations of 𝐸/, 𝐸01, and 𝐸02 are updated following Table 2. 260 

Table 2. Formulations for particulate gravitational setting (𝑽𝒈), Brownian diffusion (𝑬𝑩), interception (𝑬𝑰𝑵) and 

impaction (𝑬𝑰𝑴) used in the calculation of deposition velocity (𝑽𝒅). 

Resistance Model Vg EB EIN EIM 

Vd_Base - 𝑆𝑐MN 
1
2 (
𝐷R
𝐴 )

T (
𝑆𝑡

𝛼 + 𝑆𝑡)
T 

Vd_Z01 𝑉# =
𝜌𝐷RT𝑔𝐶
18𝜂  𝑆𝑐MN 

1
2 (
𝐷R
𝐴 )

T (
𝑆𝑡

𝛼 + 𝑆𝑡)
T 

Vd_Revised 𝑉# =
𝜌𝐷RT𝑔𝐶
18𝜂  0.2𝑆𝑐MT/_ 

5
2 (
𝐷R
𝐴 )

A.a 
2
5 (

𝑆𝑡
𝛼 + 𝑆𝑡)

).b 

A: characteristic radius for interception in Zhang et al. (2001). 

𝐶: the Cunningham correction factor. 

𝐷R: Particle diameter. 265 

𝑔: gravitational acceleration constant 

𝑆𝑐: the Schmidt number. 

𝑆𝑡: the Stokes number. 

𝑉#: gravitational settling velocity. 

α: LUC-specific constant used in the impaction efficiency in Zhang et al. (2001), where LUC represents land use classification. 270 

𝛾: LUC-specific exponent used in the Brownian diffusion efficiency in Zhang et al. (2001), which ranges from 0.5 to 0.58. 
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𝜌: density of particle 

𝜂: viscosity of air 

Fig. 5a shows 𝑉# as a function of particle diameter for the base (Vd_Base) and revised (Vd_Revised) parameterizations, 

as well as according to the Z01 scheme (Vd_Z01).  Comparison of the Vd_Base and Vd_Z01 curves indicates that 275 
inclusion of 𝑉#  in the calculation of 𝑉"  for the Vd_Z01 case substantially increases dry deposition velocities for 

particles larger than 2 µm in diameter. The Vd_Revised curve indicates that implementing observational constraints 

on the surface resistances shifts the minimum in 𝑉" to a particle diameter of around 0.1 µm, reflecting a weakened 

Brownian diffusion term and an enhanced interception term. Emerson et al. (2020) found that the parameterized size 

dependent particle dry deposition velocities are more consistent with observations after implementing these 280 
observational constraints. To further evaluate the impact of particle 𝑉" on diel PM2.5, the representation of aerosol size 

distributions in the dry deposition scheme of GEOS-Chem, including hygroscopic growth, must be considered. 

 
Figure 5. (a) Size-resolved particle dry deposition velocities over grassland land type from GEOS-Chem. (b) Diel mean 

dry deposition velocities for sulfate aerosol over the US in 2016. Vd_Base represents the default dry deposition scheme in 285 
the base GEOS-Chem model (Eq. 3). Vd_Z01 includes the effect of gravitational settling on Vd_Base (Eq. 1). Vd_Revised 

further implements the observational constrains on the surface resistance terms, as discussed in Sect. 5.2. 

As introduced in Sect. 2.3, the dry deposition scheme in the standard GEOS-Chem model assigns a single unreferenced 

mass-weighted mean diameter to different PM2.5 components. We update the mass-weighted mean diameter for each 

aerosol species dry deposited to be consistent with the sizes in the GEOS-Chem radiation module. We implicitly 290 
consider aerosol size distributions based on mass conservation principles: 

∫ 𝑛(𝐷R)
g
A ∙ i

_
𝜋 klm

T
n
_
∙ 𝜌 ∙ 𝑉"o𝐷Rp𝑑𝐷R = 𝑁 ∙ 𝑉"(𝐷R∗) ∙

i
_
𝜋(lm

∗

T
)_ ∙ 𝜌 ,                                                                    (4) 

where 𝐷R  denotes particle diameter, 𝑛(𝐷R) represents the particle number size distribution, 𝜌 denotes the particle 

density, 𝑉"o𝐷Rp denotes the size-dependent particle dry deposition velocity,  𝑁 denotes the total particle number 

concentration integrated across the aerosol size distribution, 𝐷R∗ denotes the mass-weighted mean dry diameter for a 295 
specific aerosol species and 𝑉"(𝐷R∗) denotes the dry deposition velocity of a particle with diameter of 𝐷R∗. The size 

distribution for each PM2.5 component is from Latimer and Martin (2019). The updated mass-weighted mean dry 
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diameter for sulfate, nitrate, ammonium and organic aerosols is 0.17 µm, for fine mode seasalt is 0.23 µm, and for the 

fine mode mineral dust in two size bins are 0.67 µm and 2.49 µm. 

The standard GEOS-Chem dry deposition module only considers the hygroscopic growth of fine mode seasalt. 300 
Omitting hygroscopicity for other PM2.5 components may lead to biases in the simulated dry deposition velocities and 

thus affect the diel variation of PM2.5. Here we implement hygroscopic growth in the dry deposition parameterization 

for sulfate, nitrate, ammonium (SIA) and organic components (OA) of PM2.5 by application of a κ-Kohler growth 

function to the mass-weighted mean dry diameters (Petters and Kreidenwei 2007, 2008, 2013; Latimer and Martin, 

2019). Dust and black carbon are treated as hydrophobic. The κ-Kohler growth factor is calculated as:  305 

𝐺𝐹 = (1 + 𝜅 *v
)AAM*v

) ,                                                                                                                                          (5) 

The hygroscopicity parameter κ for SIA is set as 0.61 and for OA is set as 0.1 (Latimer and Martin, 2019). 

Efflorescence transitions are considered for the SIA components (Latimer and Martin, 2019). For fine mode seasalt, 

we continue to use the growth function from Lewis and Schwartz (2006). 

Taking the sulfate component in PM2.5 as an example, Fig. 5b presents the combined impacts of all the updates above 310 
on the diel dry deposition velocities. Implementation of gravitational settling and hygroscopic growth tends to increase 

the sulfate dry deposition velocity, compensating for the lower revised aerosol dry deposition velocities, mainly due 

to the revised scheme using a smaller mass-weighted mean dry diameter. The reductions of deposition velocity in the 

revised case are more prominent during daytime, when the size-dependent surface resistances dominate the dry 

deposition processes. In the revised profile, from midnight to early morning (0:00 LT – 6:00 LT), the dry deposition 315 
velocities are 10.4% higher than those in the evening (18:00 LT-0:00 LT), reflecting the stronger aerosol hygroscopic 

growth due to higher relative humidity. We evaluate the impacts on simulated diel PM2.5 masses in GEOS-Chem as 

GC_Drydep simulation (Table 1) which adds all the deposition updates to GC_Emis. Fig. 2b shows that the diel PM2.5 

masses simulated by GC_Drydep and GC_Emis are almost identical. The insensitivity of diel variation of PM2.5 to dry 

deposition updates implies that the diel PM2.5 biases identified in Sect. 4 are unlikely to be caused by the uncertainty 320 
of the GEOS-Chem dry deposition module. 

5.3 Impacts from the vertical representativeness differences between model and observations 

The third possible contributor to the PM2.5 nighttime biases that we consider is the vertical representativeness 

difference between the model and observations. Given the vertical extent of the lowest model level (120 m), simulated 

concentrations represent an average over a greater vertical extent than the typical height of FEM measurements of 325 
about 2 meters. This difference in vertical representation may be especially problematic for model-measurement 

comparison during periods of diabatic stability resulting in strong near-surface concentration gradients. Vertical 

concentration gradients within 120 m of the surface have been widely observed for aerosol species in previous field 

campaigns (Sievering et al., 1994; Prabhakar et al., 2017; Franchin et al., 2018). Sievering et al. (1994) measured the 

vertical profiles of aerosols over the Bayerischer Wald National Park in Germany using filter pack sampling, reporting 330 
2 m concentrations lower than at 51 m for nitrate (51%), ammonium (81%) and sulfate (81%). In the Utah Winter 

Fine Particulate Study, the PM2.5 concentrations measured by three ground sites at Logan, Cache, Salt Lake Valley 
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and the Utah Valley were around 70% of those at around 50 meters measured by aircraft (Franchin et al., 2018). Thus, 

the PM2.5 simulated by GEOS-Chem is intrinsically different from the FEM in situ measurements because of the 

mismatch of vertical sampling location. 335 

To evaluate the impact of these vertical representativeness differences, we developed the GC_2m simulation (Table 

1), in which PM2.5 from the lowest model level of the GC_Drydep simulation is adjusted to the height of the FEM 

measurements (2 meters above ground). The conversion process quantifies the vertical concentration gradient of 

secondary PM2.5 components by using the resistance-in-series formulation for dry deposition following previous 

studies (Zhang et al., 2012; Travis and Jacob, 2019). The mathematical formula is described in Eq. 6, 340 

𝐶(𝑧Tx) = [1 − 𝑅%(𝑧Tx, 𝑧|}~)𝑉"(𝑧|}~)]𝐶(𝑧|}~) ,                                                                                            (6) 

where  𝐶(𝑧Tx) and 𝐶(𝑧|}~) represent the concentrations at measurement height of 2 meters and the grid-box-center 

of the GEOS-Chem surface layer (around 60 meters) respectively, 𝑅%(𝑧Tx, 𝑧|}~)  represents the aerodynamic 

resistances between the measurement height and the grid-box-center, 𝑉"(𝑧|}~) represents the dry deposition velocity. 

𝑅%(𝑧Tx, 𝑧|}~) is calculated using the Monin-Obukhov similarity theory: 345 

𝑅%(𝑧Tx, 𝑧|}~) = ∫ �(�)
�5∗�

𝑑𝜁���
����

 ,                                                                                                                           (7) 

where 𝜁 = 𝑧 𝐿⁄ . 𝐿 denotes the Monin-Obukhov length which is determined by surface momentum fluxes and sensible 

heat. Φ represents a function of stability described by Businger et al. (1971). 𝑘 represents the von Karman constant 

and 𝑢∗ represents the friction velocity. The method requires a boundary condition of zero concentration at ground. 

Thus, it is only applied to secondary PM2.5 components, not primary components with surface emission fluxes. The 350 
correction method described by Eq. 6 and Eq. 7 does not account for the impacts of relative humidity (RH) and 

temperature (T) differences between the lowest model level and 2m on thermodynamic partitioning of sulfate-nitrate-

ammonium (SNA) aerosol. Nevertheless, by conducting simulations of the Extended AIM Aerosol Thermodynamics 

Model (Wexler and Clegg, 2002) using GEOS-FP relative humidity (RH), Temperature (T) and GC_2m SNA 

composition at 2m and the lowest model level, we found the impacts are overall insignificant. Higher RH at 2m leads 355 
to SNA aerosol transition from solid to aqueous form and only slightly increases the ratio (<5%) of the partitioned 

aerosol phase in the SNA system, which usually occurs overnight. 

Fig. 2b shows the normalized annual diel PM2.5 variation of GC_2m across the US. Comparison of GC-Drydep and 

GC_2m indicates that the vertical correction effectively suppresses the excessive PM2.5 levels from midnight to early 

morning and sustains the daytime concentration variation due to boundary layer mixing. The bias in diel amplitude of 360 
the corrected GC_2m PM2.5 is reduced to 26% against the FEM observations. In terms of absolute concentrations, the 

average reduction from GC_Drydep to GC_2m is 1.01 µg/m3 during 18:00 LT – 6:00 LT (nighttime), while that for 

6:00 LT – 18:00 LT (daytime) is 0.11 µg/m3. This day-night contrast is consistent with a previous DISCOVER-AQ 

field study (Prabhakar et al., 2017), in which the vertical gradient of nitrate aerosols measured by aircraft was 

significantly greater in a stable surface layer than in a turbulent surface layer. At night, under a stable boundary layer, 365 
surface resistances are suppressed due to weaker particle impaction and interception. Aerodynamic resistances then 

become relatively stronger with the resulting correction in Eq. 6 yielding a greater reduction of PM2.5 concentrations. 
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During the day, as boundary layer mixing strengthens, surface resistances dominate over the aerodynamic resistances 

and the correction in Eq. 6 is weaker. Resolving the vertical representativeness differences enables the GEOS-Chem 

simulation to better capture the timings of the observed overall PM2.5 morning peak and afternoon minimum across 370 
the US. In the GC_Drydep simulation, the PM2.5 morning peak is three hours earlier than the FEM observations. After 

the vertical correction, in the GC_2m simulation, the morning peak appears only one hour ahead of the observations. 

5.4 Impacts from boundary layer height 

Planetary boundary layer height (PBLH) is investigated as the next possible source of the biases identified in Sect. 4. 

PBLH is closely related to boundary layer mixing, which significantly affects diel PM2.5 (Du et al., 2020). We adjust 375 
the GEOS-FP planetary boundary layer height (PBLH) which used for driving GEOS-Chem by using the PBLH 

derived from the Aircraft Meteorological Data Reports (AMDAR) at 54 sites (Fig. S7) across the US (Zhang et al., 

2020) as reference. The AMDAR PBLH is defined as the lowest level at which the bulk Richardson number exceeds 

a critical value of 0.5 (Zhang et al., 2020). The vertically resolved bulk Richardson number is calculated from vertical 

profiles of temperature, humidity and wind speed in the AMDAR dataset. 380 

Fig. 6 shows the seasonal variation in PBLH. The observed PBLH from AMDAR shows similar diel variation across 

all seasons, which stays low from midnight to early morning, increases to a maximum in mid-afternoon, then decreases 

throughout rest of the day. In terms of absolute amplitude, the AMDAR PBLH are higher during spring and summer, 

mainly due to strong near-surface wind speed and intense solar radiation (Guo et al., 2016). The GEOS-FP reanalysis 

generally captures the diel variation of the AMDAR PBLH over all seasons, albeit with overestimates during daytime 385 
(7:00-19:00 LT), which is consistent as previous comparison studies (Millet et al., 2015; Zhu et al., 2016). The daytime 

overestimation in GEOS-FP PBLH is most likely due to excessive surface heating in the dataset. As reported in Millet 

et al., (2015), the daytime temperature at 2 meters in GEOS-FP was notably higher than that observed by ceilometer 

and the diel pattern of the bias in GEOS-FP temperature at 2 meters well matched that in PBLH. The average daytime 

AMDAR PBLH reaches a maximum in spring, slightly higher than that in summer, likely reflecting greater surface 390 
wind speed in spring than in summer according to the AMDAR observations, leading to greater turbulence and vertical 

mixing, and higher PBLH. GEOS-FP PBLH exhibits much higher values in summer than in spring. This inconsistency 

might be caused by stronger overestimation of GEOS-FP PBLH in summer introduced by excessive surface heating 

in the GEOS-FP dataset (Millet et al., 2015). 
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 395 
Figure 6. Seasonal diel variation of AMDAR (observation-based) and GEOS-FP PBLH. Vertical bars indicate the spatial 

standard deviations of AMDAR PBLH. 

To quantify the impacts of the uncertainty in PBLH on modeled diel PM2.5, we develop the GC_2m_PBLH simulation 

(Table 1) in which the GEOS-FP PBLH used in the GC_2m simulation is adjusted by the AMDAR observations. 

Specifically, we matched the hourly AMDAR and GEOS-FP PBLH over the US spatially and temporally, then derived 400 
US-averaged (0:00 LT – 23:00 LT) adjustment factors for different seasons following Eq. 8: 

𝐴𝐹�,� =
�}�v������������������������,�
�}�v�����������������������������,�

 ,                                                                                                                                          (8) 

where 𝐴𝐹�,� represents the PBLH adjustment factor for season i and hour j, 𝑃𝐵𝐿𝐻¢xl¢*���������������
�,� represents the US-averaged 

AMDAR PBLH for season i and hour j, and 𝑃𝐵𝐿𝐻|8£¤M¥������������������
�,� represents the US-averaged GEOS-FP PBLH for season 

i, hour j. Implementing this adjustment scales the GEOS-FP PBLH to the same seasonal diel value as the AMDAR 405 
PBLH over the US. Applying these adjustment factors to the GEOS-FP PBLH, as shown in blue and dashed in Fig. 

2b, reduces the absolute biases in simulated PM2.5 diel amplitude against the FEM observations by 8%. 

5.5 Impacts from dew formation 

We also examined the possibility of dew formation as a potential process affecting the diel variation in PM2.5. It was 

reported that the condensation process during the formation of dew involves removal of airborne particles from the 410 
atmosphere (Polkowska et al., 2008; Muskała et al., 2015). We considered whether the observed PM2.5 decrease from 

midnight to early morning (Fig. 2) might be partly ascribed to this mechanism, and thus contribute to the overestimated 

nighttime PM2.5. However, based on two lines of reasoning, we conclude here that dew formation is unlikely to 

significantly affect the diel PM2.5 mass variations over the US. First, we examined co-located hourly RH and PM2.5 

mass concentrations at 37 sites in 2016 across the US. Fig. 7 shows four examples. We found no evidence of 415 
correlation of low PM2.5 masses and high nighttime RH values (r=0.16/0.18/0.13/0.15 for Johnson, Kansas/Jackson, 
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Missouri/Summit, Ohio/Jefferson, Kentucky). Second, the decreases of PM2.5 overnight are found sharpest in the 

Western US where the average relative humidity (RH) is lowest among all subregions, which indicates that dew 

formation at high RH condition is unlikely an important driving factor. 

 420 
Figure 7. Co-located relative humidity (RH) and PM2.5 mass concentrations at four example sites. Each point represents 

the measured hourly PM2.5 concentration at the measured hourly RH for each site. The RH measurements are provided 

by the NOAA Local Climatological Data (LCD) program. The PM2.5 mass concentrations are provided by the EPA FEM 

sites. 

5.6 Impacts from nitrate aerosols 425 

In Fig. 3b, hourly emissions reduce nighttime concentrations of nitrate and organics, primarily reflecting diminished 

nighttime emissions of NH3, NOx, and organic carbon. Accounting for vertical representativeness further reduces 

nighttime concentrations of nitrate (Fig. 3c), leading to reduced positive biases of 24h-averaged nitrate mass against 

in situ observations (Fig. S8). Nevertheless, positive nitrate biases remain in the GC_2m_PBLH simulation (Fig. S8), 

which has been a long-standing issue in GEOS-Chem (Heald et al., 2012; Zhu et al., 2013). According to recent works 430 
(Miao et al., 2020; Zhai et al., 2021; Travis et al., 2022), uncertainties in aerosol uptake coefficient for N2O5 and NO2, 

underestimated dry deposition of HNO3 and overly shallow nighttime mixing layer are possible contributors. But none 

of these fully resolve the diel biases of nitrates in GEOS-Chem, indicating the biases are likely caused by 

misrepresentation in both chemistry and meteorology in the model. Following analyses by Travis et al. (2022) over 

Seoul, Korea, we conducted sensitivity simulations (Sect. S3) and found N2O5 hydrolysis dominates the nighttime 435 
nitrate production (Fig. S9 and Fig. S10) in our simulations over the US, which is consistent with a previous work 

(Alexander et al., 2020). As shown in Fig. S9, turning off N2O5 hydrolysis largely reduces the PM2.5 biases from 
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midnight to early morning and yields diel PM2.5 variation highly consistent with observations. The bias in simulated 

nitrate mass concentrations is also reduced by turning off N2O5 hydrolysis (Fig S8). The results indicate the N2O5 

hydrolysis overnight might be excessive in the model. It is also possible that the performance of the simulation without 440 
N2O5 hydrolysis on aerosols is an indicator of multiple chemical and physical processes affecting nitrate as explored 

by Miao et al. (2020), Zhai et al. (2021) and Travis et al. (2022). While the full origins of the GEOS-Chem nitrate bias 

remain unknown, we examine the effects on PM2.5 of constraining nitrate concentrations by developing the 

GC_2m_PBLH_NIT simulation, in which the modeled nitrate concentrations are halved from GC_2m_PBLH to better 

represent the US average of in situ observations (Fig. S8). The bias of the diel amplitude of PM2.5 in 445 
GC_2m_PBLH_NIT against FEM observations is reduced to -12% (Fig. 2). The total aerosol water concentration 

decreases by 12.7% in GC_2m_PBLH_NIT from GC_2m_PBLH as nitrate is reduced. These results motivate further 

investigation of the nitrate bias in GEOS-Chem. 

6 Discussion of diel PM2.5 variation in the final revised GEOS-Chem simulation (GC_2m_PBLH_NIT) 

Overall updating the temporal resolution of emissions, dry deposition parameterizations, boundary layer height, 450 
resolving the vertical representative differences between model and observations and constraining nitrate notably 

improves the diel variation of PM2.5 in GC_2m_PBLH_NIT relative to GC_Base for both urban and rural regions (Fig. 

S3) in a similar way. In the annual diel comparison averaged across the US (Fig. 2), the bias in the PM2.5 diel amplitude 

in GC_2m_PBLH_NIT (-12%) is significantly reduced relative to GC_Base (106%).  The average observed PM2.5 

morning peak and afternoon minimum are at 8:00 LT and 15:00 LT respectively. GC_Base simulates them with biases 455 
of -3 and -1 hours while GC_2m_PBLH_NIT agrees with observed timing within 1 hour. In addition to the average 

comparison across the country, we further explore the performances over all FEM sites. Fig. 8 shows histograms of 

the timing of the morning peak, of the afternoon minimum, and of the diel amplitude. At most FEM sites, GC_Base 

tends to overestimate the PM2.5 diel amplitude and simulates the PM2.5 diel features too early. By correcting for the 

vertical representativeness differences, using emissions with hourly temporal resolution, adjusting the GEOS-FP 460 
boundary layer heights, and constraining nitrate concentrations, these biases are largely addressed in 

GC_2m_PBLH_NIT with the distribution in the histogram better matching observations. The RMSD of diel PM2.5 

between GC_2m_PBLH_NIT and the FEM observations decreases from 2.18 to 0.75 µg/m3. With reduced the 24-

hour averaged PM2.5 concentration, GC_2m_PBLH_NIT also improves the agreements of annual-mean PM2.5 against 

the FEM/FRM measurements across the US (Sect. S2). 465 
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Figure 8. Distribution of simulated and observed PM2.5 features over the FEM sites. (a) Timing of morning peak. (b) 

Timing of afternoon minimum. (c) Diel Amplitude. 

Fig. 9 shows the diel variation of PM2.5 in different seasons and subregions. The observed diel PM2.5 variations are 

generally similar to the annual results across the country, suggesting consistent mechanisms controlling the local 470 
cycles. The observed PM2.5 diel amplitude is smallest during summer, as the observed concentrations decrease more 

slowly from mid-morning to late afternoon than in other seasons. The GC_2m_PBLH_NIT simulation generally 

reproduces this summer minimum in diel amplitude, improving on GC_Base which simulates the minimum amplitude 

in winter, by reducing excess PM2.5 at night, by reducing PM2.5 precursor emissions and by accounting for vertical 

representativeness differences at night, by adjusting boundary layer height using aircraft observations and by 475 
constraining nitrate. Stronger photochemical production of PM2.5 during daytime in summer than other seasons, also 

counteracts the ventilation by boundary layer mixing. The RMSD between GC_2m_PBLH_NIT and observed diel 

PM2.5 improves on GC_Base for most seasons and subregions (Table S1). 
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Figure 9. Seasonal and regional diel profiles of GEOS-Chem PM2.5 from different simulation designs (Table 1). Vertical 480 
lines indicate the spatial standard deviations of seasonal mean PM2.5 for the FEM measurements at each hour in a certain 

subregion. 

Overall, we find that the driving forces of the typical diel PM2.5 mass variation over the US reflects a complex interplay 

of PBL dynamics, emissions and photochemistry. The initial concentration peak in mid-morning occurs as combustion 

activities are emitted into a shallow mixed layer. Subsequent ventilation by vertical mixing dominates as the boundary 485 
layer develops, leading to a decrease of PM2.5 until late afternoon despite enhanced photochemical production.  The 

subsequent collapse at the mixed layer during sunset confines PM2.5 emissions to the surface layer with a relative 

higher but diminishing concentration throughout the night as low nocturnal emissions foster a concentration minimum 

or flatness between midnight and early morning (Fig. 9). To further reveal the underlying driving forces, we focus on 

several example sites on which GC_2m_PBLH_NIT well reproduces the observed overnight PM2.5 variation. Fig. 10 490 
shows four example sites where the PM2.5 concentrations overnight in the GC_Base simulation are substantially 

overestimated. By accounting for the hourly variation in anthropogenic emissions, in GC_Emis, the simulation starts 

to successfully reproduce the PM2.5 decrease or flatness overnight. By further correcting for the vertical 

representativeness differences, adjusting boundary layer height and constraining nitrate, in GC_2m, GC_2m_PBLH 
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and GC_2m_PBLH_NIT, the simulations more closely represents the FEM measurements. These sensitivity 495 
simulations reinforce that the internal driving forces of the PM2.5 minimum or flatness from midnight to early morning 

reflects a combination of the decrease of anthropogenic emissions by weaker anthropogenic activities, while resolving 

the vertical representativeness differences between model and observations. 

 
Figure 10. Diel PM2.5 mass variation in the GEOS-Chem simulations (Table 1) and the in situ measurements over four 500 
example FEM sites. 

Despite the pronounced improvement in simulating the PM2.5 diel variation, positive biases remain in early morning 

in most regions and seasons (Fig. 9). The regional and seasonal variation in PM2.5 chemical composition offers insight 

(Fig. S11). Nitrate appears to be an important contributor to the bias, which is not fully understood as discussed in 

Sect. 5.6. Insufficient vertical and horizontal resolution in our simulations to fully resolve nocturnal stratification and 505 
horizontal source separation (Zakoura and Pandis, 2018; Boys 2022) are possible contributors. The remaining evening 

bias in the Spring, Summer, and Winter in the central US could reflect the possible underestimation of residential 

emissions in NEI (Trojanowski et al., 2022). Fig. S4 shows that the OC emissions as a relevant indicator of residential 

combustion are the weakest in the evenings for spring, summer, winter in Central US. 

In summary, emissions, vertical representativeness differences between model and observations, boundary layer 510 
mixing, and nitrate are found to be the top four contributing factors of the diel biases in GEOS-Chem PM2.5. Dry 

deposition and scavenging by the formation of dew are relatively unimportant. The vertical correction for the 

representativeness differences by using the resistance-in-series method is critical for improving the simulation of the 

PM2.5 diel amplitude as well as capturing the timings of the observed PM2.5 morning peak and afternoon minimum, 
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indicating the significance of vertical resolution of GEOS-Chem for simulating diel PM2.5 variation. Reducing the 515 
daytime positive biases in GEOS-FP PBLH and improvements of the diel representation of residential combustion 

may be useful to further improve the diel PM2.5 in GEOS-Chem. In addition to the above impacting factors, we 

emphasize the necessity of conducting simulations at fine spatial resolution to resolve processes affecting diel variation 

of PM2.5 concentrations. Comparison of the GEOS-Chem simulations at 0.25° × 0.3125° and 2° × 2.5° against the 

FEM observations (Fig. S12) reveals that higher spatial resolution better enables the model to reproduce the observed 520 
diel PM2.5 variation through reducing the excessive PM2.5 accumulation during nighttime (18:00 LT- 6:00 LT). At the 

coarse spatial resolution, the simulated PM2.5 mass concentrations increase by 36.3% from 18:00 LT to 6:00 LT, 

greater than the observed 5.8% increase. At the finer spatial resolution, that nighttime increase of PM2.5 mass 

concentrations reduces to 20.3%. The recent advances to the High-Performance implementation of the GEOS-Chem 

model (GCHP) Model with stretched grid capabilities (Bindle et al., 2021; Martin et al., 2022) enables higher spatial 525 
resolution than 0.25° × 0.3125°, which could offer improved representation of resolution-dependent processes in 

future analyses. 

7 Conclusions 

In this work, we used the GEOS-Chem model in its nested configuration to interpret the observed diel variation in 

PM2.5 concentration for the contiguous United States. We identified and addressed several biases of the base GEOS-530 
Chem simulation of the diel variation of PM2.5 mass concentrations. 1) The simulated PM2.5 accumulation overnight 

was excessive in the base simulation, which disagreed with the observed concentration decrease or flatness from 

midnight to early morning, leading to a significantly overestimated PM2.5 diel amplitude in the model. 2) The simulated 

timings of the PM2.5 morning peak and afternoon minima were notably earlier relative to the in situ observations, 

especially for the morning peak (3 hours earlier).  535 

To reveal the contributing factors to the diel PM2.5 biases in the base simulation, we conduct sensitivity simulations in 

which we 1) increased the temporal resolution of anthropogenic emissions from monthly to hourly, 2) updated the dry 

deposition scheme, 3) resolved the vertical representativeness differences between the model and the observations, 4) 

corrected for the diel biases in the boundary layer heights of the model, 5) explored the impacts from dew formation 

and 6) examined the role of aerosol nitrate. 540 

We found that several developments aided representation of the PM2.5 diel variation in the GEOS-Chem model. Hourly 

representation of emissions decreased normalized PM2.5 concentrations at night with increases during the day. 

Accounting for vertical representativeness differences between the GEOS-Chem surface layer of 120m and the 

measurement height of 2m further decreases PM2.5 at night, leading to better representation of the timing of the 

morning peak (~7am) and afternoon minimum. Developments to the dry deposition scheme aided mechanistic 545 
representation of gravitational settling and its hygroscopic dependence, albeit with negligible effects on PM2.5 diel 

variation. Reduction of simulated PBLH to represent aircraft observations also aids agreement with observed PM2.5 

diel variation. These improvements also partially addressed a longstanding issue of a positive bias in simulated nitrate 

concentrations but additional constraints from nitrate observations were necessary to represent diel PM2.5 variation. 
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The slight PM2.5 decrease/flatness overnight is more likely caused by diminished emissions, rather than enhanced dry 550 
deposition (Zhao et al., 2009) or dew events (Sect. 5.5). Hourly anthropogenic emissions are important for GEOS-

Chem to accurately simulate diel PM2.5 variation. Using monthly emissions combined with sector or species-specific 

diel scaling factors instead can lead to higher PM2.5 positive biases overnight. Resolving the vertical representativeness 

differences introduced by subgrid vertical gradient of PM2.5 in the surface model level contributed to capturing timings 

of PM2.5 diel variation. Overall, the mean diel variation in PM2.5 for the US is attributed to 1) growth in PM2.5 555 
concentrations by 10% from early morning (4:00 LT) to mid-morning (8:00 LT) driven by increasing emissions into 

a shallow mixed layer, 2) subsequent decline in PM2.5 concentrations by 22% from mid-morning (8:00 LT) to late 

afternoon (15:00 LT) during growth of the mixed layer, 3) rapid increase in PM2.5 by 30% from late afternoon (15:00 

LT) to evening (22:00 LT) as emissions persist into a collapsing mixed layer, and 4) subsequent weak decline in PM2.5 

concentrations by 10% as emissions diminish overnight (22:00 LT – 4:00 LT). Despite the advances in representing 560 
and understanding PM2.5 diel variation, minor biases remain. A more mechanistic representation of nitrate is needed. 

The importance of vertical resolution in representing PM2.5 diel variation identifies an advantage to be offered by a 

forthcoming GEOS-6 dataset with a planned doubled number of vertical levels in the PBL compared to GEOS-FP 

(NASA, 2012). Recent advances in the horizontal resolution of GEOS-Chem (Bindle et al., 2021; Martin et al., 2022) 

should also enable simulations with finer spatial resolution to further improve the diel performances. 565 
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are available at https://www.ncei.noaa.gov/maps/lcd/. The AMDAR PBLH data is available at 
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