## **Supporting Information**

## Chemical Composition-Dependent Hygroscopic Behavior of Individual Ambient Aerosol Particles Collected at a Coastal Site

Li Wu<sup>1,2,+</sup>, Hyo-Jin Eom<sup>1,3,+</sup>, Hanjin Yoo<sup>1,4</sup>, Dhrubajyoti Gupta<sup>1</sup>, Hye-Rin Cho<sup>1</sup>, Pingqing Fu<sup>2</sup>, and Chul-Un Ro<sup>1,4,\*</sup>

<sup>1</sup> Department of Chemistry, Inha University, Incheon 22212, Korea

<sup>2</sup> Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China

<sup>3</sup> Air Quality Research Division, National Institute of Environmental Research, Incheon 22689, Korea

<sup>4</sup> Particle Pollution Management Center, Inha University, Incheon, 21999, Korea

\* Correspondence to Chul-Un Ro (curo@inha.ac.kr)

<sup>+</sup>Authors with equal contributions

| Particle group               | Mole fractions   | No. | Size (µm) | С    | Ν    | 0    | Na   | Mg  | Al  | Si   | S    | Cl   | Κ   | Ca   | Cr  | Mn  | Fe   |
|------------------------------|------------------|-----|-----------|------|------|------|------|-----|-----|------|------|------|-----|------|-----|-----|------|
|                              | $X_{(Na, Mg)Cl}$ |     |           |      |      |      |      |     |     |      |      |      |     |      |     |     |      |
| SSAs<br>Cl-rich              | 0.75             | 5   | 4.93      | 29.7 | 4.3  | 17.5 | 22.1 | 2.8 |     |      | 1.4  | 20.9 | 0.6 | 0.7  |     |     |      |
|                              | 0.76             | 3   | 3.81      | 36.4 | 4.4  | 19.0 | 19.5 | 1.6 |     |      | 0.9  | 17.3 | 0.5 | 0.4  |     |     |      |
|                              | 0.76             | 24  | 4.97      | 24.7 | 7.3  | 18.6 | 24.0 | 2.0 |     |      | 1.1  | 21.2 | 0.5 | 0.6  |     |     |      |
|                              | 0.71             | 19  | 4.43      | 35.5 | 5.9  | 17.0 | 20.3 | 2.2 |     |      | 0.9  | 17.6 | 0.4 | 0.3  |     |     |      |
|                              | 0.68             | 21  | 4.26      | 38.3 | 6.5  | 19.4 | 17.6 | 1.9 |     |      | 1.0  | 14.5 | 0.4 | 0.4  |     |     |      |
|                              | 0.65             | 13  | 4.76      | 34.6 | 8.3  | 18.3 | 19.5 | 2.0 |     |      | 1.1  | 15.2 | 0.4 | 0.5  |     |     |      |
|                              | 0.61             | 9   | 3.73      | 46.1 | 6.1  | 21.4 | 13.3 | 1.6 |     |      | 0.7  | 10.1 | 0.3 | 0.3  |     |     |      |
|                              | 0.55             | 26  | 3.80      | 49.3 | 4.6  | 23.3 | 11.9 | 1.4 |     |      | 0.9  | 8.1  | 0.2 | 0.3  |     |     |      |
|                              | 0.52             | 23  | 4.56      | 47.4 | 6.0  | 23.0 | 12.3 | 1.6 |     |      | 0.9  | 8.0  | 0.4 | 0.3  |     |     |      |
|                              | 0.41             | 35  | 3.84      | 48.0 | 8.2  | 25.7 | 10.4 | 1.3 |     |      | 0.7  | 5.3  | 0.2 | 0.2  |     |     |      |
| SSAs<br>Cl-depleted          | 0.34             | 1   | 4.64      | 44.8 | 11.0 | 24.9 | 11.6 | 1.5 |     |      | 0.8  | 4.9  | 0.2 | 0.2  |     |     |      |
|                              | 0.29             | 31  | 3.36      | 49.3 | 7.5  | 25.0 | 11.2 | 1.5 |     |      | 1.0  | 4.1  | 0.2 | 0.3  |     |     |      |
|                              | 0.28             | 33  | 5.27      | 46.3 | 8.0  | 27.9 | 11.3 | 1.4 |     |      | 0.7  | 4.0  | 0.2 | 0.2  |     |     |      |
|                              | 0.29             | 22  | 4.82      | 50.0 | 8.1  | 26.2 | 9.8  | 1.2 |     |      | 0.5  | 3.5  | 0.3 | 0.3  |     |     |      |
|                              | 0.27             | 39  | 4.88      | 45.7 | 10.2 | 28.1 | 10.1 | 1.2 |     |      | 0.7  | 3.4  | 0.3 | 0.3  |     |     |      |
|                              | 0.25             | 30  | 4.33      | 47.8 | 8.4  | 30.0 | 8.9  | 1.1 |     |      | 0.6  | 2.8  | 0.2 | 0.2  |     |     |      |
|                              | 0.25             | 10  | 3.65      | 50.2 | 8.6  | 27.0 | 9.4  | 1.0 |     |      | 0.5  | 2.8  | 0.2 | 0.3  |     |     |      |
|                              | 0.23             | 11  | 2.94      | 50.6 | 8.3  | 26.3 | 9.8  | 1.2 |     |      | 0.5  | 2.8  | 0.3 | 0.3  |     |     |      |
|                              | 0.22             | 12  | 2.70      | 43.6 | 6.7  | 33.8 | 10.6 | 1.2 |     |      | 0.9  | 2.9  | 0.2 | 0.2  |     |     |      |
|                              | 0.15             | 16  | 3.79      | 38.4 | 12.8 | 32.7 | 11.1 | 1.2 |     |      | 1.0  | 2.1  | 0.3 | 0.2  |     |     |      |
|                              | 0.15             | 0   | 4.12      | 43.4 | 9.8  | 29.0 | 11.9 | 1.0 |     |      | 0.8  | 2.3  | 0.2 | 0.3  |     |     |      |
|                              | 0.15             | 18  | 3.17      | 40.9 | 12.5 | 20.0 | 12.0 | 1.5 |     |      | 0.1  | 1.9  | 0.2 | 0.2  |     |     |      |
| overall average              |                  |     | 43.0      | 7.9  | 24.0 | 13.0 | 1.5  |     |     | 0.8  | 8.0  | 0.5  | 0.3 |      |     |     |      |
|                              | standard deviati | on  | 2.01      | 7.2  | 2.3  | 4.9  | 4.6  | 0.4 | 1.7 | 5.1  | 0.3  | 6.6  | 0.1 | 0.1  |     |     |      |
|                              |                  | 17  | 3.01      | 23.2 | 8.0  | 50.7 |      | 2.6 | 1.7 | 5.1  |      | 0.6  | 0.3 | 7.8  |     |     |      |
| с . · ·                      |                  | 20  | 3.87      | 20.7 | 7.4  | 49.7 |      | 0.4 | 0.2 | 0.2  | 0.1  | 0.7  |     | 20.6 |     |     |      |
| Ca-containing                |                  | 25  | 5.84      | 33.5 | 4.3  | 48.5 |      | 4.8 | 0.2 | 0.3  | 0.1  | 0.2  |     | 8.2  |     |     | 0.0  |
|                              |                  | 34  | 2.47      | 19.8 | 5.6  | 50.4 |      | 0.4 | 2.1 | 4.0  | 27   | 0.1  |     | 10.8 |     |     | 0.9  |
|                              |                  | 38  | 3.04      | 20.9 | 8./  | 50.4 |      | 0.5 | 0.4 | 0.3  | 3.7  | 1.1  | 1.1 | 14.0 |     | 1.6 | 2.2  |
|                              | 1                | 4   | 1.87      | 23.4 | 7.0  | 49.5 |      | 1.1 | /.4 | 12.6 | 0.2  | 0.2  | 1.1 | 0.6  |     | 1.6 | 2.2  |
|                              | aged             | 8   | 3.35      | 22.8 | 7.0  | 48.7 |      | 1.1 | 4.1 | 8.5  |      | 0.3  | 0.5 | 5.5  |     |     | 1.4  |
| Alumino-                     | aged             | 14  | 2.98      | 13.4 | 3.6  | 48.6 | 4.8  | 5.0 | 5.0 | 12.0 | 0.7  | 0.7  | 1.0 | 3.4  |     |     | 1.9  |
| silicates                    | aged             | 28  | 2.89      | 14.1 | 3.8  | 50.0 | 0.9  | 5.2 | 6.1 | 12.8 | 0.4  | 0.2  | 1.8 | 3.2  |     |     | 1.4  |
|                              |                  | 29  | 2.35      | 1.5  |      | 57.7 | 6.2  |     | 8.7 | 25.9 |      |      |     |      |     |     |      |
|                              |                  | 32  | 2.38      | 17.6 |      | 44.0 |      | 1.4 | 9.4 | 19.5 |      |      | 1.1 | 0.6  |     | 2.8 | 3.7  |
| SiO <sub>2</sub>             | aged             | 37  | 2.05      | 9.2  | 2.9  | 59.5 |      | 0.8 | 3.1 | 22.4 |      |      | 0.8 | 0.9  |     |     | 0.5  |
| Organic and ammonium sulfate |                  | 36  | 2.21      | 75.1 | 4.1  | 10.2 |      |     |     |      | 10.7 |      |     |      |     |     |      |
| Fe-rich                      |                  | 2   | 1.93      | 24.7 |      | 39.7 |      |     |     | 0.5  |      | 1.1  |     |      | 3.0 |     | 31.0 |
|                              |                  | 7   | 2.50      | 22.1 | 0.0  | 18.7 |      |     | 0.6 | 11.6 |      |      |     |      | 7.2 |     | 39.9 |

**Table S1**. Elemental concentrations (in at.%) of 37 ambient particles determined by low-*Z* particle EPMA (SSAs #15 and #27 are not included here due to the recombination of the particle after hygroscopic process).

**Figure S1**. Optical images of the second field (particles #17 - #26) during humidifying (A-F,  $\uparrow$ ) and dehydration (G-K,  $\downarrow$ ) processes and the SEI of the same field (L).



**Figure S2**. Optical images of the third field (particles #27 - #39) during humidifying (A-F,  $\uparrow$ ) and dehydration (G-K,  $\downarrow$ ) processes and the SEI of the same field (L).





Figure S3. 2-D area ratio plots of (Na, Mg)(Cl, NO<sub>3</sub>) aerosols as a function of RH.

**Figure S4**. X-Ray elemental maps for C, N, O, Na, Mg, S, Cl, and Ca and secondary electron images (SEIs) of the effloresced ambient SSAs: (a) SSA #5 and (b) SSA #19 with Cl-rich compositions of  $X_{(Na,Mg)Cl} = 0.75$  and 0.72, respectively.



**Figure S5**. X-Ray elemental maps for C, N, O, Na, Mg, S, Cl, and Ca and secondary electron images (SEIs) of the effloresced ambient SSAs: (a) SSA #23 and (b) SSA #11 with equimolar and Cl-depleted compositions of  $X_{(Na,Mg)Cl} = 0.52$  and 0.23, respectively.





Figure S6. 2-D area ratio plot and X-ray spectrum of an aged aluminosilicate particle mixed with SSA (particle #14)



Figure S7. 2-D area ratio plot and X-ray spectrum of a reacted Ca-containing particle (particle #20).



Figure S8. 2-D area ratio plot and X-ray spectrum of an ammonium sulfate aerosol mixed with organics (particle #36).



Figure S9. 2-D area ratio plots and X-ray spectra of partially reacted Ca-containing particles (particles #17 and #25).



Figure S10. 2-D area ratio plot and X-ray spectrum of partially aged SiO<sub>2</sub> particle (particle #37).



Figure S11. 2-D area ratio plots and X-ray spectra of aluminosilicate particles (particles #29 and #32).





Figure S12. 2-D area ratio plots and X-ray spectra of Fe-rich particles (particles #2 and #7).