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Abstract. Because of the chaotic behavior of the coupling between water flow and sediment erosion and transport, without

any special treatment the practical results of landscape evolution models
:::
The

::::
aim

::
of

::::
this

:::::
paper

::
is

::
to

::::::
discuss

:::
the

::::::::
efficiency

:::
of

:
a
::::
new

:::::::::::
methodology

::
to

::::::::
maintain

:::
the

:::::::
accuracy

:::
of

::::::::
numerical

::::::::
solutions

:::::::
obtained

:::::
from

:::
our

:::::::::
landscape

::::::::
evolution

:::::
model

:
(LEM)are

likely to be dominated by numerical errors. This paper describes two areas of improvement that we believe are necessary

for the successful simulation of landscape evolution models. The first one concerns the expression of the water flux that was5

initially rebuilt in ? in a mathematically consistent way for the cell-to-cell multiple flow direction algorithms, thanks to a

reinterpretation as a well chosen discretization of the Gauckler-Manning-Strickler continuous equation. Building on those

results, we introduce here a general framework allowing to derive consistent expressions of the water flux for the most

commonly used multiple/single flow direction (MFD/SFD) water flow routines, including node-to-node versions. If having

a consistent water flux is crucial to avoid any mesh size dependence in a LEM and controlling the consistency error, the10

expected .
:::
As

::
in

:::::
every

:::::
LEM,

:::
the

::::::
tricky

:::
part

::
is
:::
the

::::::::
coupling

:::::::
between

:::::
water

::::
and

::::::::
sediment

::::
flows

::::
that

:::::
drives

:::
the

:
non-linear self

amplification mechanismsof the water and sediment coupling can still lead to simulations blurred by numerical errors. Those

:
.
:::
But

::::
this

:::::::
coupling

::
is
::::
also

::::::::::
responsible

:::
for

:::
the

:::::::::
emergence

::::
and

:::::::::::
amplification

::
of

:::::::::
numerical

::::::
errors,

::
as

:::
we

::::::::
illustrate

::::
here.

::::::
These

numerical instabilities being highly reminiscent of turbulence induced
::::::
strongly

::::::::::
reminiscent

::
of

::::::::::::::::
turbulence-induced instabilities

in computational fluid dynamics (CFD), in the second part of our paper we present a “large structure simulation”
:::
we

::::::::
introduce15

:
a
:::::
"large

:::::::::
structures

::::::::::
simulation"

:
(LSS) approach for LEM, mimicking the large-eddy

::::
large

:::::
eddy

:
simulations (LES) used for

turbulent CFD. The LSS allows to control numerical errors while preserving the major physical based geomorphic patterns
::
In

:::::::
practice,

:::
this

::::::::
treatment

:::::::
consists

:::
in

:
a
:::::::
filtering

:::::::
strategy

::::
that

:::::::
controls

:::::::::
small-scale

:::::::::::
perturbations

:::
in

:::
the

:::::::
solution.

:::
We

:::::::::::
demonstrate

::
the

::::::::
accuracy

::
of

:::
the

::::
LSS

::::::::
approach

::
in

:::
the

::::::
context

::
of

::::
our

::::
LEM

::::::
model.

Copyright statement.20

1 Introduction

Since the pioneering work of Gilbert in the XIX century (?), the meaning of the term “landscape evolution model” (LEM)

has evolved until reaching in the late XX century its modern definition. It is now considered has a numerical application of a

mathematical system that seeks to simulate a part of the physical processes controlling the landscape dynamic. The capabil-

1



ity of LEMs to provide an integrated simulation in which several processes are addressed make them particularly relevant to25

tackle a large variety of contexts, such as the imprint of the upper mantle on the history of a sedimentary basin over thousands

to millions of years (e. g., ??), the control exerted by glacial dynamics (??), or the impact of climate change at variable

time-scales on drainage basins and soils (e.g., ????).
:
. The success of those numerical approaches depends on their ability

to correctly handle the positive non-linear feedback between the water flowand ,
:

the sediment erosion and deposition in a

decent computational time. This non-linear coupling between water and sediments is indeed expected to potentially induce30

complex water flow networks even on initially small topographic variations, allowing in return the emergence of complex

geomorphic landforms. However, in the absence of reference analytic solutions, it is hard to
::::
Some

::::::::::
algorithms,

::
in
:::::::::

particular

::
the

::::::
family

:::
of

:::::
MFD

::::::::::
algorithms,

::::
have

:::::
long

::::
been

:::::::::
developed

:::
for

:::::::
solving

:::::::
surface

:::::
water

::::
flow

:::::::
models

::
in

::
a
:::
low

:::::::::::::
computational

::::
time.

:::::
Until

::::
very

:::::::
recently,

:::::
these

::::::
solvers

:::::
were

:::
not

:::::
really

::::::
linked

::
to

::::
any

:::::::
physical

::::::
model,

::::::
which

::::
ruled

::::
out

:::
the

:::
use

::
of

:::
an

:::::::
analytic

::::::
solution

::
to
::::::::
compare

:::::::
practical

:::::::::
numerical

::::::
results.

::
It

:::
was

::::::::
therefore

:::::::
difficult

::
to decipher if the obtained landform results

:::
only

:
from35

physical processes or from the self-amplification of initially small numerical errors. The objective of the present paper is to

propose a general approach to considerably diminish the risk of producing inconsistent numerical results. The first ingredient is

obviously to make sure to remove any anomalous consistency error in the numerical schemes, while the second one consists in

introducing a method to control the evolution of the numerical errors. We believe that any LEMs developer will take advantage

in following the recommendations resulting from this two topics, whatever the space and time scales considered. There is a40

wide variety of mathematical models describing the flow of water , depending on the prominent space and time scales of the

considered problem. The most complete model is the Navier-Stokes model which allows for very precise but prohibitively

costly simulations. The shallow-water approximation is sometimes used to solve rivers system (e.g. ?) or to simulate glacial

dynamics ?. Despite a reduced computational cost compared to the Navier-Stokes model, this model has not been often

explicitly deployed in LEMs. Probably one of the reasons is that computationally efficient water flow routing algorithms45

have been developed during the last decades. Those algorithms are built assuming that the water flow follows the direction

of steepest descent (e.g. ???????), and are able to simulate relatively complex water flow networks despite this inherent

simplicity. Multiple flow direction (MFD ) and single flow direction (SFD) algorithms are among the most known water-flow

routing families implemented in reference LEMs such as in SIBERIA(???), CAESAR-Lisflood (??), FastScape (?), eSCAPE

(?), CIDRE (?), EROS (?) or BadLand (?), or in stratigraphic models such as DionisosFlow (?). This list being not exhaustive,50

the reader is referred to ????? for a complete review. The main differences between them is in their representation of the

discretized domain (cell-to-cell or node-to-node interaction following the terminology in ?) and by the empirical choice made

to distribute water among the mesh elements. The empirical foundations of the MFD/SFD water flow routing and their lack of

mathematical framework make them very difficult to validate. A first behavior known since a long time is not very encouraging:

the water flow distribution Qw is mesh dependent. This is probably the most documented problem of the LEM community55

since more than twenty years (e.g. ???) and one that still disturbs current models. Smart solutions have been published to

minimize this effect without making it completely vanish (??), while alternatively it was proposed to redefine drainage area at

the continuous level ?? to allow a consistent discretization ofQw. From a mathematical point of view, it has been quite recently

understood by ? that the
::
An

:::::::::
alternative

::::::::
definition

::
of

:::
the

::::::
specific

:::::::::
catchment

::::
area

::::
often

::::
used

::
to

::::::
model

:::::
water

:::
flow

::::
was

::::::::
proposed

::
in
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::
??

:
,
::::::::
consisting

::
in

::::::
solving

:::
an

:::::::
abstract

::::::
uniform

::::
flow

::::::::
equation

::
in

::::::::::
replacement

::
of

:::::
using

:::
one

:::
of

::
the

:::::
MFD

::::::::::
algorithms.

::::::::::::
Independently60

:::
and

::::::::
following

:::
an

::::::
another

:::::
path,

::
in

::
?

:
a
::::
first

::::
MFD

::::::::::
algorithms

:::::
family

::::::
(those

:::
for

:::::
which

:::::
water

::
is

:::::::::
transferred

:::::
from

:::
cell

::
to

::::
cell)

::::
has

::::
been

::::::
proved

::
to

:::::::
coincide

::
on

::::::::
cartesian

::::::
meshes

::::
with

::
a

:::::::
classical

:::::::::::
discretization

::
of

:::
the

:
water discharge obtained from the cell-to-cell

MFD/SFD corresponds in fact to a non-consistent approximation of the water flux of a Gauckler-Manning-Strickler model ,

a simplification of the shallow water model
::::
mass

::::::::::
conservation

::::::::::::::::::::::::
Gauckler-Manning-Strickler

:::::
model

:::::::
(GMS). This allowed ? to

correct the MFD/SFD to obtain a consistent and thus mesh independent approximation forQw, in the usual numerical analysis65

sense of convergence when the mesh size go to zero. The first purpose of this paper is consequently to recall this result and

then to explicitly show how all the classical MFD/SFD algorithms, even the node-to-node versions, can be in fact interpreted

and thus corrected in the same way slightly generalizing the results of ? and finally solving the grid dependency issue. Because

of
:::
The

::::::
output

::
of

:::
the

:::::
MFD

:::::::::
algorithms

::
is
:::::::

exactly
:
a
::::::::::::::
mesh-dependent

:::::
mean

::
of

:::
the

:::::
water

::::
flux

:::::::::
associated

::::
with

:::
the

:::::::
discrete

:::::
GMS

::::::
model.

:::::
This

:::::
result

:::::::
explains

:::
the

:::::
mesh

:::
and

:::::::::
numerical

::::::::::
dependency

:::::
since the

:::::
output

::
of
::::

the
::::
MFD

:::::
does

:::
not

:::::
fulfill

:::
the

::::::::::
consistency70

::::::
criteria,

:::
but

::
it
::::
also

:::::::
provides

::
a

:::
way

:::
to

::::::
correct

:
it
:::
in

:
a
:::::::::::::
post-processing

::::
step

::::::
leading

::
to
::

a
::::::::
consistent

:::::::
discrete

::::::::::::
approximation

:::
of

:::
the

::::
GMS

:::::
water

::::
flux,

::::::::
extended

::
in

::
?

::
to

::::::
general

:::::::::
polygonal

:::::::
meshes.

::
As

:::
the

:::::
GMS

::::::
model

:::
can

::
be

:::::
seen

::
as

:
a
::::::::::::
generalization

::
of

:::
the

::::::
model

:::::::
proposed

::
in

:::
??,

::::
this

:::::
finally

:::::
closes

:::
the

::::
loop

:::::::
between

:::::
MFD

:::::::::
algorithms

:::
and

:::
the

:::::::
specific

::::::::
catchment

::::
area

::::::
defined

::
in
:::
??

:::::
(more

::::::
details

::
are

:::::
given

::
in
:::::::
section

:::
??).

:::
For

:::::
those

:::::::
reasons,

::
in

:::
the

::::::
present

:::::
paper

:::
we

::::
will

:::
use

:
a
:::::::
general

:::::
GMS

:::::
model

::
to

::::::::
compute

:::
our

:::::
water

::::
flow.

:

::::
This

:::::
paper

:::
has

::::
two

:::::::::
objectives:

:::
(1)

:::
to

:::::::::
investigate

:::
the

:::::::::
conditions

::::
for

:::::
which

:::
the

:::::::::::
geomorphic

::::::::
structures

:::::::::
simulated

:::::
from

::
of

::
a75

::::::::
landscape

::::::::
evolution

::::::
model

:::::
derive

::::
from

:::::::::
numerical

::::::::::
instabilities;

:::
(2)

::
to
:::::::::

introduce
:
a
:::::::::::
methodology

::::
that

::::::::
improves

:::
the

:::::::
accuracy

:::
of

::
the

:::::::::
numerical

:::::::
solution

::::
and

::
to

::::::
discuss

:::
its

::::::::
potential

:::::::::
importance

:::
for

::::::
LEMs.

::::
The

:::::::::
landscape

::::::::
evolution

::::::
model

::::
used

::
in

::::
this

:::::
paper

::::::::
considers

::
the

:::::
GMS

::::::
model

:::
for

::
the

:::::::
surface

:::::
water

::::
flow

::::::
coupled

::::
with

::
a
:::::::::::
representative

:::::::
erosion

:::
and

:::::::::
deposition

::::::::
sediment

:::
flux

::::::
model

::::::
detailed

::
in
:::::::
section

::::
(??),

:::
that

::::
has

::::
been

:::::::::
previously

::::
used

:::
for

:::::::
instance

::
in

:::::
????

:::
and

:::::
which

::
is

:
a
::::::::::::
generalization

::
of

:::
the

::::::
models

:::::::
studied

::
in

::
??

:
.
:::
The

:::::
linear

:::::::
stability

:::::::
analysis

:::
of

:::
this

::::::
model

:::::
brings

:::
out

:::
the

::::
key

:::::::::
parameters

:::
that

:::::::
control

:::
the self-amplification mechanisms80

at the core of the equation system and that are assumed to play a major role in valleys formation and their spacing (see ????),

solving the consistency issue in these LEMs is thus absolutely necessary to avoid creating anomalous numerical errors but yet

but not sufficient to guarantee that results are not dominated by numerical errors . Unless some special numerical treatment is

added, the expected
::
of

:::
the

::::::
various

:::::::::::::
water-sediment

::::
flow

:::::::
regimes

::::
(see

::::::
section

::::
??).

::
To

::::::::
illustrate

:::
the

::::::
related

::::::::
numerical

::::::
issues,

:::
we

:::
test

:::
the

::::::::::
convergence

:::
of

::::::::
numerical

::::::::
solutions

:::::::
towards

:::::
some

:::::::::
prescribed

:::::::
analytic

::::::::
solutions

:::
for

::::::
various

:::::::::::
water-driven

:::
and

:::::::
gravity85

:::::::
transport

:::::::::::
coefficients.

::::::::::
Comparison

:::::::
between

::::
the

:::::::
analytic

:::
and

:::::::::
numerical

::::::::
solutions

:::::
leads

::
us

:::
to

:::
the

:::::::::
conclusion

::::
that

:::::::::
numerical

:::::
errors

::::
must

::
be

::::::
treated

::::
with

:::
the

:::::::
greatest

::::
care

::
to

::::
avoid

::::
any

::::::::::::::
misinterpretation

::
of

:::::
LEM

::::::
results:

:::
the self-amplification processes can

indeed also
:
at

:::
the

::::
core

::
of

:::
the

:::::::
coupling

::::::::
between

:::::
water

::::
flow

:::
and

::::::::
sediment

::::::::
evolution

:::
can amplify legitimate numerical round-off

or solver errorsup to the point that they potentially completely blur the numerical solution.This
:
.
::::
Thus

:::::::::
estimating

:::
the

:::::::
relative

:::::
impact

:::
of

:::::::::
numerical

:::::
errors

:::
on

:::
the

::::
final

::::::::::::::
geomorphologic

::::::::
structures

::
is
:::::::::::

challenging,
:::::::
making

:::::::::
potentially

:::::::::
hazardous

:::
the

:::
use

:::
of90

::::::::
numerical

:::::::::
approaches

:::
in

::::::::
particular

::::
those

::::::::
involving

:::::::
implicit

::::
time

::::::::
schemes

::
to

::::::
discuss

:::
and

:::::::
quantify

:::
the

::::
role

::
of

:::::::::::::::
self-amplification

::::::::::
mechanisms

::
in

:::::::
realistic

::::::::::
geodynamic

:::::::
contexts

::::
(e.g.

:::
the

:::::
valley

:::::::::
formation

:::
and

:::::::
spacing

::::
????

::
).

::::
This

::::::::::::::
self-amplification

::
(“butterfly effect”)

:
is very reminiscent of the turbulence issue

::::::::
numerical

::::::
issues arising in the field

3



of computational fluid dynamics (CFD) . This observation
::
for

::::::::
turbulent

::::::
flows,

:::::
which

::::::::
prevents

:::
the

:::
use

:::
of

:::::
direct

:::::::::
numerical

::::::::
simulation

::::
for

::::
high

::::::::
Reynolds

::::::::
numbers

::::::
unless

::::
high

:::::
order

::::::::
methods

:::
are

::::
used

:::::
over

:::::
small

:::::
space

::::
and

::::
time

:::::
scales

::::::
(along

:::::
with95

:::::::::
sometimes

::::
some

:::::
blow

::
up

:::::::::
problems).

:::::
This

:::::::::
comparison

:::::
with

::::
CFD

:::
and

::::::::
turbulent

:::::
flows is not new and was studied in details for

instance in ??. The modern solution found by the CFD community to achieve reproducible and meaningful simulations is to

replace direct numerical simulation (DNS) of the Navier-Stokes equations by large eddy simulation (LES, ?). The objective

of LES is to obtain a correct
::::
good

:
approximation of local spatial averages of turbulent flows, recovering the correct dynamics

only for the organized structures of the flow (the eddies) which are larger than some a
::::::

certain
::
α
:

target length scaleα. Thus,100

LES chooses to abandon the idea of resolving all the scales involved in the true
:::
real physical processes, as there is no hope

to use
::
of

:::::
using

:
a mesh fine enough to correctly resolve the smallest scales

:::::::
correctly. In practice this is done by filtering the

solution to distinguish between the behavior of the flow
:::
the

::::
flow

:::::::
behavior

:
above and below α, and obtaining local averages

that are smoother and as mesh independent as
::::::
smooth

:::
and

:::::::::::::::
mesh-independent

::
as

:
possible. To our knowledge, the first attempt at

using an
:
a
:
LES approach for simulating landscape evolution albeit without explicitly mentioning LES is ?, where a Laplacian105

smoothing (equivalent to a mesh related box filter in the LES terminology) was applied on the
::
to topography. More recently

?? resorted to a mono-directional domain size related box filter
::::
have

::::
used

:::
an

::::::
average

::
in
::::

one
::::::::
direction

::::::
(which

::
is

:
a
:::::
limit

::::
case

::
of

:::::::
filtering)

:
to obtain robust results on channelization statistics and scaling signatures: in other words they substitute the ele-

vation and the specific drainage area by their mean values in the axial direction of their rectangular simulated domain. In their

conclusion they suggest that the use of more general LES approaches seems a viable avenue for more complex landscape evo-110

lution simulations. In line with this observation, we also believe that the success of the attempts of ???,
:
as

::::
well

:
the numerous

analogies between the instabilities arising in landscape evolution models and turbulence reported in ???? as well as
:::
and the

numerical experiments strongly advocate for the use of some LES technology to overcome the numerical issues arising in the

non-linear coupling of sediment evolution and water flow. Those are the reasons why we have considered deriving a “large

structures simulation” (LSS) approach for landscape evolution. We will see that the numerical results of LSS seem remarkably115

reproducible
:::
Our

:::::
main

::::::::::
contribution

::
is

:::::::
precisely

::
to

:::::::
develop

:
a
::::::::
LES-type

::::::::::
methodolgy

:::
for

:::
our

:::::
LEM.

:::
We

:::::
refer

::
to

:::
this

::::::
method

:::
by

:::
the

:::::::
acronym

::::
LSS

:::
for

:::::
“large

::::::::
structure

:::::::::
simulation”. Notice that contrary to ?? and more in line to what is done in the CFD commu-

nity, we will fix a length scale that will correspond
::::::::::
corresponds to the size of the smallest structures we want to resolve in the

problem, quite independently of the domain size. We also consider a more advanced differential filter, namely the Leray-α filter

(??) that is not related to any specific geometric configuration. In this sense, our work can be considered as a generalization120

of ??. We will show that the
:::::
show

:::
that

:::::
when

:::
the

::::
filter

::::
size

::
is

::::::::
correctly

::::::
defined

:::
the

:
results obtained from

:::
the LSS are actually

free of the non-physical heterogeneitythat appeared spontaneously from numerical errors. Notice that those numerical artifacts

were often misleading as they induced more “realistic looking” solutions than the correct ones obtained by the LSS, in the

sense that the obtained topography was more complex . Starting from the LSS approach, it then becomes relevant to inject

physically controlled heterogeneity in order to bring out the complexity in the results. The two items addressed in this paper125

are complementary and should benefit to every LEMs.
:
.
:::
We

::::
also

::::::::
highlight

::
the

::::::::
difficulty

::
to

::::::
predict

:::
the

::::::::
"correct"

::::
filter

::::
size.

:

::::::::
Obtaining

:
a
:::::::::::
reproducible

:::::
result

:::
and

:::
as

::::::::
error-free

:::
and

:::::::::::::::
mesh-independent

:::
as

:::::::
possible

::
is,

::
of

::::::
course,

:::::
what

:::::
every

:::::::
modeler

:::::::
expects.

::
On

:::
the

:::::
other

:::::
hand,

:::
the

:::::::::
emergence

:::
of

:::::::
complex

::::::::::::::
geomorphologic

:::::::::
structures,

:::::
which

::
is

::
an

::::::::
objective

::::::
sought

:::
by

:::::
many

:::::
LEM

:::::
users,

4



::::::
requires

:::
to

::::::::
manually

::::::::
introduce

::::::
relevant

::::::::
physical

:::::::::::
heterogeneity

::::
after

::::::::
handling

::::::::
numerical

::::::
errors.

:::::::
Several

::
of

:::
our

::::::::::
simulations

:::
are

:::::::::::
consequently

::::::::
performed

:::::
using

:::::::
different

:::::
types

::
of

:::::::::::
heterogeneity

::::::
carried

:::
by

::
the

::::::
initial

:::::::::
topography

::
or

::
by

:::::
other

:::::::
physical

::::::::::
parameters,130

::::
such

::
as

::
a

:
a
:::::::
variable

:::::::::
roughness

:::::
index

:::
or

:
a
:::::::

variable
::::

rain
:::::
map.

:
The paper will be organized accordingly. In the first part we

introduce the notations to describe a sedimentary system. The second part tackles the issue of the consistency in the MFD/SFD

algorithms. After recalling the results of ? on the classical cell-to-cell MFD algorithms, we detail the extension to the most

classical MFD/SFD node-to-node algorithms of the literature. The resulting relations between the Gauckler-Manning-Strickler

:::::::::
emergence

::
of

::::
large

::::::::::
geomorphic

:::::::::
structures

:
is
:::::::::
discussed

::
by

::::::
taking

:::
into

:::::::::::
consideration

:::
the

::::::::::::
understanding

::::::
gained

::::
from

::::
this

:::::
work.135

:::
The

:::::
paper

::
is
:::::::::
organized

::
as

:::::::
follows.

:::
We

:::::
begin

:::
by

::::::::::
introducing

:::
the

:::::
water

::::
flow

::::
and

:::
the

::::::::
sediment

::::
flow

::::::
models

::
of
::::

the
::::
LEM

:::::
used

::
to

:::::::
perform

:::
the

::::::::::
simulations

::::::::
discussed

::
in
::::

this
::::::
paper.

:::
We

::::
then

::::::::
construct

:::::::
analytic

::::::::
solutions

::::
and

:::::::
proceed

::
to

:
a
::::::::::

comparison
:::::

with

::::::::
numerical

::::::
results

::
in
::::

the
:::::::
relevant

::::
flow

::::::::
regimes.

::::
This

:::::
leads

::
to

::::
the

::::
first

:::::::::
conclusion

::::
that

:::
for

:::
the

:::::::
studied

::::::::
landscape

:::::::::
evolution

model and the water flow routing are summarized in a synthesis table, which should help the developer to implement a

consistent version of the flow routing used in its landscape model. The third section of
::::::::
considered

::::::::
classical

:::::::
implicit

:::::
finite140

::::::
volume

::::::::::::
discretization,

::::::
without

::::
any

::::::
specific

:::::::::
treatment,

:::
the

:::::::
obtained

:::::::::
numerical

:::::::
solutions

:::
are

:::::::::
potentially

:::::::::
controlled

::
by

:::::::::
numerical

:::::
errors.

::::
The

::::::
second

:::
step

:::
of

:::
this

:::::
work

:
is
::
to
::::::::
introduce

::::
and

:::::
apply

:::
the

::::::
filtering

:::::::
strategy

:::
on the paper starts by illustrating on an easy

to analyze synthetic sedimentary system the issue related to the self-reinforcement between the water flow and the sediment

dynamics. We then introduce the LES inspired filtering strategy and apply this “large structure simulation” (LSS) approach

on the illustrative test case as well as on a more complex model
::::::::::::
water-sediment

::::::::
equation

:::::::
system.

:::
The

::::::::::
comparison

::::::::
between145

::::::::
numerical

:::
and

:::::::
analytic

::::::::
solutions

::::::
clearly

:::::
shows

:::
the

::::::
crucial

::::
role

:::::
played

:::
by

:::
this

:::::::
method.

:::::::
Finally,

:::
we

:::::::
illustrate

:::
the

:::::::
behavior

:::
of

:::
our

::::
LEM

::
in

:::::
more

:::::::
complex

:::::::
contexts

::::
and

:::
we

:::
test

:::
the

::::::
impact

::
of

:::::::
variable

:::
(in

:::::
space

:::
and

:::::
time)

::::::::
roughness

::::::::::
coefficients

:::
and

::::
rain

:::::
maps

::
in

::
the

::::
final

:::::::
solution.

2 Model and notation

Following ?, we assume that a sedimentary system can be idealized through the following assumptions: (H1) the basin topog-150

raphy can be represented as a mathematical surface, (H2) the principle of the conservation of mass applies to this surface, (H3)

the sediment flux at any point of the surface is a function of the local slope and the local discharge of water. In other words, us-

ing an Eulerian approach (H1) implies that we consider a fixed geographical region over the time period ]0,T [ mathematically

modeled by means of a domain Ω ∈ R2, a function b : Ω×]0,T [−→ R describing the basement i.e. the lower part of the basin

in the z direction, and a function hs : Ω×]0,T [−→ R describing the thickness of the sediments (see Fig. ??). Thus, our basin155

B :]0,T [−→ R3 can be described for almost every (a.e.) t ∈]0,T [ by:

B(t) =
{

(x,y,z) ∈ R3 | (x,y) ∈ Ω and b(x,y, t)≤ z ≤ b(x,y, t) +hs(x,y, t)
}
. (1)

The evolution of the basement b is mostly governed by two processes: tectonics (both thermal and structural) and flexure. In

the present paper we assume that the evolution of b is a data, and we focus on computing the evolution of the function hs. For160
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y

z

x

∂Ω

Ω

B
hs

b+ hs

b

Figure 1. Representation of the two main surfaces considered in a landscape evolution model in the (z
::::::
(x,y,z), Ω) parameter space, where z

is the elevation and Ω the spatial domain
::
for

:::::
(x,y)

::::
with

:::::::
boundary

:::
∂Ω. the

:::
The basement b surface represents the bottom part of the simulated

block, on which sediments are deposited. The topographic surface is b+hs where hs is the sediment thickness. The simulated sedimentary

content is denoted B.

the sake of clarity, we give the expression of the mass conservation (H2) equations, neglecting porosity for simplicity:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂hs
∂t

+ div (Js) = Ss in Ω×]t0,T [,

−Js ·n=Bs on ∂ΩN×]t0,T [,

hs = 0 on ∂ΩD×]t0,T [,

hs(t= t0) = hs,0 in Ω,

(2)

where Ss and Bs are sediment source terms (coming from an in-situ sediment production, from soil erosion, or from sediment

supplies defined in the domain boundaries) and Js is the sediment flux. The domain boundary ∂Ω is divided between ∂ΩN

where Neumann
:::
flux

:::::
(also

::::::
called

:::::::::
Neumann) boundary conditions are imposed and ∂ΩD where we enforce homogeneous165

Dirichlet
::::
fixed

::::::::
elevation

:::::
(also

:::::
called

:::::::::
Dirichlet) boundary conditions.

:::
Let

::
us

::::::
precise

::::
that

::
in
::::

the
::::::::
following

:::
the

:::
xy

::::::::::
coordinates
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:::::::::::
corresponding

:::
to

::::
dthe

:::::::::::
computational

:::::::
domain

::
Ω

::::
will

::
be

::::::::
expressed

:::
in

:::::::::
kilometers

::::
(km),

:::::
while

::::::::
sediment

::::::
height

::
hs::::

and
::::::::
basement

:
b
::::
will

::
be

::::::::
expressed

:::
in

:::::
meters

::::
(m).

:
Choosing a model corresponds to choosing a specific expression for the sediment flux and

the source terms. A common feature of almost all LEMs is that the sediment flux model Js and/or the source term Ss depend

non-linearly on the local discharge of waterQw, very often through a power law likeQrsw ||∇(hs+ b)||ps+1. Self-amplification170

mechanisms are known to appear as soon as
:
at
::::
least

:::
for

:
rs > 1 (?). Let us precise that in the following the xy coordinates will

be expressed in kilometers (km), while sediment height hs and basement b will be expressed in meters (m).
::
??

:
).
:

3 From mesh dependent multiple flow direction algorithms to consistent approximations of continuous

Gauckler-Manning-Strickler models

2.1
:::

The
:::::
water

::::
flow

::::::
model175

Landscape evolution models usually defines the “local discharge of water” Qw directly from the so-called drainage or catch-

ment area CA (also sometimes called
::::::
referred

::
as

:::
the contributing area). Roughly speaking CA

:
It
:
corresponds at a given outlet

to the measure of the horizontal projection of the surface area from which the water contributing to this outlet is coming from

(???). Despite being a very intuitive notion, it has evaded for a long time a precise mathematical definition. Classical multiple

flow direction (MFD) algorithms are intended to provide a practical way at computing CA for a mesh cell. As is well docu-180

mented (????) the discrete catchment areas
:::
area

:
obtained from those algorithms strongly depends on the cell size, geometry

and orientation with respect to the flow. Several attempts can be found in the literature to reduce this mesh dependency, defin-

ing
:::
the

::::
water

:::::
flow

::::::::
discharge

::
as Qw = (CA/w),

:
where w is a normalization factor equal for instance to the cartesian cell side

length or diagonal length
:::::
related

::
to

:
a
:::::::::
geometric

:::::::
property

::
of

:::
the

::::
cell (cf ?) or to an estimate of the width of the flow

::::
flow

:::::
width

(?) defining the so-called specific or unit catchment area (SCA/UCA). A more modern mathematical definition of the specific185

catchment area a was proposed in ??, consisting in solving an abstract uniform flow equation:∣∣∣∣∣∣∣∣∣
−div

(
a
∇(hs + b)

||∇(hs + b)||

)
= 1 in Ω,

−a ∇(hs + b)

||∇(hs + b)|| ·n= 0 on ∂Ωin,

(3)

where ∂Ωin = {x ∈ ∂Ω | ∇(hs + b) ·n> 0} is the part of the boundary that is in going and n denotes the outward normal to

Ω. Setting Qw = a, this allows to reduce the mesh dependency to the usual consistency errors of numerical schemes.

A mathematical model encompassing the most
::
At

::::
first

:::::
sight,

::::::
model (??)

:::::
could

:::::
seem

::::
very

:::::::
different

:::::
from

:::::
MFD

::::::::::
algorithms.190

::::::::
However,

::::::::::
considering

::
for

::::::::
instance

:::
the classical cell-to-cell

::::::::
algorithms

:::
of

:::
???

:
,
:::
one

::::
can

:::
see

:::
that

:::::
those

:::::::::
algorithms

:::
act

::
as

::
if
::::
one

:::
was

::::::::::
distributing

:
a
::::::::
fictitious

:::::
water

::::
flow

::
of

:
a
:::::
mesh

:::
cell

::
to

:::
the

::::::::::
neighboring

::::
cells

::::
with

:::::
lower

::::::::
elevation

::::::::::::
proportionally

::
to

::
a

:::::::
function

::
of

:::
the

:::::
slope,

::
as

:::::::::
illustrated

::
on

:::::
figure

::::
??.

:::
One

:::::
could

::::
then

::::::::::
legitimately

::::::
assume

::::
that

:::::
those

:::::
MFD

:::::::::
algorithms

:::::
could

::
be

::::::
related

::
to

::
a

:::::::::::
discretization

::
of

:::::
some

:::::
water

::::
flow

::::::
model.

::::
This

:
is
::::::::
precisely

:::
the

::::
idea

::
of

:
?
:
,
:::::
where

::
it
::::
was

::::::
proved

:::
that

:::
the

::::
most

::::::::
classical

:::::::::
cell-to-cell

MFD algorithms was described in ?where it is established that those algorithms coincide with a solver for a well chosen195
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Figure 2.
::::
Basic

:::::::
principle

::
of

::
the

:::::::
simplest

::::::::
cell-to-cell

:::::
MFD

::::::::
algorithm:

::::
water

::
is
::::::::
distributed

::
to
:::::

lower
:::::::::
neighboring

::::
cells

:::::::::::
proportionally

::
to

:::
the

::::
slope

:::::::::
(reproduced

::::
from

:
?
:
)

discretization of
::
are

::::::
finally

::::::
simply

:
a
::::
way

::
of

::::::::::::
implementing

:
a
::::::
solver

:::
for the following stationary water mass conservation with

Gauckler-Manning-Strickler flux model for
::::::
(GMS)

:::
flux

:::::::::
modeling surface runoff:∣∣∣∣∣∣

−div
(
kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b)

)
= Sw in Ω,

−kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·n= 0 on ∂Ωin,
(4)

where hw is the water height, sref= 1 m.km-1 the reference slope, pw a model parameter and ηw the water mobility function. For

simplicity we assume here that the mobility function has no dimension, and that the source Sw is given in m3.s-1km-2 such that200

its integral over a 2d area measured in km2 coincides with a discharge in m3.s-1. The coefficient km:::
km can be though of as the

Strickler coefficient or the inverse of the Gauckler-Manning coefficient up to a change of unit (strictly speaking, this identifica-

tion is trully valid for channels and if the mobility function ηw is equal to a dimensionless hydraulic radius). For this choice of

source, km has the unit m.s-1 of a speed. Steady state analysis (??) for channels suggests to use values ηw(hw) = (hw/href )1/2

and pw =−1/2, while the classical Gauckler-Manning-Strickler formula would coincide with ηw(hw) = (Rh(hw)/href )2/3205

:::::::::
Comparing

:
(??) with Rh(hw) the hydraulic radius and again pw =−1/2. However the hypothesis underlying those results is

tailored to channel flows, which is probably not valid over the wide range of flow configurations occurring at the large time and

space scales of landscape evolution models.For this reason, we prefer to not fix precise values for ηw and pw and think of them

as modeling parameters that can be tuned for each considered problem. (??)
:
,
:::
we

:::
see

::::
that (??)

::::::::::
corresponds

::
to

:::
the

:::::::::
particular

:::
case

::::::
where

:::::::
km = 1,

::::::::
pw =−1

:::
and

:::::::::::::
a= hwηw(hw).

:::
In

:::
this

:::::
sense

:::
the

:::::
GMS

:::::
model

:
(??)

:
is

:
a
::::::::::::
generalization

:::
of (??)

:::
that

::::::
allows

::
to210

::::::
include

:::
the

:::::::
classical

:::::::::
ingredients

:::::
(non

:::::
linear

::::
slope

::::::::::
dependency

::::
and

:::::
some

:::::
spatial

::::::::::::
heterogeneity)

:::
of

::
the

:::::
MFD

:::::::::
algorithms

::::::
family.
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The analysis of ? allows to give a general definition of
:::::::
explains

::::
how the catchment area : for an open setO ⊂ R2, the catchment

area for the outlet of
:::::::
CA(O)

:::
for

:::
the

:::::
outlet

::
of

::
a

:::::
region

:
O is defined by

:::
that

::
is
:::::::::
computed

::
by

:::::
MFD

:::::::::
algorithms

:::::::::
coincides

::::
with

::
an

:::::::::::
intermediate

:::::::
discrete

:::::::
quantity

::::::::
appearing

:::
in

:::
the

::::
most

:::::::
natural

:::::::
discrete

:::::
solver

:::
for

:
(??)

:
.
::
It

:::
also

::::::
allows

:::
to

::::
give

:
a
::::::::::
continuous

:::::::::::
interpretation

::
of

:::
the

:::::::
CA(O)

:::
that

::
is

::::::::
computed

:::
by

:::::
MFD

:::::::::
algorithms:215

CA(O) = q̃exO =

∫
∂O

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

,

CA(O) =

∫
∂O

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

where hw is the solution of (??) with Sw = 1 and v+ = max(0,v).We
::::
where

::::
we

::::
have

:::::::
denoted

:::
v+

::::
the

:::::::
positive

:::
part

:::
of

::
v

:::
(i.e.

:::::::::::::::
v+ =max(0,v)).

:::::
Since

::::::
model (??)

:::::::
describes

::
a
:::::
water

::::
flow,

:::
we

:::::::
recover

:::
that

::::::
thanks

::
to

::
?
:::
we

:::
can

:::::::::
reinterpret

:::
the

:::::::::
catchment220

::
are

:::::::
CA(O)

:::::::::
computed

:::::::
through

:::
the

::::::::
classical

:::::::::
cell-to-cell

:::::
MFD

:::::::::
algorithms

::::
the

::::
total

::::
flux

::::::
leaving

:::
O

::
of

::
a

:::::::
fictitious

:::::
water

:::::
flow

::::
with

:
a
:::::::
uniform

:::::
water

::::::
source

:::::::
Sw = 1.

::::::::::::
Unfortunately,

:::
we

::::
also see that CA(O) strongly depends on the geometry of O and its

orientation with respect to the flow. In particularif we take for O a cell of the mesh we understand why the MFD algorithms

produce mesh dependent catchment areas
:
,
::
it

::
is

:::::::
detailed

::
in

:::
?

:::
that

:::::::::
cell-to-cell

:::::
MFD

::::::::::::
computations

::::
will

:::::::
compute

:::
in

:::::::
practice

::
the

:::::::::
catchment

::::
area

:::::::
CA(K)

:::
for

:::::
each

:::
cell

:::
K

::
of

::
a

:::::
mesh

::::::
through

::
a
:::::::::
discretized

:::::::
version

::
of

:
(??)

::
for

:::::::
O =K.

::::::
Thus,

:::::
when

:::::
MFD225

:::::::::
algorithms

::
are

::::::::::
considering

::::
this

:::::::::
expression

::
of (??)

:
to
::::::::
estimate

::
the

::::::
“local

::::::::
discharge

::
of

::::::
water”

:::
Qw,

::
it
::::::::
produces

:::
cell

:::
and

::::
thus

:::::
mesh

::::::::::
dependency

::
in

:::
the

::::::::
simulated

::::::
surface

:::::
water

::::::::::
distribution. In line with the attempts of ? or ? to define a unit

::::::
specific

:
catchment

area (UCA
::::
SCA) by rescaling the CA, it is clear that the correct scaling would be to set

:::
the

:::::::::::
normalization

:::::
factor

:
w to the length

of the portion of ∂O such that
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

> 0, which depending on the orientation of the

flow will sometimes match the choices of ? or ?? explaining their partial success. Thus a
:::::
along

:::::
which

:::
the

::::::::
fictitious

:::::
water

::::
flow230

:
is
:::::::
leaving

::
O.

::
A
:
corrected definition of the unit catchment int

::::::
specific

:::::::::
catchment

::
in the spirit of ??? area would

:::
thus

:
be to use:

UCA(O) =
1∫

∂O

χ−kms−pwref ||∇(hs+b)||pw∇(hs+b)·n>0

∫
∂O

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

,

SCA(O) =
1∫

∂O

χ−kms−pwref ||∇(hs+b)||pw∇(hs+b)·n>0

∫
∂O

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·n

)+

,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(6)

where χ is the indicator function (i.e. the function with value 1 when the condition is satisfied and 0 otherwise). This
:::::::::
Depending235

::
on

:::
the

:::::::::
orientation

::
of

:::
the

::::
flow,

::::
such

::
a

:::::::::::
normalization

::::
will

:::::::::
sometimes

:::::
match

:::
the

::::::
choices

::
of

::
?

::
or

:::
??

::::::::
explaining

::::
their

::::::
partial

:::::::
success.

::::
This

::::
SCA

:
scales as an approximation of the continuous water flux magnitudeqw = |kmhwηw(hw)|s−pwref ||∇(hs + b)||pw+1

:
:

qw = |kmhwηw(hw)|s−pwref ||∇(hs + b)||pw+1,
::::::::::::::::::::::::::::::::::::

(7)
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(in m3s-1km-1) but is not equal to it, and .
::::
The

::::
SCA

:::::::
defined

::
by

:
(??)

::
is

::
in

:::
fact

:
a
:::::
mean

::
of

:::
qw:::::

along
:::
the

::::::
outflow

:::::::
portion

::
of

:::
∂O,

::::
and

:::
thus

:
still retains some dependency in the geometry of O and its orientation with respect to the flow. In this context it is more240

natural to use directly Qw = qw such that the erosion in depends on the local water flux magnitude and the slope. Comparing

with
::::::::::
Meanwhile,

:::::
notice

:::
that

:::
the

:::::::
specific

:::::::::
catchment

::::
area

:
a
::
of

::::::
model (??) , we see that corresponds to the particular case where

one chooses
:::
can

::
be

:::::::::::
reinterpreted

:::::::
through (??)

::
as

:::::::::
computing

:::
qw :::::

since:

qw = |kmhwηw(hw)|s−pwref ||∇(hs + b)||pw+1 = |a| ||∇(hs + b)||−1+1 = a,
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::
as

:::
we

::::
have

:::
set

::::::::::::::::
a= hwηw(hw)≥ 0,

:::::::::
pw =−1, km = 1 and pw =−1 leading to a= hwηw(hw). Thusas was already explained245

in ?, using Qw = a relates the erosion to (a power of ) the water height and
:::::::
sref = 1

::
to

::::::
merge (??)

:::::
inside (??).

:::::
Thus,

::
in

:::::
view

::
of the slope. Both choices have pros and cons, however the choiceQw = qw seems more general to us. The results of ? explain

why such a strong mesh dependency resisting mesh refinement was observed in the geological literature for the CA obtained

from
::::::
success

:::
of

:
?
:::
and

::::::
within

:::
the

::::::
context

::
of

:
(??)

:
it

:::::
seems

::::
very

::::::
natural

::
to

:::
set

::::::::
Qw = qw.

::::
One

:::::
could

:::::::
consider

::::
that

:::
the

::::::::::
equivalence

:::::::
between

:::::::
classical

:
cell-to-cell MFD algorithms . It also explains how to compute a correct approximation

:::::::::
established

::
in

::
?

:::
and250

::
the

::::::::::
consistency

:::::::::
correction

::::::::
proposed

::::
there

::::
that

:::::
leads

::
to

:::::::
consider

:::::
using

:
a
:::::::
discrete

::::::
version

:
of qw from the obtained CA which is

the main objective of this section. We consequently start by recalling the results of ? for cell-to-cell MFD in a slightly more

general setting and to compute the sought approximation
:
is

:::::::
another

::::
path

::
to

::::::
recover

:::
the

::::::::::
conclusions

:::
of (??)

:::
and

::
in

::::
this

:::::
sense

:::
that

:::
qw ::

is
:
a
::::::::::::
generalization

::
of

:
a
:::
to

::::
more

:::::::
complex

:::::
water

::::
flow

:::::::
models.

:

:::
The

::::::::::
consistency

:::::::::
correction

::::::::
proposed

:::
in

::
?

::
for

::::::
MFD

:::::::::
algorithms

::::::::
precisely

:::::::::
coincides

::::::::
precisely

::::
with

:::
the

:::::::::::
replacement

::
of

::::
the255

::::::::::
computation

::
of

::::::::
CA(K)

::
or

:::::::::
SCA(K)

:::
for

:
a
:::::

mesh
::::

cell
::
K

:::
by

::
a
:::::::::
consistent

:::::::
discrete

::::::::::::
reconstruction

:
qK of qw in

::::
each

:
cell K.

As node-to-node MFD algorithms are the core of many legacy codes, to offer a more straightforward application of the results

of ?for such implementations we next detail how the most classical node-to-node MFD algorithmsalso enter this framework,

suffer from the same deficiencies and how to correct them in the same way than for the cell-to-cell case that was already

explored in ?. Notice that
::::::::::
Convergence

::
of

::::
this

:::::::
discrete

::::::
version

:::
qK::

to
:::
qw:::::

when
:::
the

:::::
mesh

::::
size

::::
goes

::
to
:::::

zero
:::
was

::::::
proved

:::
in

:
?
:
,260

::::
along

::::
with

:::::
error

::::::::
estimates.

:::::
Thus,

:::::
apart

::::
from

:::
the

::::
usual

::::::::::::
discretization

::::
error

::
no

:::::::::
anomalous

:::::
mesh

::::::::::
dependency

::::::
should

::::::
remain

::
in

:::
qK

::
in

:::::::
practice,

:::::::
contrary

::
to

:::::
what

:
is
::::::::
observed

:::
for

::::::::
SCA(K)

:::::
given

:::
by

:::::
MFD

:::::::::
algorithms.

::
In

::::
this

:::::
sense,

:::
qK:::

can
:::
be

::::
seen

::
as

::::::::::
consistency

::::::::
correction

:::
for

:::::::::
SCA(K),

::
as

::::
well

::
as

::
a
::::::::::::
generalization

::
of

:
(??)

:
to

::
a

:::::
richer

::::::
family

::
of

::::
flow

:::::::
models.

::::
The

:::::::::::
interpretation

::
of

:::
the

:::::
local

::::
water

:::::::::
discharge

:::
Qw:::

as
:::::
being

:::::
equal

::
to

:::
the

:::::
water

::::
flux

:::::::::
magnitude

:::
qw:::::

given
:::
by (??)

::::
from

:::
the

:::::::
solution

:::
of (??)

::
is

::::::::
therefore

:::
the

::::::
default

:::::::::::
configuration

::::::
chosen

::
in

:::
the

:::::
water

::::
flow

:::::
model

::::
used

::
to
:::::::
perform

:::
all

:::
the

::::::::::
simulations

::
we

::::::::
introduce

::
in
::::
this

:::::
paper.

:
265

::::
This

:::::
water

::::
flow

:::::
model

::
is

::::::::
therefore

:::::::::
physically

:::::::
justified

::
by

:::
the

:::::
GMS

::::::
model.

:::
Its

:::::::::
application

:::::::
domain

::
is

:::::::
however

:::
not

::::::::::
necessarily

:::::::
restricted

:::
to

::::::::
channels.

:
It
:::::::
depends

::
in
::::
fact

::
to

:::
the

:::::::
specific

:::::
choice

:::::
made

:::
on

:::
the

:::::
model

:::::::::
parameter

::::::
values.

::::::
Steady

::::
state

:::::::
analysis

:::
(??

:
)

::
for

::::::::
channels

:::::::
suggests

::
to

:::
use

::::::
values

:::::::::::::::::::::
ηw(hw) = (hw/href )1/2

:::
and

::::::::::
pw =−1/2,

:::::
while

:::
the

:::::::
classical

::::::::::::::::::::::::
Gauckler-Manning-Strickler

::::::
formula

::::::
would

:::::::
coincide

:::::
with

::::::::::::::::::::::::
ηw(hw) = (Rh(hw)/href )2/3

::::
with

::::::::
Rh(hw)

:::
the

::::::::
hydraulic

:::::
radius

::::
and

:::::
again

::::::::::
pw =−1/2.

::::::
When

::::::
applied

::
to

:::::
large

::::
time

::::
and

:::::
space

::::::
scales

::::::::
landscape

:::::::::
evolution

:::::::
models,

:::::
these

::::::::::
calibrations

:::
are

:::
no

:::::
more

::::
valid

::::
and

::
at

::::
this

:::::
stage270

::
we

:::::::
suggest

::
to

::::::::
consider

:::
ηw :::

and
:::
pw::

as
::::::::
modeling

::::::::::
parameters

::::
that

:::
can

::
be

::::::
tuned

:::
for

::::
each

:::::::::
considered

::::::::
problem.

::
In

:::
the

:::::::::
following

10



::::::::
numerical

:::::::::::
experiments,

:::::
since

:::
we

::::
only

:::::::
consider

:::
the

:::::
water

:::::
fluw

:::
qw :::

the
::::::
choice

::
of

:::
the

:::::
water

:::::::
mobility

::::::::
function

::
as

:::
no

::::::::
influence

:::
and

:::
we

:::
set

::::::::::
ηw(hw) = 1

:::
for

:::::::::
simplicity,

:::
as

::::
well

::
as

:::::::
pw = 0.

::::::
Notice

::::
that

:::
our

::::::::::
conclusions

::::::
would

::::::
remain

::::
valid

:::
for

:::::
more

:::::::
general

::::::
choices

::
of

:::::
those

::::::::::
parameters.

:::
The

::::::::::
application

::::::
domain

::
is
::::::::
however

::::::
limited

::
by

:::
an

::::::::
additional

::::::::::::
mathematical

::::::::
condition.

::::::
Notice

::::
that

systems (??) and (??) are
:
in

::::
fact

::::::::
stationary

::::::::
transport

::::::::
problems

::
for

::
a
::
or

::::
hw,

:::::
which

:::
are

:::::::::
rigorously

:::::::
speaking

:
well-posed from the275

mathematical point of view if
:
if
:::
the

::::::::::
topography

:::::::
satisfies

:
a
::::::::
sufficient

:::::::::
condition.

::
In

::::::::
particular

:::::::::
conditions:

−∆(hs + b)> 0 or
::

−div
::::

(
kms

−pw
ref ||∇(hs + b)||pw∇(hs + b)

:::::::::::::::::::::::::::

)
> 0
:::

, (8)

(or quite equivalently−div
(
kms

−pw
ref ||∇(hs + b)||pw∇(hs + b)

)
> 0), i.e. roughly speaking if there are no

::::::
ensures

:::
that

::::::
model

(??)
:
is
::::::::::
well-posed,

:::::
which

:::::::::::
corresponds

::
to

:::::::::
prohibiting

:
water accumulation areas or

:::
and flat areas (see ??????). This essentially

implies that the flow model
:::::
Model (??) is well justified for drainage basin only. If it used with topographies that do not fulfill280

, a modeling error can appear, ruining our efforts to achieve consistency. This assumption limits the domain of application of

the model, and can be considered
:::::
being

::
in

::::
fact

:
a
::::::::::::
simplification

::
of

:::
the

:::::::
shallow

:::::
water

::::::::
equation

::::
(see

::::::
section

::::::
section

::::
??),

::::
this

::::::::
limitation

:::
can

:::
be

::::
seen

:
as the price to pay for a low computational cost strategy. Model being in fact a simplification of the

shallow water equation, if extending the computation time is allowed
:
to

:::::::
simulate

:::
the

:::::
water

::::
flow

:::::
mass

::::::::::
conservation

::::
with

::
a
::::
very

:::
low

::::::::::::
computational

:::::::
expense.

:::
At

:::
the

:::
cost

:::
of

:
a
::::::
higher

::::::::::::
computational

::::
time alternative models also derived from the shallow water285

equation can be considered to overcome this limitation . This will be discussed in section ??
:::
(see

::::::
section

:::
??).

2.2 Mesh descriptionLet Ω be a bounded polyhedral connected domain of R2, whose boundary is denoted

∂Ω = Ω \Ω. We recall the usual finite volume notations describing a meshM= (T ,F) of Ω. The set of the

cells of the mesh T is a finite family of connected open disjoint polygonal subsets of Ω, such that Ω = ∪K∈TK.

For anyK ∈ T , we denote by |K| the measure of |K|, by ∂K =K \K the boundary ofK, by ρK its diameter290

and by xK its barycenter. The set of faces of the mesh F is a finite family of disjoint subsets of R2 included in Ω

such that, for all σ ∈ F , its measure is denoted |σ|, its diameter hσ and its barycenter xσ . For anyK ∈ T , the

faces of cellsK corresponds to the subset FK of F such that ∂K = ∪σ∈FKσ. Then, for any face σ ∈ F , we

denote by Tσ = {K ∈ T | σ ∈ FK} the cells of which σ is a face. Next, for all cellK ∈ T and all face σ ∈ FK
of cellK, we denote by nK,σ the unit normal vector to σ outward toK, and dK,σ = |xσ−xK |. The set of295

boundary faces is denoted Fext, while interior faces are denoted Fint. Finally for any σ ∈ Fint, whenever the

context is clear we will denote byK and L the two cells forming Tσ = {K,L}, as well as dKL = |xK −xL|.
This for instance allows when looping over the faces σ of cellK todenote by L the other face of σ without

resorting to a too heavy notation. To avoid any confusion with water and
:::
The

:
sediment heights,

ε= maxK∈T ρK will denote the mesh size. For any continuous quantity u, its discrete counterpart will be300

denoted uT = ((uK)K∈T ,(uσ)σ∈Fext) where for anyK ∈ T uK is the constant approximation of u in cellK

while for any σ ∈ Fext uσ is the constant approximation of u over face σ.In the following we will assume that

the mesh is orthogonal, i. e. there exists a family of centroids (xK)K∈T such that:
::::
flux

:::::
model

11



::
In

:::
the

::::::
present

:::::
paper

:::
we

::::
have

::::::
chosen

::
to

:::::
focus

:::
on

::
the

:::::::::::
stratigraphic

::::::
model

:::
that

:::
has

:::::::
already

::::
been

::::::::
discussed

::
in

:::::
detail

::
in

:::::
????,

::::
and

:::::
which

::
is

:
a
::::::::::::
generalization

::
of

:::
the

::::::
models

:::::::
studied

::
in

::
??

:
.
:::
The

::::::::::::
corresponding

::::::::
sediment

::::
flux

::
Js:::::

takes
:::
the

::::::::
following

:::::
form:

:
305

xK ∈ ΣK ∀K ∈ T and
xL−xK
|xL−xK |

= nK,σ for σ ∈ Fint, σ = {K,L}

Js =−ηs(hs)s−psref ||∇(hs + b)||ps
((

qw
qref

)rs
∇ψw(hs + b) +∇ψg(hs + b)

)
in Ω×

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

]t0,T
:::

[, (9)

and let us denote xσ the orthogonal projection of xK to the hyperplane containing σ for any σ ∈ FK and any K ∈ T with

dK,σ = |xK −xσ|, as well as dKL = |xK −xL|. Then, one can use a two-point finite volume scheme to discretize diffusion310

operators with scalar diffusion coefficients (no tensors).

2.3 The cell-to-cell multiple flow direction algorithm and its link with Gauckler-Manning-Strickler models

As mentioned above, the results of this subsection are mostly reproduced from ?. As a consequence, no true originality is

claimed here however we believe that the node-to-node version will be easier to understand after this reminder.The starting

point of a finite volume discretization is to integrate equation over each cell K:315

−
∫
K

div
(
kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b)

)
=

∫
K

Sw.

Denoting Sw,K = 1
|K|
∫
K
Sw and using Stokes’ formula, this leads to:

−
∑
σ∈FK

∫
σ

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nK,σ = |K|Sw,K .

Choosing a finite volume scheme then simply amounts to choosing how to approximate each term appearing in the face

integrals.The most natural
::::
where

::::::
rs > 0

:
and classical finite volume scheme consists in choosing constant approximate values320

km,σ::::::
ps > 0

:::
are

:::::
model

::::::::::
parameters,

:::
qw :

is
:::
the

:::::
water

::::
flux

:::::::
obtained

::::
from

:
(??)

:
,
::::
qref andGs,σ for km :::

sref:::
are

::::::::::
dimensional

:::::::
factors,

and ||∇(hs + b)||pw along each face σ and to use an upwind scheme hupw,σ for the true unknown hwηw(hw)
::
ηs::

is
:
a
::::::::::::
dimensionless

:::::::
sediment

::::::::
mobility

:::::::
function

::::
such

:::
that:

−
∫
σ

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·n≈−km,σs−pwref ||Gs,σ||pwhupw,σ
∫
σ

∇(hs + b) ·n.

325

0≤ ηs(u)≤ 1 and ηs(0) = 0,
:::::::::::::::::::::::::::::

(10)

Finally, thanks to our hypothesis on mesh orthogonality we can use the two-point flux approximation to compute
∫
σ
∇(hs + b) ·n.The

TPFA consists in noticing that for a linear function hs + b, the gradient being constant and satisfying∇(hs + b) ·nK,σ = 1
dKL

((hs + b)(xL)− (hs + b)(xK)),

12



the following formula:
:::::
whose

::::
main

::::
role

::
is

::
to

:::::
ensure

::::
that

:::
the

::::::::
sediment

:::::
height

:::
hs ::::::

remains
::::::::
positive.

::
In

:::
the

::::::::
following

:::
we

::::
use:

−
∫
σ

∇(hs + b) ·n=−∇(hs + b) ·
∫
σ

n=
|σ|
dKL

((hs + b)(xK)− (hs + b)(xL)),330

ηs(u) =

∣∣∣∣∣∣∣
1− hc

u+hc
if u≥ 0,

0 otherwise
::::::::::::::::::::::::::::

(11)

is exact since 1
dKL

(xL−xK) = nK,σ and will thus be a first order approximation of the flux. More precisely, denoting hw,K

for any K ∈ T the discrete water height value associated to cell K, if one further assumes that hs,σ + bσ = hs,K + bK for

any σ ∈ Fext and K ∈ Tσ which is generally what is done in practical applications of the MFD algorithm, for any K ∈ T the335

proposed finite volume scheme rewrites:∑
σ∈FK∩Fint

τKLh
up
w,σ (hs,K + bK −hs,L− bL) = |K|Sw,K ,

where the upwind value is given by hw,σup = hw,Kηw(hw,K) if hs,K + bK ≥ hs,L + bL ::::
with

:::
hc :

a
:::::::::
parameter.

::::
The

::::::::
function

::::
with

:::::::
subscript

::
w
::

is
::::::::

intended
::
to

::::::
model

:::
the

:::::
water

:::::
driven

:::::::::
processes,

:::::
while

:::
the

:::::::
function

:::::
with

:::::::
subscript

::
g
::::::
models

:::::::
gravity

::::::
related

::::::::
processes.

:::
We

::::::::
consider

::::
here

:::
the

::::
most

::::::::
common

::::
form

:::
for

::::::::
functions

::::
ψw and hw,σup = hw,Lηw(hw,L) if hs,K + bK < hs,L + bL,340

the transmissivity τKL is given by:
:::
ψg ::::::::::::

corresponding
::
to:

:

τKL =
|σ|km,σ
dKLs

−pw
ref

||Gs,σ||pw ,

ψw(u) =

u∫
0

kw(v)dv and ψg(u) =

u∫
0

kg(v)dv,

:::::::::::::::::::::::::::::::::::::::::

(12)

and where Gs,σ = 1
2 (Gs,K +Gs,L) and Gs,K is a discrete reconstruction of the gradient of hs + b in cell K. To derive it, we345

use:
:::::
where

::
kw::::

and
::
kg:::

are
::::::::
diffusion

::::::::::
coefficients

::::
such

::::
that:

Id =
∑
σ∈FK

|σ|(xσ −xK)nK,σ,

0≤ k−g ≤ kg(u)≤ k+
g <+∞ and 0≤ k−w ≤ kw(u)≤ k+

w <+∞,
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(13)

leading to
::
in

::::
such

::
a

:::
way

::::
that:

:
350

Gs,K =
∑
σ∈FK

|σ|Gs,K ·nK,σ(xσ −xK),

13



∇ψw(hs + b) = kw(hs + b)∇(hs + b) and ∇ψg(hs + b) = kg(hs + b)∇(hs + b),
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(14)

and thus on the orthogonal meshes we consider here as by consistency |σ|Gs,K ·nK,σ ≈
∫
σ
∇(hs + b) ·nK,σ,Gs,K is naturally

given by:355

Gs,K =
1

|K|
∑

σ∈FK∩Fint

|σ|
dKL

(hs,L + bL−hs,K − bK)(xσ −xK)

+
1

|K|
∑

σ∈FK∩Fext

|σ|
dKσ

(hs,σ + bσ −hs,K − bK)(xσ −xK).

From the mathematical point of view, a natural choice for the face value km,σ is the harmonic mean:

km,σ =
dKLkm,Kkm,L

km,KdL,σ + km,LdK,σ
with for instance km,K =

1

|K|

∫
K

km ∀K ∈ T ,360

but many other choices are possible. Let us now recall the elementary proof given in ?: gathering the faces by upwinding kind,

::
so

:::
that

:::
the

::::::::
sediment

::::
flux

::::::
follows

:::
the

::::::::::
topographic

:::::
slope

:::::::::
∇(hs + b).

:

::::
This

:::::::
sediment

::::
flux

:::::
model

::
is

:::::::::::
implemented

::
in

:::
our

::::::::
modeling

:::::::
platform

::::::::
ArcaDES

::
(?

:
),
:::
and

:::
all

:::
the

:::::::::
simulations

::::::
shown

::
in

:::
the

::::::::
following

::::::
sections

:::
are

:::::::::
performed

:::::
using

:::
the

::::::::
ArcaDES

:::::::
platform

::::::::
(although

::::::::
ArcaDES

::
is

:::::::::
mentioned

:::
for

:::
the

:::
first

::::
time

::
in

:
a
::::::::
scientific

:::::
paper,

::
it
::
is

::::
used

::::
since

:::::
2015

::
in

:::
the

::::::::::
stratigraphic

:::::::::
numerical

:::::::
forward

:::::
model

:::::::::::::
DionisosFlow™

:::::::
initially

:::::::::
developed

::
by

::
?
:
).
::::
Both

::::
soil

::::::
erosion

::::
and365

:::::::
sediment

:::::::::
deposition

:::
are

::::::::::
considered.

::
As

::::::::
ArcaDES

::
is
:::::::
tailored

:::
for

::::
large

::::
time

::::
and

:::::
space

:::::
scales

::::::::::
simulations,

:::
this

::
is
:::
the

::::::
reason

::::
why

::
we

::::
have

:::::::
chosen

::
to

::::::
express

:::
the

::
xy

::::::::::
coordinates

::
in

:::::::::
kilometers

:::::
(km),

::::
time

::
in

::::::
million

:::::
years

:::::
(My),

:::::::
sediment

::::::
height

::
hs::::

and
::::::::
basement

:
b
::
in

::::::
meters

::::
(m).

:::::
Thus

:::
the

::::
unit

::
of

::::::::
sediment

::::::
sources

::::
will

:::
be

::::::
meters

:::
per

::::::
million

:::::
years

:::::::::
(m.My-1).

:::::
Since

:::
we

::::
have

::::::
chosen

::
to
::::

use

::::::::
Qw = qw ::::

with
::
qw:::

the
:::::
water

::::
flux

::::
from

:
(??),

:::
the

::::
unit

:::
for

:::
the

:::::
water

::::::::
discharge

::
qw::

is
::::::::::
m3.s-1.km-1

:::
and

::::
thus

:::
we

:::::::
naturally

:::
set

:::::
qref=

::
1

::::::::::
m3.s-1.km-1.

:::
The

::::::
natural

::::
unit

::
of

::::::::::
coefficients

::
kg::::

and
:::
kw :

is
:::::::::
km2.My-1,

::::
with

:::
the

::::::::
reference

:::::
slope

:::::
again

::
set

:::
to

:::::
sref=

:
1
:::::::
m.km-1.

:
370

2.3
::::
Some

:::::::
insights

:::::
from

:::::::::::
perturbation

::::::
theory

::
In

:::
this

::::::::::
subsection,

::
in

::::
order

::
to
::::

give
::
a
::::::
feeling

::
of

:::
the

::::::::
potential

:::::::
stability

:::::
issues

::::::
related

::
to

:::::
model

:
(??)

:
-(??)

:
-(??)

:
,
:::
we

:::
will

:::::::
perform

::
a

::::
brief

:::::::
analysis

::
of

:::
the

:::::::
behavior

::
of

::::::::
solutions

:::::
under

::::::::::::
perturbations.

:::
We

::::::
assume

:::
for

::::::::
simplicity

::::
that

::
kg:::

and
:::
kw:::

are
:::::::
constant

:::::::::
functions.

:::
Let

::
us

::::::
denote

::::::::::
(hs,∗,hw,∗):

a
::::::::
reference

:::::::
solution

:::
of (??)

:
-(??)

:
-(??)

::::
with

::::::
sources

:::::::::::
(Ss,∗,Sw,∗),

:::::
whose

:::::::
stability

::
is
::
to
:::
be

::::::
tested.

:::
We

:::::
denote

::::::::::
(hs,δ,hw,δ)::

a
::::::::::
perturbation

::
of

:::::::::
magnitude

::
δ
::
of

::::
this

::::::::
reference

:::::::
solution

::::
with

::::::::
perturbed

::::::
source

::::::::::::::::::::::
(Ss,∗+Ss,δ,Sw,∗+Sw,δ)375

:::
and

:::::::
consider

:::
the

::::::::
evolution

::
of

:::::::::::::::::::::::::::::::
(hs,hw) = (hs,∗+hs,δ,hw,∗+hw,δ).

:::::
Since

::::
both

:::
the

::::::::
perturbed

:::
and

::::::::::
unperturbed

::::::::
solutions

::::
have

::
to

:::::
satisfy

:::
the

::::::::
boundary

:::::::::
conditions,

:::
we

::::::
deduce

::::
that

:::
the

::::::::::
perturbation

::::::::::
(hs,δ,hw,δ)::::

itself
::::
also

:::::::
satisfies

:::
the

::::
same

::::::::
boundary

::::::::::
conditions.

::::
Then

::
in

::::
line

::::
with

:::
for

:::::::
instance

:::
the

:::::::
analysis

::
of

::
?,

::::::::
injecting

:::::::
(hs,hw)

::::
into (??)

:
-(??)

:
,
::::::::::
multiplying

::
by

::::
hs,δ::::

and
:::::::::
integrating

::
by

:::::
parts
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we get:

∑
σ∈FK∩Fint,hs,K+bK≥hs,L+bL

τKL
d

dt
::

1

2

∫
Ω

:::

hw,K
2
s,δ
::

=−
∫
Ω

:::::

ηws(hw,Ks)s
−ps
ref ||∇(

:::::::

hs,Ks+bK −hs,L− bL)||ps
:::

 qw
qref
:::

−rskw + kg
::::::::

 ||∇hs,δ||2
::::::::

380

∑
σ∈FK∩Fint,bK<bL

τKLhw,Lηw(hw,L)(hs,L + bL−hs,K − bK) = |K|Sw,K .

+

∫
Ω

ηs(hs,∗)s
−ps
ref ||∇(hs,∗+ b)||ps

((
qw,∗
qref

)rs
kw + kg

)
∇(hs,∗+ b) · ∇hs,δ

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Setting385

−
∫
Ω

ηs(hs)

:::::::::

sK =
∑

σ∈FK∩Fint,hs,K+bK≥hs,L+bL

τKL
−ps
ref ||∇(
::::::

hs,Ks+bK −hs,L− bL)||ps
:::

 qw
qref
:::

 ,rskw + kg
::::::::

∇(hs,∗+ b) · ∇hs,δ +

∫
Ω

Ss,δhs,δ.

:::::::::::::::::::::::::::

and noticing that sL > 0 as soon as there exists σ ∈ FL ∩Fint such that bL > bK , we see that equation can be rewritten
::::::::
Denoting:

sKhw,Kηwjs
:

(hw,Ku,v,w
:::::

)−
∑

σ∈FK∩Fint,bK<bL

τKLhw,L=
:
ηws(hw,Lu:)s−psref ||∇v||ps

::::::::::

hs,L
 w

qref
:::

rskw
:::

+ bL−hs,K − bKkg
:

= |K|Sw,K .,

Defining the water outflux by q̃K = sKhw,Kηw(hw,K), we thus obtain
::
we

:::::
obtain

:::
the

::::::::
equation

:::::::::
governing

::
the

:::::::::
evolution

::
of

:::
the

:::::::::::
perturbation’s

::::
total

::::::
energy:390

q̃K −
∑

σ∈FK∩Fint,hs,K+bK<hs,L+bL

τKL
q̃L
sL

(hs,L + bL−hs,K − bK) = |K|Sw,K .

d

dt

1

2

∫
Ω

h2
s,δ

=−
∫
Ω

js(hs,hs + b,qw)||∇hs,δ||2 +

∫
Ω

Ss,δhs,δ

::::::::::::::::::::::::::::::::::::::::::::::::::::

Basic principle of the simplest cell-to-cell MFD algorithm: water is distributed to lower neighbouring cells proportionally to

the slope (reproduced from ?) The cell-to-cell MFD algorithm admits a reformulation as a linear system first mentioned by395

? although without exhibiting an explicit formula. In ?, it is established that linear system underlying the cell-to-cell MFD

algorithm illustrated on Fig. ?? is equivalent to solving for km = 1 and pw = 0 using a lower triangular solver and a cell

ordering based on decreasing topography. Indeed the algorithm illustrated Fig. ?? consists in distributing the total outflow q̃K

of cell K along the neighbouring cells of K with lower altitude altitude proportionally to the ratio sKL/sK of the discrete

slope sKL between the high cell K and the low cell L regarding the total positive slope sK of the high cell K. It is then400

easy to observe that the formula corresponds to reversing this idea, expressing how the inflow received by the low cell K is

computed from the outflow of its higher neighbours.From this equivalence between the classical MFD and the two-point flux
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approximation (TPFA) of the classical Gauckler-Manning-Strickler model, a crucial observation of ? is that the usual unknown

q̃K of the MFD algorithm that corresponds to the CA of cell K in the case Sw = 1 is not the good quantity to represent

the water flux magnitude. Indeed, from q̃K = sKhw,Kηw(hw,K) and the consistency of the two-point formula we see that it405

approximates as announced:

q̃K ≈ q̃exK =
∑
σ∈FK

∫
σ

hwηw(hw)
(
−kms−pwref ||∇(hs + b)||pw∇(hs + b) ·nK,σ

)+

.

+

∫
Ω

(js(hs,∗,hs,∗+ b,qw,∗)− js(hs,hs + b,qw))∇(hs,∗+ b) · ∇hs,δ.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(15)

As explained in ? the quantity q̃K approximates the outflux of a cell which thanks to the equivalence with a discretization of a410

Gauckler-Manning-Strickler model we can easily identify as a mesh dependent quantity. Thus, the only convergence that can

be expected for q̃K is to zero. As explained in the introductory part of this section we could normalize it by the portion of ∂K

along which the flow is outgoing but this is highly impractical and still prone to some mesh dependency depending on the cell

orientation with respect to the flux. To effectively compute an accurate discrete water flux magnitude qK for each cell K ∈ T ,

from ? we know that we can reconstruct cellwise the water flux vector using by setting:
:::
The

::::
first

::::
term

::
of

:::
the

::::
right

:::::
hand

::::
side415

:
is
::::::
always

::::::::
negative

:::
and

::::
thus

::::::
always

:::::::::
contributes

::
to

:::
the

:::::::
stability

::
of

:::
the

:::::::
system.

:::
The

::::::
second

:::::
term

::::::::
describes

::
the

:::::::::::
contribution

::
to

:::
the

:::::::
evolution

:::
of

:::
the

:::::::
sediment

::::::::::::
perturbation’s

::::::
energy

::
of

:::::::
potential

::::::::::
pertubation

::::::
sources

:::::
other

:::
that

:::
the

:::::
initial

::::::::::
conditions.

:::
The

::::
last

::::
term:

:

QK =
∑

σ∈FK∩Fint,hs,K+bK>hs,L+bL

τKLq̃K
|K|sK

(hs,K + bK −hs,L− bL)(xσ −xK)−

Aδ =

∫
Ω

(js(hs,∗,hs,∗+ b,qw,∗)− js(hs,hs + b,qw))∇(hs,∗+ b) · ∇hs,δ,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(16)420

∑
σ∈FK∩Fint,hs,K+bK<hs,L+bL

τKLq̃L
|K|sL

(hs,L + bL−hs,K − bK)(xσ −xK),

and simply deduce a consistent water flux magnitude by setting qK = ||QK ||. This consistent water flux magnitude is mesh

independent in the usual numerical analysis sense: it converges to the continuous flux when the mesh size ε goes to zero,

contrary to q̃K . The use of q̃K or its normalized versions instead of qK in the geological literature is
::::::::
originates

:::::::
partially

::::
from

:::
the425

::::::::::
non-linearity

::
of
:
the main reason why such a strong mesh dependency was observed, without any significant improvement with

mesh refinement. Instead, the convergence of the consistent water flux magnitude qK was rigorously established and illustrated

in ?, up to providing error estimates. Thus, it is important to use qK ::::::::
sediment

:::::::
transport

::::::
model

:::
but

::::
most

::::::::::
importantly

:::::
from

:::
the

:::::::
coupling

:::::::
between

:::
the

::::
flow

::::
and

:::
the

:::::::
sediment

:::::::::
transport.

::
If

::
Aδ::

is
::::::::
negative

::
or

::
if

:
it
::
is

:::::
small

::::::
enough

::::
and

::
if

:::
the

::::::::::
perturbation

::::::
source

:
is
::::

also
:::::
small

:::::::
enough,

:::::
then

:::
the

::::::::
sediment

::::::::::
perturbation

::::::
energy

::::
will

::::::::
decrease

::::
with

:::::
time.

::
In

::::
this

::::
case,

:::
the

::::::::
solution

::::::::::
(hs,∗,hw,∗)430
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:
is
::::

said
::
to
:::

be
:::::
stable

::::::
under

::::::::::
perturbation

:::::::::::
(hs,δ,hw,δ).

:::::::
However

::::
the

::::
sign

::
of

:::
Aδ::

is
:::
not

:::::::
always

:::::::
negative

:::
and

::::
will

:::::
often

::::
take

::::
non

:::::::::
necessarily

:::::
small

:::::::
positive

::::::
values.

::
If
:::
Aδ::

is
:::::

large
:::::::
enough,

:
instead of q̃K when coupling with sediment evolution models i.e.

using Qw = qw in and not q̃K . From the flow routing literature perspective and by virtue of , qK can certainly be considered

as a post-processing consistency correction of q̃K , easy to implement in legacy softwares.
::::
being

:::::::
diffused

:::
by

:::
the

::::
first

::::
term

:::
the

:::::::
sediment

:::::::::::
perturbation

::::::
energy

:::
will

:::::
grow

::::
with

:::::
time

:::
and

:::::::::
potentially

:::::::
become

:::
as

::::
large

::
as

::::
the

::::::::::
unperturbed

::::::::
solution:

:::
the

:::::::
solution435

:::::::::
(hs,∗,hw,∗)::

is
::::
then

::::::::
unstable

:::::
under

::::::::::
perturbation

:::::::::::
(hs,δ,hw,δ).

::::
This

::
is

:
a
:::::::::::::::
self-amplification

::::::::::
mechanism,

::
as

:::
the

:::::::::
magnitude

:::
of

:::
Aδ

:::
will

:::::
grow

::::
with

:::
the

::::::::::::
perturbation’s

:::::::::
magnitude

::::
and

::::::
cancel

::
if

:::
the

::::::::::
perturbation

::
if
:::::

zero,
::::
and

::::
also

:::::::
because

::
of

:::
the

::::::::::
dependency

:::
of

::
the

:::::
water

::::
flux

::::
qw,δ:::

on
:::
the

:::::::::
topography

:::::::::::
perturbation

:::
hs,δ::

.
:::
We

:::
will

::::
say

:::
that

:::::::
growing

:::::::::::
perturbations

::::::::::
correspond

::
to

:::
the

:::::::::
physically

:::::::
unstable

::::::
regime.

:

The MFD formulation allows in turn some interesting observations for the Gauckler-Manning-Strickler model: it is indeed440

clear that the choice of the water mobility function ηw has no influence on the water flux strength qw, as it appears nowhere in

and . In the same way, only the contrasts of the coefficient km will impact qw, as only ratios τKL/sK are appearing in and .

2.4 The classical node-to-node MFD/SFD algorithms interpreted as discrete Gauckler-Manning-Strickler solvers

In this subsection, we will explain how to reinterpret the most classical node-to-node flow routing algorithms as attempts

to discretize a continuous Gauckler-Manning-Strickler model. Such an explicit interpretation seems to be absent from the445

literature, so at least to the author’s knowledge the results of this subsection are quite new. To this end, for simplicity we restrict

ourselves in this section to uniform cartesian meshes, and we adopt the usual cartesian index (i, j) notation for designating its

nodes (see Fig. ??) as well as ∆x
:::
We

:::
can

:::::::::
anticipate

:::
that

:::
the

:::::::
relative

:::::::::
magnitude

::
of

:::
the

::::::
gravity

::::
and

:::::
water

::::::::::
coefficients

::
kg:and

∆y for the cartesian cell side lengths. This is by no means a restriction but simply a more convenient way to explain how to

link node-to-node flow routing with Gauckler-Manning-Strickler models. In order to reinterpret the node-to-node flow routing450

algorithms as finite volume schemes, we must associate a volume to each node. The easiest way to do so is to consider the dual

mesh, formed by joining the centers of the cells of the primal mesh (see again Fig. ??, where the dual mesh corresponds to

the dashed lines). On the dual mesh, the node (i, j) of the primal mesh becomes the center of the dual cell Ki,j . The cartesian

mesh (plain lines) and its dual (dashed lines)

Decomposition and notations for the dual cartesian cell boundaries In Fig. ??, we propose a decomposition of the boundary455

of the dual cartesian cell Ki,j centered on the primal node (i, j) into 12 faces (σl)1≤l≤12. The faces σj±1 are of length γx∆x,

with of course the faces σi±1
j±1 of length 1−γx

2 ∆x. In the same way, faces σi±1 are of length γy∆y and the faces σj±1
i±1 of length

1−γy
2 ∆y. Using those notations, we integrate over the dual cell Ki,j to get:

−
12∑
l=1

∫
σl

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j = |Ki,j |Sw,K .

On the four faces σi−1, σi+1, σj−1 and σj+1, we use the same finite volume discretization than before
:::
kw :::

will
::::
play

::
a
:::
key

::::
role460

::
in

::
the

:::::::
stability

:::
of

::::::::
solutions.

::::::
Indeed

:::::::
denoting

:::::::::::::::::::
τ = (kwq

rs
w )/(kgq

rs
ref ),

::
if

::
kg::

is
:::::
much

:::::
larger

::::
than

:::
kw::::

large
::::
and

::::
thus

:
τ
::
is

::::
very

:::::
small
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::
we

:::::
have

::::::::
assuming

::
for

:::::::::
simplicity

:::
that

::::::
ηs = 1:∫

σj−1

Aδ ≈
::::

kmhwηwgs
−ps
ref

::::

(
||∇
::

(hws,∗+ b
:::::

)s−pwref ||ps − ||:::::
∇(hs + b)||pwps

:

)
∇(hss,∗

::
+ b) ·Ki,j∇hs,δ +O(τ)

:::::::::::

≈ γx∆x

spwref∆y
km,σj−1

−kgs−psref
:::::::

(
ps
:
||s,σj−1

∇(hs,∗+ b)
:::::::::

||pwhupw,σj−1

ps−2|∇
:::::

(hs,i,j−1s,∗
::

+ bi,j−1−) · ∇
:::

hs,i,j − bi,js,δ|2
:::

)
+O(τ
:::::

),+O(δ3).
:::::::

465

and∫
σi−1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j

≈ γy∆y

spwref∆x
km,σi−1

||Gs,σi−1
||pwhupw,σi−1

(hs,i−1,j + bi−1,j −hs,i,j − bi,j),

and470 ∫
σj+1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j

≈ γx∆x

spwref∆y
km,σj+1

||Gs,σj+1
||pwhupw,σj+1

(hs,i,j+1 + bi,j+1−hs,i,j − bi,j),

and∫
σi+1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j475

≈ γy∆y

spwref∆x
km,σi+1

||Gs,σi−1
||pwhupw,σi+1

(hs,i+1,j + bi+1,j −hs,i,j − bi,j),

while for the remaining height cells, we gather the faces to form the corners illustrated in Fig. . More precisely, we denote
::::::
(where

::
we

:::::
recall

::::
that

:
a
:::::::
function

::
f
::
is

:::::
O(h)

::
if

::::
there

:::::
exists

::
a
:::::::
constant

:::::
C > 0

:::::::::::
independent

::
on

::
h
::::
such

::::
that

:::::::::
||f || ≤ Ch

:::
for

:
a
:::::::
suitable

:::::
norm

::::
||.||).

:::::
Then

::
for

:::::
large

:::::
values

::
of

:::
kg:::

the
::::
term

:::
Aδ ::

is
::::::
always

:::::::
negative

:::
and

::::
thus

:::::::::
stabilizing.

:::
On

:::
the

:::::::
contrary,

::
if
:::
kw::

is
:::::
much

:::::
larger

::::
than480

::
kg::::

then
::
τ

:
is
::::
also

::::
very

:::::
large

:::
and

:::
we

::::
have:

i−1,j−1 =j−1
i−1∪i−1

j−1,Aδ ≈−kws−psref q
−rs
ref

::::::::::::::::

(
qrsw,∗||∇(hs,∗+ b)||ps − qrsw ||∇(hs + b)||ps
::::::::::::::::::::::::::::::::::

)
∇(hs,∗+ b) · ∇hs,δ +O(1/τ)
::::::::::::::::::::::::

i−1,j+1 =j+1
i−1∪i−1

j+1,≈−kws−psref rs
qrs−1
w,∗

qrsref
qw,δ||∇(hs,∗+ b)||ps∇(hs,∗+ b) · ∇hs,δ

:::::::::::::::::::::::::::::::::::::::::::::::::
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485

i+1,j−1 =j−1
i+1∪i+1

j−1,−kws−psref
:::::::

qw,∗
qref
:::

rs
:

(
ps||∇(hs,∗+ b)||ps−2|∇(hs,∗+ b) · ∇hs,δ|2
:::::::::::::::::::::::::::::::::::

)
+O(1/τ) +O(δ3).
:::::::::::::::

σi+1,j+1 = σj+1
i+1 ∪σi+1

j+1,

those four corners, σi±1,j±1 thus being the corner corresponding to the neighbouring cell Ki±1,j±1. On those corners, we

perform the same discretization than before considering the whole corner as if it was a single face: in other words we use490

constant values km,σ and ||Gs,σ||pw :::::::
Regions

::
for

::::::
which

::::::::::::::::::::
∇(hs,∗+ b) · ∇hs,δ < 0

:::
will

:::::::
amplify

:::
the

:::::::::::
perturbation

::::::::::::
proportionally

::
to

:::
kw :::

and
:::
the

::::::
power

:::::
rs− 1

::
of
::::

the
:::::
water

::::
flux.

:::
We

::::
also

:::
see

::::
that

:::
the

::::
term

:::
Aδ::::

will
::::::
behave

::::
quite

:::::::::
differently

::
if
::::::
rs > 1

::
or

:::::::
rs < 1.

::::::
Indeed, for km and ||∇(hs + b)||pw along the corner, an upwind scheme for the unknown hwηw(hw) and the a two-point flux

formula for in the average normal direction to the corner. Denoting (∇(hs + b))σi±1,j±1
the equivalent constant gradient exact

for linear function underlying the TFPA along the corner, this leads to the following approximation:495 ∫
σi±1,j±1

kmhwηw(hw)s−pwref ||∇(hs + b)||pw∇(hs + b) ·nKi,j ≈

km,σi±1,j±1
s−pwref ||Gs,σi±1,j±1

||pwhupw,σi±1,j±1
(∇(hs + b))σi±1,j±1

·
∫

σi±1,j±1

nKi,j .

By construction
:::::
rs > 1

:::
the

:::::
water

:::
flux

::::
will

::::::::
reinforce

:::
the

:::::::::::
amplification

::::
term

::
in

:
a
::::
kind

::
of

:::::::
positive

::::::::
feedback

::::
loop.

:::
On

:::
the

::::::::
contrary,

::
for

::::::
rs < 1

:::
the

:::::
water

::::
flux

:::
will

::::::
temper

:::
the

:::::::::::
amplification

:::::
term,

::::
thus

:::
we

:::
can

::::::::
anticipate

::::
that

:
it
::::
will

::::::
require

:::::
much

:::::
larger

::::::
values

::
of

::
τ500

::
for

:::::::::
instability

::
to

:::::
occur

::
in

:::
this

::::::::
situation.

::::::
Going

::::
back

::
to

:::
the

::::::
general

::::
case

:::
for

::
ηs, we have

:::
for

:::::
small

:::::
values

::
of

::
τ :∫

σi±1,j±1

Ki,j =
(1− γy)

2
∆y

(1− γx)

2
∆x.Aδ ≈−kgs−psref

::::::::::::

(
η
′

s(hs,∗)||∇(hs,∗+ b)||pshs,δ∇(hs,∗+ b) · ∇hs,δ+
::::::::::::::::::::::::::::::::::::::::

Denoting

psηs(hs,∗)
::::::::

|σi±1,j±1|=
(1− γx)

2
∆x∇(hs,∗

:::::
+

(1− γy)

2
∆y =b)||ps−2|∇(hs,∗+ b) · ∇hs,δ|2

::::::::::::::::::::::::

)
+O(τ) +O(
::::::::::

δ,3).
::

we seek γx and γy such that
:::::
while

:::
for

::::
large

::::::
values

::
of

::
τ

::
we

:::::
have:505

(1− γx)

2δ
∆x=

∆y

(∆x2 + ∆y2)1/2
and

(1− γx)

2δ
∆y =

∆x

(∆x2 + ∆y2)1/2
,Aδ ≈−kws−psref rs

qrs−1
w,∗

qrsref
qw,δηs(hs,∗)||∇(hs,∗+ b)||ps∇(hs,∗+ b) · ∇hs,δ

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

leading to:

γx = 1− 2δ∆y/∆x

(∆x2 + ∆y2)1/2
and γy = 1− 2δ∆x/∆y

(∆x2 + ∆y2)1/2
,

19



−kws−psref

(
qw,∗
qref

)rs (
η
′

s(hs,∗)||∇(hs,∗+ b)||pshs,δ∇(hs,∗+ b) · ∇hs,δ+
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

510

which can be achieved with γx ≥ 0 and γy ≥ 0 provided δ satisfies:

0≤ δ ≤ 1

2
min

(
∆x

∆y
,
∆y

∆x

)
(∆x2 + ∆y2)1/2.

psηs(hs,∗)||∇(hs,∗+ b)||ps−2|∇(hs,∗+ b) · ∇hs,δ|2
)

+O(1/τ) +O(δ3).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

With this choice for γx and γy , for all δ satisfying we get that515 ∫
σi±1,j±1

nKi,j =
±∆x

(∆x2 + ∆y2)1/2
ex +

±∆y

(∆x2 + ∆y2)1/2
ey,

and thus the average normal at the corner σi±1,j±1 is precisely pointing from xKi,j to xKi±1,j±1 . Thus it is natural to use the

two point flux formula:

(∇(hs + b))σi±1,j±1 ·
∫

σi±1,j±1

nKi,j ≈
δ

(∆x2 + ∆y2)1/2
(hs,i±1,j±1 + bi±1,j±1−hs,i− bi).

The upwinding is done exactly as before, following the sign of the difference in elevation hs + b between the two value forming520

the TPFA. This gives for the non-corners:

hupw,σi±1
=

∣∣∣∣∣∣
hw,i,jηw(hw,i,j) if hs,i,j + bi,j ≥ hs,i±1,j + bi±1,j ,

hw,i±1,jηw(hw,i±1,j) if hs,i,j + bi,j < hs,i±1,j + bi±1,j ,

hupw,σj±1
=

∣∣∣∣∣∣
hw,i,jηw(hw,i,j) if hs,i,j + bi,j ≥ hs,i,j±1 + bi,j±1,

hw,i,j±1ηw(hw,i,j±1) if hs,i,j + bi,j < hs,i,j±1 + bi,j±1,

and for the corners:525

hupw,σi±1,j±1
=

∣∣∣∣∣∣
hw,i,jηw(hw,i,j) if hs,i,j + bi,j ≥ hs,i±1,j±1 + bi±1,j±1,

hw,i±1,j±1ηw(hw,i±1,j±1) if hs,i,j + bi,j < hs,i±1,j±1 + bi±1,j±1.

To get more compact notations, let us denote

N (i, j) = {(m,n) ∈ {i− 1, i, i+ 1}×{j− 1, j, j+ 1} | (m,n)≤ (i, j)} ,
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the neighbours of node (i, j), and define the transmissivities:

τm,ni,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣

γx∆x

spwref∆y
km,σj±1 ||Gs,σj±1 ||pw if (m,n) = (i, j− 1) or (i, j+ 1),

γy∆y

spwref∆x
km,σi±1

||Gs,σi±1
||pw if (m,n) = (i− 1, j) or (i+ 1, j),

δ

spwref (∆x2 + ∆y2)1/2
km,σi±1,j±1

||Gs,σi±1,j±1
||pw otherwise,

530

assuming for simplicity that the gradients Gs,σ are obtained on the dual mesh in the same way as in the cell-to-cell case (of

course, a reconstruction formula using also the diagonal neighbours is possible). Using those notations, we get gathering by

upwind kind as in the case of the cell-to-cell flow routing the following expression for the proposed finite volume scheme on

the dual mesh:

hw,i,jηw(hw,i,j)

 ∑
(m,n)∈N (i,j),hs,i,j+bi,j>hs,m,n+bm,n

τm,ni,j (hs,i,j + bi,j −hs,m,n− bm,n)

535

−

 ∑
(m,n)∈N (i,j),hs,i,j+bi,j<hs,m,n+bm,n

τm,ni,j hw,m,nηw(hw,m,n)(hs,m,n + bm,n−hs,i,j − bi,j)

= |Ki,j |Sw,i,j .

Proceeding as in the cell-to-cell case, denoting:

si,j =
∑

(m,n)∈N (i,j),hs,i,j+bi,j>hs,m,n+bm,n

τm,ni,j (hs,i,j + bi,j −hs,m,n− bm,n) and q̃i,j = hw,i,jηw(hw,i,j)si,j

, we finally get:540

q̃i,j −

 ∑
(m,n)∈N (i,j),hs,i,j+bi,j<hs,m,n+bm,n

τm,ni,j

q̃m,n
sm,n

(hs,m,n + bm,n−hs,i,j − bi,j)

= |Ki,j |Sw,i,j .

The flow sharing formula common to all flow routing algorithms of the literature identifies in this context with the ratios:

1

sm,n
τm,ni,j (hs,m,n + bm,n−hs,i,j − bi,j),

for (m,n) ∈N (i, j),hs,i,j + bi,j < hs,m,n + bm,n, which expresses how node (i, j) receives water from other nodes. Reversing

the point of view, it rewrites in probably more familiar fashion by expressing how node (i, j) distributes water to its neighbours545

through the flow sharing formula (noticing that τm,ni,j = τ i,jm,n):

τm,ni,j max(0,hs,i,j + bi,j −hs,m,n− bm,n)∑
m′ ,n′∈N (i,j)

τm
′
,n
′

i,j max(0,hs,i,j + bi,j −hs,m′ ,n′ − bm′ ,n′ )
.
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Notice that several attempts of the literature at improving the behavior of the flow routing consider powers q of the two point

slope instead of the slope in
::::
The

:::::::
behavior

::
is

::::::
roughly

::::::::
speaking

:::
the

:::::
same,

::::
with

:::
the

::::
main

:::::::::
difference

:::
that

:
the flow sharing formula,

which with our notations rewrites:550

τm,ni,j max(0,hs,i,j + bi,j −hs,m,n− bm,n)q∑
m′ ,n′∈N (i,j)

τm
′
,n
′

i,j max(0,hs,i,j + bi,j −hs,m′ ,n′ − bm′ ,n′ )q
.

Another important consequence of the formal identification of cell-to-cell flow routing algorithms with a numerical scheme for

::::::::
additional

::::
term

::
in

:::::::
η
′

s(hs,∗)::::
can

:::
also

:::::::::
contribute

::::
with

:::
the

::::::
wrong

::::
sign.

:::::
Since

:::::::
η
′

s(hs,∗)::::
will

::
be

::::::
almost

::::
zero

::
as

::::
soon

:::
as

:::
hs,∗::

is
:::::
large

::::::
enough

::::
(see

:::::::
equation (??)

:
),

:::
this

:::
can

::::
only

:::::::
happens

::
in

::::::
regions

::::::
where

:::
hs,∗::

is
:::::
close

:
to
::::
zero

:::
(in

::::::::
particular

::::
near

:::::::
Dirichlet

:::::::::::
boundaries).

::
In

:::
this

:::::
case,

:::
the

::::::::
potential

::::::::::
contribution

:::
to the stationary Gauckler-Manning-Strickler model is the fact that if one wants to555

incorporate powers of the slope in the flow distribution procedure, then one should not use powers of the directional slope
1

dKL
(hs,L + bL−hs,K − bK) but rather use powers of ||Gs,σ|| to remain consistent with a continuous model incorporating

powers of ||∇(hs + b)||. Otherwise, the consistency of the flow routing algorithm will be lost again. In ? it is even suggested to

choose different values of q for different grid sizes, emphasizing this non-consistency. However, the sought flow concentration

effect can be achieved in a consistent manner through the use of pw: the full gradient and not only the directional gradient560

being used this way, this does not endanger consistency and a value independent of the mesh should be chosen according to

physical considerations. An option that we do not consider here is to make the value of pw spatially variable, as was suggested

in ? but still on the non-consistent formulation .
:::::::::
instabilities

::
is

:::::::::
controlled

::
by

:::
the

:::::::::
magnitude

:::
of

::::::::::::::::::::::
|η′s(hs,∗)hs,δ| ≤ |hs,δ|/hc.::

If

::
the

:::::::::::
perturbation

::
is

:::
not

::::::::
amplified

:::
by

::::
other

::::::::
engines,

:::::
which

::::
will

::
be

:::
the

::::
case

::
if
::
τ

::
is

:::::
small,

::::
and

:
if
:::
the

:::::::::
parameter

:::
hc :

is
::::

not
::::::
chosen

:::
too

:::::
small

::
(a

::::::
typical

::::
valid

:::::
value

::
is
:::
20

::::
cm),

::::
then

:::
no

:::::
severe

:::::::::
instability

:::
can

:::::
occur

:::::::
through

::::
this

::::::::
additional

:::::
term.

:::::
Thus

:::
we

:::
can

:::
be565

:::::::
confident

::::
that

::::::::
parameter

::
τ
:::
will

:::
be

:::
the

::::
main

:::::::
criterion

:::::::::
governing

:::
the

:::::::::
appearance

::
of

::::::::::
instabilities

::::
even

:::
for

:::
our

::::
most

:::::::
general

::::::
model.

Although clearly leads to some non consistency, this expression is useful to derive a classification of the most prominent

flow routing algorithms of the literature. To exactly match the definitions of most node-to-node flow routing schemes of the

literature, we now consider the special case of square cartesian cells for which ∆x= ∆y = ∆xy . In
:::
For

::
a

:::::::
subclass

::
of

::::::
model570

(??)
:
-(??)

:
-(??)

::::
with

::::::
ηs = 1,

::::::
kg = 0

::::
and

::::::::
pw =−1

:::
and

:::::::
ps = 0,

:::
the

:::::::
stability

::
of

::::::::
solutions

::::
have

:::::
been

::::::::::
theoretically

:::::::
studied

::
in

:::
??

:
.
:
It
::::
was

:::
for

:::::::
instance

::::::::::
established

::
in

::
?

:::
that

::
if

:::
the

::::::::
reference

:::::::
solution

::
is

:::::::::
stationary,

:::
that

:::
the

::::::
second

:::::
term

::
is

:::::::
negative

::::
only

::
if

:::::
some

::::::
specific

::::::::
condition

:::
on

:::
the

:::::::
gradient

:::::::::
∇(hs + b)

::
is

:::::::
satisfied

::
on

:::
the

::::::::
boundary

:::
of

:::
the

:::::
region

:::
of

::::::
interest,

::::
here

:::
Ω.

::::
The

:::::
linear

:::::::
stability

::
of

:::::::
analytic

::::::::
stationary

::::::::
solutions

:::
that

:::
are

:::::::
uniform

::
in
::::
one

:::::::
direction

::::
has

:::
also

:::::
been

:::::::::
considered

::
in

::
?.

:::::
Their

:::::::::
conclusion

::
is

::::
that

:::::
under

:::::::
periodic

:::::::::::
perturbations

::
in

:::
the

::::::::
transverse

:::::::::
direction,

:::
for

::::::
rs ≤ 1,

:::
the

:::::
linear

:::::::
stability

:::::::
analysis

::::
does

:::
not

::::::
reveal

:::
any

:::::::::
instability

:::::
while575

::
for

:::::::
rs > 1,

:::
the

::::::::
stationary

::::::::
solutions

:::
are

:::::::
linearly

:::::::
unstable

::
if

:::
the

::::::::
frequency

:::
of

:::
the

:::::::
periodic

::::::::::
perturbation

::
is
:::::
large

:::::::
enough.

::::::
Notice

:::
that

:::
the

::::
case

::::::::
pw =−1

::::::
greatly

::::::::
simplifies

::::
such

:::::::
studies:

:::
the

:::::
linear

:::::::
stability

:::::::
analysis

:::
can

:::
be

::::::
showed

:::
to

::
be

:::::::::
equivalent

::
to

::::::
solving

::
a

:::
one

::::::::::
dimensional

:::::::
ordinary

::::::::::
differential

::::::::
equation.

:::
The

::::::
studies

:::::::::
mentioned

:::::
above

:::
are

:::::::
focused

:::
on

:::
the

:::::::
stability

::
of

:::::::::
physically

:::::::::
meaningful

::::::::
solutions.

:::::
Here,

:::
we

:::::
want

::
to

::::
draw

::::::::
attention
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::
on

:::
the

:::::::::
numerical

:::::::::::
consequences

::
of

:
this case we get from that γx = γy = 1− (2δ)/(

√
2∆xy). It remains to choose a value for580

δ. The most natural choice is choose to enforce δ = γx∆x= γy∆y and thus balance the contribution to each neighbour. This

immediately leads to
::::::::::::::
self-amplification

:::::::::::
phenomenon,

::
in

:::
this

::::
way

:::
we

::::
focus

:::
on

:::
the

:::::::
stability

::
of

::::::::
numerical

::::::::
solutions.

:::
Let

::
us

:::::::
explain

::
the

::::
key

::::
idea:

::::::::
assuming

::::
that

::
all

::::::::
functions

:::
are

::::::
regular

:::::::
enough,

:::
one

:::::
could

::::::::
consider

:::
(for

:::::::
instance

::
in

::
a

::::
finite

:::::::::
difference

::::::
setting)

::::
that

:::
our

::::::::
numerical

:::::::
solution

::
is
:::::::
roughly

::::::::
speaking

:
a
:::::::::::
perturbation

::
of

:::
the

:::::
exact

:::::::::
continuous

::::::::
solution,

:::::
where

:::
the

::::::
source

:::::
terms

::::
Ss,δ::::

and

::::
Sw,δ ::::::::

represent
::
the

:::::::::::
unavoidable

:::::::::
consistency

::::
and

:::::
solver

:::::
errors

::
of

::::
our

::::::
solving

:::::::
process.

::::
Then

:::
the

:::::::::
numerical

:::::::
sediment

:::::::::::
perturbation585

:::::
energy

::::
will

::::::
satisfy (??)

:::
and

::::
will

::::::::::
self-amplify

::
in

:::
the

::::
same

::::
way

::::
than

:::::::
physical

:::::::::::
perturbations

:::::::::::
self-amplify.

::
In

:::
the

:::::::
unstable

:::::::
regime,

:::
this

::::::
means

::::
than

:::
the

:::::::::
numerical

:::::::
solution

:::
can

:::::::::
potentially

:::::::
diverge

::::
from

::::
the

::::
exact

::::
one

::::
from

::
a
:::::
large

::::::
amount

:::
up

::
to

:::
the

:::::
point

::::
that

:
it
::::::
cannot

:::
be

:::::::::
considered

::
a

:::::::
relevant

::::::::::::
approximation

::
of

:::
the

::::::::::
continuous

:::::::
solution,

:::::
even

::
if

:::
the

::::::::
numerical

:::::::::::
perturbation

:::::
arises

:::::
from

::::::
initially

:::::
small

:::::::::
numerical

:::::
errors.

:

3
:::::::::
Numerical

::::::::::
instabilities

:::::::
arising

::::
from

::::
the

:::
non

::::::
linear

::::::::
coupling

::
of

::::::::
overland

::::
flow

::::
and

::::::::
sediment

::::::::
dynamic590

::
To

::::::::
illustrate

::
the

:::::::::
numerical

:::::
issues

::::::
linked

::
to

:::
the

::::::::::::::
self-amplification

::
of

:::::::
initially

:::::
small

::::::::
numerical

::::::
errors,

:::
we

:::::::
consider

::
in

::::
this

::::::
section

::::::
several

::::::::
situations

:::::
where

:::
we

::::
have

::::::
either

:::
the

:::
full

:::::::::
knowledge

:::
of

:::
the

::::
exact

:::::::
solution

:::
or

:
a
:::::::
criterion

:::
to

:::::::::
distinguish

::
it

::::
from

::::::::
incorrect

::::::::
solutions.

::::::
Thanks

::
to

:::::
those

::::::::::
information

:::
on

:::
the

::::
exact

::::::::
solution,

:::
we

:::
can

::::::::
illustrate

:::
the

:::::::
stability

:::::
issues

::
of

::::::::::
simulations

:::::
using

::::::
model

(??)
:
-(??)

:
-(??)

:::::::::
(discretized

:::
by

:::
the

::::
finite

:::::::
volume

::::::
scheme

:::::::
detailed

::
in

::::::::
appendix

::::
??).

3.1
::::::::::

Instabilities
:::
for

:::::::
analytic

::::::::
solutions595

::
In

:::
this

:::::::::
subsection

:::
we

:::::::
consider

::::::::
stationary

:::::::
analytic

::::::::
functions

::
of

:::
the

:::::
form:

δ =

√
2

2 +
√

2
∆xy and γx = γy =

√
2

2 +
√

2
,

∣∣∣∣∣∣∣∣
hexs (x,y) = hs,x(x) +

Nb∑
p=1

gb

(
x−xp
δx

,
y− yp
δy

)
,

hexw (x,y) = hw,x(x),

implying that
:::::::::::
incorporating

:::
Nb:::::

small
::::::
smooth

::::::
bumps

::::::::
randomly

:::::::::
positioned

::
at

:::::
points

:::::::
(xp,yp)::::::

chosen
::::
such

::::
that

::::
they

::
do

::::::::
interfere

::::
with

::
the

:::::::::
boundary

:::::::::
conditions,

::::
with

:::
the

::::::
smooth

:::::
bump

:::::::
function

:::::
given

:::
by:

δ

(∆x2 + ∆y2)1/2
gb(x,y)
::::::

=
1

2 +
√

2
and

γx∆x

∆y
gb(r

2)
:::::

=

√
2

2 +
√

2
and

γy∆y

∆x
=

√
2

2 +
√

2
,

∣∣∣∣∣∣∣
Hpert exp

( −γ
1− r2

)
exp(γ) for r2 = x2 + y2 ≤ 1,

0 otherwise .

600

thus the diagonal transmissivities differ from the non-diagonal ones by the factor 1/
√

2 which corresponds to the D8, Rho8

and most MFD algorithms. To recover the FD8/TOPMODEL noticing that the L1 and L2 non diagonal and diagonal “face

measures” of this MFD algorithm satisfy L1 = ∆xy/2 :::
with

::
in

:::::::
practice

::::::
Nb=5,

::::::::::
Hpert=0.03

:::
m,

:::::
γ=10

:
and L2 =

√
2

4 ∆xy , we

recover the same weighting within our notations by setting

δ =

√
2

4
∆xy and γx = γy =

1

2
,605
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which is compatible with as in this case :

(1− γx)

2δ
∆x=

(1− γy)

2δ
∆y =

1√
2

=
∆x

(∆x2 + ∆y2)1/2
=

∆y

(∆x2 + ∆y2)1/2
.

Finally denoting:

∆Hm,ni,j = max(0,hs,i,j + bi,j −hs,m,n− bm,n),

in table ?? we recast the most classical MFD algorithms using our notations, with pw = 0 for all the presented methods. For610

the Rho8 method (?),the ρ8 parameter is a random number generated for each face, while for the MFD-md (?), the parameter

e is the maximum downslope gradient and f(e) = 8.9min(e,1) + 1.1.

This reinterpretation calls for several comments.The main one is that the node-to-node situation is no better than the

cell-to-cell one: q̃i,j will be as non consistent,non convergent and thus strongly mesh dependent than its cell-to-cell counterpart.The

node-to-node routing is indeed simply a cell-to-cell routing on a dual mesh, with a more involved cell boundary decomposition.615

The quantity q̃i,j should not be used to couple with sediment evolution, one should instead reconstruct a consistent water flux

vectorQi,j for instance by setting:

Qi,j =
∑

(m,n)∈N (i,j),hs,i,j+bi,j>hs,m,n+bm,n

τm,ni,j q̃i,j

|Ki,j |si,j
(hs,i,j + bi,j −hs,m,n− bm,n)(xm,ni,j −xKi,j )−

∑
(m,n)∈N (i,j),hs,i,j+bi,j<hs,m,n+bm,n

τm,ni,j q̃m,n

|Ki,j |sm,n
(hs,m,n + bm,n−hs,i,j − bi,j)(xm,ni,j −xKi,j )620

where:

xm,ni,j =

∣∣∣∣∣∣∣∣
1

2
(xKi,j +xKm,n) if (m,n) ∈ {(i, j− 1),(i, j+ 1),(i− 1, j),(i+ 1, j)}

1

|σnm|+ |σmn |
(
|σnm|xσnm + |σmn |xσmn

)
otherwise

and then use qi,j = ||Qi,j || which again can be considered as an easy to implement post-processing consistency correction

step.The second one is that it is clear that contrary to what is done in some flow routing algorithms of the literature, the chosen

value for km,σ should be a discretization of an inverse of acontinuous roughness with amore or less physical interpretation.625

Apart from the unavoidable sampling induced by the mesh, it should be as mesh independent as possible and in particular

should not depend on cell orientations. The single flow direction D8
:::::::::
δx=δy=0.25

::::
km.

:::
The

:::::::::
numerical

::::::
domain

::
is

:::::::::
rectangular

::::
and

:::::::
centered

::
at

:::::
(0,0)

::::
with

:::
the

:::::::::
dimensions

:::::::
Lx= 1

:::
km

::
in

:::
the

::
x

:::
axis

::::
and

::::::
Ly = 5

:::
km

::
in
:::

the
::

y
::::
axis,

:
and Rho8 methods reinterpreted

this way introduce a coefficient km,σ that is clearly mesh dependent and not the discretization of a continuous coefficient.

This will consequently increase the mesh dependency of the overall method.The two point flux approximation (TPFA) is of630

course not the only possible approximation for the terms (∇(hs + b))σi±1,j±1
·
∫
σi±1,j±1

n. In particular, if one reconstructs an
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approximation Ĝs,σ of the full topographic gradient along each face σ, then it can be used to compute an approximation of the

flux. We denote it Ĝs,σ to distinguish it from the reconstruction Gs,σ used to approximate the non-linear dependency in the

slope, as the two can be different. In this case, becomes:

|σm,n|(∆Hm,ni,j )q∑
m′ ,n′∈N (i,j)

|σm′ ,n′ |(∆Hm
′
,n
′

i,j )q
and ∆Hm,ni,j = max

0,Ĝs,σm,n ·
∫

σm,n

nKi,j

 .635

Then, more flow routing algorithms of the literature can be rewritten this way. In particular, choosing γx = γy = 0 or 1 we

can easily recover the flux decomposition method (Desmet et al. 1996 ?) and a variation of the MD∞ method (Seibert et al.

2007 ?). The flux decomposition method chooses a single value for Ĝs,Ki,j for each cell,
::
the

::::::::
basement

::
b
::
is

:::
set

::
to

::::
zero.

::::
We

::::::
impose

:::::::::::
homogeneous

::::::::
Dirichlet

::::::::
boundary

:::::::::
conditions

:::::::
(hs = 0)

:::
on

::
the

::::::::::
boundaries

::::::::::
x=−Lx/2

:::
and

:::::::::
x= Lx/2

:::
and

::::::::::::
homogeneous

::::::::
Neumann

::::::::
boundary

:::::::::
conditions

:::::::::
(∂yhs = 0)

:::
on

:::
the

:::::::::
boundaries

::::::::::
y =−Ly/2 and then loop over cells and set Ĝs,σ = Ĝs,Ki,j for640

the faces of the current cell that have not already been handled through a previous cell in
::::::::
y = Ly/2

::
as

:::::::::
illustrated

::
on

::::::
figure

:::
??.

::
We

:::
use

:::
for

:::
the

:::::::::::::::
monodimensional

::::::::
functions

::::::::::
(hs,x,hw,x)

:::
the

::::::::
stationary

:::::::
solution

:::
of

:::::
model

:
(??)

:
-(??)

:
-(??)

::
in

:::
the

::::
case

::::::
ηs = 1

y

x

z

Ly

Lx

∇hs · n = 0

∇hs · n = 0

hs = 0

hs = 0

Figure 3.
::::::
Domain

::::::::::
configuration

:::
for

::
the

:::::::
analytic

:::
tests

::::
cases

::::
given

:::
in

:::::::
appendix

:::
??

::::
that

:::::::
satisfies

:::
the

::::::::
boundary

:::::::::
conditions.

::::
For

::
all

:::
our

:::::::::::
simulations, the loop. The MD∞ methods computes

Ĝs,σ for each face using a triangular reconstruction of the slope: to be precise, with our notations Ĝs,σ is for face σm,n half

the sum of the two triangular gradients computed in ? that can contribute to σm,n. We say that this is a variation of ? as it645

is unclear whether they use the normal component of the gradient as we do here or the full norm of
:::::::
constant

::::::
source

:::::
terms

:::::::::
(Ss,x,Sw,x)

:::
for

:
the gradient in their flow sharing formula. Other flow routing algorithms than do not seem to easily enter this

framework are also available in the literature.We mention in particular the ANSWERS (?), DEMON (?)and Lea’s method (?)

, that are all based on a local planar approximation of the topography and use either a multiple or single direction flow sharing
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formula based on purely geometric considerations.The D∞ method (Tarboton 1997 ?)strongly looks like the SFD method at650

first sight, however because the flow sharing formula used when
::::::
analytic

:::
the

::::::::
stationary

:::::::
solution

::::::::::
(hs,x,hw,x)

::
in

:::
the

::::
case

::::::
ηs = 1

:::
(see

::::::::
appendix

:::
??

:::
for

::::::
details)

:::
are

::::::
always

:::::
equal

::
to

:::
(10

::::::::
m.My-1,1

:::::::::::
m3.s-1km-2).

:::::::
Injecting

::::::::
(hs,hw)

:::
into

:
(??)

:
-(??)

:
-(??)

:
,
::::
after

:::::
some

::::::::::::
straightforward

::::
but

::::::
tedious

::::::::::::
computations

:::
one

::::
can

:::::
derive

:::::
exact

::::::::::
expressions

:::
for

::::
the

::::::::::::
corresponding

::::::
source

:::::
terms

::::::::::
(Sexs ,S

ex
w ),

::::::
making

::::
the

::::
pair

:::::::
(hs,hw)

::
an

:::::::
analytic

:::::::
solution

::
of

:::
our

::::::
model

:::
for

::::
those

::::::
source

::::::
terms.

:::::
Given

:::::
those

:::::::
analytic

:::::
source

::::::
terms,

:::::::::
initializing

:::
the

::::::::
sediment

:::::
height

:::
to the steepest direction is not aligned with meshdirection655

is based on angular considerations similar to those of ANSWERS and DEMON, it is not immediately obvious how to relate

the D∞ method to a continuous model. Finally, let us mention that many variations around the classical algorithms have been

explored since their first publications leading for instance to some generalization to triangular meshes ??. We refer the reader

to ??? and references therein for a broader review on flow routing algorithms and their numerical behavior.

4 Large structures simulation for numerical instabilities free landscape evolution models660

In this section, after illustrating the numerical problems arising when non-linearly coupling water flow and sediment evolution

on an easy to analyze synthetic test case, we explain how to transpose the ideas underlying the concept of large eddy simulation

from the computational fluid dynamics community to our landscape evolution model. In our opinion, this is a key ingredient

for achieving reproducible LEM simulations. All the simulations shown in the following sections are performed using the

ArcaDES platform (?) (although ArcaDES is mentioned for the first time in a scientific paper, it is used since 2015 in the665

stratigraphic numerical forward model DionisosFlow™ initially developed by ?).

3.1 Model description

At first let us mention that all the observations, conclusions and recommendations coming from this section are not linked to

any specific sediment evolution model and should in principle apply to any coherent sediment model satisfying (H1) , (H2)and

(H3) . In the present paper we have chosen to focus on the sediment model that has already been discussed in detail in ????:670

Js =−ηs(hs)s−psref ||∇(hs + b)||ps
((

qw
qref

)rs
∇ψw(hs + b) +∇ψg(hs + b)

)
in Ω×]t0,T [,

where rs > 0 and ps > 0 are model parameters, qw is the water flux obtained from
:::::::
analytic

::::
value

:::::::::::::::::::
hs(x,y,0) = hexs (x,y)

::::
and

::
the

::::::
water

:::::
height

::
to

:::
the

:::::::
analytic

:::::
value

::::::::::::::::::::
hw(x,y,0) = hexw (x,y)

:::
the

:::::
exact

:::::::
solution

::
of

::::::
model (??)-(??)-(??)

:
is
:::

of
::::::
course

::::::
simply

::::
equal

::
to
:::::::::
(hexs ,h

ex
w )

:::
for

::
all

::::::
times.

:::::
Thus,

:::
any

:::::::::
reasonable

:::::::::
numerical

::::::
solution

::::::
should

::::::
remain

::
a
::::::
correct

::::::::::::
approximation

::
of

:::::::::
(hexs ,h

ex
w )

::
for

:::
all

:::::
times.

: :
675

:::::
Using

:::
the

:::::
finite

::::::
volume

::::::::::::
discretization

::::::::
described

::
in

::::::::
appendix

:::
??

:::
on

:
a
::::::::
cartesian

:::::
mesh

::::
with

::::::
square

::::
cells

:::
for

::::::
which

:::
we

::::::
denote

::::
∆xy :::

the
:::
size

:::
of

:::
the

:::::
edges

::
of

::::
the

:::::::
cartesian

:::::
cells,

:::
we

:::::::
attempt

::
to

:::::::::
reproduce

:::
the

::::::::
stationary

:::::::
analytic

::::::::
solution

::
by

::::::::::
initializing

:::
the

::::::
system

::
to

::::::::::::::::::::::::::::::::::::::
(hs(x,y,0),hw(x,y,0))=(hexs (x,y),hexw (x,y))

:::
and

:::::
using

:::
the

:::::::
analytic

:::::
source

:::::
terms

::::::::::
(Sexs ,S

ex
w ),

:::
for

::::::
various

::::::
values

::
of

::
the

::::::::::
parameters

:::
kg ,

:::
kw ::

rs::::
and

:::
ps. :::

The
:::::::::
simulation

::::
total

:::::
time

:
is
:::::

0.25
:::
My,

::::
and

:::
we

:::
use

::::
time

:::::
steps

::
of

:::::::::
maximum

:::::
length

:::::::::
∆t=0.002
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0.0 m 0.2 m0.1 m

::
(a)

: ::
(b)

: ::
(c)

:

Figure 4.
:::::::
Sediment

:::::
height

:::
hex
s ::

of
:::
the

::::::
analytic

::::::
solution

:::
for

::
the

::::
case

:::::
kg=50

::::::::
km2.My-1

:::
and

::::
kw=1

::::::::
km2.My-1.

::
a:

::::
rs=1,

:::::
ps=0,

::
b:

:::::
rs=3/2,

:::::
ps=1,

::
c:

::::
rs=2,

::::
ps=0

0.0 m 0.2 m0.1 m

::
(a)

: ::
(b)

: ::
(c)

:

Figure 5.
:::::::
Sediment

:::::
height

:::
hex
s ::

of
:::
the

::::::
analytic

::::::
solution

:::
for

:::
the

:::
case

:::::
kg=5

:::::::
km2.My-1

:::
and

:::::
kw=1

::::::::
km2.My-1.

::
a:

::::
rs=1,

:::::
ps=0,

:
b:
::::::
rs=3/2,

:::::
ps=1,

::
c:

::::
rs=2,

::::
ps=0

:::
My.

::::
The

::::::::::::
corresponding

:::::::
analytic

:::::::
solutions

:::
are

:::::::::
presented

::
on

::::::
figures

:::
??,

:::
??,

:::
??

:::
and

:::
??

::
for

:::
the

::::::::
different

:::::
values

::
of

:::
the

::::::::::
parameters680

::
kg , qref ::

kw:::
rs and sref are dimensional factors, and ηs is a dimensionless sediment mobility function such that:

0≤ ηs(u)≤ 1 and ηs(0) = 0,
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::
(a)

: ::
(b)

: ::
(c)

:

Figure 6.
:::::::
Sediment

:::::
height

:::
hex
s ::

of
:::
the

::::::
analytic

::::::
solution

:::
for

:::
the

:::
case

:::::
kg=5

:::::::
km2.My-1

:::
and

:::::
kw=5

::::::::
km2.My-1.

::
a:

::::
rs=1,

:::::
ps=0,

:
b:
::::::
rs=3/2,

:::::
ps=1,

::
c:

::::
rs=2,

::::
ps=0

0.0 m 0.2 m0.1 m

::
(a)

: ::
(b)

: ::
(c)

:

Figure 7.
:::::::
Sediment

:::::
height

:::
hex
s ::

of
:::
the

::::::
analytic

::::::
solution

:::
for

:::
the

:::
case

:::::
kg=1

:::::::
km2.My-1

:::
and

:::::
kw=5

::::::::
km2.My-1.

::
a:

::::
rs=1,

:::::
ps=0,

:
b:
::::::
rs=3/2,

:::::
ps=1,

::
c:

::::
rs=2,

::::
ps=0

whose main role is to ensure that the sediment height hs remains positive. In the following we use:

ηs(u) =

∣∣∣∣∣∣∣
1− h∗

u+h∗
if u≥ 0,

0 otherwise
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::
(a)

: ::
(b)

: ::
(c)

:

Figure 8.
:::::::
Sediment

:::::
height

:::
hex
s ::

of
:::
the

::::::
analytic

::::::
solution

:::
for

::
the

::::
case

::::
kg=1

::::::::
km2.My-1

:::
and

:::::
kw=50

::::::::
km2.My-1.

::
a:

::::
rs=1,

:::::
ps=0,

::
b:

:::::
rs=3/2,

:::::
ps=1,

::
c:

::::
rs=2,

::::
ps=0

with h∗::
ps:::

we
::::
have

::::::::::
considered.

:::
All

::::
those

::::::::::
simulations

::::
have

:::::
been

::::::::
performed

::
in
:::::::
parallel

::
on

::::
108

:::::::::
processors

:::::::
through

::
the

::::
use

::
of

:::
the685

::::
MPI

::::::
library.

::
On

::::::
figure

:::
??,

:::
we

::::::
present

::::
the

:::::::
obtained

:::::::::::
convergence

::::::
curves

:::
for

::
all

:::
the

::::::
tested

:::::::
analytic

::::::::
solutions,

:::
i.e.

:::
we

::::
plot

:::
the

::::::::
standard

:::
L2

::::
error

:::::::::
measuring

:::
the

::::::::
difference

:::::::
between

:::
the

::::::::
simulated

::::::::
sediment

::::::
height

:::
and

:::
the

:::::
exact

::::::
analytic

::::::::
sediment

::::::
height.

:::
We

:::
see

:::
on

:::::
figure

::
??

::::
that

:::
for

::
all

::::::::::::
configurations

::::::
except

:::
the

::::
case

::::
(kg=1 cm. We consider here the most common form for functions ψw and ψg

corresponding to:690

ψw(u) =

u∫
0

kw(v)dv and ψg(u) =

u∫
0

kg(v)dv,

where
:::::::::
km2.My-1, kwand kg are diffusion coefficients such that :

0≤ k−g ≤ kg(u)≤ k+
g <+∞ and 0≤ k−w ≤ kw(u)≤ k+

w <+∞,

in such a way that:

∇ψw(hs + b) = kw(hs + b)∇(hs + b) and ∇ψg(hs + b) = kg(hs + b)∇(hs + b),695

so that the sediment flux follows the topographic slope ∇(hs + b). This sediment flux model is implemented in our modeling

platform ArcaDES (?) (although ArcaDES is mentioned for the first time in a scientific paper, it is used since 2015 in the

stratigraphic numerical forward model DionisosFlow™ initially developed by ?). Both soil erosion and sediment deposition are

considered. As ArcaDES is tailored for large time and space scales simulations, this is the reason why we have chosen to express
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Figure 9.
:::::::::
Convergence

::::::
curves.

::
a:

:::
case

::::::
kg=50

:::::::
km2.My-1

:::
and

:::::
kw=1

::::::::
km2.My-1.

::
b:

::::
case

::::
kg=5

::::::::
km2.My-1

:::
and

:::::
kw=1

::::::::
km2.My-1.

::
c:

:::
case

:::::
kg=5

:::::::
km2.My-1

:::
and

:::::
kw=5

::::::::
km2.My-1.

:
d:
::::
case

::::
kg=1

::::::::
km2.My-1

:::
and

::::
kw=5

::::::::
km2.My-1.

::
e:

::::
case

::::
kg=1

:::::::
km2.My-1

:::
and

::::::
kw=50

:::::::
km2.My-1
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Table 1.
::::::::::
Approximate

::::::::
maximum

::::::
analytic

::::
value

::
of

::::::::::::::
τ = kw

kg

(
qw
qref

)rs

::
for

::::
each

:::::::::
convergence

:::
test

:::::::::
(rs=1,ps=0)

::::::::::
(rs=3/2,ps=1)

: :::::::::
(rs=2,ps=0)

:::::::::::
(kg ,kw)=(50,1)

:::::::
km2.My-1 .km-1 and thus we naturally set qref :::

0.01
:::::
0.00353

:::::
0.0025

::::::
(kg ,kw)=

::
(5,1m3.s

:
)
::::::
km2.My-1 .km-1. The natural unit of coefficients

::
0.1

:::::
0.0353

::::
0.025

:
(kgand

:::::::
,kw)=(5,5)

::::::::
km2.My-1

::
0.5

::::
0.353

:::
0.25

:::
(kg ,kwis km

:::::
)=(1,5)

::::::::
km2.My-1

::
2.5

::::
1.767

: :::
1.25

:::::::::::
(kg ,kw)=(1,50)

:::
km2.My-1 , with the reference slope again set to sref ::

25
::::
17.67

: :::
12.5

the xy coordinates in kilometers (km), time in million years (My), sediment height hs and basement b in meters (m). Thus the700

unit of sediment sources will be meters per million years (m.My
:
=

::
50

::::::::
km2.My-1). Since we have chosen to use Qw = qw with

qw the water flux from , the unit for the water discharge qw is m3. s
:
),

:::
we

::::::
obtain

:::::
clean

:::::::::::
convergences

::::::
curves,

:::::::::
assessing

:::
the

:::::::::
correctness

::
of

:::
our

:::::::::
numerical

::::::
scheme

:::::
even

::
for

:::
the

:::::::::
non-linear

:::::::::
couplings.

:::::::
However,

:::
for

:::
the

::::
case

:::
(kg=1 m.km

::::::
km2.My-1.

3.1 Numerical issues with non linear coupling of overland flow and sediment erosion and transport

From ?, we know that for sublinear to linear coupling, i.e. rs ≤ 1 no chaotic behavior is expected, as is confirmed by numerical705

experiments. However as soon as rs > 1 ,
:::::
kw=

::
50

::::::::::
km2.My-1)

:::
the

:::
two

:::::::::
non-linear

:::::::::
couplings

::::::::::::
(rs=3/2,ps=1)

:::
and

:::::::::::
(rs=2,ps=0)

:::
fail

::
to

::::::::
converge.

::::::::
Looking

::
at

::::
table

:::
??

::::::
where

:::
we

:::::::
regroup

:::
the

:::::
value

::
of

::
τ

:::
for

::::
each

::::
test

::::
case

:::::
using

:::
the

:::::::::
knowledge

:::
of

:::
the

:::::
exact

:::::::
solution,

:::
we

:::
see

:::
that

:::::::::::
convergence

::::::::
problems

::::::
appear

::
as

::::::::
expected

::::
when

::
τ
::::::::
becomes

:::::
large.

::::::
Indeed,

:::::
since

:::
the

::::
error

::::::::
increases

:::::
when

::
we

::::::
refine

:::
the

:::::
mesh,

::::
this

::::
error

::
is

:::
not

:
a

::::::::::
discretization

::::::::::
consistency

:::::
error

::
as

::::::::
moreover

:::
all

:::
the

:::::
other

:::
test

:::::
cases

:::::::
validate

::::
both

::::
our

:::::::::::::
implementation

:::
and

::::::::::::
discretization.

:::
On

::
the

::::::::
contrary

:
it
::::::::
increases

::::
with

:::
the

:::
size

::
of
:::
the

:::::::::
numerical

:::::::
systems,

:::::
which

:::::::
strongly

::::::::
suggests710

:::
that

::
it

::::::::
originates

:::::
from

:::::
solver

:::::
(both

:::::
linear

::::
and

::::::::::
non-linear)

:::::
errors,

::::
and

:::
this

::::::::
perfectly

:::::::::
illustrates

:::
the

:::::::::::
phenomenon

::
of

:::::::::
numerical

:::::
errors self-amplification mechanism is expected leading to highly non linear behaviors and complex topographies. This is

precisely the domain we explore in this section.
:::
that

:::
we

:::::
have

::::::::
discussed

:::::
from

:::
the

:::::::::
theoretical

::::
point

:::
of

::::
view

::
in

:::
the

:::::::
section

:::
??.

:::::::
Another

:::::
reason

:::
for

::::::
which

::::::::
problems

:::
are

::::::::
probably

:::::
more

::::::
severe

::::
with

::::
finer

:::::::
meshes

::
is

:::
that

:::::::::
numerical

::::::::
diffusion

::::::
which

::
is

:::::
much

::::::
smaller

::::
than

:::
the

::::
true

:::::::
physical

::::::::
diffusion

::
in

::::
view

:::
of

:::
the

:::::
values

:::
of

::
kg:::::

adds
::::::::::
nevertheless

:::::::
enough

::::::::
additional

:::::::::
smoothing

:::
for

:::::
large715

:::::
values

::
of

::::
∆xy::

to
::::::::
dissipate

::::
large

:::::
parts

::
of

:::
the

::::::::
numerical

:::::
errors

:::::
while

::::
this

::
is

::
no

::::::
longer

:::
the

::::
case

::
for

:::
the

:::::
finer

::::::
meshes.

::::
Now,

::
to

::::::::
illustrate

::::
how

::::::::::
treacherous

:::::
those

::::::::
numerical

::::::::
solutions

:::
are,

:::
we

:::::::
present

::
on

::::::
figures

:::
??

:::
and

:::
??

::
a

:::::::::
comparison

::::::::
between

:::
the

::::::
analytic

:::::::
solution

::::
and

::
its

::::::::
erroneous

:::::::::
numerical

::::::::::
counterpart.

::

:::
The

::::::::
erroneous

::::::::
solutions

:::
are

::::::::::
dangerously

:::::
“good

::::::::
looking”:

:::::::
indeed,

:
if
::::
only

:::
the

:::::
initial

::::::::::
topography

:::
and

:::
the

::::
rain

:::
and

:::::::::
production

::::
data

::
are

:::::::
shown,

:::
one

:::::
could

:::::
easily

:::
be

:::::::
tempted

::
to

:::::::
interpret

:::
the

::::
quite

::::::::
complex

:::::::::::
topographies

:::::::
obtained

::
as

:::
the

:::::::
realistic

:::::::::::::::
self-amplification720

::
of

:::
the

:::::::::::
perturbations

:::
due

::
to

:::
the

::::::::
presence

::
of

:::
the

::::::
bumps.

::::::::
However

:::::
since

:::
we

:::::
know

:::
the

::::
exact

::::::::
solution,

:::
we

:::
are

::::
sure

:::
that

::::
this

::
is

:::
not

::
the

:::::
case:

:::
the

::::::::
appealing

:::::::::
numerical

::::::::
solutions

:::
are

:::::::::
completely

:::::::
wrong.

:::
The

:::::::
overall

:::::::::::
“geologically

::::::::
realistic”

::::
look

::
of

:::
the

:::::::::
erroneous
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Figure 10.
::::::::

Comparion
::::::
between

:::
the

:::::::
sediment

:::::
height

::::
hex
s ::

of
::
the

:::::::
analytic

::::::
solution

:::
and

::::::::
numerical

:::::::
solution

::
hs:::

for
:::
the

:::
case

:::::
kg=1

::::::::
km2.My-1,

:::::
kw=50

::::::::
km2.My-1,

:::::::
rs = 3/2

:::
and

:::::
ps=1.

:
a:
:::::::
Analytic

::::::
solution

::::
hex
s ,

::
b:

:::::::
numerical

:::::::
solution

::
hs

0.0 m 0.2 m0.1 m

::
(a)

: ::
(b)

Figure 11.
::::::::

Comparion
::::::
between

:::
the

:::::::
sediment

:::::
height

::::
hex
s ::

of
::
the

:::::::
analytic

::::::
solution

:::
and

::::::::
numerical

:::::::
solution

::
hs:::

for
:::
the

:::
case

:::::
kg=1

::::::::
km2.My-1,

:::::
kw=50

::::::::
km2.My-1,

:::::
rs = 2

:::
and

:::::
ps=0.

::
a:

::::::
Analytic

::::::
solution

::::
hex
s ,

::
b:

::::::::
numerical

::::::
solution

::
hs
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::::::
solution

::::::
comes

:::::
from

:::
the

:::
fact

::::
that

::::::::
numerical

:::::
noise

::
is

::::::::
amplified

:::
not

:::
by

:::::
some

::::::::
numerical

:::::::
scheme

:::::::::
deficiency

:::
but

::
by

:::
the

::::::::
capacity

::
of

:::
our

::::::::::
continuous

:::::
model

::
to
:::::::

amplify
::::::::::::

perturbations
:::
that

:::
we

:::::::::
described

::
in

:::
the

::::::::
previous

:::::::
section.

::
In

:::::
other

::::::
words,

:::
the

:::::::::
numerical

::::
noise

::
is

::::::::
reworked

:::
by

::
the

:::::::
system,

::::::
giving

:
a
:::::::::
“realistic”

::::
look

::
to

::
it.

::::
This

::
is

:::
the

:::::
reason

::::
why

:::
we

:::::
stress

::::
that

::::
when

::::::::::
performing

:::::::
real-life725

:::::::::
simulations

:::
for

::::::
which

::
of

::::::
course

:::
the

::::::
correct

:::::::
solution

::
is

::::::::
unknown

::::::::
(otherwise

:::
we

::::::
would

:::
not

::::
need

::
to
::::::::

simulate
:::::::
anything

::
at
::::
all),

::
it

:::
can

:::::::
become

::::
very

::::
hard

::
to

::::::
decide

:
if
::::

the
::::::::
numerical

::::::
results

:::
are

::::::
correct

::
or

:::::::
blurred

::
by

:::::::
realistic

:::::::
looking

::::::::
amplified

::::::::
numerical

::::::
noise.

:::
The

::::::
quality

::
of
::::

the
::::::::
numerical

:::::::
scheme,

::::::::
although

::::::::
essential,

::
is

:::
not

::
in

::::::::
question:

:::
the

::::
issue

::
is
:::
the

:::::::::::::::
self-amplification

::::::::::
mechanisms

:::
of

::
the

::::::::::
continuous

::::::
model.

:::::
They

:::
are

:::
the

::::::
reason

:::
for

::
its

:::::::
physical

:::::::
interest

:::
but

:::::::::::::
simultaneously

::
its

:::::
main

:::::
issue

::
for

::::::::::
performing

:::::::
reliable

::::::::::
simulations.730

3.1
:::::::::
Identifiable

:::::::::::
instabilities

::
in

:
a
::::
non

:::::::
analytic

::::
case

As mentioned in the introduction , in the absence of
::
and

::::::
above,

:::
in

:::
real

:::::::::::
applications

:::
one

::::
does

::::
not

::::
have

::
a reference analytic

solution
:::
and

:
it is in general hard

::
on

::::::::
complex

:::::::::::
topographies to decide whether a numerical solution of (??) is correct or not.

To
:::::::
illustrate

::::
how

:::
one

::::
can

:::::::::
sometimes partially circumvent this difficulty, we consider a simple synthetic topographic surface

defined by three constant slope planes. The numerical domain is rectangular with the dimensions Lx= 400 km in the x axis735

and Ly = 300 km in the y axis (see Fig. ??-a,??-b). The mesh size is
::
We

:::
use

:::::
again

:
a
::::::::
cartesian

:::::
mesh

::::
with

:::::
square

:::::
cells,

:::
the

:::::
edges

::
of

::::
each

:::
cell

:::::
being

:::
of

:::::
length

:
∆xy = 2 km. The gravity diffusion coefficient kg is equal to 100 km2.My-1 in the whole domain

while kw = 10 km2.My-1 for hs + b≥ 0 and kw = 0.1 km2.My-1 for hs + b < 0, corresponding to a modulation of the water

induced transport in a fictitious marine domain. Water is supplied by three constant water-flux sources located at the domain

boundary (black arrows in Fig. ??-a), so we call this “three rivers” test case. Each water source is 12 km large and supplies740

1200 m3s-1 of water.

An essential remark is that the whole configuration is symmetrical
:::::::::
symmetric

:
with respect to the vertical plane x= Lx/2

:
,

::::::::
including

:::
the

:::::::
cartesian

:::::
mesh

::::
used

:::
for

::::
this

:::::::::
simulation. In principle, the equation system consisting of (??) and (??), here used

with rs = 2, ps = 1, pw=0 and km=1 m.s-1 should maintain this symmetry. Therefore symmetry will be our main tool to

evaluate solution quality
::::
Since

:::
we

::
do

:::
not

:::::
know

::::
this

::::
time

:::
the

::::
exact

::::::::
solution,

::
at

::::
least

:::
we

:::
can

:::
use

:::::::::
symmetry

::
to

::::::
identify

:::::::::
erroneous745

:::::
results

::::
that

::
do

::::
not

:::::
fulfill

:::
this

::::::::::
elementary

::::::::::
requirement. Using the finite volume scheme depicted in section ??which for water

flow corresponds to using the consistent water flux obtained from , we perform a set of three identical simulations in terms of

physical parameters but using different numerical settings in order to illustrate the impacts of numerical errors.
:::
For

:::::::::
simplicity,

::
the

::::::::
cartesian

:::::
mesh

::::::
shares

:::
the

::::::::
symmetry

:::
of

:::
the

:::::::
problem,

:::
to

:::::
avoid

:::
any

:::::::::
additional

::::::::
symmetry

:::::::::::::
approximation

::::
error.

:
We perform

a sequential computation using GMRES as linear solver for all systems, its parallel equivalent on 4 processors and another750

sequential simulation using BiCGStab as linear solver for all systems. The linear solvers are part of the well-known and

reference PETSc library (?) to avoid any potential mistake in their implementation, while the parallelism relies on the Arcane

framework (?). Final topographies and water flux are shown on the bottom row of Fig. ??. Figure ??-c corresponds to sequential

GMRES, Fig. ??-d to parallel GMRES and Fig. ??-e to sequential BiCGStab.

All the results from these simulations should be almost identical and in any case symmetrical with respect to the vertical plane755
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Figure 12. The “three rivers” test case with ∆xy=2 km. a-b : Initial topography, black arrows represent the position of the water inflows.

Bottom row : topography and water flux after 6 My obtained under different numerical settings. c: sequential GMRES, d: parallel GMRES,

e: sequential BiCGStab

x= Lx/2 in absence of any spatial heterogeneity in the input data. Clearly, symmetry is lost in the three cases and what is even

more striking is that we get three very different results. The only difference between the three cases being the numerical solvers,

this indicates that this has originated from numerical errors. As we are using a decoupled time scheme between water flow and

sediment evolution (see section ??), one may argue that those instabilities are arising from some violated coupling constraint

on the time step. Should this be the case, reducing the time step enough would ultimately lead to clean solutions. However, we760

have observed the exact opposite: the smaller the time step is, the larger are the obtained instabilities. The fact that reducing the

time step makes things even worse is thus another clear sign that our problems are the result of amplified error accumulation .

Finally if the same experiments are performed with rs ≤ 1 then this time the symmetry is maintained and all three solutions are

almost identical however small the time step might be, which clearly indicates that the non-linearity of the coupling for rs > 1

is responsible of the observed chaotic behavior. Our interpretation is that small numerical perturbations are rapidly amplified765

by the model up to the point that they become of the same order of magnitude that the originally dominant part of the solution,

and do influence
:
it
:::::::::
influences flow branching. From the modeling perspective the model behaves as expected in the sense that

small perturbations are amplified and strongly impact the final result. However in our simulations no heterogeneity is present

in data thus this phenomenon should not spontaneously occur: the non-physical numerical errors are amplified up to the point

that the numerical solution is no longer a reasonable approximation. This clearly also implies that the numerical schemes must770
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be as precise as possible to reduce the numerical noise. In particular it is mandatory to use our consistent MFD discretization

of rather than the non consistent flow routing algorithms of the literature

4
:::::
Large

:::::::::
structures

::::::::::
simulation

::::::
(LSS):

::
an

::::::::
attempt

::
to

:::
get

:::
rid

::
of

::::::::::
instabilities

::
in

::::::
LEMs

::
In

:::
this

:::::::
section,

:::
we

::::::
explain

::::
how

::
to

::::::::
transpose

:::
the

:::::
ideas

:::::::::
underlying

:::
the

::::::
concept

:::
of

::::
large

::::
eddy

:::::::::
simulation

:::::
from

:::
the

::::::::::::
computational

::::
fluid

::::::::
dynamics

:::::::::
community

::
to

:::
our

:::::::::
landscape

::::::::
evolution

::::::
model.

::
In

:::
our

:::::::
opinion,

:::
this

::
is

:
a
::::
key

::::::::
ingredient

:::
for

::::::::
achieving

:::::::::::
reproducible775

::::
LEM

::::::::::
simulations.

4.1 Principles and physical interpretation of filtering

Recall that the main idea of LES is to filter the solution to distinguish between the behavior of the flow above and below the

target length scale, to obtain local averages that are smoother and as mesh independent as possible. This target length scale

controls the size of the smallest structures that we will be able to resolve in the problem, quite independently of the domain780

size. The main practical consequence is that our mesh will have to resolve this length scale, i.e. the mesh size ε will have to be

smaller than the chosen length scale.

LES filters/models are probably as numerous as the various authors working on the subject (?), thus we will very brief on the

subject and refer the reader to a the quite recent review ?. The very first LES model is called the Leray-α model. It was used

by Leray in 1934 to establish existence of weak solutions to the Navier-Stokes equations (?). Originally, the filtering in ? as785

well as in many classical LES models was achieved by using a convolution operator F defined by:

F(u)(x) =

∫
Rd

u(y)gδ(x−y)dy, where gδ(x) =
1

δd
g
(x
δ

)
,

where the filter kernel g satisfies:

0≤ g(x)≤ 1, g(0) = 1,

∫
Rd

g(x)dx= 1.

Several kernels are used in the literature, such as a low-pass filter, a box-filter or the very natural Gaussian filter g(x) =790

π−d/2e−|x|
2

.

In figure ?? we illustrate the smoothing effect of a Gaussian kernel on an oscillating data: as expected, it preserves the high

amplitude and low frequency oscillation while filtering out the high frequency and low amplitude oscillations. Such filters

might therefore be ideal for our application to landscape evolution models: the small topographic perturbations will be cleaned

out such that the flow routing will not be affected by it. Although convolution operators produce averages with the desired795

properties, they are impractical on bounded domains. The modern way of defining the Leray-α filter for bounded domains
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Figure 13. Illustration of the effect of the convolution by a Gaussian function

consists in using the differential filter Fα defined by (??):∣∣∣∣∣∣∣∣∣∣
−α2∆Fα(u) +Fα(u) = u in Ω,

∇Fα(u) ·n= 0 on ∂ΩN ,

Fα(u) = 0 on ∂ΩD.

(17)

The filtered result Fα(u) basically amounts to a convolution of u by the underlying Green’s function (??), i.e. the filter applied

to the Dirac distribution. Using a finite volume scheme Fα we can this time easily obtain a discrete version Fα,h which800

is one of the main reasons why we have chosen to use this filter, along with its theoretical and practical success for CFD.

Notice that contrary to ??, we use homogeneous Neumann and Dirichlet boundary conditions instead of periodic boundary

conditions to simplify the treatment of the boundary. The main drawback of this choice is that our filter does not commute

with differential operators. Resorting to only Dirichlet boundary conditions would have solved this issue, however from our

numerical experiments we found that this can create boundary effects unless the chosen Dirichlet boundary condition is adapted805

to the filtered quantity. The Neumann choice avoids those difficulties without creating any practical issues, which has motivated

our choice. For quantities such as the water flux for which Neumann everywhere is a more natural boundary condition, we

introduce the alternative filter FNα with only Neumann boundary conditions:∣∣∣∣∣∣
−α2∆FNα (u) +FNα (u) = u in Ω,

∇FNα (u) ·n= 0 on ∂Ω.
(18)

4.2 Leray filtering applied to our landscape evolution model810

From the numerical observations that the model governing the simultaneous evolution of sediment and water seems
::
for

:::::
large

:::::
values

::
of

::
τ as intractable to solution as the Navier-Stokes system is

::
for

:::::
large

::::::::
Reynolds

:::::::
numbers, following the idea of LES we
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abandon the idea of resolving all the scales involved in the landscape evolution problem and will only try to simulate the large

sedimentary and water structures. In practice, this
:::
will

::::
now

:::::
apply

:::::::
filtering

::
to

::::
key

::::
parts

::
of

:::
our

::::::
model

:::::::
problem

::
to

::::::
obtain

:
a
:::::
more

::::::::::
numerically

:::::
stable

::::::::::
approximate

::::::
model.

::::
This

:
means that the sediment flux used in the mass conservation equations:815 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂hs
∂t

+ div (Js) = Ss in Ω×]t0,T [,

−Js ·n=Bs on ∂ΩN×]t0,T [,

hs = 0 on ∂ΩD×]t0,T [,

hs(t= t0) = hs,0 in Ω,

will now be given by:

Js =−ηs(hs)s−psref ||∇(hs + b)||ps
((FNα (qw)

qref

)rs
∇ψw(hs + b) +∇ψg(hs + b)

)
in Ω×]t0,T [, (19)

where we use the filtered water flux magnitude FNα (qw) instead of directly using the water flux qw. In the same way, in the

water equations, we will now use the filtered topography Fα(hs + b) instead of the topography hs + b, leading to:820 ∣∣∣∣∣∣
−div

(
kmhwηw(hw)s−pwref ||∇(Fα(hs + b))||pw∇(Fα(hs + b))

)
= Sw in Ω,

−kmhwηw(hw)s−pwref ||∇(Fα(hs + b))||pw∇(Fα(hs + b)) ·n=Bw on ∂Ω,
(20)

with the associated water flux:

qw = ||kmhwηw(hw)s−pwref ||∇(Fα(hs + b))||pw∇(Fα(hs + b))||. (21)

Our “reproducible”
:::::::
so-called

:
large structures simulation

:::::
(LSS)

:
for landscape evolution thus consists in solving (??)-(??)-(??)-

(??).
:::
The

:::::
name

::::::
“large

:::::::::
structures”

::::::::
originates

:::::
from

:::
the

:::
fact

::::
that

:::::
since

::
we

::::
use

:::::::
filtering

::
in

:::
the

:::::::
coupling

:::::::
process,

:::
the

:::::
water

::::::
model825

::::
does

:::
not

:::
see

::::::::
anymore

::::::::::
topographic

::::::
details

:::
that

::::
are

::::::
smaller

::::
than

:::
α,

:::
and

::
in
:::

the
:::::

same
::::
way

:::
the

::::::::
sediment

::::::::
evolution

::
is
:::
no

::::::
longer

::::::::
influenced

:::
by

:::::
water

::::
flow

::::::
details

::::::
smaller

::::
than

:::
α.

:::
We

::::
have

::::
thus

::::::::::
abandoned

:::
the

::::
idea

::
of

::::::::
resolving

:::
all

:::
the

:::::
scales

:::::::
involved

:::
in

:::
the

::::::::
landscape

::::::::
evolution

:::::::
problem

::::
and

::::
will

::::
only

:::
try

::
to

:::::::
simulate

:::
the

:::::
large

::::::::::
sedimentary

::::
and

:::::
water

:::::::::
structures,

:::::
hence

:::
the

:::::
name

:::::
LSS:

::::
only

::::::::
structures

::::::
several

:::::
times

:::::
larger

::::
than

:::
the

::::
filter

:::::::::
resolution

:
α
::::
will

::::::
appear

::
in

:::
the

::::
final

:::::
result.

:

4.3 Numerical results with filtering830

We reproduce the very same experiment that was performed at the beginning of this section on the
:::::
Before

::::::
turning

::
to

:::::::::
numerical

::::::::::
experiments,

::::
one

:::
has

::
to

::::::
choose

::
a
:::::
value

:::
for

:::
the

::::
filter

:::::::::
parameter

::
α.

:::::::::
Following

::::
LES

:::::::::
principles,

:::
we

:::::
know

::::
that

:::
the

::::
filter

:::::
scale

::
α

::::::::::
corresponds

::
to

:::
the

::::::
spatial

:::::::::
resolution

::
of

:::
our

::::::::::
continuous

::::::::::
approximate

:::::::
model,

:::
that

::
in
:::::::

practice
::::

one
::::
will

::::
want

::
to
:::

be
::
as

:::::
small

:::
as

:::::::
possible.

::::::::
However

::
it

::::
must

::::::::
naturally

:::
be

:::::::
resolved

:::
by

:::
the

::::
grid

:::::::::
resolution,

::::::::
meaning

:::
we

::::::
should

::::
have

::
at

:::
the

::::
very

:::::
least

::::::::
∆xy < α

::
for

::::::::
cartesian

:::::
grids.

:::::::::
Moreover,

::
as

:::
we

::::
test

:::
our

:::::::::
numerical

:::::::
solution

::::::
against

::
an

:::::::
analytic

:::::::
solution

:::
for

::::
the

::::::::
unfiltered

::::
case,

:::
we

:::::
need835

::
to

::::
make

:::
the

:::::
filter

::::
size

::
go

::
to

::::
zero

::
at
:::
the

:::::
same

:::::
speed

::::
than

:::
the

:::::
mesh

::::
size

::
in

:::::
order

::
to

:::::::
measure

:
a
::::::::::::

convergence.
:::
For

:::::::::
simplicity,

:::
we
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Figure 14.
::::::::::
Convergence

:::::
curves

::::
with

:::::
filters.

::
a:

:::
case

:::::
kg=50

::::::::
km2.My-1

:::
and

:::::
kw=1

::::::::
km2.My-1.

::
b:

:::
case

:::::
kg=5

:::::::
km2.My-1

:::
and

:::::
kw=1

::::::::
km2.My-1.

::
c:

:::
case

::::
kg=5

::::::::
km2.My-1

:::
and

::::
kw=5

::::::::
km2.My-1.

::
d:

::::
case

::::
kg=1

:::::::
km2.My-1

:::
and

:::::
kw=5

::::::::
km2.My-1.

::
e:

:::
case

::::
kg=1

::::::::
km2.My-1

:::
and

:::::
kw=50

::::::::
km2.My-1
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::::
have

::::::
chosen

::
to

:::
use

:::::
filter

:::::::::
parameters

:::::::::
α= γ∆xy::::

with
::::::
γ > 1.

:::
On

:::::
figure

:::
??

:::
we

::::::
present

:::
the

::::::::::
convergence

::::::
results

::::::::
obtained

:::
for

:::
the

::::::
analytic

::::
test

::::
cases

:::
of

::::::
section

::
??

::::
this

::::
time

:::::
using

:::::
filters.

:::::::::::
Convergence

::
is

::::::::
recovered

::::
with

::
α
::
=

::::::
1.1∆xy::::

(i.e.
::
γ

:
=
::::
1.1)

:::
for

:::::
every

::::
case

:::
that

::::
was

::::::
already

:::::::
working

:::::::
without

::::
filter,

:::::::::
suggesting

::::
that

::
the

::::
LSS

::::::::
approach

::
at

::::
least

::::
does

:::
not

:::::::::
deteriorate

::::::
correct

::::::
results

:::::::::
previously

:::::::
obtained.

:::
We

::::
also

:::
see

:::
that

:::
for

:::
the

:::
test

:::::
cases

::::
with

:::::
(kg=1

:::::::::
km2.My-1,

::::::
kw=50

:::::::::
km2.My-1)

::::::::::
convergence

::
is

::::
now

:::::::
obtained

:::
for

:::
α=

:::::
8∆xy840

::
(γ

::
=

::
8).

:::::
This

:::::
choice

:::
for

:::
the

:::::
ratio

::
γ

:::::::
between

:::
the

::::
filter

::::
size

::
α

::::
and

:::
the

:::::
mesh

:::
size

::::
∆xy::

is
::::

not
:::::::
random.

::::::
Indeed,

:::::
with

:::::::::
α= γ∆xy

::::
when

::::
∆xy:::::

tends
::
to

::::
zero

::
so

::::
does

:::
the

:::::
filter

:::
size

:::
and

::
if
::
γ

::
is

:::
not

::::
large

::::::
enough

::::
then

:::
the

:::::::
filtering

:::::::::
parameter

:
α
::::
will

::
no

::::::
longer

::
be

:::::
large

::::::
enough

::
to

::::::::::
compensate

:::
for

:::::
solver

:::::
errors

::::
and

::::::::
numerical

::::::::::::
approximation

::::::
errors.

:::
We

::::::::
illustrate

:::
this

::
on

::::::
figure

:::
??.
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Figure 15.
::::::::::
Convergence

:::::
curves

::
for

::::::
various

:::::
values

::
of

:::
the

:::
ratio

:::::::
α/∆xy .

:
a:
::::::::::::
(rs,ps)=(3/2,1),

:::::::::::
b:(rs,ps)=(2,0)

:::::::
Keeping

::
in

::::
mind

::::
that

::
we

:::
are

::::::::::
necessarily

::::
using

::
a
::::
fixed

:::::::
Newton

:::
non

:::::
linear

::::::
solver

:::::::
tolerance

:::::
(1e-6

::
in

::::::::
practice)

::::
what

:::
we

::::::
observe

:::
on

::::
those

::::::
curves

::
is

:::
that

:::::
when

:::
the

::::::::
parameter

::
α
::::::::
becomes

::::::
smaller

::::
than

:::::
some

::::::::
threshold

::::
value

::::
that

::::::
allows

::
to

::::::
control

:::
the

::::::::::::
corresponding845

::::::::::
accumulated

::::::
solver

::::
(and

::::::::
numerical

:::::::::::::
approximation)

::::::
errors,

:::
the

:::::::
obtained

:::::::
solution

::
is
:::
no

:::::
longer

:::::::
correct.

:::
Of

::::::
course,

::::
with

::
a

:::::
larger

::::
value

:::
of

:
γ
::::

this
::::::::
threshold

::
is
:::::::
reached

:::
for

::
a
::::::
smaller

:::::
value

:::
of

::::
∆xy:::::

which
::::::::

explains
::::
why

::::
once

::
γ
::
is
:::::
large

:::::::
enough

:::
we

:::
can

::::::
obtain

::
the

:::::::
correct

:::::::
solution

:::::
along

:::
the

:::::
entire

::::::::::
convergence

::::::
curve.

::::
This

::::::::
threshold

::
is

:::::
likely

::
to

:::::::
depend

::
on

:::::
∆xy ,

::
in

:::
the

:::::
sense

::::
that

::
for

:::::
finer

::::::
meshes

:::::
since

:::
the

:::
size

:::
of

:::
the

::::::
system

::
is

:::::
larger,

:::
so

::
is

:::
the

:::::
solver

:::::
error.

::
It

::
is

:::
also

:::::
very

:::::
likely

:::
that

:::::
since

:::
we

::::::
expect

:::::
larger

:::::
values

:::
of

:
τ
::
to

:::::
imply

:::
an

:::::::
increase

::
in

::::
both

:::
the

:::::::::
numerical

::::::::::::
approximation

:::
and

::::::
solver

:::::
errors,

:::::::::
modifying

::
τ

:::::
might

::::
also

:::::::
probably

::::::::
influence

::::
this850

:::::::
threshold

::::::
value.

:::::::::::
Nevertheless

:::
the

::::::
results

::
of

:::::
figure

:::
??

:::::
exlain

:::::
why

:::
we

::::
have

::::::::
presented

::::::
results

::::
with

::
γ
:::
=8

::
on

::::::
figure

:::
??:

::
to

:::
get

::
a

::::::
correct

::::::::::::
approximation

::::
even

:::
for

:::
the

::::
finer

::::::
meshes

::::
and

::::
thus

:
a
:::::
clean

::::::::::
convergence

::::::
curve.

:::
We

::::::::::
nevertheless

:::
see

:::
on

:::::
figure

::
??

::::
that

:::
for

::::
more

:::::::
realistic

:::::
mesh

:::::
sizes,

::::::
smaller

::::::
values

::
of

::
γ
::::
will

::
be

:::::
more

::::
than

:::::::
enough

::
to

::::::
obtain

:::
the

::::::
correct

:::::::
solution,

::::
and

::::
that

:::::
using

:::::
filters

:
is
::::
not

::::::::::
prohibitively

::::::
costly

::
in

:::::::
realistic

::::::::::::
configurations.

::::
We

:::
also

:::::::
observe

::::
that

:::
for

:::::
mesh

::::
sizes

::::::::
allowing

::
all

:::
the

::::::
values

::
of

:::
the

:::::
ratio

::
to

:
γ
::
to
::::

give
::

a
::::::
correct

:::::::::::::
approximation,

:::
the

:::::
error

::
of

::::::
course

::::::::
increases

::::
with

::
γ,

::::::
which

::
is

:::::::
perfectly

::::::::
expected

:::::
since

::
α

::
is

:::
our

::::::
largest855

::::::::::::
approximation

:::::::::
parameter.
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:::
We

:::::
finally

:::::::::
reproduce

:::
the

::::
very

:::::
same

:::::::::
experiment

::::
that

::::
was

:::::::::
performed

::
on

:::
the

:
“three rivers” test case, with sequential GMRES,

parallel GMRES and sequential BiCGStab, but using a filter α= 2.2 km
:::
α=

:::
2.2

:::
km

:::
for

::::::
∆xy=2

:::
km. Contrary to Fig. ??, the

symmetry is maintained and we obtain almost identical results for the three configurations ??. The expected impact of the filter

on the simulated water flow and topography is a smoothing effect, which is what is observed when comparing for example the860

width of the three valleys. However, the differences remain marginal in this case.

Figure 16. The “three rivers” test case with filter α= 2.2 km and ∆xy=2 km. Topography and water flux after 6 My. a: sequential GMRES,

b: parallel GMRES, c: sequential BiCGStab

Following LES principles, the filter scale α corresponds to the spatial resolution of our continuous model, which must naturally

be resolved by the grid resolution, meaning we should have at the very least ∆xy < α for cartesian grids (and more generally

ε < α for a general mesh recalling that ε=
√

2∆xy for cartesian meshes). To assess the legitimacy of this condition, still
::::
Still865

on our “three rivers” test casewe first fix the grid size to ∆xy=2 km and observe the
:
,
::::
from

:::
our

:::::::::::
observations

:::
on

:::
the

:::::::
analytic

::::
cases

::::
and

::
as

:::
we

:::
do

:::
not

:::::
know

:::
the

:::::
exact

:::::::
solution,

::
to

::::::
assess

:::
the

:::::::::
legitimacy

::
of

:::
our

::::::
choice

::
of

:::::
filter

:::
size

:::
we

:::::::
analyze

:::
the

:
behavior

of the solution for various values of the filter parameter α
::::::
(fixing

:::
the

::::
grid

:::
size

:::
to

::::::
∆xy=2

::::
km). Results are displayed Fig. ??.

We clearly see that symmetric solutions are obtained for α≥∆xy::::::::
α >∆xy , while further reducing the filter parameter leads to

behavior similar to the no filter case. This is
::::
first coherent with the

:::::::
principle

:::
of LES that the filter should control what happens870

below the grid scale, which can only be done if α >∆xy .
:
,
:::
and

::::
also

:
a
::::
clear

::::
sign

::::
that

:::
our

:::::
initial

::::::
choice

:::
for

:::
the

::::
ratio

::::::::::
γ = α/∆xy

::::::
belongs

::
to

:::
the

:::::
stable

::::::
region.

:

4.4 Impacts of water flow consistency and filtering on the emergence of geomorphic structures

The three rivers synthetic case has highlighted the absolute necessity of considering a filtering strategy in LEMs using a

MFD/SFD water flow algorithm. We now switch on a second synthetic case study
::
We

::::
now

::::::::
consider

:::
two

::::::::
synthetic

::::
case

::::::
studies875

to observe the formation of geomorphic features.
::::
The

::::
idea

:::::::::
underlying

:::
the

:::
first

::::
test

::::
case

::
is

::::
very

::::::
simple:

:::
we

:::::
re-use

::
as

::::
our

:::::
initial
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Figure 17. The “three rivers” test case with ∆xy=2 km. Final topography and water flux after 6 My obtained with different values of the

filter parameter α. a: no filter, b: α= 0.2 km, c: α=1 km, d: α= 2.2 km, e: α=2.5 km , f: α= 3 km

:::
data

:::
the

:::::::
analytic

:::::::
solution

::::::::
described

:::
in

::::::
section

::
??

::
in
:::

the
::::

case
:::::::::::

(rs=2,ps=0)
:::
and

:::
(kg::

=
::
1

::::::::
km2.My-1, using either a homogeneous

or a perturbed initial topography. The characteristics of this test case are relatively close to the models published by ??.
:::
kw

:
=
:::
50

::::::::
km2.My-1

:
)
:::
the

::::::::::
rectangular

::::::
domain

:::::::::
described

::
in

:::::
figure

:::
??.

::::::::
However,

::::::
instead

:::
of

:::::
using

:::
the

::::::
analytic

::::::
source

:::::
terms

::::::::
allowing

::
to

::::::
recover

:::
the

::::::::
analytic

:::::::
solution

:::
for

:::
all

:::::
times,

:::
we

::::::
simply

::::
use

:
a
::::::::

constant
::::::
source

::::
term

::::
(Ss ::::

=10
:::::::
m.My-1,

:::
Sw:::

=1
:::::::::::
m3.s-1km-2),880

:::::::::::
corresponding

::
to
::
a
:::::::
uniform

:::::::
constant

:::::
uplift

::::::
supply

:::
and

:
a
:::::::
uniform

::::::::
constant

::::
rain.

:::
We

::
fix

:::
the

:::::
mesh

::::
size

::
to

::::
∆xy :

=
::::::

0.005
:::
km,

::::
and

::
we

:::::
again

:::::::
perform

:::
the

:::::::::
simulation

::::
over

::
a

::::
time

:::::
period

:::
of

::::
0.25

:::
My

::::
with

:::::::::
maximum

::::
time

::::
steps

::
of

::::::
length

:::
∆t

::
=

:::::
0.002

:::
My.

:::
On

::::::
figure

:::
??,

::
we

:::::
recall

:::
the

::::::
initial

:::::::
elevation

::::::::::::
corresponding

:::
to

:::
our

:::::::
analytic

:::::::
solution

:::::
along

::::
with

::
the

:::::
final

::::::
solution

::::::::
obtained

:::
for

:::
our

::::
now

:::::::
constant

:::::
source

::::::
terms,

:::
for

::::::
various

::::::
values

::
of

:::
the

::::
filter

:::
size

:::
as

:::
well

:::
as

::::::
without

::::::
filters.

::::
Since

::::
our

:::
new

::::::
source

:::::
terms

:::
are

::
of

:::
the

:::::
same

:::::::::
magnitude

::::
than

:::
the

:::::::
analytic

::::
ones

:::
and

:::::
since

:::::
every

::::
other

::::::::
property

::
of

:::
the

:::::::
problem

::
is885

:::
kept

:::
the

::::::
same,

:::
we

:::
can

::::::::
anticipate

:::::
using

:::
the

:::::::::::
convergence

::::::
curves

::
of

:::::
figure

:::
??

::::
what

:::
are

:::
the

:::::
filter

::::
sizes

::::::
giving

::
a

::::::
correct

:::::::
solution

:::
(up

::
to

:::
the

::::::::::::
approximation

:::
due

:::
to

:::
the

::::::
filtering

:::::::
process

::::::
itself).

:::::
Since

::::::::
ln∆xy ≈ ::::::

-5.298,
:::
we

:::
see

::
on

::::::
figure

::
??

::::
that

:::
for

:::
our

::::::
choice

::
of

::::
∆xy ::

we
::::
can

::
be

::::::::
confident

::::
that

:::
the

::::
filter

::::
size

:
α
::
=
::
2

::::
∆xy :::

will
::::
give

:::
us

:::
the

::::::
correct

:::::::
solution

::::
with

:
a
:::::
small

:::::::::
numerical

::::::::::::
approximation

::::
error,

::::
and

:::
we

:::
use

:::
this

::::
case

::
as
::

a
::::::::
reference.

:::::
Thus,

:::
the

::::
first

::::::::::
observation

:::
on

:::
the

::::
result

::::::::
obtained

::::
with

::
α

::
=

:
2
::::
∆xy::

is
::::
that

:::
the

::::::
correct
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Figure 18.
::::::
Results

::
for

::
a

::::
mesh

:::
size

::::::::
∆xy=5e-3

:::
km.

::
a
:
:
::::
Initial

::::::::
elevation.

::::
Final

:::::::
elevation

:
:
::
b:

::
no

:::::
filter,

:
c:
::
α
::
=

::
1.1

:::::
∆xy ,

:
d:
::
α
::
=

:
2
::::
∆xy ,

::
e:
::
α

:
=
::
4

::::
∆xy ,

:
f:
::
α

:
=
::
8
:::
∆xy

::::::
solution

::::
this

::::
time

::::::
allows

:::::
some

::::::::
legitimate

::::::::::
geomorphic

:::::::::
structures

::
to

::::::
appear

:::
and

::::
self

::::::::
organize.

:::::
Those

:::::::::
structures

:::::::
originate

:::::
from890

::
the

:::::::
bumps,

::
as

::
if
:::
we

:::::::
perform

:::
the

::::
very

::::::::::
simulation

::::
with

:::::::
constant

::::::
source

:::::
terms

:::
but

:::::::
without

:::::::
bumps,

:::
we

:::::
obtain

::
a
:::::
clean

:::::::
uniform

::::
final

::::
state

:::::::
deprived

:::
of

:::
any

::::::::::
geomoprhic

::::::::::
complexity.

::::
With

::::
the

:::::
larger

::::
filter

::::
size

::
α

:
=
::
4
::::
∆xy ,

:::
we

::::::
obtain

::
an

::::::::
averaged

:::::::
version

::::
with
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::::::
slightly

::::
less

::::::::::
geomorphic

::::::::::
complexity,

:::::::::
illustrating

:::
the

::::
way

:::
the

:::::
filter

::::
only

:::::
keeps

::::::
“large”

:::::::::
structures.

::::::::
However

:::
for

:::
the

::::
very

:::::
large

::::
filter

::
α

:
=
::

8
::::
∆xy:::

the
:::::::::::::
approximation

:::
for

::::
∆xy :

=
::::::

0.005
:::
km

::
is

:::
too

:::::
crude

::::
and

::
we

:::::
loose

:::
all

:::
the

::::::::::
geomorphic

::::::::::
complexity.

:::
We

:::::
have

:::::::
checked

:::
that

::
if

:::
we

:::::
refine

:::
the

:::::
mesh

:::
we

::::::
recover

::::
the

::::::
correct

:::::::
solution

::::
with

:::
the

::::
ratio

::
α
::
=
::
8

::::
∆xy .

::::
This

::::::::
confirms

::::
that

:::
the

:::::::
uniform895

::::
crude

:::::::::::::
approximation

:::::::
obtained

:::
for

::
α
::
=
::
8

::::
∆xy :::

and
:::::
∆xy :

=
:::::
0.005

::::
km

::
on

::::::
figure

::
??

::
is
:::
as

:::::::
expected

::::
due

::
to

:::
the

::::
fact

:::
that

:::
we

:::::
have

::::::::
increased

:::
our

::::::::::::
approximation

::::
error

:::
too

:::::
much

:::
by

:::::::::
oversizing

::
α.

:::::
Now,

::
let

::
us

::::::::
consider

:::
the

::::
final

:::::::
solutions

::
of
::::::
figure

::
??

:::
for

:::
the

:::::
value

::
α=

:::
1.1

:::::
∆xy ::

as
::::
well

::
as

:::::::
without

::::
filter.

:::::
Both

::
of

:::::
those

:::::
results

:::::::
present

::::
more

::::::::::
complexity

::::
than

:::
the

::::::::
reference

::::
case

::
α

:
=
::
2
::::
∆xy .

::::::
Using

::
the

:::::::::::
convergence

::::::
curves

::
of

:::::
figure

:::
??,

:::
we

::::::
expect

:::
the

:::::
result

::::::::
obtained

:::
for

::
α

:
=
:::
1.1

::::
∆xy:::

to
::::::
belong

::
to

:::
the

:::::::::
hazardous

:::::
region

::::::
where

::
the

:::::
error

::::
level

:::::
starts

::
to

:::::::
increase

::::
and

:::
this

:::::::
solution

:::::
while

:::
not

:::::::::
completely

:::::::::
erroneous

::
is

::::::::
becoming

::::::::::::
untrustworthy.

::::::::
However

:::
for

:::
the900

::::::
solution

:::::::
without

::::
filter

:::::::
strange

:::::
small

::::::::
structures

::::::
appear

:::
and

:::
the

::::::
overall

::::::::::
topography,

::::::
despite

:::::
being

:::
the

:::::
more

:::::::
complex

::
of
::::

all,
::::
does

:::
not

::::
have

:::
any

:::::::
physical

::::::
origin.

:::
We

:::
now

::::::
switch

::
to

:
a
::::::
second

::::::::
synthetic

::::
case

:::::
study. The numerical domain corresponds

::::
again

:
to a rectangular grid with the

::
but

::::
this

::::
time

::::
with dimensions Lx= 600 km in the x axis and Ly = 80 km is the y axis containing a mesh of resolution ∆xy = 0.25 km.

The basement is b is constant equal to 0 m, while the sediment thickness hs is initially given by a uniform in x smooth bump:905

g(x,y) =

∣∣∣∣∣∣∣
H exp

( −1

1− r2
y

)
for ry = (y−yc)

δy
≤ 1,

0 otherwise ,

with H = 20m , yc = 40 km and δy = 20 km. This symmetry in the x direction of the initial topography is then perturbed by a

Nb::::
=30 small smooth bumps randomly positioned at points (xp,yp):

gpert(x,y) =

∣∣∣∣∣∣∣
Hpert exp

( −1

1− r2

)
for r2 =

(x−xp)2

δ2 +
(y−yp)2

δ2 ≤ 1,

0 otherwise ,

with Hpert = 1 m and δ = 2 km. Rain-fall is constant in time and space (3000 mm/y) and is the unique water supply for this910

case. The sediment source (here we simulate a sediment production) goes from Ss = 0 m.My-1 at y = 0 and y = Ly sides to

Ss = 100 m.My-1 at y = Ly/2 = yc. The variation is continue over the whole domain following :

Ss(x,y) =

∣∣∣∣∣∣∣
Smax exp

( −1

1− r2
y

)
for ry = (y−yc)

δy
≤ 1

0 otherwise

with δy = 40 km. Model boundary conditions are fixed elevation on the sides normal to the x axis and zero gradient on the sides

normal to the y axis. Models parameters controlling the non-linearity in the water-sediment coupling are set as rs = 2, ps = 0,915

pw = 0 and km =1 m. s-1. Simulation takes place over the time period T = 6 My, using the numerical schemes detailed in

section ??. The first simulation use constant diffusive coefficients kg:c:
:::::::
solution

::::
with

::::
filter

:::
for

:::::::
(kg,kw)=

:
(50

::
,5)

:
km2.My

::::
.My-1and

kw:,::
d:

:::::::
solution

:::::::
without

::::
filter

:::
for

::::::::
(kg,kw)=(5

:::
,5) km2.My

:::
.My-1, and the initial topography is built with Nb = 30. In order to

analyze the results of this simulation and the following ones, it is also important to discuss the implications of the values of the
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diffusion coefficients. At this point, we want to stress the fact that those specific values kg:,::
e:

:::::::
solution

::::
with

::::
filter

:::
for

:::::::
(kg,kw)=50920

km 2.My-1 and kw= (5
::
,5)

:
km2.My-1have been chosen on purpose, such that our non-linear diffusive model should be able to

diffuse quickly small initial perturbations such as the ones we introduce and thus loose memory of its initial state as would

a classical linear diffusive model. Of course the key parameter is the dimensionless ratio τ = (kwq
rs
w )/(kgq

rs
ref ) which plays

an essential role here, small valuesimplying a gravity dominated case while larger values correspond to a water dominated

case. The ratio τ is clearly reminiscent of the Reynolds number for turbulent flows, with true turbulence appearing with large925

Reynolds numbers.It is our belief, although we do not have any formal proof at this stage, that one can anticipate the “chaotic”

or “non chaotic” behavior of the solution by considering the values of τ . For this test case, in the part of the domain where the

slope is significant, the ratio τ is below 10. We expect this case to be close to a quite gravity dominated one, but not too much

such that the potential problems linked to numerical errors are not completely dissipated by the gravity diffusion. With that in

mind, we could expect no specific amplification of the initial bumps in the topography. In order to emphasize the impact of the930

consistency and the effect of filtering on the emergence of complex geomorphic features, we have first performed a simulation

mimicking those of the literature using the non-consistent version of the water flux without filtering, i. e. we momentarily chose

forQw to use the non consistent q̃K of the MFD literature chosen from Freeman ? and updated by ?). However, final elevation

is clearly not homogeneous in the x direction, suggesting a dominant effect of the bumps on the results. Figure ?? shows that in

this non consistent, unfiltered setting the obtained elevation is quite complex and the final heterogeneity do not seem necessary935

located at the same xp positions. In fact, all the domain seems to have been impacted by the small perturbations in the initial

topography. Water flow distribution (represented by the dark blue color in figure ??) is organized, suggesting the emergence

of characteristic length-scale that controls the valley spacing. The illustrates the issue describe din the introduction: without

any reference it is very hard to decide wether this result is the correct physcial one or not. a: initial unperturbed topography,

b: final state for consistent MFD and ∆xy = 1 km, c: final state for non consistent MFD and ∆xy = 1 km, d: final state for940

consistent MFD and ∆xy = 0.25 km, e: final state for non consistent MFD and ∆xy = 0.25 km a: initial topography with a

single perturbation, b: final state for consistent MFD and ∆xy = 1 km, c: final state for non consistent MFD and ∆xy = 1 km, d:

final state for consistent MFD and ∆xy = 0.25 km, e: final state for non consistent MFD and ∆xy = 0.25 km a: initial perturbed

topography, b: final state for consistent MFD and ∆xy = 1 km, c: final state for non consistent MFD and ∆xy = 1 km, d: final

state for consistent MFD and ∆xy = 0.25 km, e: final state for non consistent MFD and ∆xy = 0.25 km a: initial topography945

with a single perturbation, b: final state for with consistent MFD with filter, α= 1200 m and ∆xy = 1 km, c: final state with

consistent MFD with filter, α= 0.3 km and ∆xy = 0.25 km a: initial perturbed topography, b: final state with consistent MFD

with filter, α= 1200 m and ∆xy = 1 km, f: final state with consistent MFD with filter, α= 0.3 km and ∆xy = 0.25 km

As a first step towards a clear answer to this, we perform a set of four simulations using an initial homogeneous in

the x-direction topography (Nb = 0), still with the same diffusive coefficients. We respectively display in Fig. ?? the initial950

topography without any perturbation and the final result obtain without any filter,
:
,
:
f:
:::::::
solution

:::::::
without

::::
filter

:
for ∆xy:::::::

(kg,kw)=1

kmand ∆xy=0.25 km, for the consistent and non consistent MFD. In all cases, the final topography remains uniform in the

large direction as expected, and the result is clean of any perturbations for both mesh sizes, for both choices of water flux. This

series of run indicate here that under the right circumstances (probably linked to τ ) the corrections such as the one of ? can
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lead to the false impression that they do correct q̃K in the right way.Simulations shown Fig. ?? are similar to those in Fig. ??955

but the initial topography contains a single perturbation (Nb = 1) . We display the initial topography with a single perturbation

(one bump), as well as the final topography obtained using again the consistent and non-consistent MFD, both without filter

and again for ∆xy=1 km and ∆xy =0.25 km. Looking at the results for ∆xy = 1 km, we see that the consistent version leads

to the same uniform final topography than in the unperturbed situation. On the contrary, the non-consistent MFD introduces

a non negligible error in the final result: we see here how the non-consistent MFD of the literature can clearly introduce960

numerical artifacts. However when we look at the results for ∆xy= 0.25 km, both schemes produce finals topographies with

large perturbations induced by the initial bump, but with much wider ones for the non-consistent case as should be expected.

At this point it is hard to decide if the solution ??-D of the consistent MFD with ∆xy =0.25 km is the correct approximation

of the solutionof --, implying in this case that the previous mesh size ∆xy= 1 km was too coarse, or if what we see are again

numerical artifacts. Comparing with the results obtained combining the consistent MFD with filters, which are presented for965

the case with a single perturbation in Fig. ??-b for (α,∆xy)= (1.2 km, 1km) and ??-c
::
,5)

:::::::::
km2.My-1,

::
g:
:::::::

solution
:::::
with

::::
filter for

(α,∆xy)
:::::::
(kg,kw)=(0.3 km, 0.25 km), we see that the consistent plus filter version always leads to the uniform final topography

for both mesh sizes. Of course, only one of the two consistent results (with or without filters) can be the correct one. At the very

least this first comparison emphasizes why the non-consistent MFD should no longer be used: indeed, it should now be obvious

that the complexity observed in Fig. ?? was undoubtedly the mainly the product of amplified numerical errors. However as the970

values ∆xy=0.25 km and α=0.3 km have been chosen small enough to resolve the small initial bumps or the “width” of the

water flow appearing around the bumps, we are confident that the consistent plus filter uniform solution (Fig ??-c) that used

those parameters is the correct approximation of the solution of --, implying that the consistent without filter solution (Fig.

??-d) was erroneous. Another strong argument in this sense is that noise appears in the unfiltered consistent case when refining

the mesh, with even more noise for more refined meshes: our interpretation is that numerical diffusion, which is much smaller975

that the true physical diffusion in view of the values of kg adds nevertheless enough additional smoothing for ∆xy = 1km to

dissipate large parts of the numerical errors while this is no longer the case for the finer mesh ∆xy = 0.3 km. We finally perform

the very same experiments with the fully perturbed initial topography (30 bumps). The results for the unfiltered non consistent

and consistent MFD are presented in Fig. ??, while the consistent plus filter results are displayed in Fig. ??. It is obvious that

the same conclusions apply to this more complex case: considering the results for ∆xy = 1 km, we recover the fact that using a980

consistent scheme improves the results, but this time not even enough to keep numerical errors under control. However we see

that in the consistent case, not all bumps correspond to a final deformation. This is another clear sign that something is wrong

with this solution, even if the errors remain relatively small. For ∆xy = 0.25 km we obtain very complex topographies which

may appear as realistic but are in fact clearly solutions blurred by numerical noise. This affirmation is enhanced when look at

the clean uniform final state obtain with filters which is again the correct approximation of the solution of --
::
,5)

::::
km2.985

As we have already explained, the values of kg and kw were purposely chosen in the above experiments to lead to this

treacherous situation where the correct solutions are clean and uniform despite of

:::
The

::::::
second

::::::::
synthetic

:::::
case

:::::
study

:::
has

::::::::::
similarities

::::
with

:
the initial perturbations. However, this does not mean that solutions

obtained using filters will never develop complex topographies, but that they can only contain heterogeneity that is not the
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Figure 19. Final topographies obtained for three different set of diffusive coefficients, systematically tested without filter and with a fil-

ter using α= 0.3 km. a: initial perturbed topography. b: solution without filter for (kg,kw)=(50,5) km2.My-1, c: solution with filter for

(kg,kw)=(50,5) km2.My-1, d: solution without filter for (kg,kw)=(5,5) km2.My-1, e: solution with filter for (kg,kw)=(5,5) km2.My-1, f:

solution without filter for (kg,kw)=(1,5) km2.My-1, g: solution with filter for (kg,kw)=(1,5) km2.My-1

product of amplified numerical errors. To illustrate this, we consider again the perturbed test case but this time using kg:::::::
previous990

:::
one

::
in

:::::
terms

::
of

:::::::::
boundary

:::::::::
conditions,

:::
but

:::
its

:::::
larger

:::::::::::
spatial-scale

:::::
makes

::
it
::::::::
relatively

:::::
close

::
to

:::
the

::::
case

::::::
studies

:::::::::
published

::
in

:::
??

:
.
:::
We

::::::
display

::::
the

:::::
initial

::::::::::
topography

::::
(Fig

:::::
??-a)

::
as
:::::

well
::
as

:::
the

:::::
final

::::::::::
topography

:::::::
obtained

:::::
with

:::
and

:::::::
without

:::::
filter

:::
for

:::
kw= 5

km2.My
:::
.My-1 , then

:::
and

:::
for

::::
three

::::::::
different

::
kg:::::::

values.
:::
The

::::
first

::::
case

::::::::
considers

:
kg= 1

::
50

:
km2.My-1

::::::

2.My-1.
::::
The

:::::::
relative

::::
high

::
kg:::::

value
::::::::
compared

::
to
:::
kw::::::

should
::::
not

::::
favor

:::
the

:::::::::
emergence

:::
of

::::::::::
geomorphic

:::::::::
structures.

::::
This

::
is

:::::::
however

:::
not

:::::
what

:::
we

:::::::
observe

::
in
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::
the

:::::::::
simulation

:::::::::
performed

:::::::
without

:::::
filter

:::
(Fig

::::::
??-b).

::::
The

::::
filter,

:::::::
defined

:::
by

::::::
α= 0.3

::::
km,

:::
has

::
a
::::
huge

::::::
impact

::::
and

:::
no

::::::::::
geomorphic995

:::::::
structure

::
is

::::::::
produced

:::::
(Fig.

::::
??-c)

::::::
which

::
is

::::::::::
undoubtedly

::::
the

::::::
correct

:::::::
solution.

:::
An

:::::
order

:::
of

:::::::::
magnitude

::::::
smaller

:::
kg :::::::::

coefficient
::
is

::::
used

:::
for

:::
the

::::::
second

:::::::::
simulation.

:::
By

::::::::::
decreasing

:::
kg ,

:::
the

:::::::::
emergence

::
of

::::::::
structure

::::
may

::
be

::::::::::
considered

::
as

:
a
:::::::

realistic
::::::
result.

::
In

::::
this

::::
case,

::::::::
complex

::::::::
structures

:::::::::
controlled

::
by

:::
at

::::
least

::::
one

:::::::::
wavelength

::::::
appear

:::
in

:::
the

:::::::::
simulation

:::::::::
performed

:::::::
without

::::
filter

:
(Fig. ??),

for which we easily get τ >> 10 in the key parts of the domain and we expect the system to start producing more complex

topographies. We only consider the situations with α =0.3 km and ∆xy=0.25 km, again to ensure that at least some of the small1000

scales of the model are correctly resolved by both the filter
:::::
??-d).

::::
The

::::
effect

:::
of

::::
filter

:::::::
however

::::::::
indicates

:::
the

::::
very

:::::
likely

:::::::
artificial

:::::
origin

::
of

:::::
these

::::::::
structures.

::
A
:::::::

residual
:::::::::::
perturbation

:::
can

::::
still

::
be

::::::::
observed

::
in

:::
the

::::
final

::::::::::
topography

::::
(Fig.

:::::
??-e),

:::::::::
indicating

:::
that

::::
this

::
kg and the mesh. Of course, for such large values of τ what we obtain is potentially an averaged version at the filter scale of

:::
kw

:::::::::::
configuration

::
is

:
at
:::
the

::::::::
transition

::::::::
between

:::
two

:::::::
regimes,

:
the correct continuous solution of --. We present in Fig. ?? results with

and without filters for the consistent scheme, recovering the fact that the numerical solution without filters is blurred by noise.1005

In the intermediate case
:::::::::::
gravity-driven

::::
and

:::
the

::::::::::
water-driven

:::::::
erosion

:::::::
regimes.

:::
In

:::
our

:::
last

::::::::::
simulation,

:::
we

::::
have

::::::::
decreased

:
kg =

5 km2.My-1, we start to see some small topographic perturbations, while we also see that for the case with kg= 1 km2. My-1

and thus the largest value for τ , complex structures finally develop, assessing the fact that the model with
::
by

:
a
::::::
factor

:
5
::::
and

::
we

::::::
indeed

:::::::
observe

:::
the

:::::::::
emergence

:::
of

::::::::
structures

::::
even

:::::
when

:::
the

:
filter is perfectly capable of producing complex topographies

when this corresponds to the correct averaged solution. Yet we insist on the fact that recovering all the details of the correct1010

continuous solution of --requires α to correctly resolve all the scales of the model, otherwise what we obtain is a numerical

approximation of the averaged solution at the filter scale. For instance if we use a filter with parameter α=1.2 km as previously

done the final topographies for
:::::
active

::::
(Fig.

:::::
??-g).

:::::
Here

:::::
again

:::
the

:::::
impact

:::
of

:::
the

::::
filter

::
is

::::::::
important

:::
and

::::::
allows

::
to

::::
keep

::::
only

:::::
what

::
we

:::::::
believe

::
to

::
be

:::
the

::::::
correct

:::::::::
structures.

::::
This

:::
last

::
set

::
of

:::::::::
simulation

::::::
shows

::
the

::::::
major

:::::
impact

::
of

:::
kg ::

in
:::
the

:::::::::
wavelength

::
of

:::
the

::::::::
structures

::::
that

:::
can

::::::
emerge

::::
from

:::
our

::::::::::
simulation.1015

:::
We

::::
have

::::
also

:::::::::
performed

::::::::
additional

::::::::::
simulations

:::::
using

:::::::
various

:::
kw ::::::

values
:::
for

:
a
:::::
given

:
kg= 5 km2.My-1 and

:
.
:::
The

::::::
results

:::::
have

:::::
shown

::::
that

:::
kw ::::

must
::
be

:::::
high

::::::
enough

::
to

:::::
make

:::
the

::::::::
structures

:::::::
appear,

:::
but

::::
they

:::
also

:::::
show

::::
that kg = 1 km2.My-1 are indeed much

more smooth that those presented in Fig. ??.

:::
was

:::::
most

::::::::
important

::::
than

:::
kw ::

in
:::
the

:::::::::
wavelength

:::::::
control.

:::
We

:::::::
consider

::
a
::::::::
dedicated

:::::
study

::::::
should

::
be

:::::::::
conducted

::::
with

:::
our

::::::
model

::
to

:::::::
quantify

::::
these

::::::
effects

:::
but

::
it

:
is
:::::::
beyond

:::
the

:::::
scope

::
of

:::
this

::::::
article.

::
A

::::::::
complete

:::::
study

:::
can

::
be

:::::
found

:::
in

:
?
:
.
::::
Even

::
if

:
it
::::
was

:::::::::
performed1020

::::
using

:::
an

::::
other

:::::
LEM

::::::
model,

::::::
similar

::::::::::
conclusions

::::
with

:::::
those

:::::
drawn

:::::
from

:::
his

::::
study

:::
are

::::
also

::::::::
expected

::
in

:::
our

::::
case.

:

5 Discussion

This work belongs
:::
We

::::::::
consider

:::
this

:::::
work

:::
as

:::::::::
belonging to the common effort of the scientific community to harmonize

landscape evolution models. The implementations of the consistent water flux and the
:
It

::
is

:::
our

:::::
belief

::::
that

:::
the

:::::
most

::
of

::::
our

::::::::::
observations

::::
and

:::::::
practical

:::::::::::::::
recommendations

:::
can

::::
also

:::
be

::::::
applied

::
to

::
a
:::::
wider

:::::
range

::
of

::::::::
sediment

::::::::
evolution

:::::::
models

:::
that

:::
the

::::
one1025

::
we

::::
use

::
in

:::
this

:::::
study.

::::
The

:::::::::::::
implementation

::
of
::::

the large structure simulation strategy should be accessible to every LEMs , and

in particular
::::::::
satisfying

::::
(H1),

:::::
(H2)

:::
and

:::::
(H3).

::
In

:::::::::
particular,

:::
we

::::::
believe

:::
that

:::::::
filtering

::::::
would

::
be

::::
also

::::
very

:::::
useful

:
for the models of
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??? that takes the general form:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂hs
∂t

+ div (Js) = Ss in Ω×]t0,T [,

−Js ·n=Bs on ∂ΩN×]t0,T [,

hs = 0 on ∂ΩD×]t0,T [,

hs(t= t0) = hs,0 in Ω,

(22)

with a source given by1030

Ss = U −κws−ps,2ref

(
qw
qref

)rs
||∇(hs + b)||ps,2 ,

with U a sediment source term (or an uplift depending on the interpretation of b) and a sediment flux given by:
:

Js =−s−psref kg||∇(hs + b)||ps∇(hs + b) in Ω×]t0,T [.

Those
::::
The

:::::::
behavior

::
of

:::::
those

:
models are relatively close to model (??)-(??) that we have studied in detail here, with the main

difference that the non-linear term qrsw ||∇(hs+b)|ps appears as a reaction term rather than in a diffusive term. An
:
In

:::::::::
particular,1035

::
for

::::::::
pw =−1

:::
the

:::::::::::
observations

::
on

:::::
linear

:::::::
stability

:::
for

::::::
model (??)

:::::
match

:::
the

:::::::::
conclusion

::
of

:::
the

:::::
linear

:::::::
stability

:::::::
analysis

:::
of

::
??

:
.
:::
We

:::
can

::::
thus

::::::
expect

:::
that

::::::
model

:
(??)

:::
will

:::::::::
potentially

:::::
suffer

:::::
from

::::::
similar

:::::::::
numerical

:::::::
stability

::::::
issues

:::
that

:::
the

:::::
ones

:::
we

:::::::
analyzed

:::
in

::::
detail

:::
for

::::::
model (??)-(??),

::::::::
although

:::
this

:::::::
certainly

:::::::
requires

::
a
::::::::
dedicated

:::::
study

:::::
before

:::::::
drawing

:::::::::::
conclusions.

::
In

:::::::::
particular,

::::::
several

:::::::
elements

::::
can

::::
help

:::::::
keeping

:::
the

:::::::::
numerical

:::::
errors

:::::
under

:::::::
control:

:::::
high

:::::
order

:::::
space

:::
and

:::::
time

::::::::
schemes,

::::::
explicit

:::::
time

::::::::
schemes,

::::::
specific

::::::
solvers

:::
for

:::
the

:::::
water

::::
flow

:::::
model

::::::::
avoiding

:::::::
inverting

::
a
:::::
linear

::::::
system,

::::
etc.

:::::::::::
Nevertheless,

::
an

:
immediate application of the1040

LSS in this context consists of course in replacing qw by its filtered version FN (qw) in the second member of (??)
:::
and

::::
can

::::
only

:::::::
improve

:::
the

:::::::::
numerical

:::::::
stability. We also believe that the ξ-q model of ? could benefit from a similar filtering strategy.

Notice nevertheless that the last test cases displayed in Fig. ?? emphasize the fact that correctly

::::::::
Correctly using filters requires some understanding of the scales involved in the model. Although this is not a such

::::
such

::
an

:
easy task in general, we believe that it is very likely that to get an idea of those scales one can use τ in the same way1045

than the viscosity and more generally Reynolds number can be used to anticipate the flow scales. Nevertheless, we can give

some generic guidelines that should apply in any situation: first, at the very least the constraint ont the mesh size ε < α must

be fulfilled to allow the filter to correctly clean the sub-cell scale phenomenons. Next,
::
as

::::::
generic

:::::::::
guidelines

::::::::::
concerning

:::
the

::::::
relation

:::::::
between

:::
the

:::::
filter

:::
size

::
α

:::
and

:::
the

::::::::
precision

::
of

:::
the

::::::
results

::
it

::
is

::::
clear

:::
that

:
the chosen filtering parameter α should resolve

the main sediment structures that one wants to correctly represent in the flow, ideally fulfilling an equivalent of Nyquist’s rule.1050

For instance if an essential valley is 1 km large, then α should be several times smaller (and ideally smaller than 100 m). A

good practical test consists in comparing the filtered topography F(hs + b) and the unfiltered one hs + b. The structures of

hs + b that one wants to simulate accuratelly
::::::::
accurately

:
should be preserved in F(hs + b), of course in a smoother way. For

instance, for a given value of α if a small topographic depression in which water could in principle flow is observed on hs + b
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but is absent in F(hs + b), then if one really wants to capture water flow inside this “channel” the value of α must be reduced1055

and the mesh refined accordingly if needed.
:::
The

::::
filter

::::::
should

::
in

:::
any

::::
case

:::
be

:::
able

:::
to

::::
clean

:::::::::
numerical

::::::::::::
approximation

:::
and

::::::
solver

:::::
errors,

::::::::
implying

:::
that

:::
we

::::::
should

::
at

:::
the

::::
very

::::
least

::::
have

:::::::::::::
γ = α/∆xy > 1

::
to
::::::::
correctly

::::::
resolve

:::
the

:::::::
targeted

::
α

:::::
spatial

:::::
scale.

:::
To

:::::
allow

::
the

:::::
filter

::
to

:::::::
correctly

:::::
clean

:::::
errors

::::
that

:::::
could

::::::::
otherwise

::::
have

::
a

::::::::::
destabilizing

:::::
effect

:::
on

:::
the

::::
final

::::::::::::
configuration,

:::::
higher

::::::
values

::
of

::
α

:::::
should

::::::::
probably

::
be

::::
used

:::
for

:::::::::
increasing

::::::
values

::
of

::
τ .

:::::
Notice

::::
that

::
in

:::
the

::::::
present

::::::
paper,

:::
we

::::
have

:::
for

:::::::::
simplicity

::::::
always

::::
used

:::::::
uniform

::::::
meshes

:::::
with

:
a
:::::::
constant

:::::
∆xy ,

:::::
hence

::::::::
obtaining

::
a1060

:::::::
constant

::::
ratio

::::::::::
γ = α/∆xy .

:::
As

::
an

:::::::::
immediate

:::::::::
extension,

:::
one

:::::
could

:::::
resort

::
to

:::::::
adaptive

:::::
mesh

:::::::::
refinement

::
to

:::::
refine

:::
the

::::
mesh

::
in

:::::
areas

:::::
where

::
τ

:::::::
becomes

:::::
large

:::
and

::::
thus

::::::
where

:::::::::
numerical

:::::
errors

:::
are

:::::
more

:::::
likely

::
to

:::
be

:::::
large,

:::::::::
mitigating

:::
the

:::::::
increase

::
of

:::
the

::::::::
system’s

:::
size

:::
and

::::
thus

:::
the

:::::::
increase

::
of

:::
the

::::::::::::
computational

::::
cost.

:::
In

::::::
practice

:::
for

:::::::
constant

::::::::::
coefficients

:::
kg :::

and
:::
kw :::

this
::::::
would

::
be

:::::::::
equivalent

::
to

::::::
refining

:::
the

:::::
mesh

::::::
where

:::::
water

::::
flow

::::::
occurs.

::
In

::::::::
addition,

:::
one

:::::
could

:::::::
replace

:::
the

:::::::
constant

:::::::::
parameter

::
α

::
by

::
a

:::::::::
space/time

:::::::
variable

::::::::
coefficient

::::::::
α(x,y, t)

::
in
:::
an

:::::::
adaptive

:::::::
filtering

:::::::
strategy,

::::::
where

:::
the

::::
filter

::::
size

:::::
could

::
be

::::::
chosen

:::
in

::::::::
coherence

::::
with

:::
the

:::::
local

:::
size

:::
of1065

::
the

:::::::::
structures

:::
one

:::::
wants

:::
the

::::::
model

::
to

::
be

::::
able

::
to

:::::::::
reproduce.

:

5.1 Recovering realistic landscapes

Both the consistent MFD and the
::
In

::::::::
principle,

:::
the

:
use of filters are introduced

:::::
allows to get rid of any mesh dependency and

::
the

:
influence of numerical noise in the solution. An apparent drawback is that for unperturbed data, complex topographies are

less likely to
:::
will

::
no

::::::
longer appear by themselves through the perturbations induced by either the numerical approximation or1070

the numerical solvers. Moreover, natural landscapes do have
:::::
exhibit

:
some heterogeneity even for situations where

:::::
under

:::
low

:
τ

is not that high and that we thus suspect to not being “chaotic”. Consequently it would be highly interesting to have a simple

tool that allows to recover
::::::
regime.

::::
This

::::::::
suggests

::
an

:::::::::
ingredient

::
is

:::::::
missing,

:::
and

::::
this

::::::::
ingredient

::
is

::::::::::
well-known

:::
by

:::::::::
geologists:

:::
the

:::::::::::
heterogeneity.

::::::
Indeed

::::::::::::
heterogeneity

::
is

::::::::::
everywhere

::
in

::::::
nature,

:::
and

:::::
could

:::
be

:::::::
injected

::
in

::::
such

:
a
::::::

model
::
to

:::::
make

:
realistic looking

topographies . Fortunately, thanks to our interpretation of MFD as a discretization of , we see that the coefficient
:::::::
emerge.

::::
This1075

:::
idea

::
is

::
of

::::::
course

:::
not

::::
new

::
but

:::
we

:::::::
propose

::
to

::::::::
invesigate

:::
the

:::::
effect

::
of

::::::::::::
heterogeneity

::
in

:::
the

::::::
context

::
of

:::
the

:::::::::::::::
hydro-sedimentary

::::::
model

::
we

:::
use

:::
for

::::
this

:::::
paper.

:

:::
The

::::
first

:::::::::::
heterogeneity

:::
we

::::::::
consider

::::
here

::
is

::::::
injected

::::
into

:::
the

:
km can play this role as it will naturally induce heterogeneity in

the flow. To illustrate this
::::::::
coefficient,

:::::::::
reflecting

:::::::
variable

:::
soil

::::::::
rugosity.

:::::
Since

::::::::
acquiring

:
a
:::::::::
roughness

::::
map

:::::::
adapted

::
to

:::
the

::::::
spatial

:::::
scales

:::::::
relevant

::
to

:::
our

::::::::
approach

::
is
:::::::
difficult

::::
and

:::::::
probably

::::
not

:::::::
relevant

:::
for

:
a
::::::::
synthetic

::::
case

:::::
study, we resort to an artificial yet1080

efficient trick, namely the Perlin noise ? that is often used in animated movies or video games to produce realistic looking

mountains or river networks.
::::
This

::::
type

::
of

:::::
noise

:::
can

:::::
easily

::
be

::::
used

::
to
:::::
build

:::::::
isotropic

::::::::::::
heterogeneity

::::
maps

::::
with

:::::::::
controlled

::::::
spatial

:::::
scales.

:
We thus consider our “three rivers” test case using variable coefficients km in space and time (Fig. ??). Figure ??b

::
-b illustrates a typical distribution in space of the km coefficients when using a Perlin noise. The

:::::
range

::
of

::::::
values

:::
for

:::
the

::
k

::::::::
coefficient

:::::
(from

:::::::::
km = 0.01

:::::
m.s-1

::
to

:::::::
km = 10

::::::
m.s-1)

:
is
:::::::::
arbitrarily

::::
fixed

:::::
while

:::::::::
respecting

:::::::
realistic

::::
value

::::::
ranges.

::::::::
Impacted

:::
by

:::
the1085

:::::::::::
heterogeneity

::
in

::::
km,

:::
the water flow is still distributed between neighboring cells according to the gradient of the slope, but it

will also preferentially choose to enter the cell at
::::
with the highest km, especially when the slopes become gentle and relatively
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close between neighbors. Consequently, heterogeneous km coefficients help in keeping the water flow focused even on gentle

slopes. Having a realistic range of km values may seem uncertain. Indeed, range of km values can be compared with the range

of typical Gauckler-Manning-Strickler roughness coefficients measured in nature for different vegetation and lithology (e.g.1090

?) but only if the mobility function is considered to be the hydraulic radius with a unit value of one meter. However, as this

assumption is not relevant for the spatial-scales currently considered for in LEMs, there is no direct link between km and

currently available roughness values. We thus simply fixed for this simulation minimum coefficients values at km = 0.01 m.s-1

and maximum coefficients values at km = 10 m.s-1 to get realistic ranges of the flow velocity in rivers and km variation.

:::
The

::::
flow

::::
then

:::::::
acquires

::
a
::::
high

::::::
degree

::
of

::::::::::
complexity

::::::
despite

:
a
:::::
filter

:::::
which

:::
set

::
at

::::::::::
α= 1.1∆xy::::::

makes
:
it
::::::::

possible
::
to

::::::::
eliminate1095

::::::::
numerical

::::::
errors.

Figure 20. The “three rivers” test case with Perlin noise based coefficient km. a: Final (at T=6My) elevation and associated water flow with

variable in space and time km coefficients. b: km coefficients at T=6My

The same approach can be applied in
:
to

:
the other synthetic test case used in section ??. The set of simulations shown in Fig.

?? are
:::
??,

:::::
using

:::
α=

:
2
:::::
∆xy:

::
the

::::::::::
simulations

:::
are

::::
now performed with spatially and temporally varying km coefficients (the same

range of km values is also usedhere). The first observation is that more complex topographic structures are simulated (to be

compared with Fig. ??). The two first simulations (Fig.
:::::
used).

::::::
Figure ??-a-b ) have the same

:::::
shows

:::
the

:::::
initial

:::
and

::::
the

::::
final1100

::::
state

::
of

:::
the

:::::::::
simulation

:::::
with

:
a
::::::
special

:::::
focus

:::
on

:::
the

::::::::::
geomorphic

:::::::::
structures

:::::::::
produced,

:::::
which

:::
are

::::::
clearly

:::::
more

::::::::
complex

:::::
when

:::::::::
comparing

::
to

:::
the

::::
result

::::::
shown

::
in

:::::
figure

:::::
??-d.

::
In

:
a
::::::
second

:::::
time,

::
we

::::::::
introduce

::
a
::::::
similar

:::::::::::
heterogeneity

::
in

:::
the

::::
rain

:::::
maps.

:::::
When

:::
we

:::
use

:::::
solely

::
a

:::
rain

:::::::::::
heterogeneity

::::::::::::
incorporating
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::
the

:::::
same

::::::
spatial

:::::
scales

::::
than

::
in

:::
the

:
km coefficients distribution. We set (α,∆xy)= (1.2 km, 1 km) for the first simulation (Fig.

??-a) while (α,∆xy)= (1.2 km, 0.25 km) is used in the second simulation (Fig. ??-b). The final elevation between those1105

two simulations are very close, which is what is expected. Differences are still observable, but mainly at small spatial scales,

where the effect of the grid refinement allows to capture more details. We then set (α,∆xy)= (0.3 km, 0.25 km) for the third

simulation (Fig. ??
:::::
maps,

:::
the

::::::::::
geomorphic

::::::::
structures

::::::::
produced

:::
are

::::
very

::::::
similar

:::
to

::::
those

::::::::
obtained

:::::
using

::::
only

:::
the

::::::::::::
heterogeneous

:::
km :::::::::

coefficients
:
.
::::
The

::::
most

:::::
visual

::::::::
satisfying

:::::
result

::
is

:::::::
obtained

:::
for

:
a
:::::::::
simulation

:::::
using

::::
both

:::::::
variable

:::
km:::

and
::::
rain

::::
maps

:::::
(Fig.

::
??-c).

It shows that using a a filter size close but slighty above to ∆xy is also important to capture the whole small-scale features1110

that can be simulated on this discretized domain. Finally, the last simulation (Fig. ??-d) has exactly the same parameters that

the third one, but another heterogeneity is added on rain-fall, using here again a Perlin noise. Of course the more complex

topography is produced when the more heterogeneity in data is injected. Figure ?? shows a frontal representation of the same

simulation with the associated water flow. Comparing with Fig. ??, we have jumped from a non-consistent, non-reproducible

and numerical errors dominated model to consistent and reproducible model able to produce complex geomorphic features.
:
).
:

1115

This result encourages us to say that our model has the ability to reproduce complex and realistic structures. However, further

investigations will have to be performed to confirm. In particular, an detailled analysis of the valleys geometry and spacing will

have to be undertaken to understand more precisely the dependency on τ = (kwq
rs
w )/(kgq

rs
ref ).

5.2 Overcoming the accumulation and flat areas limitationsof MFD approaches

In the general setting, there is no reason why the sediments should evolve in such a way that the “drainage” or “curvature”1120

assumption
:::
one

::
of

:::
the

::::::::
sufficient

::::::::
conditions

:
(??) is always fulfilled, which can lead to some non physical behavior of the

:::::
GMS

:::::
model

:
(??)

:::
and

::::
thus

::::
also

:::
the pure MFD algorithms. Indeed, for cells such that sK = 0, the MFD algorithms stop water in

cell K and no flow can go to the neighbours of cell K. This can occur in two obvious situations: when K belongs to
::
in

an accumulation area (a topographic depression) or a flat area(all neighbours either higher or at the same level than K). In

principle, water arriving into an accumulation area should create a “lake” whose bathymetry will be determined by a water1125

balance between incoming flow, infiltration and evaporation. If the surface reaches the threshold of the lake, then some water

leaves the lake and the water flow restarts from the lake threshold. In flat areas, water will spread diminishing its height

until the full area is covered. To reproduce those effects that are not originally taken into account,
::::::::::::::
implementations the MFD

algorithms and more generally the flow routing algorithms of the literature all incorporate practical workaroundsthat can take

different forms: a uniform distribution of flow over neighbours for flat areas, a water balance under the hypothesis of a flat1130

water surface for accumulation areas, etc. Thanks to our interpretation as the discretization of a continuous model, first we can

observe that those limitations should be expected., as is well-posed from the mathematical point of view if −∆(hs + b)> 0

which corresponds to a no water accumulation areas or flat areas assumption. The second observation is that we can
::
we

::::
can

easily propose a generalization of (??) that overcomes those limitations, by noticing that model (??) is in fact a simplification

of the shallow water equations with friction. Indeed, appropriately choosing the friction model and assuming that the mass1135

conservation of water is at steady state a quite general model arising from applying the hydrostatic approximation to the
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shallow water equations would be to consider (see appendix ??):∣∣∣∣∣∣∣∣∣∣
−div

(
kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b)

)
= Sw in Ω,

−kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b) ·n=Bw on ∂ΩN ,

hw = 0 on ∂ΩD,

(23)

with the associated water flux strength:

qw = |kmhwηw (hw) |s−pwref ||∇(hw +hs + b)||pw+1. (24)1140

This is almost (??) except that it uses the hydraulic gradient instead of the topographic one.The assumption ∇(hs + b)≈
∇(hw +hs + b) while valid on pronounced slopes is obviously not valid anymore in accumulation areas (at equilibrium, the

hydraulic gradient is almost zero while the topographic gradient is large) and flat areas (where the topographic gradient is zero

and the hydraulic one is not), which is coherent with the restriction to areas such that −∆(hs + b)> 0. The non-linear model

(??) is thus a natural generalization of
:::
the

:::::
GMS

:::::
model

:
(??) with a built-in handling of accumulation and flat areas which no1145

longer requires practical workarounds. However, model (??) does not come without any drawbacks. The first one is that we

now have to choose the water mobility function ηw, as we are solving for the water height unknown. This will both influence the

repartition of water and the strength of the water flow, while it was completely transparent for the MFD approach with model

. In the same way, the absolute value of the coefficient km will now impact the strength of the water flux through hw, while

only its contrasts were relevant for
::
the

:::::
GMS

::::::
model (??). Thus, some fine tuning is required for (??) to produce meaningful1150

results. The last and probably more important drawback is that (??) being non-linear in its unknown hw, its discretization

will be more involved
::
and

::::::::::::::
computationally

:::::::::
expensive than for (??). We perform it using again finite volumes which will in

practice require solving non-linear equations instead of solving the well-behaved MFD linear system . This is the reason why

the MFD remains an attractive alternative when no flat areas appear in the topography, the water balance and flat water surface

assumption giving in general good results for accumulation areas. Indeed, let
:::
Llet

:
us compare the results obtained with the1155

original Gauckler-Manning-Strickler
::::
GMS

:
model (??) and with the more involved hydrologic model (??) on the “three rivers”

test case, using filters in both cases. The water mobility function ηw for (??) is simply chosen as equal to one if hw is positive

and 0 otherwise.

As we can observe in Fig. ??, if the two models of course do not produce exactly the same results the general behavior is very

similar. Even more close results could certainly be obtained by finely tuning the mobility function. We do not want to explore1160

this any further in the present paper and simply want to illustrate that while suffering from some limitations, the consistent MFD

(
::::
GMS

:
model (??) ) is

:::
and

::::
thus

:::::
MFD

:::::::::
algorithms

::::::
remain a very strong and attractive approximation on draining topographies.

In particular, the MFD computations can easily be an order of magnitude faster that the full hydrologic computations which

fully justifies using MFD for draining topographies provided the consistency correction depicted in the first part of the paper

is used.
:::::::
suitable

:::::::::::
topographies.

:
1165
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6 Conclusions

After recalling the interpretation of ? of MFD algorithms as discretization of Gauckler-Manning-Strickler and the associated

consistency correction, we have explained how to extend it to the most classical MFD algorithms of the literature in order to

get rid of their well documented mesh dependency. This is a necessary yet not sufficient step to obtain reproducible landscape

evolution simulations. Next
:::::::::
illustrating

:::
the

::::::::
numerical

::::::::::
instabilities

::::::
arising

::::
from

:::
the

:::::::::::::::
self-amplification

::::::::::::
phenomenons

::
at

:::
the

::::
core1170

::
of

:::::::
coupling

:::::::
overland

::::
flow

::::
and

:::::::
sediment

::::::::
evolution

::::::
models, we have proposed to mimic the LES strategy for CFD computation in

the context of landscape evolution models, relying on the well known Leray-α differential filter. Numerical experiments assess

that the combination of consistent MFD and filtering produces results robust to numerical perturbations. It is our belief that

this “large structures simulation” (LSS) approach goes far beyond the specific model considered here and that any LEMs could

benefit from it, especially as the cost of implementing and using filtering is not high. Indeed, experiments performed without1175

any filtering strategy have shown that it is
:::
can

:::::::
become extremely difficult to distinguish between the imprint of numerical errors

and physical processes. Provided fine enough filter parameter and mesh size are used, only the non physical heterogeneity will

disappear. The apparently missing visual complexity that previously arose from numerical noise can be
::::::::
physcally re-introduced

when heterogeneous data are considered. Similarly to LES models, we believe that a mathematical analysis and numerical

analysis of the filtered model should be achievable. Both are the subject of active research and we
:::
We

:
hope to be able to1180

publish such analysis in a future paper. In particular we anticipate that this may bring a more straightforward link between the

value of the ratio τ and the transition from non chaotic to chaotic behaviors. Let us also mention that although we have only

presented here a mono-lithologic version of our model, our implementation considers the mutli-lithologic case which opens

perspectives for realistic case studies
::
To

::::::::
complete

:::
this

::::::
work,

:::
we

:::
also

::::
plan

:::
to

:::
use

::
in

:::
our

::::
next

:::::
study

:::
the

::::
full

:::::
model

::::::::
capacity

::
in

:::::::
building

:
a
:::::::::::::
mutli-lithology

:::::::
realistic

:::
test

::::
case. Finally, pursuing the analogy with LES, an interesting perspective would be to1185

analyze whether it is feasible to develop sub-filter models to increase the filtered model accuracy when α is quite large, in order

to reduce the need for fine α and thus fine meshes and consequently the overall cost of the approach.

Code availability. All the numerical schemes used in this paper are fully described in the appendix ??. Implementation was performed in

code ArcaDES, which is available through the commercial simulator DionisosFlow™.

Appendix A: Finite volume discretization
:::::::::
Derivation

::
of

:::::::
analytic

::::::::
solutions1190

In this section we describe the full finite volume discretization of system ---. We assume that the mesh is compatible with the

boundary decomposition, i. e. there exists subsets FNext :::
For

:::::::::
simplicity,

:::
we

:::::::
consider

::
in

:::
this

::::::
section

:::
the

::::::
special

::::
case

:::::
where

::::::
b= 0,

::
kw:and FDext such that

::
kg:::

are
::::::::
constants,

:::
the

:::::
water

::::::::
mobility

:::::::
function

:::
and

:::::::::
coefficient

:::
km:::

are
:::::
both

::::
equal

:::
to

:::
one

::::::::::
ηw(hw) = 1

::::
and

:::::::
km = 1.

::
To

::::
ease

:::
the

::::::::
reading,

:::
we

:::
will

::::
not

::::
write

:::
the

:::::::::
dimension

:::::::::
constants

::::
sref :::

and
:::::
qref ,

::
as

::::
they

:::
are

:::::
both

:::::
equal

::
to

:::
one

:::
in

:::
the
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::::::
chosen

:::
unit

:::::::
system.

:::
The

::::::::
sediment

::::
flux

::::::::
simplifies

::::
into:1195

Js =
⋃

σ∈FNext

−ηs(hs)||∇(hs + b)||ps
:::::::::::::::::::

(
qrsw kw∇(hs + b) + kg∇(hs + b)
:::::::::::::::::::::::::

)
and =

⋃
σ∈FDext

. in Ω×
:::::

]t0,T
:::

[,

Notice that all our simulations without filters employs the same numerical schemes but of course replacing the filtered values by

the original ones. Leray-α filtering equation:Using the TPFA the approximate filterFα,h is defined for uT = ((uK)K∈T ,(uσ)σ∈Fext)

by
::
We

::::::::
consider

:::
the

:::::::::
simplified

::::::
setting

:::::
where

::::::::::
ηs(hs) = 1,

::::::
which

::
is

::::
only

:::
an

::::::::::::
approximation

:::
of

:::
the

:::::::
function

:::
ηs:::

we
::::
have

:::::
used

:::::::::
everywhere

::::
else

::
in

:::
the

::::::
paper.

::::
This

::::::
setting

:::::::::::
corresponds

::
to

:::
the

:::::::
analytic

::::::
steady

::::
state

::::::::
solutions

:::::::
studied

::
in

::
?.

:::::
Since

::::::::::
ηs(hs)≈ 11200

::
as

::::
soon

::
as

:::
hs::

is
::::
large

:::::::
enough,

:::
we

:::::
label

:::::
those

::::::::
solutions

::
as

::::::
“quasi

:::::
steady

::::::
state”.

:::
We

::::
seek

:::::
quasi

::::::
steady

::::
state

::::::::
solutions

::::
that

:::
are

::::::::
morevoer

:::::::
uniform

::
in

:::
the

:
y
:::::::
variable

::::::::::::::::::
hs(x,y, t) = hs,x(x),

:::
and

:::::::::
symmetric

::::
with

:::::::
respect

::
to

:::
the

:::
axis

::::::
x= 0,

:::
and

:::
we

::::::::
consider

::::
only

::
the

:::::::
interval

:::::::::
]0,Lx/2[.

:::
We

::::::
finally

::::::
assume

::::
that

:::
Ss::::

and
:::
Sw :::

are
:::::
equal

::
to

::::
two

::::::::
constants

::::
Ss,x::::

and
:::::
Sw,x.

:::
We

::::
have

::::::::::::
consequently

::::::::::::::::::
∇(hs + b) = ∂xhs,xex::::

and
:::
the

:::::
water

:::::::
equation

:::::::
reduces

::
to:

:

Fα,h(uT ) = ((Fα,K(uT ))K∈T ,(Fα,σ(uT ))σ∈Fext) ,1205

−∂x (hw,x|∂xhs,x|pw∂xhs,x) = Sw,x.
::::::::::::::::::::::::::::::

where:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2
∑

σ∈FK∩Fint

|σ|
dKL

(Fα,K(uT )−Fα,L(uT )) + |K|Fα,K(uT ) = |K|uK for all K ∈ T ,

Fα,σ(uT ) = Fα,K(uT ) for all K ∈ T and all σ ∈ FK ∩FNext,

Fα,σ(uT ) = 0 for all K ∈ T and all σ ∈ FK ∩FDext.

The discrete Neumann filterFNα,h of course satisfies but with Neumann boundary conditions on every σ ∈ Fext. Sediment mass1210

conservation equations:We now assume that the time interval ]0,T [ is subdivided intoNT subintervals ]tn, tn+1[, where t0 = 0

and tNT+1 = T . We denote ∆tn = tn+1− tn. The discrete quantities associated with time tn will be denoted as usual with a

superscript n. The TPFA finite volume scheme for the mass
::::::::
Assuming

:::::::::::
−∂xhs,w > 0

::::
(the

:::::::
solution

::
is

:::::::::
decreasing

:::
fom

:::
the

::::::
center

::
of

:::
the

::::::
domain

::
to

::
its

:::::::::
boundary)

:::
this

:::::
leads

::
to

:::::::::::::
∂xqw,x = Sw,x,

::::::::::::::::::::::::::
qw,x =−hw,x|∂xhs,x|pw∂xhs,x,

:::
and

::::::
finally

:::::::::::::::::::
qw,x = qw(0) +Sw,xx.
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::
In

:::
the

::::
same

::::
way,

:::
the

:
conservation of sediments for the flux is given by

::::::
reduces

::
to:1215 ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|K|
∆tn

(hn+1
s,K −hns,K) +

∑
σ∈FK∩Fint

|σ|
dKLs

pw
ref

ηn+1
s,σ ∆Ψn,n+1

KL +
∑

σ∈FK∩FDext

|σ|
dKσs

pw
ref

ηn+1
s,σ ∆Ψn,n+1

Kσ ,

−
∑

σ∈FK∩FNext

|σ|Bn+1
s,σ = |K|Sns,K for all K ∈ T ,

hn+1
s,σ + bn+1

σ = hn+1
s,K + bn+1

K +Gn+1
s,K · (xσ −xK) for all K ∈ T and all σ ∈ FK ∩FNext,

hn+1
s,σ = 0 for all σ ∈ FDext,

−kg∂x (|∂xhs,x|ps∂xhs,x)− ∂x (kwq
rs
w |∂xhs,x|ps∂xhs,x) = Ss,x,

::::::::::::::::::::::::::::::::::::::::::::::::::::

where
:::::
which

:::::::::
integrating

::
in
::
x
:::::
leads

::
to

:::::
(using

:::::
again

:::
our

:::::::::
hypothesis

:::
on

:::
the

::::
sign

::
of

:::::::
∂xhs,x):

∆Ψn,n+1
KL = (qn+1

w,σ )rs ||G†,n+1
s,σ ||ps,1(ψw(hs,K + bK)−ψw(hs,L + bL)) + ||G†,n+1

s,σ ||ps,2(ψg(hs,K + bK)−ψg(hs,L + bL)),1220

(∂xhs,x)ps+1 = (−1)ps+1 Ss,xx+ γ

kg + kw(qw(0) +Sw,xx)rs
,

:::::::::::::::::::::::::::::::::::::::::::

and
::::
thus:

:

∆Ψn,n+1
Kσ = (qn+1

w,σ )rs ||G†,n+1
s,σ ||ps,1(ψw(hs,K + bK)−ψw(hs,σ + bσ)) + ||G†,n+1

s,σ ||ps,2(ψg(hs,K + bK)−ψg(hs,σ + bσ)),

1225

∂xhs,x =− (Ss,xx+ γ)
1

ps+1

(kg + kw(qw(0) +Sw,xx)rs)
1

ps+1

.

:::::::::::::::::::::::::::::::::::::

where the mobility ηn+1
s,σ is upwinded using ∆Ψn,n+1

KL for σ ∈ Fint::
To

::::::
ensure

:::
the

:::::::::
continuity

::
of

:::
the

:::::::::
derivatives

::
at

::::::
x= 0,

::
let

:::
us

::::::
assume

:::
that

::::::::::::
∂xhs,x(0) = 0

::::
and

::::
thus

:::::
γ = 0,

::::
and

:::::::::::
consequently

:::::::::
qw(0) = 0.

:::
The

::::::
above

::::::
relation

:::::::::
simplifies

:::
into:

ηn+1
s,σ =

∣∣∣∣∣∣∣
ηs(h

n+1
s,K ) if ∆Ψn,n+1

KL ≥ 0,

ηs(h
n+1
s,L ) if ∆Ψn,n+1

KL < 0,

1230
∂xhs,x =−(Ss,xx)

1
ps+1 (kg + kw(Sw,xx)rs)−

1
ps+1 .

:::::::::::::::::::::::::::::::::::::::::

and using ∆Ψn,n+1
Kσ for σ ∈ FDext::::::

Notice
:::
that

::::
this

::
is

:::::::
coherent

:::::
with

:::
our

::::::::::
assumption

:::::::::::
−∂xhs,x > 0.

::::
The

:::::
water

::::::
height

::::
hw,x::::

can

:::
then

:::
be

:::::::
obtained

:::
by

::::::
setting:

ηn+1
s,σ =

∣∣∣∣∣∣∣
ηs(h

n+1
s,K ) if ∆Ψn,n+1

Kσ ≥ 0,

ηs(h
n+1
s,σ ) if ∆Ψn,n+1

Kσ < 0,
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1235

hw,x = (−1)pw+1 Sw,xx

∂xh
pw+1
s,x

= (Sw,xx)(Ss,xx)
−(pw+1)
ps+1 (kg + kw(Sw,xx)rs)

pw+1
ps+1 ,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

and where the filtered water flux magnitude is approximated by the harmonic mean whenever possible and the mean value

otherwise
:::::
which

::
is

:::::::
positive

::
as

:::::::::
expected.

::
At

::::
this

:::::
stage,

::::::::::
integration

:::
for

::::
hs,x::::

was
::::::
simpler

:::
in

::
?

::::::
because

:::
of

:::
the

:::::::
absence

::
of
::::
kg .

::::::
Indeed,

:::
for

::::::
kg = 0

:::
we

::::
have:

qn+1
w,σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

FNα,K(qn+1
w,T ) if σ ∈ FDext

dKLFNα,K(qn+1
w,T )FNα,L(qn+1

w,T )

FNα,K(qn+1
w,T )dLσ +FNα,L(qn+1

w,T )dKσ
if σ ∈ Fint and FNα,K(qn+1

w,T )> 0 and FNα,L(qn+1
w,T )> 0,

1

2
(FNα,K(qn+1

w,T ) +FNα,L(qn+1
w,T )) if σ ∈ Fint and FNα,K(qn+1

w,T ) = 0 or FNα,L(qn+1
w,T ) = 0.

1240

∂xhs,x =−(Ss,xk
−1
w S−rsw,x )

1
ps+1x

1−rs
1+ps ,

:::::::::::::::::::::::::::::::

We recall that the discrete full topographic gradient is given for any cell K ∈ T by
::::::::::
immediately

::::::
leading

::
to:

n
s,Khs,x

:::
=

1

|K|
∑

σ∈FK∩Fint

|σ|
dKL

(hns,L + bnL−hns,K − bnK)(σs,x(0)
::::

−K
1 + ps

2 + ps− rs
(Ss,xk

−1
w S−rsw,x

:::::::::::::::::::::

)
1

ps+1x2+ps−rs .
:::::::::::

:::::::::
Conversely,

::
if
::::::
kw = 0

::::
(no

::::::
couling

:::::::
between

:::::
water

::::
and

:::::::::
sediments),

:::
we

:::::
have:1245

+
1

|K|
∑

σ∈FK∩Fext

|σ|
dKσ

(∂x
::
hns,σ + bnσ −hns,K − bnK)(σs,x =

::::
−K(k−1

g Ss,xx
::::::::

)
1

ps+1
:::

,

while its stabilized versionG†,ns,σ is given byG†,ns,σ =Gn
s,σ +Rn

s,σ with
::
and

::::
thus

:

hs,x = hs,x(0)− ps + 1

ps + 2
(k−1
g Ss,x)

1
ps+1x

ps+2
ps+1 .

:::::::::::::::::::::::::::::::::::::

::
In

:::
the

::::::
general

::::
case

:::
we

::::
need

::
to

:::::::
compute:

Gn
s,σ =

∣∣∣∣∣∣∣
1

2
(Gn

s,K +Gn
s,L) if Tσ = {K,L},

Gn
s,K if Tσ = {K},

1250

hs,x = hs,x(0)−
x∫

0

(Ss,xu)
1

ps+1 (kg + kw(Sw,xu)rs)−
1

ps+1 du.

::::::::::::::::::::::::::::::::::::::::::::::::::
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as well as
:::::
Using

::
the

:::::::
variable

:::::::
change

:::::::
v = urs ,

::::::::
u= v1/rs

::::
and

:::::::::::::::::
du= 1

rs
v(1−rs)/rsdv

:::::
leads

::
to:

Rn
s,σ =

∣∣∣∣∣∣∣∣∣
1

d
2

KL

(
hns,L + bnL−hns,K − bnK −Gn

s,σ · (xL−xK)
)

(xL−xK) if Tσ = {K,L},

1

d
2

Kσ

(
hns,σ + bnσ −hns,K − bnK −Gn

s,σ · (xσ −xK)
)

(xσ −xK) if Tσ = {K}.

1255

hs,x = hs,x(0)− 1

rs
S

1
ps+1
s,x

xrs∫
0

v
(1−rs)(ps+1)+1

rs(ps+1) (kg + kwS
rs
w,xv)−

1
ps+1 dv,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Water equations:The finite volume scheme for the water equations -is simply obtained by replacing (hs,K + bK)K∈T by

(Fα,K(hns,T + bnT ))K∈T in -. In other words we apply a consistent MFD algorithm on the filtered topography and reconstruct

a consistent water flux by setting qn+1
K = ||Qn+1

K || with
:::::
which

::::
will

:::
lead

::
to
::::::
easily

:::::::::
computable

:::::::
analytic

::::::::
solutions

::
in

::::::::
particular

:::
for

::
the

::::::
special

::::::::::::
combinations

::
of

:::::
values

::
of

:::
rs :::

and
::
ps::::

that
:::::::
satisifies

::::::::::::::::::::
(1− rs)(ps + 1) + 1 = 0

:::
and

::::::
cancel

:::
the

::::::::
exponant

:::::::::::::

(1−rs)(ps+1)+1
rs(ps+1) .1260

:::
We

::::
start

::
by

:::
the

::::::
special

::::
case

::::::
ps = 0

:::
and

::::::
rs = 2.

:::
In

:::
this

::::
case,

:::
we

::::
have:

n+1
K hs,x

:::
=

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )>Fα,L(hns,T +bnT )

τn,n+1
KL q̃n+1

K

|K|sn,n+1
K

(Fα,K(hns,T + bnT )s,x(0)
::::

−Fα,L
1

2
Ss,x

x2∫
0

:::::::

(hns,T kg
:

+bnT kwS
2
w,xv

:::::::

))(σ−K)−−1dv,
::::

::::::
leading

::
to:

:

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )<Fα,L(hns,T +bnT )

τn,n+1
KL q̃n+1

L

|K|sn,n+1
L

(Fα,L(hns,T + bnT )s,x = hs,x(0)
::::::::::

−Fα,K
Ss,x

2kwS2
w,x

:::::::

(hns,T ln
:

(
kg
:

+ bnT ))(σkwS
2
w,xx

2

::::::::

)
−K ln

:

(
kg
:

)
).

::
In

:::
the

::::
other

:::::
cases

:::
for

:::::
which

:::::::::::::::::::::
(1− rs)(ps + 1) + 1 = 0,

:::
this

:::::
leads

:::
to:1265

−
∑

σ∈FK∩Fext

|σ|Bn+1
w,σ ,

hs,x = hs,x(0)− 1

rs
S

1
ps+1
s,x

xrs∫
0

(kg + kwS
rs
w,xv)−

1
ps+1 dv,

::::::::::::::::::::::::::::::::::::::::::::
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and
::::
thus∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̃n+1
K −

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )<Fα,L(hns,T +bnT )

τn,n+1
KL

q̃n+1
L

sn,n+1
L

(
Fα,L(hns,T + bnT )−Fα,K(hns,T + bnT )

)
−

∑
σ∈FK∩Fext

|σ|Bn+1
w,σ = |K|Snw,K for all K ∈ T ,

sn,n+1
K =

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )≥Fα,L(hns,T +bnT )

τn,n+1
KL

(
Fα,K(hns,T + bnT )−Fα,L(hns,T + bnT )

)

τn,n+1
KL =

|σ|kn+1
m,σ

dKLs
pw
ref

||Gn
F,s,σ||pw ,

1270

hs,x = hs,x(0)− ps + 1

psrs

S
1

ps+1
s,x

kwS
rs
w,x

((kg + kwS
rs
w,xx

rs)ps/(ps+1)− kps/(ps+1)
g )

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

where

Gn
F,s,σ =

∣∣∣∣∣∣∣
1

2
(Gn
F,s,K +Gn

F,s,L) if Tσ = {K,L},

Gn
F,s,K if Tσ = {K},

and the gradient of the filtered topography is of course given by
::::
Apart

:::::
from

::::
those

:::::
cases

::::
than

:::::::
cancels

::
the

::::::::
exponant

:::::::::
appearing

::
in1275

::
the

::::::::
intregral,

:::::::
another

:::::::::
interesting

::::::
special

::::
case

:
is
:::
the

:::::
linear

::::
case

::::::
ps = 0

::::
and

:::::
rs = 1

:::
for

::::::
which

::
we

:::::
have:

n
F,s,Khs,x

:::
=

1

|K|
∑

σ∈FK∩Fint

|σ|
dKL

(Fα,L(hns,T + bnT )s,x(0)
::::

−Fα,K
x∫

0
::

(hns,T + bnT Ss,xu
::::

))(σ−Kkg + kw(Sw,xu
::::::::::::

))−1du,
:::::

:::::
which

::::
leads

:::
to:

:

+
1

|K|
∑

σ∈FK∩Fext

|σ|
dKσ

(Fα,σ(hns,T + bnT )−Fα,K(s,x =
::::

hns,T + bnT ))(σs,x(0)−Ss,x
::::::::::

 x

kwSw,x
::::::

−K)
kg

k2
wS

2
w,x

ln
::::::::

∣∣∣∣kg + kwSw,xx
:::::::::::

∣∣∣∣+ kg
k2
wS

2
w,x

ln
:::::::::

∣∣∣∣kg:
∣∣∣∣
 .

:
It
::
is

::::
then

::::
easy

::
to

::::::
choose

:::
the

:::::
value

:::
for

::::::
hs,x(0)

::::
such

::::
that

::::::::::::::
hs,x(Lx/2) = 0.1280

Appendix B: From shallow water model to the steady-state hydrologic model (??)

Recall that the shallow water systems is given by (see ??):∣∣∣∣∣∣∣
∂hw
∂t

+ div(hwuw) = 0,

∂

∂t
(hwuw) + div(hwuw ⊗uw) + ghw∇(hs + b+hw) =−κw (hw, ||∇(hw +hs + b)||) |uw|rwuw,

(B1)
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where uw denotes the water speed, g the acceleration due to gravity, and κw is the friction coefficient. Then, following ? and

definingHs,c to be the characteristic sediment height,Hw,c the characteristic water height, Lc the characteristic domain length,1285

Tc the characteristic time and defining the nondimensional variables:

ĥs =
hs
Hs,c

, b̂s =
b

Hs,c
, ĥw =

hw
Hw,c

, ûw =
Tcuw
Lc

, x̂=
x

Lc
, ŷ =

y

Lc
, t̂=

t

Tc
,

we see that (??) is equivalent to:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ĥw

∂t̂
+ ˆdiv(ĥwûw) = 0,

∂

∂t̂
(ĥwûw) + ˆdiv(ĥwûw ⊗ ûw) + g

Hs,cT
2
c

L2
c

ĥw∇̂(ĥs + b̂) + g
Hw,cT

2
c

L2
c

ĥw∇̂(ĥw),

=−κw (hw, ||∇(hw +hs + b)||) Lc
Hw,c

(
Lc
Tc

)rw−1

|ûw|rw ûw.

The “shallow” hypothesis corresponds to assuming that Lc/Hw,c >> 1, while the two numbers1290

Fr,w =
Lc√

gHw,cTc
and Fr,s =

Lc√
gHs,cTc

,

are equivalent to Froude numbers for the water and sediment flows. For long term sediment evolution, it is reasonable to assume

that Fr,w << 1 and Fr,s << 1, i.e. that gravity is the dominant phenomenon. Combined with the shallow water assumption

this suggests to neglect the inertia terms in the nondimensional momentum balance, leading to the hydrostatic assumption:

ghw∇(hs + b+hw) =−κw (hw, ||∇(hw +hs + b)||) |uw|rwuw, (B2)1295

Inverting formula (??) we obtain the following expression for the water speed:

uw =−µw (hw, ||∇(hw +hs + b)||)∇(hs + b+hw), (B3)

where

µw (hw, ||∇(hw +hs + b)||) =
g

1
rw+1h

1
rw+1
w

κw (hw, ||∇(hw +hs + b)||) 1
rw+1

||∇(hs + b+hw)||− rw
rw+1 . (B4)

Thus, appropriately choosing the friction model, for instance by setting rw = 0 and1300

κw (hw, ||∇(hw +hs + b)||) =
ghw

kmηw(hw)s−pwref ||∇(hw +hs + b)||pw
, (B5)

and assuming that the mass conservation of water is at steady state we obtain the following quite general hydrostatic approxi-

mation to the shallow water equations:∣∣∣∣∣∣∣∣∣∣
−div

(
kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b)

)
= Sw in Ω,

−kmhwηw (hw)s−pwref ||∇(hw +hs + b)||pw∇(hw +hs + b) ·n=Bw on ∂ΩN ,

hw = 0 on ∂ΩD,
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with the associated water flux strength:1305

qw = |kmhwηw (hw) |s−pwref ||∇(hw +hs + b)||pw+1.

Remark B.1. The friction model (??) becomes singular when ||∇(hw +hs + b)||= 0. Thus, an alternate choice would be to

use
::::::::
something

::::
like:

κw (hw, ||∇(hw +hs + b)||) =
ghw

kmηw(hw)(β+ s−pwref ||∇(hw +hs + b)||pw)
,

for some β > 0 (the same holds for function ηw such that η(0) = 0). This alternate choice is probably more physical, as the1310

term in s−pwref ||∇(hw+hs+b)||pw can be interpreted as modeling some deceleration in accumulation areas. We have chosen to

use (??) to be as close as possible to the MFD algorithms of the literature.

Appendix C:
:::::
Finite

:::::::
volume

::::::::::::
discretization

::
In

:::
this

::::::
section

:::
we

:::::::
describe

:::
the

::::
full

::::
finite

:::::::
volume

:::::::::::
discretization

:::
of

::::::
system (??)-(??)-(??)-(??).

:::
Let

::
Ω
:::
be

:
a
::::::::
bounded

:::::::::
polyhedral

::::::::
connected

:::::::
domain

::
of

::::
R2,

:::::
whose

:::::::::
boundary

::
is

:::::::
denoted

::::::::::
∂Ω = Ω \Ω.

::::
We

:::::
recall

:::
the

:::::
usual

:::::
finite

::::::
volume

::::::::
notations

:::::::::
describing

::
a1315

::::
mesh

:::::::::::
M= (T ,F)

::
of

:::
Ω.

::::
The

::
set

:::
of

:::
the

::::
cells

::
of

:::
the

:::::
mesh

::
T

::
is

:
a
:::::
finite

::::::
family

::
of

:::::::::
connected

::::
open

:::::::
disjoint

::::::::
polygonal

:::::::
subsets

::
of

::
Ω,

::::
such

::::
that

::::::::::::
Ω = ∪K∈TK.

:::
For

:::
any

:::::::
K ∈ T ,

:::
we

:::::
denote

:::
by

:::
|K|

:::
the

:::::::
measure

:::
of

:::
|K|,

:::
by

:::::::::::
∂K =K \K

:::
the

::::::::
boundary

::
of

:::
K,

:::
by

:::
ρK

::
its

:::::::
diameter

::::
and

::
by

::::
xK ::

its
:::::::::
barycenter.

::::
The

:::
set

::
of

:::::
faces

::
of

:::
the

::::
mesh

:::
F

:
is
::

a
:::::
finite

:::::
family

::
of

:::::::
disjoint

::::::
subsets

::
of

:::
R2

::::::::
included

::
in

::
Ω

::::
such

::::
that,

::
for

:::
all

::::::
σ ∈ F ,

::
its

:::::::
measure

::
is
:::::::
denoted

:::
|σ|,

:::
its

:::::::
diameter

:::
hσ:::

and
:::
its

:::::::::
barycenter

::
xσ:.

::::
For

:::
any

:::::::
K ∈ T ,

:::
the

::::
faces

::
of

::::
cells

:::
K

::::::::::
corresponds

::
to

::
the

::::::
subset

:::
FK::

of
::
F
:::::
such

:::
that

:::::::::::::
∂K = ∪σ∈FKσ.

::::::
Then,

::
for

::::
any

:::
face

::::::
σ ∈ F ,

:::
we

::::::
denote

::
by

:::::::::::::::::::::
Tσ = {K ∈ T | σ ∈ FK}1320

::
the

:::::
cells

::
of

::::::
which

:
σ
::

is
::

a
::::
face.

:::::
Next,

:::
for

:::
all

::::
cell

::::::
K ∈ T

:::
and

:::
all

::::
face

:::::::
σ ∈ FK::

of
::::

cell
:::
K,

:::
we

::::::
denote

:::
by

:::::
nK,σ :::

the
:::
unit

:::::::
normal

:::::
vector

::
to

::
σ

:::::::
outward

::
to

:::
K,

:::
and

::::::::::::::::
dK,σ = |xσ −xK |.::::

The
:::
set

::
of

::::::::
boundary

::::
faces

::
is
:::::::
denoted

:::::
Fext,:::::

while
::::::
interior

:::::
faces

:::
are

:::::::
denoted

::::
Fint.::::::

Finally
:::
for

::::
any

::::::::
σ ∈ Fint,::::::::

whenever
:::
the

::::::
context

::
is
:::::
clear

:::
we

:::
will

::::::
denote

:::
by

::
K

::::
and

:
L
:::

the
::::

two
::::
cells

:::::::
forming

::::::::::::
Tσ = {K,L},

::
as

::::
well

::
as

::::::::::::::::
dKL = |xK −xL|.::::

This
:::
for

:::::::
instance

::::::
allows

:::::
when

::::::
looping

::::
over

:::
the

:::::
faces

::
σ

::
of

:::
cell

:::
K

::
to

::::::
denote

::
by

::
L
:::
the

:::::
other

::::
face

::
of

:
σ
:::::::
without

::::::::
resorting

::
to

:
a
:::
too

:::::
heavy

::::::::
notation.

::
To

:::::
avoid

::::
any

::::::::
confusion

::::
with

:::::
water

:::
and

::::::::
sediment

:::::::
heights,

::::::::::::::
ε= maxK∈T ρK::::

will1325

:::::
denote

:::
the

:::::
mesh

::::
size.

::::
For

:::
any

::::::::::
continuous

:::::::
quantity

::
u,

:::
its

:::::::
discrete

:::::::::
counterpart

::::
will

:::
be

::::::
denoted

::::::::::::::::::::::::::
uT = ((uK)K∈T ,(uσ)σ∈Fext)

:::::
where

:::
for

:::
any

::::::
K ∈ T

:::
uK::

is
:::
the

:::::::
constant

::::::::::::
approximation

::
of

::
u

::
in

:::
cell

::
K

:::::
while

:::
for

:::
any

::::::::
σ ∈ Fext:::

uσ ::
is

::
the

::::::::
constant

::::::::::::
approximation

::
of

:
u
::::
over

::::
face

::
σ.

::
In

:::
the

::::::::
following

:::
we

:::
will

:::::::
assume

:::
that

:::
the

:::::
mesh

::
is

:::::::::
orthogonal,

:::
i.e.

:::::
there

:::::
exists

:
a
::::::
family

::
of

::::::::
centroids

:::::::::
(xK)K∈T ::::

such
::::
that:

xK ∈ ΣK ∀K ∈ T and
xL−xK
|xL−xK |

= nK,σ for σ ∈ Fint, σ = {K,L}
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

1330

:::
and

:::
let

::
us

::::::
denote

:::
xσ:::

the
:::::::::
orthogonal

:::::::::
projection

::
of

::::
xK::

to
:::
the

::::::::::
hyperplane

:::::::::
containing

::
σ

:::
for

:::
any

:::::::
σ ∈ FK::::

and
:::
any

:::::::
K ∈ T

::::
with

:::::::::::::::
dK,σ = |xK −xσ|,:::

as
::::
well

::
as

::::::::::::::::
dKL = |xK −xL|.:::::

Then,
:::
one

::::
can

:::
use

::
a

::::::::
two-point

:::::
finite

::::::
volume

:::::::
scheme

::
to

::::::::
discretize

::::::::
diffusion

:::::::
operators

:::::
with

:::::
scalar

::::::::
diffusion

::::::::::
coefficients

::::
(no

:::::::
tensors).

: ::
We

::::
also

:::::::
assume

::::
that

:::
the

:::::
mesh

::
is
::::::::::
compatible

::::
with

:::
the

:::::::::
boundary
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::::::::::::
decomposition,

:::
i.e.

:::::
there

:::::
exists

::::::
subsets

::::
FNext::::

and
::::
FDext::::

such
::::
that:

:

∂ΩN =
⋃

σ∈FNext

σ and ∂ΩD =
⋃

σ∈FDext

σ.

:::::::::::::::::::::::::::::::::::

1335

:::::
Notice

::::
that

::
all

::::
our

:::::::::
simulations

:::::::
without

:::::
filters

:::::::
employs

:::
the

:::::
same

:::::::::
numerical

:::::::
schemes

:::
but

::
of

::::::
course

::::::::
replacing

:::
the

::::::
filtered

::::::
values

::
by

:::
the

:::::::
original

::::
ones.

:

:::::::
Leray-α

:::::::
filtering

::::::::
equation:

:::::
Using

:::
the

::::::::
two-point

::::
flux

::::::::::::
approximation

::::::
(TPFA)

:::
the

:::::::::::
approximate

::::
filter

:::::
Fα,h :

is
:::::::
defined

:::
for

uT = ((uK)K∈T ,(uσ)σ∈Fext)
::::::::::::::::::::::::

1340

::
by

:

Fα,h(uT ) = ((Fα,K(uT ))K∈T ,(Fα,σ(uT ))σ∈Fext) ,
::::::::::::::::::::::::::::::::::::::::::

:::::
where:

:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α2
∑

σ∈FK∩Fint

|σ|
dKL

(Fα,K(uT )−Fα,L(uT )) + |K|Fα,K(uT ) = |K|uK for all K ∈ T ,

Fα,σ(uT ) = Fα,K(uT ) for all K ∈ T and all σ ∈ FK ∩FNext,

Fα,σ(uT ) = 0 for all K ∈ T and all σ ∈ FK ∩FDext.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C1)

:::
The

:::::::
discrete

::::::::
Neumann

::::
filter

:::::
FNα,h::

of
::::::
course

:::::::
satisfies (??)

::
but

::::
with

:::::::::
Neumann

::::::::
boundary

:::::::::
conditions

::
on

:::::
every

::::::::
σ ∈ Fext.1345

::::::::
Sediment

::::
mass

:::::::::::
conservation

::::::::::
equations:

:::
We

::::
now

::::::
assume

::::
that

:::
the

::::
time

:::::::
interval

::::
]0,T [

::
is
::::::::::
subdivided

:::
into

::::
NT ::::::::::

subintervals
:::::::::
]tn, tn+1[,

:::::
where

::::::
t0 = 0

:::
and

:::::::::::
tNT+1 = T .

:::
We

:::::
denote

:::::::::::::::
∆tn = tn+1− tn.

::::
The

:::::::
discrete

::::::::
quantities

:::::::::
associated

::::
with

:::::
time

::
tn::::

will
::
be

:::::::
denoted

:::
as

::::
usual

:::::
with

:
a
::::::::::
superscript

::
n.

::::
The

:::::
TPFA

::::
finite

:::::::
volume

::::::
scheme

:::
for

:::
the

:::::
mass

::::::::::
conservation

::
of

:::::::::
sediments (??)

:::
for

:::
the

:::
flux

:
(??)

::
is

:::::
given

:::
by:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|K|
∆tn

(hn+1
s,K −hns,K) +

∑
σ∈FK∩Fint

|σ|
dKLs

pw
ref

ηn+1
s,σ ∆Ψn,n+1

KL +
∑

σ∈FK∩FDext

|σ|
dKσs

pw
ref

ηn+1
s,σ ∆Ψn,n+1

Kσ ,

−
∑

σ∈FK∩FNext

|σ|Bn+1
s,σ = |K|Sns,K for all K ∈ T ,

hn+1
s,σ + bn+1

σ = hn+1
s,K + bn+1

K +Gn+1
s,K · (xσ −xK) for all K ∈ T and all σ ∈ FK ∩FNext,

hn+1
s,σ = 0 for all σ ∈ FDext,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C2)1350
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:::::
where

∆Ψn,n+1
KL = (qn+1

w,σ )rs ||G†,n+1
s,σ ||ps,1(ψw(hs,K + bK)−ψw(hs,L + bL)) + ||G†,n+1

s,σ ||ps,2(ψg(hs,K + bK)−ψg(hs,L + bL)),
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C3)

:::
and

∆Ψn,n+1
Kσ = (qn+1

w,σ )rs ||G†,n+1
s,σ ||ps,1(ψw(hs,K + bK)−ψw(hs,σ + bσ)) + ||G†,n+1

s,σ ||ps,2(ψg(hs,K + bK)−ψg(hs,σ + bσ)),
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C4)

:::::
where

:::
the

:::::::
mobility

:::::
ηn+1
s,σ ::

is
::::::::
upwinded

:::::
using

::::::::
∆Ψn,n+1

KL :::
for

::::::::
σ ∈ Fint::1355

ηn+1
s,σ =

∣∣∣∣∣∣∣
ηs(h

n+1
s,K ) if ∆Ψn,n+1

KL ≥ 0,

ηs(h
n+1
s,L ) if ∆Ψn,n+1

KL < 0,
:::::::::::::::::::::::::::::::::

(C5)

:::
and

:::::
using

::::::::
∆Ψn,n+1

Kσ :::
for

::::::::
σ ∈ FDext::

ηn+1
s,σ =

∣∣∣∣∣∣∣
ηs(h

n+1
s,K ) if ∆Ψn,n+1

Kσ ≥ 0,

ηs(h
n+1
s,σ ) if ∆Ψn,n+1

Kσ < 0,
:::::::::::::::::::::::::::::::::

(C6)

:::
and

:::::
where

::::
the

::::::
filtered

:::::
water

::::
flux

:::::::::
magnitude

::
is

::::::::::::
approximated

::
by

:::
the

:::::::::
harmonic

:::::
mean

::::::::
whenever

:::::::
possible

::::
and

:::
the

:::::
mean

:::::
value

::::::::
otherwise:

:
1360

qn+1
w,σ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

FNα,K(qn+1
w,T ) if σ ∈ FDext

dKLFNα,K(qn+1
w,T )FNα,L(qn+1

w,T )

FNα,K(qn+1
w,T )dLσ +FNα,L(qn+1

w,T )dKσ
if σ ∈ Fint and FNα,K(qn+1

w,T )> 0 and FNα,L(qn+1
w,T )> 0,

1

2
(FNα,K(qn+1

w,T ) +FNα,L(qn+1
w,T )) if σ ∈ Fint and FNα,K(qn+1

w,T ) = 0 or FNα,L(qn+1
w,T ) = 0.

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C7)

:::
The

:::::::
discrete

:::
full

::::::::::
topographic

:::::::
gradient

::
is

:::::
given

:::
for

:::
any

:::
cell

:::::::
K ∈ T

:::
by:

Gn
s,K =

1

|K|
∑

σ∈FK∩Fint

|σ|
dKL

(hns,L + bnL−hns,K − bnK)(xσ −xK)

:::::::::::::::::::::::::::::::::::::::::::::::::::::

+
1

|K|
∑

σ∈FK∩Fext

|σ|
dKσ

(hns,σ + bnσ −hns,K − bnK)(xσ −xK),

:::::::::::::::::::::::::::::::::::::::::::::::
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::::
while

:::
its

::::::::
stabilized

::::::
version

:::::
G†,ns,σ::

is
:::::
given

::
by

::::::::::::::::::
G†,ns,σ =Gn

s,σ +Rn
s,σ ::::

with:
:

Gn
s,σ =

∣∣∣∣∣∣∣
1

2
(Gn

s,K +Gn
s,L) if Tσ = {K,L},

Gn
s,K if Tσ = {K},

::::::::::::::::::::::::::::::::::::::

(C8)

::
as

::::
well

::
as:

:

Rn
s,σ =

∣∣∣∣∣∣∣∣∣
1

d
2

KL

(
hns,L + bnL−hns,K − bnK −Gn

s,σ · (xL−xK)
)

(xL−xK) if Tσ = {K,L},

1

d
2

Kσ

(
hns,σ + bnσ −hns,K − bnK −Gn

s,σ · (xσ −xK)
)

(xσ −xK) if Tσ = {K}.
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C9)

:::::
Water

:::::::::
equations:1370

:::
The

:::::
finite

::::::
volume

:::::::
scheme

:::
for

::
the

:::::
water

:::::::::
equations (??)

:
-(??)

:
is
::::::
simply

::::::::
obtained

::
by

::::::::
applying

:::
the

:::::::
corrected

:::::
MFD

:::::::::
algorithm

::
of

::
?

::
on

:::
the

::::::
filtered

::::::::::
topography

:::
and

::::::::::::
reconstructing

:
a
:::::::::
consistent

:::::
water

:::
flux

:::
by

::::::
setting

::::::::::::::
qn+1
K = ||Qn+1

K ||
:::::
with:

Qn+1
K =

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )>Fα,L(hns,T +bnT )

τn,n+1
KL q̃n+1

K

|K|sn,n+1
K

(Fα,K(hns,T + bnT )−Fα,L(hns,T + bnT ))(xσ −xK)−

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )<Fα,L(hns,T +bnT )

τn,n+1
KL q̃n+1

L

|K|sn,n+1
L

(Fα,L(hns,T + bnT )−Fα,K(hns,T + bnT ))(xσ −xK)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

1375

−
∑

σ∈FK∩Fext

|σ|Bn+1
w,σ ,

::::::::::::::::::

(C10)

:::
and∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q̃n+1
K −

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )<Fα,L(hns,T +bnT )

τn,n+1
KL

q̃n+1
L

sn,n+1
L

(
Fα,L(hns,T + bnT )−Fα,K(hns,T + bnT )

)
−

∑
σ∈FK∩Fext

|σ|Bn+1
w,σ = |K|Snw,K for all K ∈ T ,

sn,n+1
K =

∑
σ∈FK∩Fint,Fα,K(hns,T +bnT )≥Fα,L(hns,T +bnT )

τn,n+1
KL

(
Fα,K(hns,T + bnT )−Fα,L(hns,T + bnT )

)

τn,n+1
KL =

|σ|kn+1
m,σ

dKLs
pw
ref

||Gn
F,s,σ||pw ,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(C11)
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:::::
where1380

Gn
F,s,σ =

∣∣∣∣∣∣∣
1

2
(Gn
F,s,K +Gn

F,s,L) if Tσ = {K,L},

Gn
F,s,K if Tσ = {K},

:::::::::::::::::::::::::::::::::::::::::::

(C12)

:::
and

:::
the

:::::::
gradient

::
of

:::
the

::::::
filtered

::::::::::
topography

::
is

::
of

:::::
course

:::::
given

:::
by:

:

Gn
F,s,K =

1

|K|
∑

σ∈FK∩Fint

|σ|
dKL

(Fα,L(hns,T + bnT )−Fα,K(hns,T + bnT ))(xσ −xK)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

+
1

|K|
∑

σ∈FK∩Fext

|σ|
dKσ

(Fα,σ(hns,T + bnT )−Fα,K(hns,T + bnT ))(xσ −xK).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
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Results with filters and Perlin noise based km coefficient. a : results for (α,∆xy)= (1.2 km, 1 km), a : results for (α,∆xy)= (1.2 km, 0.25

km), c: results for (α,∆xy)= (0.3 km, 0.25 km), d: results for (α,∆xy)= (0.3 km, 0.25 km) with additional Perlin noise based perturbation

of rain fall Front view of the result of figure ??-d The two synthetic sedimentary systems we have presented so far can be considered as

large-scale configurations. However, some structures emerge clearly at lower spatial scales, as it can be seen in the Gabilan Mesa

(California), a case already discussed in detail in ? and ? and ?.We perform a third synthetic case study that has two particularities

compared to the two previous ones. First the length scale considered here is small: the domain simulation is a rectangular area of 5 km

width over 10 km long and the mesh size mesh size is ∆xy = 4 meters. The filter size is α= 6 meters, respecting α >∆xy . Second, there

is no heterogeneity but the sediment production zone (Ss = 100 m.My-1) is a rectangular sub-area which creates topographic discontinuities

at the sub-area boundaries. For the other parameters, we keep a similar configuration. Rain-fall is constant in time and space (3000 mm/y)

and is the unique water supply. Diffusive coefficients are chosen constant with kg=0.05 km2.My-1 and kw= 50000 km 2.My-1, and models

parameters controlling the non-linearity in the water-sediment coupling are set as rs = 2, ps = 0. Simulation is performed over 3 millions

and a steady state is achieved. Results are shown in Fig. ??. The first observation done at the scale of the whole numerical domain shows

without any ambiguity the capacity of our model in particularly well preserving symmetry in the sub-area. This is less true outside the

sub-area and the reason is probably because the slopes are so gentle that some zones they are considered by the model as flat area, which is

not in agreement with the drainage assumption. Second observation is done by comparing the spacing between valleys in this simulation

with the valleys spacing observed in the Gabilan Mesa. In our model the valley are spaced by a lenghtscale of approximately 160 meters,

which is at the first order relatively close to what is observed in the Galiban Mesa. The third observation concerns the high values of τ here

obtained through small values of kg necessary to obtain such narrow valleys. With all other parameters left unchanged, we observed that

higher values of kg lead to larger valleys. For such high values of τ , this test case highlights the absolute necessity of using filters to

reproduce realistic structures at such spatial scales.

0.0 m 0.5 m0.25 m

(a)

(b)

(c)

Initial Elevation

Final Elevation

Figure 21. Application of our model on a small-scale synthetic sedimentary system (top view). The global domain is 10× 5 km2
::::::
Results

with a grid resolution ∆xy = 4 meters
::::
filters

:::
and

:::::
Perlin

::::
noise

:::::
based

::
km::::::::

coefficient. The filter size is α= 6 meters. The red square corresponds

to a 1 km2 area that contains valleys. Wavelength spacing between two valleys is approximately 160 meters. The Lidar image corresponds

to a shaded relief map of a portion of the Gabilan Mesa:
:::::
Initial

:::::::
elevation, California

:
b

:
:
::::
Final

:::::::
elevation

::::
with

:::::::
variable

:::::::
cofficient

:::
km, at

approximately 35.9°N, 120.8°W extracted from ?. The black square is around 1 km2 and contains similar valley structures than those

obtained in the final state
:

c:
::::
Final

:::::::
elevation

::::
with

::::::
variable

:::::::
cofficient

::::
with

:::::::
additional

:::::
Perlin

::::
noise

:::::
based

:::::::::
perturbation of the simulation

::
rain

:::
fall

:
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0.0 m 0.5 m0.25 m

0.0 0.750.2 0.60.4

Water flux (m3.s-1.km-1)

Elevation (m)

Figure 22.
::::
Front

::::
view

::
of

:::
the

::::
result

::
of

:::::
figure

:::
??-c

Figure 23. Comparison of models (??) and (??) on the “three rivers” test case for α=2200 m and ∆xy=2000 m
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