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expeeted-. As in every LEM, the tricky part is the coupling between water and sediment flows that drives the non-linear self
amplification mechanismsef-the-water-and-sediment-coupling-can-stiH-ead-te-simulations-blurred-by-numeries —These

. But this coupling is also responsible for the emergence and amplification of numerical errors, as we illustrate here. These
numerical instabilities being highly-reminiscent-of-turbulence-indueed-strongly reminiscent of turbulence-induced instabilities

13 4 4 A ”

ation™we introduce

in computational fluid dynamics (CFD), in-th
a "large structures simulation" (LSS) approach for LEM, mimicking the large-eddy-large eddy simulations (LES) used for

‘1/11

turbulent CFD. Fhe ows Lo control nume errors-while preserving the major physical base

ractice, this treatment consists in a filtering strategy that controls small-scale perturbations in the solution. We demonstrate
the accuracy of the LSS approach in the context of our LEM model.

Copyright statement.

1 Introduction

Since the pioneering work of Gilbert in the XIX century (?), the meaning of the term “landscape evolution model” (LEM)
has evolved until reaching in the late XX century its modern definition. It is now considered has a numerical application of a

mathematical system that seeks to simulate a part of the physical processes controlling the landscape dynamic. The capabil-
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ity of LEMs to provide an integrated simulation in which several processes are addressed make them particularly relevant to

tackle a large variety of contexts

S e e e O O GOy gractar - aynanics

i i 252222~ The success of those numerical approaches depends on their ability
to correctly handle the positive non-linear feedback between the water flowand-, the sediment erosion and deposition in a
decent computational time. This non-linear coupling between water and sediments is indeed expected to potentially induce

complex water flow networks even on initially small topographic variations, allowing in return the emergence of complex

geomorphic landforms. Hewever-in-the-absenee-of reference-analytie-sotutions;—itis-hard-to-Some algorithms, in particular
the family of MFD algorithms, have long been developed for solving surface water flow models in a low computational
time. Until very recently, these solvers were not really linked to any physical model, which ruled out the use of an analytic
solution to compare practical numerical results. It was therefore difficult to decipher if the obtained landform results only from
physical processes or from the self-amplification of initially small numerical errors. The-objeetive-of-the present-paperis—te

understood-by->thatthe-An alternative definition of the specific catchment area often used to model water flow was proposed in
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??, consisting in solving an abstract uniform flow equation in replacement of using one of the MFD algorithms. Independentl
and following an another path, in ? a first MFD algorithms family (those for which water is transferred from cell to cell) has
been proved to coincide on cartesian meshes with a classical discretization of the water di%ekrafg&ebfamed—ffefn—ehefeﬁ-fe-eeﬂ

of The output of the MFD algorithms is exactly a mesh-dependent mean of the water flux associated with the discrete GMS
model. This result explains the mesh and numerical dependency since the output of the MFD does not fulfill the consistency.
criteria, but it also provides a way to correct it in a post-processing step leading to a consistent discrete approximation of the
GMS water flux, extended in ? to general polygonal meshes. As the GMS model can be seen as a generalization of the model
proposed in 22, this finally closes the loop between MED algorithms and the specific catchment area defined in ?? (more details
are given in section ??). For those reasons, in the present paper we will use a general GMS model to compute our water flow.

This paper has two objectives: (1) to investigate the conditions for which the geomorphic structures simulated from of a
landscape evolution model derive from numerical instabilities; (2) to introduce a methodology that improves the accuracy of
the numerical solution and to discuss its potential importance for LEMs. The landscape evolution model used in this paper
considers the GMS model for the surface water flow coupled with a representative erosion and deposition sediment flux model
in 2. The linear stability analysis of this model brings out the key parameters that control the self-amplification mechanisms

MM%WMW&M
test the convergence of numerical solutions towards some prescribed analytic solutions for various water-driven and gravity
transport coefficients. Comparison between the analytic and numerical solutions leads us to the conclusion that numerical
errors must be treated with the greatest care to avoid any misinterpretation of LEM results: the self-amplification processes ean
mwwwgm amphfy legitimate numerical round-off
is~. Thus estimating the relative
impact of numerical errors on the final geomorphologic structures is challenging, making potentially hazardous the use of
numerical approaches in particular those involving implicit time schemes to discuss and quantify the role of self-amplification

the valley formation and spacing ????).

or solver errorsap

mechanisms in realistic geodynamic contexts (e.g.

This self-amplification (“butterfly effect”) is very reminiscent of the turbulence-issue-numerical issues arising in the field
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of computational fluid dynamics (CFD) —Fhis-ebservation—for turbulent flows, which prevents the use of direct numerical

simulation for high Reynolds numbers unless high order methods are used over small space and time scales (along with
sometimes some blow up problems). This comparison with CFD and turbulent flows is not new and was studied in details for

instance in ??. The modern solution found by the CFD community to achieve reproducible and meaningful simulations is to
replace direct numerical simulation (DNS) of the Navier-Stokes equations by large eddy simulation (LES, ?). The objective
of LES is to obtain a eerreet-good approximation of local spatial averages of turbulent flows, recovering the correct dynamics
only for the organized structures of the flow (the eddies) which are larger than seme-a certain o target length scalee. Thus,
LES chooses to abandon the idea of resolving all the scales involved in the-trae-real physical processes, as there is no hope
to-use-of using a mesh fine enough to eorreethy-resolve the smallest scales correctly. In practice this is done by filtering the
solution to distinguish between-the-behavior-of-the-flow-the flow behavior above and below «, and obtaining local averages
that are smoother-and-as-meshindependent-as-smooth and mesh-independent as possible. To our knowledge, the first attempt at
using an-a LES approach for simulating landscape evolution albeit without explicitly mentioning LES is ?, where a Laplacian
smoothing (equivalent to a mesh related box filter in the LES terminology) was applied en-the-to topography. More recently
?? resorted-to-a-mono-directional-domain-size-related-boxfilter-have used an average in one direction (which is a limit case
of filtering) to obtain robust results on channelization statistics and scaling signatures: in other words they substitute the ele-
vation and the specific drainage area by their mean values in the axial direction of their rectangular simulated domain. In their
conclusion they suggest that the use of more general LES approaches seems a viable avenue for more complex landscape evo-
lution simulations. In line with this observation, we also believe that the success of the attempts of ???, as well the numerous
analogies between the instabilities arising in landscape evolution models and turbulence reported in ???? as-welt-as-and the
numerical experiments strongly advocate for the use of some LES technology to overcome the numerical issues arising in the

non-linear coupling of sediment evolution and water flow.

acronym LSS for “large structure simulation”. Notice that contrary to ?? and more in line to what is done in the CFD commu-
nity, we wilH-ix a length scale that will-eerrespond-corresponds to the size of the smallest structures we want to resolve in the
problem, quite independently of the domain size. We also consider a more advanced differential filter, namely the Leray-« filter
(??) that is not related to any specific geometric configuration. In this sense, our work can be considered as a generalization

of ?2?. We will-show-that-the-show that when the filter size is correctly defined the results obtained from the LSS are actually

free of the non-physical heterogeneitythat-appeared-spontancousty-fromnumerical-errors—Notice-that these-numerical-artifa

are-complementary-and-should-benefitto-every EEMs:. We also highlight the difficulty to predict the "correct" filter size.

Obtaining a reproducible result and as error-free and mesh-independent as possible is, of course, what every modeler expects.
On the other hand, the emergence of complex geomorphologic structures, which is an objective sought by many LEM users
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requires to manually introduce relevant physical heterogeneity after handling numerical errors. Several of our simulations are
consequently performed using different types of heterogeneity carried by the initial topography or by other physical parameters
such as a a variable roughness index or a variable rain map. The paper-will-be-organized-aceordingly—In-the-first-part-we

atha nn R a-de he-a cedimen m h ccOon o he a0 he-con anevin-the-NMED A
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emergence of large geomorphic structures is discussed by taking into consideration the understanding gained from this work.

The paper is organized as follows. We begin by introducing the water flow and the sediment flow models of the LEM used
to perform the simulations discussed in this paper. We then construct analytic solutions and proceed to a comparison with
numerical results in the relevant flow regimes. This leads to the first conclusion that for the studied landscape evolution

model and the ¥

volume discretization, without any specific treatment, the obtained numerical solutions are potentially controlled by numerical
errors. The second step of this work is to introduce and apply the filtering strategy on the paper-starts-by-ilustrating-on-an-easy

ater-sediment equation system. The comparison between
numerical and analytic solutions clearly shows the crucial role played by this method. Finally, we illustrate the behavior of our
LEM in more complex contexts and we test the impact of variable (in space and time) roughness coefficients and rain maps in

the final solution.

2 Model and notation

Following ?, we assume that a sedimentary system can be idealized through the following assumptions: (H1) the basin topog-
raphy can be represented as a mathematical surface, (H2) the principle of the conservation of mass applies to this surface, (H3)
the sediment flux at any point of the surface is a function of the local slope and the local discharge of water. In other words, us-
ing an Eulerian approach (H1) implies that we consider a fixed geographical region over the time period ]0, 7| mathematically
modeled by means of a domain 2 € R?, a function b : x]0,7[— R describing the basement i.e. the lower part of the basin
in the z direction, and a function h, : 2x]0,T[— R describing the thickness of the sediments (see Fig. ??). Thus, our basin

B:]0, T[— R? can be described for almost every (a.e.) t €]0,T[ by:

B(t) = {(z,y.2) €R® | (w,y) € Qand b(z,y,t) < 2 <b(z,y,t) + hs(w,y,1) }. e))

The evolution of the basement b is mostly governed by two processes: tectonics (both thermal and structural) and flexure. In

the present paper we assume that the evolution of b is a data, and we focus on computing the evolution of the function hg. For
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b+ hs

[29]

Figure 1. Representation of the two main surfaces considered in a landscape evolution model in the z(x, y, z), )-parameter space, where z
is the elevation and (2 the spatial domain for (z,y) with boundary 9£). the-The basement b surface represents the bottom part of the simulated
block, on which sediments are deposited. The topographic surface is b+ hs where h; is the sediment thickness. The simulated sedimentary

content is denoted 5.

the sake of clarity, we give the expression of the mass conservation (H2) equations, neglecting porosity for simplicity:

%erw (T =S, inOx]to,T],
—Js-n=DB; on I x]to, T,
2
hs=0 on 9Qp x|to, T,
hs(t:to) :hs,O in Q,

where S; and B; are sediment source terms (coming from an in-situ sediment production, from soil erosion, or from sediment
supplies defined in the domain boundaries) and J , is the sediment flux. The domain boundary 052 is divided between O
where Neumann-flux (also called Neumann) boundary conditions are imposed and 02p where we enforce hemogeneeus

Diriehletfixed elevation (also called Dirichlet) boundary conditions. Let us precise that in the following the Xy coordinates
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corresponding to dthe computational domain 2 will be expressed in kilometers (km), while sediment height h, and basement
b will be expressed in meters (m). Choosing a model corresponds to choosing a specific expression for the sediment flux and

the source terms. A common feature of almost all LEMs is that the sediment flux model J 4 and/or the source term .S, depend
non-linearly on the local discharge of water Q,,, very often through a power law like Q7* ||V(h + b) |[PsH+L. Self—amphﬁcatlon

mechanisms are known to appear as-soon-as-at least for ro > 1 (2

2.1 The water flow model

Landscape evolution models usually defines the “local discharge of water” Q,, directly from the so-called drainage or catch-
ment area C' A (also sometimes-ealled-referred as the contributing area). Roughly-speaking-G-A-It corresponds at a given outlet
to the measure of the horizontal projection of the surface area from which the water contributing to this outlet is coming from
(???). Despite being a very intuitive notion, it has evaded for a long time a precise mathematical definition. Classical multiple
flow direction (MFD) algorithms are intended to provide a practical way at computing C' A for a mesh cell. As is well docu-
mented (?2??) the discrete catchment areas-area obtained from those algorithms strongly depends on the cell size, geometry
and orientation with respect to the flow. Several attempts can be found in the literature to reduce this mesh dependency, defin-
ing the water flow discharge as Q,, = (C'A/w), where w is a normalization factor
length-er-diagonal-engthrelated to a geometric property of the cell (cf ?) or to an estimate of the width-of-the-flew-flow width

(?) defining the so-called specific or unit catchment area (SCA/UCA). A more modern mathematical definition of the specific

catchment area a was proposed in ??, consisting in solving an abstract uniform flow equation:

_div (aV(hs—f—b)> -1 inQ,

[V (hs +b)]|
V(hs+b) @
s+
—————"——-n=0 on 9Q;,,
[V (hs + )|

where 9Q;, = {x € 9Q | V(hs +b) - > 0} is the part of the boundary that is in going and n denotes the outward normal to

Q. Setting Q,, = a, this allows to reduce the mesh dependency to the usual consistency errors of numerical schemes.

A-mathematical-model-encompassing-the-most-At first sight, model (??) could seem very different from MFD algorithms.
However, considering for instance the classical cell-to-cell algorithms of 2?2, one can see that those algorithms act as if one
was distributing a fictitious water flow of a mesh cell to the neighboring cells with lower elevation proportionally to a function
of the slope, as illustrated on figure 22. One could then legitimately assume that those MED algorithms could be related to a

discretization of some water flow model. This is precisely the idea of ?, where it was proved that the most classical cell-to-cell
MEFED algorithms was i i i : . o . .
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Figure 2. Basic principle of the simplest cell-to-cell MFD algorithm: water is distributed to lower neighboring cells proportionally to the
slope (reproduced from ?

diseretization-of-are finally simply a way of implementing a solver for the following stationary water mass conservation with

Gauckler-Manning-Strickler flax-model-for-(GMS) flux modeling surface runoft:
_div (kmhwnw(hw) 57 |V (s + B) [PV (g + b)) =S, inQ, "
—kmhawnw(hw)s ;81}” [|[V(hs+b)||P*V(hs+b)-n=0 on 0y,

where h,, is the water height, s, /=1 m.km™! the reference slope, p,, a model parameter and 7,, the water mobility function. For

simplicity we assume here that the mobility function has no dimension, and that the source S,, is given in m*.s"'km such that

its integral over a 2d area measured in km? coincides with a discharge in m?.s™. The coefficient %k, can be though of as the

Strickler coefficient or the inverse of the Gauckler-Manning coefficient up to a change of unit (strictly speaking, this identifica-

tion is trully valid for channels and if the mobility function 7, is equal to a dimensionless hydraulic radius). For this choice of

source, k,, has the unit m.s’! of a speed.

—(22), we see that (??) corresponds to the particular
case where k =—landa= . In this sense the GMS model (??) is a generalization of (??) that allows to
include the classical ingredients (non linear slope dependency and some spatial heterogeneity) of the MFD algorithms family.
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The analysis of ? alews-to-give-a-generat definition-of explains how the catchment area +for-an-open-set-O-cR2the catchment
area—for-the-outlet-of-C A(Q) for the outlet of a region O is-defined-by-that is computed by MFD algorithms coincides with

an intermediate discrete quantity appearing in the most natural discrete solver for (??). It also allows to give a continuous
interpretation of the C'A(O) that is computed by MFD algorithms:

+
CA(O) = (YET = /hwnw(hw) ko 97_61}1 Hv(h +b)| Puyy (hS + b) n) ,

+
CAO) = [ huullin) (ks 51V (b + DP>T (h+8)-m) ®
00

where h,, is the solution of (??) with S,, =1 and ++==-measx({0;4}-We-where we have denoted v the positive part of v
(ie. v’ = maz(0.v)). Since model (??) describes a water flow, we recover that thanks to ? we can reinterpret the catchment
are C'A(O) computed through the classical cell-to-cell MED algorithms the total flux leaving O of a fictitious water flow.
with a uniform water source ., = 1. Unfortunately, we also see that C A(O) strongly depends on the geometry of O and its

orientation with respect to the flow. In particulari

produce—mesh-dependent-eatehment-areas, it is detailed in ? that cell-to-cell MFD computations will compute in practice
the catchment area C A(K) for each cell K of a mesh through a discretized version of (??) for O = K. Thus, when MFD
algorithms are considering this expression of (??) to estimate the “local discharge of water” it produces cell and thus mesh

dependency in the simulated surface water distribution. In line with the attempts of ? or ? to define a unit-specific catchment
area (HEASCA) by rescaling the CA, itis-elear-that-the correct scaling would be to set the normalization factor w to the length
+

along which the fictitious water flow
is leaving O, A corrected definition of the unit-eatehmentint-specific catchment in the spirit of ??? area would thus be to use:

1 ‘ - N
UCA(O) = — /hwnw(hw)< FemS,ef IV (hs +0)| [PV (hs+b).n) ,
/X K 5,530 ||V (e £0)] [P0 ¥ (ha b)) n>000
50
1

SCA(0) =

[ bathata) (<o 19 0|V le49) m) (©)

/ X5 2329 (ha+0) [P ¥ (R b)-m>000
90

where  is the indicator function (i.e. the function with value 1 when the condition is satisfied and O otherwise). This-Depending
on the orientation of the flow, such a normalization will sometimes match the choices of ? or ?? explaining their partial success.

—Pw e

This SC A scales as an approximation of the continuous water flux magnitudeq;;—=

—Pw

qu = |kmhw77w(hw)| Sref v(hs + b)”perl’ @)
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(in m®s"'km™") but is not equal to it-and-, The SCA defined by (??) is in fact a mean of g, along the outflow portion of 90, and
thus still retains some dependency in the geometry of O and its orientation with respect to the flow. In-this-eentextitis-more

with-Meanwhile, notice that the specific catchment area a of model (??) ;-wesee-that-corresponds-to-the-particularcase-where
one-chooses-can be reinterpreted through (??) as computing g,, since:

G = [kt (h) s 57 [V (hs +0) P4 = Ja] [|V(hs +0)|I 7! = a,

as we have seta = h h) >0, 0 =—=1 km —landpwf—kieadmg%&a—hwﬁméhﬂ%lsa&was—a}fead—yexplﬁﬁed
m<""> inside ("">M

mwm%m ("") it seems very natural to set . One could consider that the equivalence
between classical cell-to-cell MFD algorithms —tt-also-explains-how-to-compute-a-correct-approximation-established in ? and

the consistency correction proposed there that leads to consider using a discrete version of q,, from-the-ebtained-CA—which-is

r-is another path to recover the conclusions of (??) and in this sense
that g,, is a generalization of a to more complex water flow models.

The consistency correction proposed in ? for MFD algorithms precisely coincides precisely with the replacement of the
computation of CA(K) or SCA(K) for a mesh cell K by a consistent discrete reconstruction g of g, in each cell K.

explered-in—2—Netiee-that-Convergence of this discrete version to_g,, when the mesh size goes to zero was proved in ?
along with error estimates. Thus, apart from the usual discretization error no anomalous mesh dependency should remain in

in practice, contrary to what is observed for SC A(K) given by MFD algorithms. In this sense, can be seen as consistenc

correction for SCA(K), as well as a generalization of (??) to a richer family of flow models. The interpretation of the local

water discharge as being equal to the water flux magnitude iven by (??) from the solution of (??) is therefore the
default configuration chosen in the water flow model used to perform all the simulations we introduce in this paper.

This water flow model is therefore physically justified by the GMS model. Its application domain is however not necessaril
restricted to channels. It depends in fact to the specific choice made on the model parameter values. Steady state analysis (??

for channels suggests to use values hap) = (hay /hrer)X/? and p,, = —1/2, while the classical Gauckler-Manning-Strickler

formula would coincide with 2/3 with Ry, (hy,) the hydraulic radius and again

applied to large time and space scales landscape evolution models, these calibrations are no more valid and at this stage
we suggest to consider and as modeling parameters that can be tuned for each considered problem. In the followin

10
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numerical experiments, since we only consider the water fluw_g,, the choice of the water mobility function as no influence
and we set hy, ) = 1 for simplicity, as well as = (). Notice that our conclusions would remain valid for more general
choices of those parameters. The application domain is however limited by an additional mathematical condition. Notice that
systems (??) and (??) are in fact stationary transport problems for a or h,,. which are rigorously speaking well-posed from-the
mathematieal-pointof-viewiif the topography satisfies a sufficient condition. In particular conditions:

(??) is well-posed, which corresponds to prohibiting water accumulation areas er-and flat areas (see ??????) This-essentially
tmphe%ﬂaa&fhe—ﬂew«medekModel ("") is-wel

the-model—and-can-be-considered-being in fact a simplification of the shallow water equation (see section section ??), this

limitation can be seen as the price to pay

low computational expense. At the cost of a higher computational time alternative models also derived from the shallow water
equation can be considered to overcome this limitation —This-will-be-discussed-insection-22(see section ??).

2.2

11



In the present paper we have chosen to focus on the stratigraphic model that has already been discussed in detail in ????, and
305 which is a generalization of the models studied in ??. The corresponding sediment flux J ; takes the following form:

TxeX VKeT and w =Nk, for o€ Fuy, c={K, L}
[T — Tk
T = —ns(hs)s, 2 |1V (h +0)| [P <(qu> wa(hs—i—b)—i—vwg(hs—i—b)) in Qx]to, T1, )
ref o

310

315

—/div (Kb (o) sy 5 [V + B) P9 (1 + ) :/sw.
4 K

. . 1 . Py . .
Deneting 5w,K = K] ‘K Soand asing-Stokes™formula;-thisteadste:

37 | Bnhun(hu) s 22 1V (hy 4 b)

JG‘FKJ

oy (hs +b) ‘NK o= |K|Sw,K-

320 integrals-The-mostnataral-where r, > 0 and
mo-Ps > 0 are model parameters, g,, is the water flux obtained from ("")mand Gsstorkms, ¢ are dimensional factors

sediment mobility function such that:

/ kmhwnw(hw) T—el}w v(hs + b)”pwv(hs + b) nx—ky, ,TS;epfw GS7(T| |pw h;l;)p(r /V(hs + b) ‘n

a (o2

325
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thefoellowingfermula:-whose main role is to ensure that the sediment height hs remains positive. In the following we use:

~ [V b= Vh+) [n= (JZ'L«mbxa:K)—<hs+b><wL>>,

o

a0,
u+ he (11)

0 otherwise

Z TKL}LZ)Z?U (hs,K-l-bK—h&L—bL):|]:('|;5'w’](7

o€FkNFint

rocesses. We consider here the most common form for functions and
the-transmissivityrrr-is-given-by:1), corresponding to:

|km,o

e = 270Fme g e,
KLéref

ww(u):/kw(v)dv and  ¢4(u) :/kg(v)dv, (12)
0 0

use-where k,, and k, are diffusion coefficients such that:

lai= Y lol(@s —zx)nK,q

cEFK

0<k, <kg(u) <kf <4oo and 0<ky, <ky(u) <k} <+oo, (13)

G,k = Z lo|Gs.x Ni.o(Te — k),
cEeFK

13
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Vil £8) = b + D)V (e +8)_and Ve, +8) = by (e + D)V (B +D). (13

1 |o]
G,k = w| T(}LS,L +br —hsx —br)(To —xTK)
o€ FxNFint KL
1 |o|
+ = = (hsrr+bo' h/s,K*bK)(m(T*xK)

m,o 1

drrkm ckm.1
km,KdL,o' + km,LdK,a'

1 7
km.o = with for instance k., x = |?| / ko VK €T,
K

so that the sediment flux follows the topographic slope V (hs + b).

This sediment flux model is implemented in our modeling platform ArcaDES (?), and all the simulations shown in the followin
sections are performed using the ArcaDES platform (although ArcaDES is mentioned for the first time in a scientific paper, it is

used since 2015 in the stratigraphic numerical forward model DionisosFlow' " initially developed by ?). Both soil erosion and

sediment deposition are considered. As ArcaDES is tailored for large time and space scales simulations, this is the reason why.
we have chosen to express the Xy coordinates in kilometers (km), time in million years (My), sediment height /2; and basement
b in meters (m). Thus the unit of sediment sources will be meters per million years (m.My!). Since we have chosen to use
Quy = qu With g, the water flux from (??), the unit for the water discharge ¢, is m’.s”" km'! and thus we naturally set gpc =1
m’.s”_km'!. The natural unit of coefficients kg and ky, is km? My, with the reference slope again set to sy= 1 mkm~,

2.3 Some insights from perturbation theor

In this subsection, in order to give a feeling of the potential stability issues related to model (??)-(??)-(??), we will perform a
brief analysis of the behavior of solutions under perturbations. We assume for simplicity that k£, and k,, are constant functions.
Let us denote (hs ., hy, ) a reference solution of (??)-(2?)-(??) with sources (Ss «,S),.5), Whose stability is to be tested. We

denote (hs 5,h a perturbation of magnitude § of this reference solution with perturbed source (S, s +Ss 5, S5 + .5
and consider the evolution of (hg,h,,) = (hg s + he 5. Py s + Iy s). Since both the perturbed and unperturbed solutions have to
satisfy the boundary conditions, we deduce that the perturbation (h s5,h itself also satisfies the same boundary conditions.

Then in line with for instance the analysis of ?, injecting (I, hy,) into (22)-(2?), multiplying by h s and integrating by parts

14
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we get:

d 1 — Qw T
> rery | 5 [l | = [stosc)s 7 19 et = b = )| Tk by
GEFKNFintsho m+brc>ho b v | © 4 - A e Qref
Z TKLhw,an(hw,L) (hs,L + bL - hs,K - bK) - |K‘Sw,K

0€FkNFint,bx <br

+ [0l 7119 o D) ((q‘“) bt k) V(e +5) - Vhas

dref
Q
Setting-
- [t~ > i IV et = b bl | | 2 ) 2kt by | V(s 8)- Vbt
Q o€ FkNFint,hs k +bx>hs L +br e %‘WE[ Q
) — —Ps Ps w Ts —
8 1 w1 N Jis (P, 1 0, U, W) — > Ti Lhw, . =Nws (hw,w) s, 27 (V[P | hs 1 “kw+br —hs k —bikg | = K]S
cEFKkNFint,bx <br DAt ﬂ

we obtain the equation governing the evolution of the

erturbation’s total energy:

dr — Z TKLZ*L(hs,L+bL—hs,K —br) =|K|Su,K-
0 € FxNFint,hs k +bx<hs r+br L
d[1 9 . 2
7l 3 his | =— [ Js(hs,hs +0,q0)|[Vhssl|"+ | Ssshss
Q Q Q




405

) +
GG = Y [ bt (s 27 190+ 8PV (40 )

oc€FK s
+ / (s ren 4+ ,i) — e (s os 4 b,6)) V(e +0) - Vs, (15)
Q
410
415 o—The first term of the right hand side
is always negative and thus always contributes to the stability of the system. The second term describes the contribution to the
evolution of the sediment perturbation’s energy of potential pertubation sources other that the initial conditions. The last term:
TKLIK
Qx = Z K] (hs,x +bx —her —bp) (e —xK)—
0 € FxNFint,hs k+bx>hs L+br K
420 As= /(js(hsw*,h&* +0,qu.«) —Js(hs,hs +b,Gw)) V(hs .« +b) - Vhg s, (16)
Q
TKLAL
Z (hs,r +br —hs x —bi) (o —TK),
, |K]sL
c€EFkNFint,hs k+bx <hs r+br
425

in-2up-to-providing-error-estimates—Thus,itis-impertant-to-usegxr—sediment transport model but most importantly from the

coupling between the flow and the sediment transport. If A is negative or if it is small enough and if the perturbation source
430 is also small enough, then the sediment perturbation energy will decrease with time. In this case, the solution (hg ., h
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is said to be stable under perturbation (hg 5,7, s). However the sign of As is not always negative and will often take non

necessarily small positive values. If As is large enough, instead of ¢x—when—~couphng—with-sediment-evelution—medels—i.e-

—being diffused by the first term the
435 sediment perturbation energy will grow with time and potentially become as large as the unperturbed solution: the solution
he 4. h is then unstable under perturbation (h 5,h,, s). This is a self-amplification mechanism, as the magnitude of A

will grow with the perturbation’s magnitude and cancel if the perturbation if zero, and also because of the dependency of
the water flux on the topography perturbation i, 5 . We will say that growing perturbations correspond to the physicall
unstable regime.

440
445
450
455

12

- Z/k’m,hwnw(hﬂw)sr_ffw V(ha + b)| p“’V(hs + b) NEK; ;= |Ki,j|Sw,K-

=1

460 ek, will play a key role

,if k, is much larger than k,, laree and thus 7 is very small
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465

470

475

480

we have assuming for simplicity that n, = 1:

/ As ~hhutiogs, s (lly(hws,* 1+ 0)s, [P — ||V (B +b)||pw11f> V(hasr +b) - k. Vhes +O(7)

gj—1

A w _
ref RSOt -
and-
/ kmhwnw(hw)s;é’“’ [|IV(hs+b)||P*V (hs +b) -ng
Ay
~ spiA:L ko 1 |Gsoi o [P hel o, (Rsjio1,5 +bim1,j — s — i),
and-
/ Fon i (R ) s, 7 IV (hs + )| [PV (hs +0) -, |
41
_ =LAz w D
~ bf:fAy km70'j+] HGS,UJ'JA ||p hwlaﬂrl (h87i:47‘+1 + bi>.7'+1 - hﬁs‘,i;j - bi,j)’
and-
/ o ()52 |V (s 4+ B)| [PV (s +b) - moxc
Ti+1
1y Ay —_—
~ p“/,fA K, G'i+1HG570'1 ‘ . hwpaz+1 (h87i+1~,j + bi+1~,j - h57isj - bi,j)’

we recall that a function f is O(h) if there exists a constant C' > 0 independent on h such that < Ch for a suitable norm

.||). Then for large values of k, the term Ay is always negative and thus stabilizing. On the contrary, if k,, is much larger than

k, then 7 is also very large and we have:

Lo =Y As X ks ( 5l [V (e D)7 (hs ) )Wﬁﬂ@@
re—1

i—1,7+1 J+1U;+117N —k Srepfsrs% (hs,*“‘b) (hs,*+b)'Vhs,6
ref
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485

—ps | Qw,*
gy U kgt | e T:<ps|v<hs,*+b>|
4151 = ksl |

P2V (hy., +b) - vhs76|2> +0(1/7) +0(8%).

—i+1
Titljt1 = 0L+1 Ui,

490
eeﬂsfaﬂkva}ues—HéﬁqLGW}% egions for which V(h, . +b) - Vh, s < 0 will amplify the perturbation proportionall
to k,, and the power r, — 1 of the water flux. We also see that the term As will behave quite differently if r, > 1 or r, < 1.
495

Pvy (hs + b) Mg, ;=

/ kmhwnw(hw) TEf ||v(h +b)

Oit+1,j+1

o528 Gy PR (T +6))ois o / n, .

Oit1,j+1

By-eenstruetionry > 1 the water flux will reinforce the amplification term in a kind of positive feedback loop. On the contrar
500 for r, < 1 the water flux will temper the amplification term, thus we can anticipate that it will require much larger values of 7
for instability to occur in this situation. Going back to the general case for 75, we have for small values of 7:

1—7, 1-— /
[ = s = by ([0 gVl ) Pt

Oit+1,j+1

1—7, 1—7, _
PsTs (P 5 )| oi1 j1]= %AxV(hs,* + %Ay =b)|[P* 2|V (hg. +D)- Vh3,52> +0(1) +0(5,).

505 weseek=y;and—;-such-thatwhile for large values of 7 we have:
(1—7) Ay (1—7) Az qTS;1
Az = and A As = —kyws. Pere——qu s0s(hs ) ||V (hs x + D) [PV (hg « +b
B 20Ay/Ax de =1 20Ax/Ay
VT T ARy A2 T T (A L A2
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510 —ky, sm’jf (Zw—’;> (n;(hs,*)HV(hs,* +0)||Phs sV (hs .« +b)- Vhg s+

Az Ay

O<(5<1mln<A ' Aa )(A 24 Ay,

Psns (P )|V (Bs e + D) |2 2|V (hg w4 b) - Vi 5*) + O(1/7) + O(6°).
515 With-this-choieefor5and—y;;forall-d-satistfying-we-get-that-

B +Azx +Ay
NK; = (Aa? + Ay2)1/2 € T (Az2 + Ay2)1/2 €y

Oit+1,j+1

o

hs bo’#1/‘1' i A2 AS2V1)2
(Ao [ o~ g i

N (hs,it1,j+1 +bit1,j41 — hsi — bi).

Oit1,j+1

520

w haw,i M (Pw,i ) if s +bij > heit1;+bit1j,
W,0i+1

hawit1,j0w(hwit1,5) i heij+bij < hgit1;+bit1j,
up hw,i,jnw(hw,i,j) if hs,i,j + bz J 2 hs KN E=N + bi,j:l:h
W,0 541

R i i1 (R i) i R +bi 5 < hsi a1 +bijx1,

525 andforthecorners:

w P i 5w (R i ) if hg i j+0ij > hsit1 1+ bit1 j+1,
W,04+1,5+1 =

hait1,j41M0 (Pw,ix1,j+1) i hgij+bij < st j+1 + Dit1j+1-

To-get-more-compactnotations; letus-denote-

N(ij) ={(m,n) e{i—1i,i+ 1} x{j—1,j,j+1} | (m,n) < (i,5)},
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ho neiohd ¢ nodefi-)-and-define-t

Ve AT : - -
spi Aykm,ffji1||GS7Uji1||pw if (m,n) = (27.7 - 1) or (Z,] + 1)7
ref
m,n ’YyAy k G Pw if e . . 1.4
530 TZ-U_’ = P Ag m,milH s,mi1| 1 (m,n) = (7, — 17']) or (Z—|— ’J)7
ref
6 Pw :
stf(sz + Ay2)1/2 km:("iil,jil ||G5;0'iil,ji1 || 0therw1se,
re

m,n
535 hw,i,jnw(hw,i,j) E Tij (hs,i,j + bi,j - hs,m,n - bm,n)
(m,n)EN(i,5),hs i, j+bi j>hs m ntbm n

m7n J—
- > 75 hwm,n Mo (Pao,mon) (Psmon + bmon = hs.i g — bij) | = |Ki j[Sw,ij-
(m,n)EN(4,5),hs,i,j+bi,j <hsmn+bm.n

. " . , -

m,n . _
Sij = E Tij (h€7] + bi,j - hs,m,n - bm,n) and qi,j = hw,i,j"]w(hw,i,j)si,j
(m,n)EN(4,5),hs,ij+bij >hs mn+bm n

540 wefinally-get-

~ m,n 9m,n o
Qi — > T (hs,mon +bmn = hsig —big) | = K j|Sw,ij
(m,n)EN (0,5, s i, 5+bi 5 <hsm,n+bm,n mn

545

m,n

7, max(0,hs i 5 + bij — hsmn — bm.n)

)

! ’ .
m ,n
Z Tiaj max(O, hs,i,j + bi’j - hs,m/,n/ - bm/,n')
m’ ' EN(i,5)
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550

555

560

565

570

575

slope-instead-of-the-slope-in-The behavior is roughly speaking the same, with the main difference that the flew-sharingformula;

m,n
Ti.j HlaX(O, hs,i,j + bi,j - hs,rrv,,n, - bm,n)q

2]

2 : m n o o _ q
Tz N a‘X(O’ h-—%’h] + b’LvJ hs,m/ ,n/ bm/ ,n/ )
m’ n' eN(i,5)

enough (see equation (??)), this can only happens in regions where h . is close to zero (in particular near Dirichlet boundaries).
In this case, the potential contribution to the SE&Hﬁﬂﬂfy—GﬂﬂGk}eﬁMﬂﬂﬂﬂig-S%ek}eHﬂeée}ﬂ%&mF{hﬂ%ﬁ—m}&Wﬂﬂfﬁe

in-2-but-stil-on-the non-consistentformulation—instabilities is controlled by the magnitude of [0 (h. «)hs 5| < |h he. If
the perturbation is not amplified by other engines, which will be the case if 7 is small, and if the parameter /.. is not chosen

too small (a typical valid value is 20 cm), then no severe instability can occur through this additional term. Thus we can be

confident that parameter 7 will be the main criterion governing the appearance of instabilities even for our most general model.

?7)-?27)-(2?) with n, =1, k, =0 and = —1 and p, = 0, the stability of solutions have been theoretically studied in ??
. It was for instance established in ? that if the reference solution is stationary, that the second term is negative only if some

of the region of interest, here €. The linear stabilit

specific condition on the gradient V (h + b) is satisfied on the bounda

of analytic stationary solutions that are uniform in one direction has also been considered in ?. Their conclusion is that under
periodic perturbations in the transverse direction, for r < 1, the linear stability analysis does not reveal any instability while
for 15 > 1, the stationary solutions are linearly unstable if the frequency of the periodic perturbation is large enough. Notice
that the case p,, = —1 greatly simplifies such studies: the linear stability analysis can be showed to be equivalent to solving a
one dimensional ordinary differential equation.

The studies mentioned above are focused on the stability of physically meaningful solutions. Here, we want to draw attention
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580 on the numerical consequences of this eas =y — )

immediatelyteadstoself-amplification phenomenon, in this way we focus on the stability of numerical solutions. Let us explain
the key idea: assuming that all functions are regular enough, one could consider (for instance in a finite difference setting) that
our numerical solution is roughly speaking a perturbation of the exact continuous solution, where the source terms 5,5 and
585 Sy represent the unavoidable consistency and solver errors of our solving process. Then the numerical sediment perturbation
energy will satisfy (??) and will self-amplify in the same way than physical perturbations self-amplify. In the unstable regime,
this means than the numerical solution can potentially diverge from the exact one from a large amount up to the point that
it cannot be considered a relevant approximation of the continuous solution, even if the numerical perturbation arises from

590 3 Numerical instabilities arising from the non linear coupling of overland flow and sediment dynamic

To illustrate the numerical issues linked to the self-amplification of initially small numerical errors, we consider in this section
several situations where we have either the full knowledge of the exact solution or a criterion to distinguish it from incorrect
solutions. Thanks to those information on the exact solution, we can illustrate the stability issues of simulations using model
(??)=(27)-(??) (discretized by the finite volume scheme detailed in appendix ??).

595 3.1 Instabilities for analytic solutions

In this subsection we consider stationary analytic functions of the form:

ex T—Tp Y~y
:ﬁA and v, = :£ He () = +Z ( - ‘Syp>7
2+v2 U Y 24 VY

hi;m (.’,13‘7 y) = hw,w (-T)y
implying-thatincorporating N;, small smooth bumps randomly positioned at points (z chosen such that they do interfere

with the boundary conditions, with the smooth bump function given by:

- 2 _ .2
oA ﬂ dVyA!/ \/5 Hp”texp<1r2>exp('y) for r* = x% + 4

60— g(ry) =

0 otherwise .

605 0= %AW and v, =y, =
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(=), (=) _ 1 A Ay

25 20 VT2 (ARt AR)2 T (Ar2+ AyR)E

A'H:@j" — max((), hs,i,j + bi,j — hs,m,n — bmﬂl)’

610

615

m,n~
Tii Qij
v »J m,n
Qi,j - g |K |S - (hs,i,j + bi,j - hs,’m,n - bm,n)(wi’j - mKi,j)_
(mn)EN(4.5)hs i 5 +bi g > e mn+bm,n 00
m,n~
Tij dmmn

620 Z 2]

m,n
K, |5 (hs,mn +bmpn — hsjiyg — i) (®;;" — Tk, ;)
(m7n)EN(iJ)ahS.i,jJ"bi,j <hs,7n,n +bm,n +J T

wherer
J(@K, T 2K ) if (m,n) € {(4,5 — 1), (i,j +1),(i = 1,5), (i +1,5)}
m,n __
S 1 n m .
W (|O-m|$0':h + ‘O—n |wg;{1) otherwise
m n

625
0,=0,=0.25 km. The numerical domain is rectangular and
centered at (0,0) with the dimensions Lz = 1 km in the x axis and Ly = 5 km in the y axis, and Rhe8-methodsreinterpreted
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o AR .
635 | m,n|( i,] ) _— and AHZLJ»’":maX O7G5707n,‘n. / nKi,j

Yo o (AT

m' n' €N (i,5)

Om,n

640 Neumann boundary conditions (9, h, = 0) on the boundaries 2 and theiﬂeepevefee}}ﬁm&se%G—G—K——fef

2?. We use for the monodimensional functions (hg ., h the stationary solution of model (??)-(2?)-(??) in the case ns = 1

Figure 3. Domain configuration for the analytic tests cases

iven in appendix ?? that satisfies the boundary conditions. For all our simulations, the }eep—iﬂae%v@ee—meﬂaed&c—empu{es
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655

660

665

670

675

a-analytic the stationary solution (h .., h in the case Ny, =1

11 mskm?) (??)-(2?)-(2??), after some
straightforward but tedious computations one can derive exact expressions for the corresponding source terms (5”7, S
making the pair (hg, h,,) an analytic solution of our model for those source terms.

Given those analytic source terms, initializing the sediment height to the steepest-direction-is-not-aligned-with-meshdirection

DEMOMN EWN mmed ol

see appendix ?? for details) are always equal to (10 m.M

Ps

Js=—ns(hs)s, ¢

V(hs +b)|

ps<<q‘1w)”v%(hs+b>+wg<hs+b>> in ©x]to, T

analytic value hs(x.y,0) = hS"(x,y) and
the water height to the analytic value h,,(x,y,0) = he? (z.y) the exact solution of model (??)-(??)-(2?) is of course simply
equal to (hS” hET) for all times. Thus, any reasonable numerical solution should remain a correct approximation of (h¢”, hSF

for all times.

Using the finite volume discretization described in appendix ?? on a cartesian mesh with square cells for which we denote
A, the size of the edges of the cartesian cells, we attempt to reproduce the stationary analytic solution by initializing the

system to (hg(z,y,0), by (2, y,0))=(h" (2, y), hSF (x,y)) and using the analytic source terms (S5*, S¢%), for various values of

the parameters k,, k., 7s and p.. The simulation total time is 0.25 My, and we use time steps of maximum length A¢=0.002
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of the analytic solution for the case k=50 km>. My and k,,=1 kmz.My‘ .a:

Figure 4. Sediment height /5"

1522, ps=0

0.0 m 0.1 m 0.2 m

@. ). ©.

of the analytic solution for the case k,=5 km>.My' and k,,=1 km>. My a; ry=1, p.=0, b: r;=3/2 1, c:

Figure 5. Sediment height hg”

680 My. The corresponding analytic solutions are presented on figures ??, 2?, 2? and ?? for the different values of the parameters
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a =1, ps=0, b: 7,=3/2 1,c:

@)

Figure 6. Sediment height h5” of the analytic solution for the case k=5 km*>My"' and k,,=5 km>.M

7552, ps=0

(a). &) ).

if u>0,

0 otherwise
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690

695

0.0 m 0.1 m 0.2 m

@) b). ©).

Figure 8. Sediment height h* of the analytic solution for the case k,=1 km* My and k,,=50 km* My™'. a: 7.=1, p,=0, b: 7,=3/2, p.=1, c:

1522, ps=0

=ps we have considered. All those simulations have been performed in parallel on 108 processors through the use of the

MPI library.

On figure ??, we present the obtained convergence curves for all the tested analytic solutions, i.e. we plot the standard 2

error measuring the difference between the simulated sediment height and the exact analytic sediment height. We see on figure

?? that for all configurations except the case (k,=1

u

ww(u):]kw(v)dv and  ¢4(u) :/kg(v)dv,
0

0

whefeg\mvvavy,iL kand-kyare-diffusion-coefficients-sueh-that+

0<k, <kg(u) <kf <4oo and 0<k, <ky(u) <k <+oo,

Vipy(hs +0) = ky(hs +0)V(hs+b) and Vi), (hs+b) =ky(hs +0)V(hs +D),
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Figure 9. Convergence curves. a:
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. . . 7"5
Table 1. Approximate maximum analytic value of 7 = *w ( qw_ for each convergence test

(7”521, s=0) (Ts=3/2, szl) (7'5=2’ s=0)
kkw—SOI)kmM km——dﬂd—thus—we—ﬁdtufdﬂy—set—q—f 0.01 0.00353 0.0025
gegamk, w)=(5,5) km’ My 0.5 0.353 0.25
(kg kwistkm)=(1,5) km’> My 2.5 1767 1.25
(kgskw)=(1,50) km*> My ' -with-thereferenee-slope-agaifrsetto-srer 25 17.67 12.5

705

710

715

720

unit ol sediment sources withbe meters per mitlion vears tm.My= 50 km” My )—Smeewve—lw&eheseﬁe&as&@—q—wﬁh
ur—the-water-fux—from—the-unit-for the-waterdischarge;—is-m>—s), we obtain clean convergences curves, assessing the
correctness of our numerical scheme even for the non-linear couplings. However, for the case (k,=1 mkmkm® My '

fail to converge. Looking at table ?? where we regroup the value of 7 for each test case using the knowledge of the exact
solution, we see that convergence problems appear as expected when 7 becomes large. Indeed, since the error increases when
we refine the mesh, this error is not a discretization consistency error as moreover all the other test cases validate both our
implementation and discretization. On the contrary it increases with the size of the numerical systems, which strongly suggests

that it originates from solver (both linear and non-linear) errors, and this perfectly illustrates the phenomenon of numerical

errors self-amplification meeh

precisely-the-domain-we-explore-in-thisseetion-that we have discussed from the theoretical point of view in the section 22
Another reason for which problems are probably more severe with finer meshes is that numerical diffusion which is much
smaller than the true physical diffusion in view of the values of k4 adds nevertheless enough additional smoothing for large
values of Ay, to dissipate large parts of the numerical errors while this is no longer the case for the finer meshes.

Now, to illustrate how treacherous those numerical solutions are, we present on figures ?? and ?? a comparison between the
analytic solution and its erroneous numerical counterpart.

The erroneous solutions are dangerously “good looking”: indeed, if only the initial topography and the rain and production data
are shown, one could easily be tempted to interpret the quite complex topographies obtained as the realistic self-amplification
of the perturbations due to the presence of the bumps. However since we know the exact solution, we are sure that this is not
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(a). ®)

Figure 10. Comparion between the sediment height h¢® of the analytic solution and numerical solution k. for the case k,=1 km>My!,
k=50 km®’ My, . = 3/2 and

<=1. a: Analytic solution h5”, b: numerical solution A

().

Figure 11. Comparion between the sediment height h<” of the analytic solution and numerical solution h for the case k,=1 km> My

kw=50 km’> My, r, = 2 and p,=0. a: Analytic solution h5”, b: numerical solution hg
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solution comes from the fact that numerical noise is amplified not by some numerical scheme deficiency but by the capacity.
of our continuous model to amplify perturbations that we described in the previous section. In other words, the numerical
noise is reworked by the system, giving a “realistic” look to it. This is the reason why we stress that when performing real-life
simulations for which of course the correct solution is unknown (otherwise we would not need to simulate anything at all), it
can become very hard to decide if the numerical results are correct or blurred by realistic looking amplified numerical noise.
the continuous model. They are the reason for its physical interest but simultancously its main issue for performing reliable

3.1 Identifiable instabilities in a non analytic case

As mentioned in the introduction -in-the-absenee-of-and above, in real applications one does not have a reference analytic
solution and it is in general hard on complex topographies to decide whether a numerical solution of (??) is correct or not.
To illustrate how one can sometimes partially circumvent this difficulty, we consider a simple synthetic topographic surface
defined by three constant slope planes. The numerical domain is rectangular with the dimensions Lz = 400 km in the x axis
and Ly = 300 km in the y axis (see Fig. ??-a,2?-b). The-mesh-size-is-We use again a cartesian mesh with square cells, the edges
of each cell being of length A,, =2 km. The gravity diffusion coefficient &, is equal to 100 km2.My"! in the whole domain
while &, = 10 km>.My"! for hs +b >0 and k,, = 0.1 km?>.My™! for h, + b < 0, corresponding to a modulation of the water
induced transport in a fictitious marine domain. Water is supplied by three constant water-flux sources located at the domain
boundary (black arrows in Fig. ??-a), so we call this “three rivers” test case. Each water source is 12 km large and supplies
1200 m*s™! of water.

An essential remark is that the whole configuration is symmetrieal-symmetric with respect to the vertical plane x = Lz /2,
including the cartesian mesh used for this simulation. In principle, the equation system consisting of (??) and (??), here used
should maintain this symmetry. Therefore-symmetry—will-be-our-main-toolto

evaluate-selutionqualitySince we do not know this time the exact solution, at least we can use symmetry to identify erroneous
results that do not fulfill this elementary requirement. Using the finite volume scheme depicted in section ??which-for-water

with 4 =2, ps =1,

How-corresponds-to-using-the-consistent-water-flux-ebtained-from-, we perform a set of three identical simulations in terms of
physical parameters but using different numerical settings in order to illustrate the impacts of numerical errors. For simplicity,
the cartesian mesh shares the symmetry of the problem, to avoid any additional symmetry approximation error. We perform
a sequential computation using GMRES as linear solver for all systems, its parallel equivalent on 4 processors and another
sequential simulation using BiCGStab as linear solver for all systems. The linear solvers are part of the well-known and
reference PETSc library (?) to avoid any potential mistake in their implementation, while the parallelism relies on the Arcane
framework (?). Final topographies and water flux are shown on the bottom row of Fig. ??. Figure ??-c corresponds to sequential

GMRES, Fig. ??-d to parallel GMRES and Fig. ??-e to sequential BiCGStab.

All the results from these simulations should be almost identical and in any case symmetrical with respect to the vertical plane
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-30 Elevation (m) 100

0 Water Flux (m?® s~ km™!) 200

Figure 12. The “three rivers” test case with Az,=2 km. a-b : Initial topography, black arrows represent the position of the water inflows.
Bottom row : topography and water flux after 6 My obtained under different numerical settings. c: sequential GMRES, d: parallel GMRES,
e: sequential BiCGStab

x = Lz /2 in absence of any spatial heterogeneity in the input data. Clearly, symmetry is lost in the three cases and what is even
more striking is that we get three very different results. The only difference between the three cases being the numerical solvers,
this indicates that this has originated from numerical errors. As we are using a decoupled time scheme between water flow and
sediment evolution (see section ??), one may argue that those instabilities are arising from some violated coupling constraint
on the time step. Should this be the case, reducing the time step enough would ultimately lead to clean solutions. However, we
have observed the exact opposite: the smaller the time step is, the larger are the obtained instabilities. The fact that reducing the

time step makes things even worse is thus another clear sign that our problems are the result of amplified error accumulation -

by-the-medelup to the point that th
and-do-influenee-it influences flow branching. F
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4 Large structures simulation (LSS): an attempt to get rid of instabilities in LEMs

In this section, we explain how to transpose the ideas underlying the concept of large eddy simulation from the computational

fluid dynamics community to our landscape evolution model. In our opinion, this is a key ingredient for achieving reproducible

4.1 Principles and physical interpretation of filtering

Recall that the main idea of LES is to filter the solution to distinguish between the behavior of the flow above and below the
target length scale, to obtain local averages that are smoother and as mesh independent as possible. This target length scale
controls the size of the smallest structures that we will be able to resolve in the problem, quite independently of the domain
size. The main practical consequence is that our mesh will have to resolve this length scale, i.e. the mesh size ¢ will have to be

smaller than the chosen length scale.

LES filters/models are probably as numerous as the various authors working on the subject (?), thus we will very brief on the
subject and refer the reader to a the quite recent review ?. The very first LES model is called the Leray-o model. It was used
by Leray in 1934 to establish existence of weak solutions to the Navier-Stokes equations (?). Originally, the filtering in ? as

well as in many classical LES models was achieved by using a convolution operator F defined by:

Fu)@) = [uwgs@- vy, where gu@) = 579(5).
Rd

where the filter kernel g satisfies:

0<g@ <l g =1  [ole)de=1,

Rd
Several kernels are used in the literature, such as a low-pass filter, a box-filter or the very natural Gaussian filter g(x) =
= d/2¢=l2I”
In figure ?? we illustrate the smoothing effect of a Gaussian kernel on an oscillating data: as expected, it preserves the high
amplitude and low frequency oscillation while filtering out the high frequency and low amplitude oscillations. Such filters
might therefore be ideal for our application to landscape evolution models: the small topographic perturbations will be cleaned

out such that the flow routing will not be affected by it. Although convolution operators produce averages with the desired

properties, they are impractical on bounded domains. The modern way of defining the Leray-« filter for bounded domains
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Figure 13. Illustration of the effect of the convolution by a Gaussian function

consists in using the differential filter F,, defined by (??):
—?AF,(u) +Fo(u)=u inf,
VFu(u) mn=0 on O, (17)
Falu)=0 on 0Qp.

The filtered result F,, (u) basically amounts to a convolution of u by the underlying Green’s function (2?), i.e. the filter applied
to the Dirac distribution. Using a finite volume scheme F, we can this time easily obtain a discrete version J ; which
is one of the main reasons why we have chosen to use this filter, along with its theoretical and practical success for CFD.
Notice that contrary to ??, we use homogeneous Neumann and Dirichlet boundary conditions instead of periodic boundary
conditions to simplify the treatment of the boundary. The main drawback of this choice is that our filter does not commute
with differential operators. Resorting to only Dirichlet boundary conditions would have solved this issue, however from our
numerical experiments we found that this can create boundary effects unless the chosen Dirichlet boundary condition is adapted
to the filtered quantity. The Neumann choice avoids those difficulties without creating any practical issues, which has motivated
our choice. For quantities such as the water flux for which Neumann everywhere is a more natural boundary condition, we
introduce the alternative filter ]—"é\f with only Neumann boundary conditions:
~QPAFN (u)+ FN(u)=u  inQ,

(18)
VFN(u) - n=0 on 9.

4.2 Leray filtering applied to our landscape evolution model

From the numerical observations that the model governing the simultaneous evolution of sediment and water seems for large

values of T as intractable to solution as the Navier-Stokes system is for large Reynolds numbers, following the idea of LES we
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sedimentary-and-water-struetares—In-praeticesthis-will now apply filtering to key parts of our model problem to obtain a more
numerically stable approximate model. This means that the sediment flux used in the mass conservation equations:

68118 +div (Js)=Ss  in Qx]to, T,
—Js-n=DB; on 0 xto, T,
hs=0 on 9Qp X|to, T,
hy(t =to) = hs,o in 2,

will now be given by:

Js= —ns(hs)s;e’;i

V(hs+)]|

N v
() S+ vy ) i (19

where we use the filtered water flux magnitude }"é\f (gw) instead of directly using the water flux g,,. In the same way, in the

water equations, we will now use the filtered topography F,, (hs + b) instead of the topography h; + b, leading to:

—div (kmhwnw(hw)s;eﬁc”HV(]—‘a(hS + )PV (Fa(hs + b))) —S, inQ,

(20)
kPt () s, 27 [[V (Fa(hs +0)) [PV (Fahs +D)) -n= By, on 99,
with the associated water flux:
Qw = [[kmww (ha) s, 5 ||V (Fa(hs + ) [PV (Fahs + )] 1)

Our “reproducible™so-called large structures simulation (LSS) for landscape evolution thus consists in solving (2?)-(?2)-(2?)-

(??). The name “large structures” originates from the fact that since we use filtering in the coupling process, the water model
does not see anymore topographic details that are smaller than o, and in the same way the sediment evolution is no longer
influenced by water flow details smaller than o We have thus abandoned the idea of resolving all the scales involved in the
landscape evolution problem and will only try to simulate the large sedimentary and water structures, hence the name LSS:

4.3 Numerical results with filtering

e-Before turning to numerical
corresponds to the spatial resolution of our continuous approximate model, that in practice one will want to be as small as
possible. However it must naturally be resolved by the grid resolution, meaning we should have at the very least Ay, < a
for cartesian grids. Moreover, as we test our numerical solution against an analytic solution for the unfiltered case, we need
to make the filter size go to zero at the same speed than the mesh size in order to measure a convergence. For simplicity, we
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have chosen to use filter parameters o« = vA,,, with v > 1. On figure ?? we present the convergence results obtained for the

analytic test cases of section ?? this time using filters. Convergence is recovered with o = 1.1A =1.1) for every case

= 8). This choice for the ratio v between the filter size o and the mesh size A, is not random. Indeed, with oo = ~vA

when A, tends to zero so does the filter size and if ~ is not large enough then the filtering parameter o will no longer be large
enough to compensate for solver errors and numerical approximation errors. We illustrate this on figure ??.

kg=1kw=>50,rs=3/2ps=1 kg=1kw=50rs=2ps=0

—3F
_— . |
= =
% %
B ey §
[ |
- 5[ “
= <= .
= =7 *a=11h] |
= - o = 4h = - o =2h
—6t & o =06h| | 4 a=4h
-+ a=38h —6| = a=06h | |
~-a = 10h - a=28h
—70 +a=10h| |
=7 G =5 —1 =3 =2 =7 =6 =5 —1 =3 =2
In h In h
(@ (b)

Figure 15. Convergence curves for various values of the ratio oo/ A,.

Keeping in mind that we are necessarily using a fixed Newton non linear solver tolerance (le-6 in practice) what we observe on
those curves is that when the parameter « becomes smaller than some threshold value that allows to control the corresponding.
accumulated solver (and numerical a
value of 7 this threshold is reached for a smaller value of A, which explains why once 7 is large enough we can obtain
the correct solution along the entire convergence curve. This threshold is likely to depend on Ay, in the sense that for finer
7 to imply an increase in both the numerical approximation and solver errors, modifying 7 might also probably influence this
threshold value. Nevertheless the results of figure ?? exlain why we have presented results with 7y =8 on figure ?2: to get a
correct approximation even for the finer meshes and thus a clean convergence curve. We nevertheless see on figure ?? that for
more realistic mesh sizes, smaller values of y will be more than enough to obtain the correct solution, and that using filters
is not prohibitively costly in realistic configurations. We also observe that for mesh sizes allowing all the values of the ratio
to 7 to give a correct approximation, the error of course increases with 7, which is perfectly expected since o is our largest

roximation) errors, the obtained solution is no longer correct. Of course, with a larger
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We finally reproduce the very same experiment that was performed on the “three rivers” test case, with sequential GMRES,

parallel GMRES and sequential BiCGStab, but using a filter e-=2-2-km-a= 2.2 km for A,,=2 km. Contrary to Fig. ??, the
symmetry is maintained and we obtain almost identical results for the three configurations ??. The expected impact of the filter
on the simulated water flow and topography is a smoothing effect, which is what is observed when comparing for example the

width of the three valleys. However, the differences remain marginal in this case.

(a) (b) (c)

T

0 Water Flux (m3 s~% km™1) 200 -30 Elevation (m) 100

Figure 16. The “three rivers” test case with filter a= 2.2 km and A,,=2 km. Topography and water flux after 6 My. a: sequential GMRES,
b: parallel GMRES, c: sequential BiICGStab

on our “three rivers” test casewe-first-fix-the-grid-size-to-Agy=2-km-and-observe-the-, from our observations on the analytic

cases and as we do not know the exact solution, to assess the legitimacy of our choice of filter size we analyze the behavior
of the solution for various values of the filter parameter « (fixing the grid size to A,,=2 km). Results are displayed Fig. ??.

We clearly see that symmetric solutions are obtained for e=>-Azza > Ay, while further reducing the filter parameter leads to
behavior similar to the no filter case. This is first coherent with the principle of LES that the filter should control what happens
below the grid scale, which can only be done if o > A=, and also a clear sign that our initial choice for the ratio vy = a/A,,
belongs to the stable region.

4.4 Impacts of water-flow-eonsisteney-and-filtering on the emergence of geomorphic structures

+We now consider two synthetic case studies
to observe the formation of geomorphic features. The idea underlying the first test case is very simple: we re-use as our initial
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(a) (b) (c)

0 Water Flux (m® s~* km™!) 200 -30 Elevation (m) 100

Figure 17. The “three rivers” test case with A,,=2 km. Final topography and water flux after 6 My obtained with different values of the

filter parameter «. a: no filter, b: a= 0.2 km, ¢: a=1 km, d: a=2.2 km, e: a=2.5 km, f: a=3 km

corresponding to a uniform constant uplift supply and a uniform constant rain.

We fix the mesh size to Ay, = 0.005 km, and we again perform the simulation over a time period of 0.25 My with maximum
time steps of length Az = 0.002 My. On figure 2?2, we recall the initial elevation corresponding to our analytic solution along
with the final solution obtained for our now constant source terms, for various values of the filter size as well as without filters.
Since our new source terms are of the same magnitude than the analytic ones and since every other property of the problem is
(up to the approximation due to the filtering process itself). Since In A, & -5.298, we see on figure ?? that for our choice of
Ay we can be confident that the filter size @ = 2 Ay, will give us the correct solution with a small numerical approximation
error, and we use this case as a reference. Thus, the first observation on the result obtained with o = 2 A, is that the correct
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Final Elevation

No Filter

a=11A4,
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[ I
0.0 m 0.25 m 0.5 m

Figure 18. Results for a mesh size A,,=5¢-3 km. a : Initial elevation. Final elevation : b: no filter, c: o= 1.1 Ay, d:a =2 Ay, et a=4

Ay f:a=8 Ay

890 solution this time allows some legitimate geomorphic structures to appear and self organize. Those structures originate from
the bumps, as if we perform the very simulation with constant source terms but without bumps, we obtain a clean uniform
final state deprived of any geomoprhic complexity. With the larger filter size o = 4 A_,,, we obtain an averaged version with
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filter a = 8 Ayy the approximation for Ay, = 0.005 km is too crude and we loose all the geomorphic complexity. We have
checked that if we refine the mesh we recover the correct solution with the ratio « = 8 Ay, This confirms that the uniform
crude approximation obtained for o = 8 Ayy and Agy = 0.005 km on figure 22 is as expected due to the fact that we have
increased our approximation error too much by oversizing . Now, let us consider the final solutions of figure ?? for the value
az L1 Agy as well as without filter. Both of those results present more complexity than the reference case a =2 Agy. Using
the convergence curves of figure 22, we expect the result obtained for o = 1.1 Ayy to belong to the hazardous region where
the error level starts to increase and this solution while not completely erroneous is becoming untrustworthy. However for the
solution without filter strange small structures appear and the overall topography, despite being the more complex of all, does

We now switch to a second synthetic case study. The numerical domain corresponds again to a rectangular grid with-the-but this
time with dimensions Lz = 600 km in the x axis and Ly = 80 km is the y axis containing a mesh of resolution A, = 0.25 km.

The basement is b is constant equal to 0 m, while the sediment thickness h; is initially given by a uniform in x smooth bump:

-1 (y—ve)
Hexp(1_7’5> fOrTy:TSI,
0 otherwise ,

g(x,y):

with H = 20m, y. = 40 km and 6, = 20 km. This symmetry in the x direction of the initial topography is then perturbed by &
N,=30 small smooth bumps randomly positioned at points (x,, ¥y, ):

Hpert exp <1 — 7”2

0 otherwise ,

) for 2 = (=2e)® | (=) < )
gpert(xay) =

with Hpery = 1 m and 6 = 2 km. Rain-fall is constant in time and space (3000 mm/y) and is the unique water supply for this
case. The sediment source (here we simulate a sediment production) goes from S, = 0 m.My™! at y = 0 and y = Ly sides to

S, =100 m.My™! at y = Ly /2 = y... The variation is continue over the whole domain following :

-1
Smaz €xXp ( ) forr, = Y=ye) <1
Ss(z,y) = 1—12 v=3,

0 otherwise

with ,, = 40 km. Model boundary conditions are fixed elevation on the sides normal to the x axis and zero gradient on the sides

normal to the y axis. Models parameters controlling the non-linearity in the water-sediment coupling are set as s = 2, ps = 0;

po—"0-and;=1-m—s-L. Simulation takes place over the time period T = 6 My;-using-the-numerical schemes-detailed-in
seetion-22. Thefirst simulationuse-constantdiffusive-coeffieientsfyc: solution with filter for (kg, ky,)=(50,5) km*My My ' and
%, d: solution without filter for (k,, ky,)=(5,5) km>*My. My ! -and-the-initial topography-is-baitt-with-N;=30In-orderto
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5 Initial Elevation (m) 8

@

0 Final Elevation (m) 100

No filter
kg=50 km? My!
ky=5 km? My!

o= 0.3 km
k=50 km? My
k=5 km? My!

No filter
k=5 km? My!
ky=5 km? My!

a = 0.3 km
kg=5 km? My
kyw=5 km? My!

No filter

Figure 19. Final topographies obtained for three different set of diffusive coefficients, systematically tested without filter and with a fil-
ter using o = 0.3 km. a: initial perturbed topography. b: solution without filter for (k,, k., )=(50,5) km*.My™', c: solution with filter for
(kg, kw)=(50,5) km®>.My™, d: solution without filter for (kg, k. )=(5,5) km* My, e: solution with filter for (kg,ky)=(5,5) km>.My™, f:
solution without filter for (kg, k. )=(1,5) km*.My™', g: solution with filter for (kg, k., )=(1,5) km>.My'

990 previous

one in terms of boundary conditions, but its larger spatial-scale makes it relatively close to the case studies published in 22
- We display the initial topography (Fig ??-a) as well as the final topography obtained with and without filter for k= 5
km?My.My! —then-and for three different kg values. The first case considers ky= 450 km*My--2. My !, The relative high
kg yalue compared to k,, should not favor the emergence of geomorphic structures. This is however not what we observe in
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the simulation performed without filter (Fig ??-b). The filter, defined by oo = 0.3 km, has a huge impact and no geomorphic

structure is produced (Fig. ??-¢) which is undoubtedly the correct solution. An order of magnitude smaller k, coefficient is

used for the second simulation, By decreasing k,,, the emergence of structure may be considered as a realistic result. In this
case, complex structures controlled by at least one wavelength appear in the simulation performed without filter (Fig. 22);

B

< < < ??-d). The effect of filter however indicates the very likely artificial

origin of these structures. A residual perturbation can still be observed in the final topography (Fig. ??-¢), indicating that this

k4 and th

In-the-intermediate-case-gravity-driven and the water-driven erosion regimes. In our last simulation, we have decreased kg, =

we believe to be the correct structures.

We have also performed additional simulations using various k,, values for a given ky=-5-m*My--and-_The results have
shown that k., must be high enough to make the structures appear, but they also show that kg =-+km?My-l-are-indeed much

was most important than k,, in the wavelength control. We consider a dedicated study should be conducted with our model
to quantify these effects but it is beyond the scope of this article. A complete study can be found in ?. Even if it was performed
using an other LEM model, similar conclusions with those drawn from his study are also expected in our case.

5 Discussion

This—werk—belongs—We consider this work as belonging to the common effort of the scientific community to harmonize
landscape evolution models. The-implementations-of-the-consistent-waterfhix—and-the-It is our belief that the most of our

observations and practical recommendations can also be applied to a wider range of sediment evolution models that the one
we use in this study. The implementation of the large structure simulation strategy should be accessible to every LEMs -and

n-partietdarsatisfying (H1), (H2) and (H3). In particular, we believe that filtering would be also very useful for the models of
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??? that takes the general form:

Ohs

9 +div(Js)=Ss  inQx]to, T,
~Js-n=DB, on O xto, T'[,
(22)
hs=20 on 9Qp X|te, T,
hs(t =to) = hso in Q,

with a source given by
—Ps, ) " s
SS:U—KJwSreI}2<q ) ||V(hs+b)||p 2,
ref

with U a sediment source term (or an uplift depending on the interpretation of ) and a sediment flux given by;_
Ty = —55 k| [V (s +0)|[P*V (hs +b)  in Qx]to, T.

Fhese-The behavior of those models are relatively close to model (??)-(??) that we have studied in detail here, with the main
V(hs+b)
for p,, = 1 the observations on linear stability for model (??) match the conclusion of the linear stability analysis of 22. We
can thus expect that model (??) will potentially suffer from similar numerical stability issues that the ones we analyzed in
detail for model (22)-(2?), although this certainly requires a dedicated study before drawing conclusions. In particular, several
elements can help keeping the numerical errors under control: high order space and time schemes, explicit time schemes,

specific solvers for the water flow model avoiding inverting a linear system, etc. Nevertheless, an immediate application of the
LSS in this context consists of course in replacing q,, by its filtered version F*(q,,) in the second member of (??) and can

difference that the non-linear term ¢

Ps appears as a reaction term rather than in a diffusive term. An-In particular,

only improve the numerical stability. We also believe that the £-q model of ? could benefit from a similar filtering strategy.

Correctly using filters requires some understanding of the scales involved in the model. Although this is not a—steh-such

an easy task in general, we

as generic guidelines concerning the

relation between the filter size « and the precision of the results it is clear that the chosen filtering parameter o should resolve
the main sediment structures that one wants to correctly represent in the flow, ideally fulfilling an equivalent of Nyquist’s rule.

For instance if an essential valley is 1 km large, then « should be several times smaller (and ideally smaller than 100 m). A
good practical test consists in comparing the filtered topography F(hs + b) and the unfiltered one hg + b. The structures of
hs + b that one wants to simulate aceurateHy-accurately should be preserved in F(hs + b), of course in a smoother way. For

instance, for a given value of « if a small topographic depression in which water could in principle flow is observed on h; + b
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but is absent in F(hs + b), then if one really wants to capture water flow inside this “channel” the value of o must be reduced

and the mesh refined accordingly if needed. The filter should in any case be able to clean numerical approximation and solver
errors, implying that we should at the very least have 7 = /Ay, > 1 to correctly resolve the targeted o spatial scale. To allow.
the filter to correctly clean errors that could otherwise have a destabilizing effect on the final configuration, higher values of oo

Notice that in the present paper, we have for simplicity always used uniform meshes with a constant Ay, hence obtaining a
constant ratio 7y = /Ay As an immediate extension, one could resort to adaptive mesh refinement to refine the mesh in areas
where 7 _becomes large and thus where numerical errors are more likely to be large, mitigating the increase of the system’s
size and thus the increase of the computational cost. In practice for constant coefficients k, and k,, this would be equivalent to
refining the mesh where water flow occurs. In addition, one could replace the constant parameter a by a space/time variable

coefficient o(x, vy, t) in an adaptive filtering strategy, where the filter size could be chosen in coherence with the local size of

the structures one wants the model to be able to reproduce.

5.1 Recovering realistic landscapes

Both-the-consistent MED-and-the-In principle, the use of filters are-introdueced-allows to get rid of any-mesh-dependencyand
the influence of numerical noise in the solution. An apparent drawback is that for unperturbed data, complex topographies are

less-tikely-to-will no longer appear by themselves through the perturbations induced by either the numerical approximation or

the numerical solvers. Moreover, natural landscapes de-have-exhibit some heterogeneity even forsituations-where-under low 7

took-thatallows toreeovertegime. This suggests an ingredient is missing, and this ingredient is well-known by geologists: the
heterogeneity. Indeed heterogeneity is everywhere in nature, and could be injected in such a model to make realistic looking
topographies —Hertunately;thanks-to-our-interpretation-of MHED-as-a-diseretization-of -we-see-that-the-coefficient-emerge. This
idea s of course not new but we propose to invesigate the effect of heterogeneity in the context of the hydro-sedimentary model
we use for this paper.

the-flow-Fo-fttustrate-thiscoefficient, reflecting variable soil rugosity. Since acquiring a roughness map adapted to the spatial
scales relevant to our approach is difficult and probably not relevant for a synthetic case study, we resort to an artificial yet
efficient trick, namely the Perlin noise ? that is often used in animated movies or video games to produce realistic looking
mountains or river networks. This type of noise can easily be used to build isotropic heterogeneity maps with controlled spatial
scales. We thus consider our “three rivers” test case using variable coefficients &, in space and time (Fig. ??). Figure ??b
-b illustrates a typical distribution in space of the k,,, coefficients when using a Perlin noise. The range of values for the k

coefficient (from k,, = 0.01 m.s”! to k is arbitrarily fixed while respecting realistic value ranges. Impacted by the

heterogeneity in k,,, the water flow is still distributed between neighboring cells according to the gradient of the slope, but it

will-also preferentially choose to enter the cell at-with the highest k,,, especially when the slopes become gentle and relatively
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1095 The flow then acquires a high degree of complexity despite a filter which set at o = 1.1A ., makes it possible to eliminate

numerical errors.

-30 Elevation (m)

0 Water Flux (m® s~ km~1) 200

n

Figure 20. The “three rivers” test case with Perlin noise based coefficient &,,. a: Final (at T=6My) elevation and associated water flow with

variable in space and time k,, coefficients. b: k,, coefficients at T=6My

The same approach can be applied in-to _the other synthetic test case used in section 2?-The-set-of simulations-shown-inFig:
22-are-2?, using a=2 A, : the simulations are now performed with spatially and temporally varying k,, coefficients (the same

range of k,,, values is al

1100 eempafeém%g—l%—%e%ﬁfskﬁﬁmlﬂfms{%g—m%”-a -b %m%@mm
state of the simulation with a special focus on the geomorphic structures produced, which are clearly more complex when
comparing to the result shown in figure ??-d.

In a second time, we introduce a similar heterogeneity in the rain maps. When we use solely a rain heterogeneity incorporatin
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simulation-Fig—2?maps, the geomorphic structures produced are very similar to those obtained using only the heterogeneous

k., coefficients . The most visual satisfying result is obtained for a simulation using both variable k,,, and rain maps (Fig. ??-c)-

5.2 Overcoming the accumulation and flat areas limitationsef- MFD-appreaches

In the general setting, there is no reason why the sediments should evolve in such a way that the—“‘drainage™or—eurvatare”
assumption-one of the sufficient conditions (??) is always fulfilled, which can lead to some non physical behavior of the GMS

model (??) and thus also the pure MFD algorithms. Indeed;forecels—such-that-sx—"0;-the- MFED-algorithmsstop-water-in
cel-f—and-no-flow-can-go-to-the-neighbours-of-eell#<—This can occur in two obvious situations: when——belongs—te-in
an accumulation area (a topographic depression) or a flat areatall-neighbeurs-either-higher-or-at-the samelevel-than ). In

principle, water arriving into an accumulation area should create a “lake” whose bathymetry will be determined by a water
balance between incoming flow, infiltration and evaporation. If the surface reaches the threshold of the lake, then some water
leaves the lake and the water flow restarts from the lake threshold. In flat areas, water will spread diminishing its height
until the full area is covered. To reproduce those effects that are not originally taken into account, implementations the MFD

algorithms an e-all incorporate practical workaroundsthat-can-take

easily propose a generalization of (??) that overcomes those limitations, by noticing that model (??) is in fact a simplification

of the shallow water equations with friction. Indeed, appropriately choosing the friction model and assuming that the mass

conservation of water is at steady state a quite general model arising from applying the hydrostatic approximation to the
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shallow water equations would be to consider (see appendix ??):

_div (kmhwnw (ha) 87251V (B + B +b) Pwv(hw+hs+b)) -5, inQ,

kb (hw) 5,5 1V (ha + s +5)[[P2 ¥ (hay + hs +b) -1 = By, on O, (23)

hey =0 on 0Qp,

with the associated water flux strength:
G = [kt () | 5,57 [V (hay + Bs £ )7 24)
f

This is almost (??) except that it uses the hydraulic gradient instead of the topographic one.The assumption V(hs+b) =
V(hy + hs + b) while valid on pronounced slopes is obviously not valid anymore in accumulation areas (at equilibrium, the
hydraulic gradient is almost zero while the topographic gradient is large) and flat areas (where the topographic gradient is zero

and the hydraulic one is not) . The non-linear model

(2?) is thus a natural generalization of the GMS model (??) with a built-in handling of accumulation and flat areas which no
longer requires practical workarounds. However, model (??) does not come without any drawbacks. The first one is that we
now have to choose the water mobility function 7,,, as we are solving for the water height unknown. This will both influence the

repartition of water and the strength of the water flow;-whi

. In the same way, the absolute value of the coefficient k,, will now impact the strength of the water flux through h,,, while
only its contrasts were relevant for the GMS model (??). Thus, some fine tuning is required for (??) to produce meaningful
results. The last and probably more important drawback is that (??) being non-linear in its unknown h,,, its discretization
will be more involved and computationally expensive than for (??). We-perform-it-using-again-finite-volumes-which-will-in

et-Llet us compare the results obtained with the
original Gauelkler-Manning-Striekler-GMS model (??) and with the more involved hydrologic model (??) on the “three rivers”
test case, using filters in both cases. The water mobility function 7, for (??) is simply chosen as equal to one if h,, is positive
and 0 otherwise.

As we can observe in Fig. ??, if the two models of course do not produce exactly the same results the general behavior is very
similar. Even more close results could certainly be obtained by finely tuning the mobility function. We do not want to explore

this any further in the present paper and simply want to illustrate that while suffering from some limitations, the eonsistentMED
{GMS model (2?) )»is-and thus MFD algorithms remain a very strong and attractive approximation on draining-topographies:

R < hao MED OFAD < on<—ean——easithvr—be-an—ordero Ma-oRn de—facte < he hvdraloo OFAD < ORI

is-used-suitable topographies.
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6 Conclusions

evolution-stmulations—Nextillustrating the numerical instabilities arising from the self-amplification phenomenons at the core
of coupling overland flow and sediment evolution models, we have proposed to mimic the LES strategy for CFD computation in

the context of landscape evolution models, relying on the well known Leray-« differential filter. Numerical experiments assess
that the-eombination-of-consistentMED-and-filtering produces results robust to numerical perturbations. It is our belief that

this “large structures simulation” (LSS) approach goes far beyond the spemﬁc model considered here and that any LEMs could

benefit from it;e . Indeed, experiments performed without
any filtering strategy have shown that it is-can become extremely difficult to distinguish between the imprint of numerical errors
and physical processes. Provided fine enough filter parameter and mesh size are used, only the non physical heterogeneity will
disappear. The apparently missing visual complexity that previously arose from numerical noise can be physcally re-introduced
when heterogeneous data are considered. Similarly to LES models, we believe that a mathematical analysis and numerical

analysis of the filtered model should be achievable. Be%hﬁfe%e—subjeet—oﬁteﬁveﬂceseafehﬁae}%We hope to be able to

publish such analysis in a future paper.

perspeeﬁve%eahsﬁ&easeﬁufhesTo complete this work, we also plan to use in our next study the full model capacit
building a mutli-lithology realistic test case. Finally, pursuing the analogy with LES, an interesting perspective would be to

analyze whether it is feasible to develop sub-filter models to increase the filtered model accuracy when « is quite large, in order

to reduce the need for fine « and thus fine meshes and consequently the overall cost of the approach.

Code availability. All the numerical schemes used in this paper are fully described in the appendix ??. Implementation was performed in

code ArcaDES, which is available through the commercial simulator DionisosFlow .

Appendix A: Finite-volume-diseretizationDerivation of analytic solutions

boundary-deecomposition; i—e-there-existssubsets 72, For simplicity, we consider in this section the special case where b = 0
k. and F2-such-thatk, are constants, the water mobility function and coefficient k,, are both equal to one =1and
k,, = 1. To ease the reading, we will not write the dimension constants s and ¢,..r, as they are both equal to one in the
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chosen unit system. The sediment flux simplifies into:

Jo= U —n(ho)lIV(hy + 0| (qukwv<hs+b>+kgwhs+b>) and= | J .inQxt,T],

oeFN, ceFE

ext

by-We consider the simplified setting where 7.(h;) = 1, which is only an approximation of the function 7, we have used

everywhere else in the paper. This setting corresponds to the analytic steady state solutions studied in ?. Since he) ~ 1

as soon as h, is large enough, we label those solutions as “quasi steady state”. We seek quasi steady state solutions that are

morevoer uniform in the y variable h.(x,y,t) = hs (), and symmetric with respect to the axis = = 0, and we consider onl

the interval |0, Lz /2[. We finally assume that S, and S, are equal to two constants S, , and S, .. We have consequentl

V(hs +b) = 0,h, .e, and the water equation reduces to:

-/T"u,h,(uT> - ((‘F(Y,K(UT))KET? (‘/—.;X,U (71‘7_))(76-7:%(,) )

_ax (hw,x|6xhs,ﬂc|pwaxhs,x) - Sw,x-

where—

of Y ﬂ(f (ur) — Fo.p(ur)) + | K| Fa x(ur) = |K]| forall K € T
8KL o, K\UT o, L\UT o, K\UT) = UK ora s

cE€EFKkNFint

Foolur)=Forx(ur) forall K €T andall o € Fi NFN

ext?

Foolur)=0 forall K € Tandallo € Fx NFD,.
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1215 In the same way, the conservation of sediments for-the-flux-is-given-byreduces to:

K]
At’n,

n+1 n |0‘ n+1 n,n+1 |J| n+1 n,n+1
(hs,K - hs,K) + E dwr 5P Ns,o A\IJI(L + E : dw 5P Ns,o A\I]Kg )
CEFNFins KL ref cEFKNFD KoSpef

ext

— > o|BIF =|K|S!  forall KeT,

O'Gf}{ﬂfé\;t

hoEtpbntt =R b+ QU (@, —®k)  forall K € Tandall 0 € Fre N FL,,

h;‘;l =0 foraloe FP

ext’

where-which integrating in z leads to (using again our hypothesis on the sign of 9. h ;.):

1220 AW = (gnthyr

) o

P (thyy (B, i +bic) — Yo (b, +b1)) + [|GLETY

Po2 (g (hs, i +br) — Vg (hs,r, +b1)),

n+1
Gl

SsaT+7y
8zhs = ps+1 =(=1 ps+1 $,T ,
( =) (=1) kg + kuw(gw(0) + Sy z )"
and thus:
A\Iﬂllgg_‘—l = (q'g:rl)rs Glﬁ“l s (ww(hs,K + bK) - 7bw(hs,o + bU)) + HGI,ZJFH Pz (¢g(hs7K + bK) - wg(hS,U + ba))»
1225 L
6 h — (SS,xI’_F’Y)m

)

(kg + Ew(qw(0) + Sw,mx)rs)ﬁ )

whefeﬂwmebiﬁfyﬁ;ﬁ%li&upw}ﬂdedﬂsmgﬁé@%—ﬂfefﬁfe—Fmﬁo ensure the continuity of the derivatives at x = 0, let us
assume that 9,.h, .(0) = 0 and thus v = 0, and consequentl 0) = 0. The above relation simplifies into:

n(RR) iAW 20,

n+1l __
773,0 -
ns(h2YY) A AURTT <0,
1230 . .
Ophsz = —(Ss,20) 7577 (kg + ky(Swzx)"™) Psr1.
andﬂsiﬂgAlP%’—J“lfeﬁﬁe%Notice that this is coherent with our assumption —0,.hs . > 0. The water height h,, , can

then be obtained by setting:

ns(h2 ) if AR >0,
Ney' = 7

ns(h2EY) if AU <0,
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Sw,zT —(pw+l) Pw+1

w1
0,

hw Tz = (_1)Pw+1 = (Sw,wm)(ss,wx) Pstl (k +k (Sw,wm)rs) pstl,

otherwisewhich is positive as expected. At this stage, integration for h, , was simpler in ? because of the absence of k.

Indeed, for &, = 0 we have:

Fla) o e 72,
dicL P e (@) FoL (dr)
nhl = ) — if o € Fipy and FN (g™ 1) > 0 and FV qn)+1 >0,
Qw o ‘FQ{K(qZ+71)dLU +f£{L(qZ+7l)dKU m a,K( w, T) aﬁL( w T)
(‘F ( 1711;_‘—71) Fa L(q:,+71)) ifoe ]:int and f(x K(qz’;‘r’;) =0 OI',F L(q2+71) 0.
aavhs,a: = (Ss g;k’ 15 rs)Ps+1xi+;2 ,

vrimmediately leading to:

n 1 a n n n s
sihse= 1= Z J7|( s,L+bL_hs,K_bK)(gSJBNv@)_K

1+ps

(s akyy Syl ) PerT TP T
LS S e

Conversely, if k,, = 0 (no couling between water and sediments), we have:

1 o 1
+m d| | (8 hn + by — hi i — b )(g%_ﬁ(kglss,wx>%liia
c€EFKkNFeat Ka T

Sois g So =65+ withand thus
ps+1 ps+2

hs T = hs,ac(o)

)

(k 1Ss x)erl;szerl

ps+2

In the general case we need to compute:

1 . .
, §(G:,K +GY ) if T, ={K,L},
G, =
S K if 7o = {K},

hs,a::hsac / sxu p3+1 k +k (Sw,xu)rs)_ﬁdu'
0
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as-wel-asUsing the variable change v = 4", u = v*/" and du = %v(lfrs)/“ dv leads to:

1 L .
T(h?yL—&-bz—hZ”K—b}}—GS_’U-(wL—:BK))(:cL—mK) if 7, ={K, L},
" dir,
R.s,a: 1
Ez—(h’;a+b§—h;{K—b}2—G;”,g-(EU—EK))(@—EK) if T, = {K}.
Ko

1255

)

| — (A=rs)(ps+1)+1 1
heo=hsz(0) — —S&s™ [ v wGFD (kg + kuwSes zv) e dv,

Ts

aeonsistent-water flux by-setting¢-——HQ L H-withwhich will lead to easily computable analytic solutions in particular for

+1) +1 = 0 and cancel the exponant Ww.

3

1260 the special combinations of values of 7 and p, that satisifies (1 — r

We start by the special case p, = 0 and r, = 2. In this case, we have:

2
n,n+1l-~n+1 z

n T n 3 1 n n
il}is\,f = Z %(‘Fﬂ,ff(hsﬂ' + bT)s,z(O)_-F<x,L§Ss,z (h’s,T]ig—i_blw;)&g)

K s 20 T RS
0EFkNFint,Fa,k (RY 74+b5)>Fa,L (R +b5) ‘ | K 0

leading to:

n,n+1~n4+1 S
$,x

)o—K)

3 DL 9L (Fo (B + V) e = hs 0 (0) = Fu iy 5 — (17 In (k + b%)(gkwsi,xx?)

I TS

0€FkNFint, Fo,k (hY 7+b5)<Fa,r(hl +b%

1265 In the other cases for which (1 —r + 1)+ 1 =0, this leads to:
- Z |J|BZ;—,;17

0EFKkNFext

z"s

1 1
hs,z - hg’z(o) - 7SSP&+1 /(kg + kaZ)S,zv)_Tl‘Hdlh

0
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and thus

~n+1

3 q
. 3 Tp T Sl (Foun (B2 + 0) = Faxc (B2 + b))
0 EFRNFint,Foic (R 7)< Fo 1, (BT 1457 Si
— > lo|Bi =|K|Sp i forall K €T,
c€EFKkNFeut
sk = > RE " (Faurc (W +07) = Far (Wi +07))
0€FrkNFint,Fa,k (] 4+b5)>Fa,L (R 7+b5)
1
nn+l _ ‘0-| n+ n Pw
TKL - E p“ H F,s,0 ’
L‘sr'ef
P _|_1 Sps+1
oo = o (0) = P 5 (e + RSP/ 04D e/ )
DsTs KwSwe
B
1 .
" 5( ;7S,K+G7}75,L) lf,]:f:{KvL}7
f,s o=
G,k if T, = {K},
by Apart from those cases than cancels the exponant appearing in

the intregral, another interesting special case is the linear case p, = 0 and r, = 1 for which we have:

) 1 o m, ) _
boschoe = 30 A (Fanly +5)pl0) ~ Fa [y V5 Su)) o= scky + bS]
0

‘ ‘ o €FKkNFint dxr

which leads to:

1 ted n " " T k k
TR] 2 g Fao(ly £05) = For(os =ho7 +65)(ons(0) = See | g = 1) gagr—In |hy F kS o) +757g5—
o FrnFeun UK wiwe T Fwdwe wlwa

It is then easy to choose the value for A ,.(0) such that he . (Lx/2) = 0.

Appendix B: From shallow water model to the steady-state hydrologic model (??)

Recall that the shallow water systems is given by (see ??):

Oy + div(hyty,) =0,
ot B1)

0
a(hwuw) + div(hyUy @ Uey) + ghyyV(hs + b+ hey) = =K (B, ||V (B + hs +D)|]) [t | Uass
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where u,, denotes the water speed, g the acceleration due to gravity, and «,, is the friction coefficient. Then, following ? and

defining H . to be the characteristic sediment height, I, . the characteristic water height, L., the characteristic domain length,

T the characteristic time and defining the nondimensional variables:

L S N T R
H . H, . Hy e L. L. L.

s

f:

t
T.’

we see that (??) is equivalent to:

0
0 H,  T? P Hy,  T?
ot

Lo (L\™7' L
— a9+ 0 7 (F2) i
w,c c

The “shallow” hypothesis corresponds to assuming that L./ H, w,c >> 1, while the two numbers
L L
Frwzic and Frszicv
vV gHw,cTc V gHs,cTc
are equivalent to Froude numbers for the water and sediment flows. For long term sediment evolution, it is reasonable to assume
that F,. ,, << 1 and F, ¢ << 1, i.e. that gravity is the dominant phenomenon. Combined with the shallow water assumption

this suggests to neglect the inertia terms in the nondimensional momentum balance, leading to the hydrostatic assumption:

ghwv(hs + b+ hw) = —Ruw (hwv Hv(hw + h’s + b)”) |uw

" Uy, (B2)
Inverting formula (??) we obtain the following expression for the water speed:
uw:_,uw(hunHv(hw+hs+b)||)v(h5+b+hw)7 (B3)

where
1 1
gm h{;}w+1
Fow (N, ||V (hay + hs + D))

Thus, appropriately choosing the friction model, for instance by setting r,, = 0 and

ftw (e, ||V (R + s + 1)) = 1V (hs + b+ By )| |~ 7. (B4)

)FaTT

ghy
ke (hw )5, 2 |V (o + hs ) | [P

K (haws ||V (R + hs + 1)) = (B5)

and assuming that the mass conservation of water is at steady state we obtain the following quite general hydrostatic approxi-
mation to the shallow water equations:

—div (kmhwnw (hao) 87251V (B + g + D)7V (o + g + b)) ~S, inQ,

kb () .07 [V (ha + s +0)[ [PV (hyy + hs +b) -0 = By, on O,

hy=0 on 0Q2p,
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with the associated water flux strength:
Gw = [kmhww (hw) |$r_£fw IV (A + hs +B) [P

Remark B.1. The friction model (??) becomes singular when ||V (hy, 4+ hs +b)|| = 0. Thus, an alternate choice would be to
use something like:

ghw
ki (hao) (8 + 8,51V (ha + s +b)

K/w(h’w7”v(h’w—'—h’5+b)||): puJ)’

for some 8 > 0 (the same holds for function 7, such that (0) = 0). This alternate choice is probably more physical, as the
term in s, ||V (o, + s + )| [P can be interpreted as modeling some deceleration in accumulation areas. We have chosen to

use (??) to be as close as possible to the MFD algorithms of the literature.

Appendix C: Finite volume discretization

In this section we describe the full finite volume discretization of system (??)-(2?)-(2?)-(2?). Let {2 be a bounded polyhedral
connected domain of R2, whose boundary is denoted 92 = O\ §2. We recall the usual finite volume notations describing a

mesh M = (T, F) of Q. The set of the cells of the mesh 7 is a finite family of connected open disjoint polygonal subsets of

Q, such that Q = U7 I, Forany K € T, we denote by || the measure of ||, by 0K = K \ K the boundary of K by pi_
such that, for all g € 7, its measure is denoted o, its diameter h,, and its barycenter a;, . For any K € T, the faces of cells K

the cells of which o is a face. Next, for all cell X € 7 and all face o € F of cell K, we denote by ny , the unit normal
vector to o outward to K, and d = |z, — xx|. The set of boundary faces is denoted F.,;, while interior faces are denoted

Finz. Finally for any o € F;,;, whenever the context is clear we will denote by K and L the two cells forming 7, = {K, L
as well as d = |z — x1,|. This for instance allows when looping over the faces o of cell K to denote by L the other face

of o without resorting to a too heavy notation. To avoid any confusion with water and sediment heights, € = max will
denote the mesh size. For any continuous quantity w, its discrete counterpart will be denoted u7 = ((u Ug)geF..

where for any K € T ug is the constant approximation of u in cell K while for any o € F,..; u, is the constant approximation

of u over face g.

7 such that:

and let us denote T, the orthogonal projection of Z i to the hyperplane containing o for any o € Fx and any K € 7 with

as well as d

operators with scalar diffusion coefficients (no tensors). We also assume that the mesh is compatible with the bounda
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decomposition, i.e. there exists subsets F: N and FP, such that:

ﬁ:UE and @:UE.

oceFN oceFP

ext ext

Notice that all our simulations without filters employs the same numerical schemes but of course replacing the filtered values
by the original ones.

Leray-a filtering equation:

by

where:

Y E‘i(}"a,K(uT)f]:a,L(uT))+|K|]~"a7K(uT):|K\uK forall K € T,
c€FxNFins KL

Foo(ur)=Farx(ur) forall KeT andallo € FxNFY,, 1)

Foolur)=0 forall K€ T andallo € Fx NFL,.

Mﬁm&ﬂ but with Neumann boundary conditions on every g € Feu;.

Sediment mass conservation equations:

We now assume that the time interval |0,7[ is subdivided into N7 subintervals |¢,,.t where to =0 and ¢ =1T. We
denote At" =t —t,,. The discrete quantities associated with time ¢,, will be denoted as usual with a superscript n. The
TPFA finite volume scheme for the mass conservation of sediments (??) for the flux (??) is given by:
K| |o| o]
+1 +1 n,n+1 +1 n,n+1
A (hy e —hix)+ Z R Neo AV + Z P Neo AVES,
cEF RN Fins KLSref oeFnFD, “Koref

— > o|BIF =|K|S!  forall K €T,

s,0

cEFKNFN, (C2)

hoE bt = I b + GU - (T, —Ek)  forall K € T andall o € Fre NF2Y,,

hitt=0 forallo e FL,

xts
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where

A\Il}?z-i-l _ ( n+1)rs

qw,o

2ot (9 (hs i+ bic) — P (hs L+ 1)) + |GLE

Gho

Pe2 (1) (hs i 4 bic) — Vg (hs, + 1)),
(C3)

and

A\II}L(,Z+1 _ ( n+1)Ts

Qo

bt (¢w(hs,K + bK) - ww(hs,a + ba)) + ||Gizg+1|

GLotY

be.2 (7/’g(hS,K + bK) - ¢g(h8,o + bo—)):
(C4

where the mobility 7! is upwinded using AU™" ! for o € Fipy:
n(AT) i AU > 0,

eyt = (C5)
ns(hIEY) A AURT <0,

and using AU for o € FP
W) i AT > 0,

nest = (C6)
ns(h2EY) if AURIT <0,

and where the filtered water flux magnitude is approximated by the harmonic mean whenever possible and the mean value

F @y ifo e FL,
EKL‘FQ/K(QZ-#)‘FQ[L(QZ-#')
s 5 s 5 : N +1 N +1
0 = | BN o + Py i, ¢ Ty ) > Dand Tl ) > 0 ©
o, w, «, w,
1 .
i(féYK(qgﬁ;) + PN @) if 0 € Fir and T (gl ) = 0 or FY (gl ) = 0.

The discrete full topographic gradient is given for any cell X € 7 by:

n 1 ol n n mm
K~ 1K Z (hS7L+bL7hs,K7bK)(m07mK)

g
- ‘ |U€]:Kﬂ}_mt KL

1 o
DD 171 b b7 — ) (@0 — ),
CEFKNFeat Ko
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while its stabilized version G is given by GI'" = G+ R” _ with:

1
S(Gix+Ger) i T ={K,L},

Gr, =2 (C8)
S K if 7o = {K},
as well as:
1 .
—— (Wl +b} —hl g —bik —GL, (T —Tk)) (®L —Tx) if T, ={K,L},
R, = 11“ (C9)
—— (hl o+ b} —hl g =V —GL, - (B —Tk)) (Bo —T)  if To = {K7}.
Ko

The finite volume scheme for the water equations (??)-(??) is simply obtained by applying the corrected MFD algorithm of ?

on the filtered topography and reconstructing a consistent water flux by setting ¢7-F! = 1| with:
Tn,n+1§/n+1
+1 KL 9k
}L{ o Z |K| n,n+1 (]:a,K(hZT + b?’) - ]:%L(h’Z,T + b?’))(xa - xK)_
TEFKNFint, Fou, i (2 7 +b2)>Fo L (b +b%) SK
Tn,n-‘rlafn—',-l
kL  4r
2. T Fon b 87) = Fosc(Wr 4+ 67) (@ — @)
o€ FkNFint: Fa, ik (] 7 +bF ) <Fa,r(h7 +b%) L
1
- > loBt, (C10)
cE€EFKNFeat
and
vt
+1 n,n+ L
Ik — Z TKL  “nntl (]:Ot,L(hZT +b7) = Fa,x (B 1+ Z9))
GEFKNFint,Foic (W2 7 +b3) <Fa, 1. (B 7+b%) 5L
- Y JelBiL =|K[S) x forall K €T,
oc€EFkNFeut 1D
;n+1 ;n+1
s = > TR (Fax (We 7 +057) = Far (bl 7 +07))
o'e]:Km]:int;]:a,K(h:'YT+b77L)Z.F@1L(h:’T+bV+)
+1
nn+l ‘o"kZl,o' n Puw
TKL =5 pw I Fosolls
dKLSref
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where

]' n n .
5( Fox+Grsp) ifT,={K L},

Froo = (C12)
G?",s,K lf%:{K}7

and the gradient of the filtered topography is of course given by:

7oK =g d‘7|(]:<x,L(hs,T +b7) = Fa,x (g 7 +07)) (6 — k)
cE€EF Kk NFint KL
+0= (Foo (g 7 +b7) = Fax(hy 7 +07)) (26 — TK)-

| ‘ CEFKkNFeat Ko
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with a-gri i = sfilters and Perlin noise based ky, coefficient. Fhefiltersizeis-o-—6-meters-—The redsquare-corresponds
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Figure 22. Front view of the result of figure ??-c
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Figure 23. Comparison of models (??) and (??) on the “three rivers” test case for «=2200 m and A,,=2000 m
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