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Abstract. Paleoclimate data assimilation (DA) is a nevel-tool for reconstructing past climates that directly integrates proxy
records with climate model output. Despite the potential for DA to expand the scope of quantitative paleoclimatology, these
methods remain difficult to implement in practice due to the multi-faceted requirements and data handling necessary for DA
reconstructions, the diversity of DA methods, and the need for computationally efficient algorithms. Here, we present DASH, a
MATLAB toolbox designed to facilitate paleoclimate DA analyses. DASH provides command line and scripting tools that im-
plement common tasks in DA workflows. The toolbox is highly modular and is not built around any specific analysis, and thus
DASH supports paleoclimate DA for a wide variety of time periods, spatial regions, proxy networks, and algorithms. DASH
includes tools for integrating and cataloguing data stored in disparate formats, building state vector ensembles, and running
proxy (system) forward models. The toolbox also provides optimized algorithms for implementing ensemble Kalman filters,
particle filters, and optimal sensor analyses with variable and modular parameters. This paper reviews the key components of

the DASH toolbox and presents examples illustrating DASH’s use for paleoclimate DA applications.

1 Introduction

Past climates provide insight into the drivers, variability, and evolution of the Earth’s climate system, and are invaluable for
providing insight on the consequences of current and future anthropogenic climate change (Alley, 2003; Hargreaves et al.,
2007; Rice et al., 2009; Schmidt, 2010; Snyder, 2010; Ault et al., 2014; Coats et al., 2020; Tierney et al., 2020a). Paleoclimate
studies can help constrain important climate system properties including Equilibrium Climate Sensitivity (Hegerl et al., 2006;
Rohling et al., 2012; Hansen et al., 2013; Kutzbach et al., 2013; Rohling et al., 2018; Sherwood et al., 2020; Tierney et al.,
2020b; Zhu et al., 2020b), quantify internal and forced variability across a range of timescales and climate system metrics
(Cane et al., 2006; Cook et al., 2011; Goosse et al., 2012a; Ault et al., 2013; Fernandez-Donado et al., 2013; Anchukaitis et al.,
2019; Neukom et al., 2019; Fang et al., 2021), and can serve as analogues for future warm climate states projected to occur
due to anthropogenic warming (Overpeck et al., 2006; Burke et al., 2018; Tierney et al., 2020a, 2022). Reconstructions of past

climates also provide out-of-sample targets used to assess the skill of climate models, which in turn helps constrain future



25

30

35

40

45

50

55

projections and enables superior climate change adaptation strategies (Crowley, 1991; Hargreaves and Annan, 2009; Schmidt
et al., 2013; Zhu et al., 2021a, b; Gulev et al., 2021).

Beyond the limited period of instrumental climate observations, researchers have primarily relied on two methods for study-
ing past climates: proxy reconstructions and climate model hindcasts. In a proxy reconstruction, paleoclimatologists use climate
proxy records, such as tree rings, ice cores, speleothems, corals, and lake and marine sediments, to make statistical estimates
of past climates. These reconstructions rely on a combination of empirical and process-based understanding to link proxy
records to features and characteristics of the Earth’s climate system. A major advantage of using proxy data to reconstruct
past climates is that they produce estimates of temperature, precipitation, or other climate variables that are consistent with
the actual trajectory of the Earth’s climate system. These reconstructions can also provide independent validation of climate
model performance. However, many factors can hinder the inference of past climates from proxy data. These factors include the
sparse distribution of proxy records through space and time, time-uncertainty due to limits on the precision of geochronology,
and the influence of multivariate or non-climatic factors on proxy records. Furthermore, the physical processes that archive
climate signals in proxy records can be complex and are often not completely understood, which complicates the extraction
of climate signals from proxy data using linear, univariate, and empirical statistical approaches. Proxy records are sensitive to
the local climates in which they form, but many reconstructions target large-scale climate features or ocean-atmosphere modes
not directly sensed by the available proxy data. Some reconstructions derive relationships between proxy records and target
variables using calibrations with the instrumental era; however, due to the effects of anthropogenic climate forcings, mod-
ern climate is not in equilibrium and eontinues-to-respond-to-inereasing-anthropogenic-climateforeingsdoes not necessarily
resemble the climate of the past. Therefore, modern teleconnections and climate-system spatial covariance patterns may differ
from long-term and unforced patterns. Finally, many proxy reconstruction methods assume that teleconnections between local-
and large-scale climate variables are stationary over reconstruction periods, an assumption that may not hold in reality.

Climate model hindcasts leverage general circulation models to simulate past climate states using estimates of past boundary
conditions, such as the Earth’s orbital parameters, atmospheric greenhouse gas concentrations, volcanic eruptions, continental
configurations, and land cover. By contrast with proxy reconstructions, climate model hindcasts simulate data for target cli-
mate variables at all spatial points and time steps within the model domain. Furthermore, these simulated climate variables
evolve according to fundamental physical governing equations and parameterizations, rather than the statistical associations
and assumptions typically used for proxy reconstructions. Consequently, paleoclimate simulations can provide insight into the
physical mechanisms behind reconstructed climate phenomena. However, no model fully captures the real Earth system, and
determining appropriate boundary conditions becomes increasingly difficult going back through geologic time, so all paleo-
climate hindcasts necessarily contain errors in their representation of past climates. Additionally, many model variables are
dominated by internal variability, sensitivity to initial conditions, and/or chaotic behavior over a range of time periods (Deser
et al., 2012). Thus, no individual simulation will capture the true or specific trajectory of the Earth’s past climate; instead, each
simulation represents a single possible trajectory in a distribution of physically-plausible past climate states (e.g. Kay et al.,
2015). Finally, climate models require external validation to evaluate their fidelity and accuracy in reproducing past climate

states.
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Recently, data assimilation (DA) methods have emerged as a-novel-an additional approach to the problems and challenges of
paleoclimate reconstruction {e-g- i

.g. LeGrand and Wunsch, 1995; Mairesse et al., 2013; Gebbie, 2014; Steiger et al., 2017; Kurahashi-Nakamura et al.,

. Unlike the two independent approaches described above, DA methods integrate proxy data directly with climate model output
and thereby leverage the strengths of both information sources. Because they utilize climate model simulations, DA methods
can provide full-field global reconstructions (e.g. Evans et al., 2001) for nearly any simulated climate parameter, since the
relationships between variables are linked through the physically based governing equations of the model. Simultaneously, DA
reconstructions are constrained by proxy records and thus reflect the true trajectory of the Earth’s past climate. DA methods
use forward models to describe how climate signals are sensed by and recorded in proxy archives, and thus can incorporate
proxy system physical processes that are multivariate or nonlinear. Furthermore, the use of proxy forward models allows DA
methods to relax calibration requirements when attempting to reconstruct large-scale climate modes or fields, such that proxy
data can be calibrated to local climate variables rather than directly to large-scale teleconnections. DA methods can also re-
lax assumptions of teleconnection stationarity, as the effects of changing climate boundary conditions can be reflected in the

evolution of climate model output and its covariance.

Despite-the potential strengths-of paleoctimate DA—"However, DA is not a perfect method, and it is important to also
acknowledge its limitations. For example, although DA methods can reconstruct nearly any climate parameter, there is no
guarantee that the reconstruction will be skillful. Additionally, the interaction of climate model, proxy data, and forward model
uncertainties can severely reduce reconstruction skill in some cases. Finally, certain DA technigues can create artifacts in the
temporal variability of reconstructions or result in physically implausible reconstructions. We refer readers to Section 5 for a

more detailed discussion of these concerns, as well as potential solutions.
An additional issue for paleoclimate DA is that these reconstructions are often difficult to implement in practice. DA analyses

require numerous discrete tasks, including preparing and integrating the output from climate model simulations, proxy records,
and possibly instrumental data, all of which may use different data formats, units, and metadata. The number of potential
reconstruction targets and proxy variables is immense, and the choice of algorithm parameters will affect the implementation
of any particular DA reconstruction (compare Tardif et al., 2019; Tierney et al., 2020b; King et al., 2021; Osman et al., 2021;
King et al., 2023). Consequently, it can be difficult to adapt codes implementing an existing reconstruction to alternative
applications. Paleoclimate DA also encompasses a diverse array of algorithms and algorithm variants (compare Goosse et al.,
2006; Dubinkina and Goosse, 2013; Steiger et al., 2014; Matsikaris et al., 2015; Comboul et al., 2015; Dee et al., 2016; Acevedo
etal., 2017; Liu et al., 2017; Perkins and Hakim, 2017; Franke et al., 2020), further increasing the complexity of implementing
DA codes. Finally, DA methods are often computationally intensive and require both optimized algorithms and efficient use
of computer memory, and these considerations can dissuade potential users lacking experience or access to high-performance
computing.

Although DA software does exist, thus far these packages are not suitable for generalized paleoclimate applications with a
diverse range of time scales, climate model requirements, and proxy data types. Packages designed to implement general DA

methods typically lack support for fundamental components of paleoclimate DA, such as the use of proxy forward models.

2017; Amrhein et



By contrast, DA packages designed for paleoclimate applications, such as the

PHYDA(Steigeret-al;2048)Last Millennium Reanalysis (LMR; Hakim et al., 2016; Tardif et al., 2019) or the Paleo Hydrodynamics
95 Data Assimilation codebase (PHYDA; Steiger et al., 2018), have been built to implement specific analyses, use particular proxy

data, or incorporate specified climate model inputs. Adapting these products for generalized paleoclimate applications requires
modifying the source code, which may be difficult or time-intensive and thus presents a barrier to their use.

A second difficulty for paleoclimatologists seeking to implement DA is that the methods are comparatively complex relative
to existing reconstruction methods. Describing experimental DA setups in sufficient detail to allow reproducibility requires

100 considerable length, and published methods may focus of the broad scope of the mathematics while neglecting the details of
key implementation steps in favor of brevity. Additionally, there are still relatively few paleoclimate applications in the math-
ematical DA literature, so DA descriptions may use a variety of mathematical notations. Finally, the diversity of algorithm
variants potentially hinders transparency and accessibility, as studies using similarly named algorithms may implement differ-
ent methods in practice (compare Tardif et al., 2019; Franke et al., 2020; Tierney et al., 2020b; King et al., 2023). Ultimately,

105 there are limited frameworks for discussing DA within the paleoclimate literature, and the field as a whole would benefit from
more transparent implementations that do not require additional specialized training.

In this paper, we present DASH, a MATLAB toolbox supporting paleoclimate data assimilation. The toolbox is designed for
general paleoclimate DA and is not built around erfer-any particular analysis, time period, proxy type, or climate model. Con-
sequently, the toolbox is highly modular and allows flexible implementation of diverse DA analyses. DASH provides command

110 line / scripting utilities designed to implement common tasks for paleoclimate DA workflows, with a goal of improving access
to DA methods for users with diverse scientific backgrounds. DASH includes support for organizing climate data, building state
vector ensembles, running proxy forward models, and implementing standard DA algorithms. All algorithms are optimized for
both speed and efficient memory use. Our goal is for DASH to improve clarity and transparency in DA analyses and provide
a framework for paleoclimate DA discussions. Consequently, DASH commands are designed to provide a description of their

115 routines, thereby promoting the creation of human-readable DA scripts.

The remainder of this paper is organized as follows. In Section 2, we present a brief overview of paleoclimate DA, with
the aim of introducing common tasks, data, and algorithms for paleoclimate DA workflows. In Section 3, we describe the
DASH toolbox specifically. We detail its general characteristics and layout and highlight its major components. In Section 4,
we provide two examples that use DASH to implement paleoclimate data assimilation. These examples use different temporal

120 periods, spatial regions, proxy networks, and algorithms in order to demonstrate the flexibility of the DASH toolbox. Finally;in
In Section 5 we provide a set of best practices and caveats --diseuss-for using paleoclimate DA. Section 6 discusses the DASH
toolbox in the broader context of paleoclimate DA ;-and-eutline-and outlines potential and anticipated future developments to

the code. Finally, Section 7 provides concluding remarks.
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2 Overview of Paleoclimate DA

This section provides a brief overview of paleoclimate data assimilation, with the goal of introducing DA to paleoclimate
researchers who may not be familiar with the broader mathematical DA literature. In particular, we aim to (1) Previde-provide
accessible insight into the DA “black-box”, (2) improve the transparency of common DA algorithms, (3) establish a vocabulary
for DA workflows, and (4) provide context for the DASH software package. We focus on illustrating the tasks and quantitative
routines most frequently used in paleoclimate DA workflows, rather than providing complete mathematical descriptions (which
can be found elsewhere, e.g. Evensen (1994); Van Leeuwen (2009)). Here, we focus specifically on the ensemble Kalman
filter and ensemble particle filter methods. We also describe an optimal sensor algorithm based on an ensemble Kalman filter
framework. Additional and more complete descriptions of DA algorithms are available in Evensen (1994); Anderson and
Anderson (1999); Whitaker and Hamill (2002); Goosse et al. (2006, 2012b); Dubinkina and Goosse (2013); Steiger et al.
(2014); Comboul et al. (2015); Hakim et al. (2016); Tardif et al. (2019); Franke et al. (2020); Tierney et al. (2020b); King et al.
(2021); Osman et al. (2021).

2.1 Conceptual framework

In the broadest terms, DA methods combine output from climate model simulations (X)) with observations or proxy records

(Y) to reconstruct a set of climate variables (X,).
Xa= f(Xp,Y) (1)

The reconstructed climate variables X,, also known as the analysis, are calculated by updating climate variables from the
climate models X, to more closely match the proxy records Y. The Kalman filter and particle filter methods discussed in
this paper can also be formulated as Bayesian filters (Chen et al., 2003; Wikle and Berliner, 2007) wherein new information
(Y) is used to update estimates of state parameters (X). Hence, we will often refer to X, and X, as the prior and posterior,

respectively.

When discussing DA, it is important to distinguish between online and offline modes. In an online regime, the assimilation
updates are used to inform the evolution of the climate model simulations. Essentially, the updated ensemble for a given time
step informs the starting states of the climate model simulations in the next time step. Equivalently, X,, becomes a function
of the proxy records from previous time steps. By contrast, in offline DA all climate model output is generated in advance,
and so the assimilation updates do not inform the evolution of the climate model simulations (Oke et al., 2002; Evensen, 2003)
- Offline methods incur a significantly lower computational cost than online methods, but the priors of the reconstructed time
2015; Acevedo et al., 2017

. As such, researchers must consider both computational feasibility and the propagation of proxy information when choosin
between the online and offline modes.

steps are not constrained by the proxy records (Oke et al., 2002; Evensen, 2003; Matsikaris et al.,

In general, climate model output is organized into state vectors, which consist of multi-dimensional spatiotemporal climate

model output reshaped into a vector of data values (Figure l;-upperdefta). There is no strict definition for the contents of a



160

165

170

175

180

185

state vector, but they typically include data for one or more climate variablesat-a-set-of-, possibly at multiple spatial points.
A-state-veetor-This data may be time-averaged or might also contain a trajectory of successive points in time; for example,
individual months of the year or a number of successive years following an event of interest. Essentially, a state vector serves
as a possible description of the climate system for some period of time. In this paper, we focus on ensemble DA methods,
which rely on state vector ensembles. A state vector ensemble is a collection of multiple state vectors organized in a matrix
(Figure 1;-upper+rightb), and a given ensemble provides an empirical distribution of possible climate states. For paleoclimate
applications, ensemble members are often selected from different points in time, different members of an initial condition,
perturbed physics, or multi-model ensemble, or a combination of these options. In a typical DA algorithm, the state vectors in
an ensemble are compared to a set of proxy record values for a given time step-or-time-slice. Essentially, the method compares
the potential descriptions of the climate system taken from the climate model to the proxy values from the real past climate
record. The similarity of each state vector to the set of proxy records is then used to inform the final reconstruction.

In order to compare state vectors with a set of proxy record values, DA methods must transfer state vectors and proxy records
into a common unit space. This is accomplished by applying proxy forward models (Evans et al., 2013) to relevant climate
variables stored in each state vector (Figure 1;-bettom-lefic). For a given state vector, a forward model is run for each proxy
record in ¥X, using the relevant climate variables in the state vector as inputs. This produces a set of values in the same units
as the proxy records and therefore allows direct comparison of the state vector and observed proxy values. In general, DA
methods will run a forward model to estimate each proxy record for each state vector in an ensemble; the collective outputs are

referred to as proxy estimates (Y) and allow comparison of the states in the ensemble with a set of proxy records. The proxy

estimates are often expressed using the notation:

=X @

where H is an operator representing the proxy forward models applied to the prior ensemble X,. The difference between the
proxy observations and proxy estimates is known as the innovation (Figure 1;-bettom-rightd):

innovation=Y — Y 3)
and describes the discrepancies between the actual proxy records and the climate states in the ensemble. The innovation is then
used to constrain or update the prior ensemble (X,) to more closely resemble the observed proxy records.

In addition to proxy innovations, the DA methods detailed here also consider proxy uncertainties (R) when comparing state

vectors to the proxy records, such that:
Xa=[f(Xp,Y,R) “4)

In this way, proxy records with high uncertainties are given less weight in the reconstruction. In classical assimilation frame-
works, R is often derived from the uncertainty inherent in measuring an observed quantity. For example, R might reflect the
uncertainty of width measurements in a tree-ring chronology. However, in nearly all paleoclimate applications, measurement

uncertainties are small compared to (1) the uncertainties inherent in proxy forward models, and-(2) uncertainties resulting from
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non-climate signals (i.e. noise) archived in the proxy records, and (3) representativeness errors caused by comparing prox

values at points in space or time to model values representing larger spatial or temporal averages. Thus, in paleoclimate DA
the proxy uncertainties R must account for proxy noiseand-, forward model errors, and representativeness errors, as well as

the covariance between different proxy uncertainties. Most generally, R is the proxy error-covariance matrix. This matrix is

diagonal when proxy errors are assumed uncorrelated; otherwise, R is a full covariance matrix.
2.2 Update equations and algorithms

There are several different algorithms that can be used to pass

medelscombine the information contained in the prior and the innovation. One of the most commonly used methods in pale-
oclimate applications is the Kalman Filterfilter (Kalman, 1960; Andrews, 1968; Evensen, 1994), and its update equation is

given by:
Xa =X, +K(Y-Y) (5)

Equation 5 shows that the innovation is weighted by the Kalman Gain matrix (K) in order to compute an update for each
state vector in the prior ensemble (X},). The Kalman Gain weighting considers multiple factors, including (1) the covariance
of the proxy estimates (Y) with target climate variables (X,,), (2) the covariance between the proxy estimates (XA(), and (3) the

uncertainties in the proxies (R), such that:
K = cov(X, Y)[cov(Y) + R]_1 (6)
Applying the updates produces an updated (posterior) ensemble (X,) with climate states that more closely resemble those
recorded by the real proxy records (Y). The ensemble nature of X, is advantageous because the distribution of climate variables
across X, can help quantify the uncertainty in the reconstruction.

By contrast with Kalman filters, particle filters (Van Leeuwen, 2009) combine the innovation with proxy record uncertainties
(R) >-to compute a weight for each state vector in the ensemble. The reconstruction is then calculated as a weighted mean of
the state vectors in the ensemble. Classical particle filters compute these weights using a Bayesian scheme, such that each state

vector ¢ is first assigned an importance weight:

S ZeXP[_% (Y-Y)" R (Y-Y))] "

and then importance weights are normalized to give the final state vector weights:

Sq
Ry v 8
YITEN (8)

However, classical particle filters can suffer from degeneracy in the high-dimensional systems common to paleoclimate DA.
Essentially, a single ensemble member receives a weight of 1, whereas all other ensemble members receive near-zero weights.

When this occurs, reconstructed values (X,) resemble the single state vector most similar to the proxy records, rather than
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values across an ensemble. A common correction for degeneracy involves using the mean of the IV state vectors with the
highest Bayesian weights. Alternatively, the “degenerate particle filter” refers to the case when the single best state vector is

used as the reconstruction (e.g. Goosse et al., 2006, 2010). The “analogue method” may also refer to a degenerate particle filter

(e.g. Goosse et al., 2006), although the meaning of this term varies throughout the paleoclimate literature.

The optimal sensor algorithm described in this paper follows the method presented by Comboul et al. (2015). This method

is derived from an ensemble Kalman filter and complements the reconstruction framework by providing additional information
about the contribution of proxy data sites to the reconstruction. In paleeclimatepaleoclimatology, optimal sensor analyses have
traditionally been used to evaluate the potential of new proxy sites, to prioritize future proxy development, and to assess the
proxy network (i.e. the collection of proxy records) necessary to skillfully reconstruct a climate field (e.g. Bradley, 1996; Evans
et al., 1998; Comboul et al., 2015). Here, we expand the method to assess the relative influence of individual proxy records on
a reconstructed index.

Rather than reconstructing climate variables over time, the algorithm instead tests the ability of a-each proxy record to reduce
the variance of a scalar climate metric J across an ensemble. *@W‘MB@MM@OXY record’s ability
to reduce variance is determined using the covariance of its estimates (fy’i@() with the climate metric (J), combined with the

uneertainty-of-the-proxy-record(R)—For-a-given-proxy-record-(y):-this-proxy record’s uncertainty (Ry). This equation is given
by:

Aoy, = cov(§,J)?[var(y) + R] " teov(Yi, J) 2 [var(Yi) + Ri] ™! )

where Aoy is the variance reduced by the kth proxy record. This quantity is assessed for each proxy, and the proxy that most

strongly reduces variance is selected as the optimal sensor:, such that;

Skoptimal = argmax Acargmax Ag (10)
- k

This-The optimal proxy is used to update the climate metric using an ensemble Kalman Filter-filter (Equations 5, 6) and then
removed from the network. This-analysis-The algorithm then iterates using the remaining sensors until the desired number of
sensors are selected. Ultimately, the method both ranks the proxies in a network and also assesses the total variance reduced
by a particular proxy network. This method requires proxy estimates (Y) to calculate climate metric covariance but does not

use proxy record values themselves (Y), as the potential to reduce ensemble variance is independent of actual proxy values.
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3 Description of DASH
3.1 General Characteristics

DASH is a MATLAB toolbox designed to help implement paleoclimate data assimilation. The code is designed for use from
the command line as well as within scripts and functions. DASH is written in an object-oriented style, which supports the
modularity of the code; the toolbox consists of several classes and packages, each implementing a common task for paleocli-
mate DA. The code is intended for users with basic previous experience with MATLAB; in particular, users will benefit from
knowing how to write a basic for loop, and how to index into arrays.

A stated goal of the DASH toolbox is to support the transparency of paleoclimate data assimilation analyses, and the object-
oriented design supports this aim. DASH methods are accessed via dot-indexing, which improves clarity by placing sub-tasks
within the context of a larger piece of the data assimilation process. Additionally, tasks with many parameters or options are
organized into objects, which can store settings between commands. Consequently, the parameters used to implement complex
algorithms are split across several commands, improving both the clarity and modularity of codes utilizing DASH.

To support command-line workflows, DASH is designed for console display and does not rely on a graphical user interface
(GUI). Users can inspect the state of class objects, assimilation analyses, and other DASH components by displaying them
in the console. Users can also examine reference guides for DASH components using the help command; however, we
recommend that users instead use the HTML documentation set, which is detailed below. Further, we are cognizant that users
may not be familiar with all aspects of paleoclimate data assimilation, or with all components of the toolbox. DASH therefore
implements robust input checking and error handling for all user-facing methods. Error messages are designed to clearly
communicate input failures and suggest possible solutions without requiring users to know the inner workings of the DASH
codebase.

The DASH toolbox is accompanied by comprehensive documentation written in HTML. This documentation includes (1) a
reference guide for every class, package, method, and function, (2) tutorials for nearly all user-facing commands, and (3) How-
Tos and FAQs for common tasks and troubleshooting. The entire documentation can be accessed by entering the dash.doc
command from the MATLAB command line. Alternatively, users can open the reference manual for a particular component
by providing the component name as input: » dash.doc ("component name").The documentation is also available on
the project’s website (https://jonking93.github.io/DASH).

To install DASH, users should first download a stable release of the toolbox, which can be found at the project’s Github repos-
itory (https://github.com/JonKing93/DASH/releases), MATLAB FileExchange (https://www.mathworks.com/matlabcentral/
fileexchange/120453-dash), or in the MATLAB Add-On Explorer. Then, open the downloaded DASH-<version>.mltbx
file to complete the installation. We encourage users to download one of the project’s stable releases, as the source code on the

Github repository’s main branch may be in active development and is therefore not configured for quick installation.


https://jonking93.github.io/DASH
https://github.com/JonKing93/DASH/releases
https://www.mathworks.com/matlabcentral/fileexchange/120453-dash
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3.2 DASH Components

DASH consists of several classes and packages, each implementing a particular task commonly required for paleoclimate
data assimilation (Figure 2). In brief, the toolbox contains components to (1) organize and catalogue input data, (2) design
and build state vector ensembles, (3) estimate proxy records via proxy forward models, and (4) implement common data
assimilation algorithms. In the remainder of this section, we examine the characteristics and features of each of these modules.
We realize that many aspects of these classes are abstract in concept, and therefore provide step-by-step tutorials in the DASH
documentation that illustrate how DASH works in practice. The examples in Section 4 also demonstrate the use of common

DASH commands, albeit in a less detailed style than the tutorials.
3.2.1 Organize Climate Data: gridfile, gridMetadata

We begin our overview with the gridfile class. This module facilitates the combination of datasets stored in different
formats and with disparate metadata by creating data catalogues. The data catalogued within a gridfile is associated
with user-specified metadata, which allows users to manipulate large datasets using preferred and human-readable metadata
formats. This class thereby allows users to consolidate datasets split across multiple files, promotes human-readable data
manipulation, and unites disparate data formats within an intuitive framework. The class implements gridfile objects,
and each object implements a catalogue for data stored in various source files. The basis of each catalogue is an abstract V-
dimensional grid, whose scope is defined by user-provided dimensional metadata. This allows users to catalogue datasets of
varying dimensionality, while simultaneously tagging data elements with unique and user-preferred metadata values. We note
that the grid abstraction does not imply that gridfile datasets must use a Cartesian spatial grid. Rather, the class supports
a wide-variety of spatial layouts, including rectilinear systems, tripolar grids, randomly distributed spatial sites, and datasets
without any spatial component at all.

After first defining the scope of a gridfile, users can add data source files to the catalogue by associating the data in
each file with a portion of the N-dimensional grid. In this way, the data in each source file is placed within the context of the
overall dataset. The gridfile package supports data source file formats common in paleoclimate DA — including NetCDF,
OPeNDAP, MATLAB’s binary MAT files, and delimited-text files — and individual catalogues may contain any mixture of
file formats. The contents of each catalogue are saved in a .grid file, so data catalogues can persist across multiple coding
sessions. We emphasize that these . grid files save only a catalogue of a dataset, and not the dataset itself. Thus, . grid files
do not duplicate data, and individual .grid files remain small (typically a few kilobytes) even when they refer to datasets
spanning many gigabytes of memory. Once a catalogue is complete, users can return data using the 1oad command, which
provides a common interface for accessing data in the catalogue. Users can also return a subset of the catalogued data by
querying the associated metadata. The gridfile class also allows users to apply data transformations, such as log transforms
or fill values, to a catalogue. Such transformations are only applied to loaded data, which improves computational efficiency and

maintains the data sources as read-only files. Finally, the class allows users to perform arithmetic operations like addition and

10
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multiplication across multiple gridfile datasets; these operations are analogous to several commonly used NetCDF operators
but are not limited to NetCDF files.

The gridfile class relies on gridMetadata, which implements objects that define the metadata for a dataset. The
gridMetadata class plays an auxiliary role within the DASH toolbox, and is mainly used to define the scope of gridfile
catalogues and to locate data subsets within a gridfile dataset. We contrast gridMetadata with ensembleMetadata,
a second metadata class implemented by DASH. Whereas gridMetadata characterizes values in an N-dimensional dataset,
ensembleMetadata instead characterizes N-dimensional datasets after they are reshaped into state vector ensembles. Fur-

ther details for the ensembleMetadata class are given in Section 3.2.3.
3.2.2 Build state vector ensembles: stateVector, ensemble

The next key component of DASH is the stateVector class. This component is designed to facilitate flexible design of
state vector ensembles while minimizing the amount of data manipulation done by the user. The class implements objects
that hold design parameters required to build a state vector ensemble from gridfile catalogues. To design a state vector,
users first initialize a stateVector object and the climate variables that it will contain. Each variable is associated with a
gridfile dataset, and multiple variables in the state vector may be derived from the same dataset (e.g., climate variables
representing mean annual and mean summer temperatures could be drawn from the same monthly temperature catalogue). We
note that when a user adds a variable to a stateVector object, no data is loaded into memory at that time. Instead, the object
initializes a set of design parameters that can later be used to extract data for the variable from its gridfile. To design the
state vector, users next specify options for the dimensions of the variables. As a first step, users should indicate which dataset
dimensions are used to select ensemble members. In most paleoclimate DA applications, ensemble members are selected from
different time steps and/or different climate model simulations. However, stateVector is highly flexible and also allows
ensembles built along other dimensions; for example, ensembles built from different height levels or from different spatial
locations and sites. Users can also specify a subset of elements along an ensemble dimension to use for building ensemble
members. For example, in a dataset with monthly resolution, a user could specify to only select ensemble members from
January time steps. The class also includes many additional methods for designing state vector variables: users can specify that
a variable should be drawn from a subset of a gridfile dataset, or that it should be a computed mean, weighted mean, or sum
total over seme-data-dimenstonvarious data dimensions. Users can also select options for processing variables with different
metadata formats, as well as specify that individual ensemble members should contain temporal sequences. For example, a
variable could include data from individual months of the year, useful for seasonal analyses. Alternatively, a variable could
hold values from successive years, which supports superposed-epoch analyses for climate conditions following discrete events
of interest.

Once a design is complete, users can build the state vector ensemble using the build command. This command loads
necessary data from the gridfile catalogues and builds a state vector ensemble according to the specified design parameters.
When building a state vector ensemble, the stateVector class will ensure that all variables within a given ensemble member

align to the same metadata values. For example, in an ensemble selected from different time steps, the data for the variables
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in each ensemble member will all correspond to the same time step. Similarly, in an ensemble selected from different model
simulations, the variables in each ensemble member will all be drawn from the same simulation. The class also ensures that
ensemble members are constructed from complete data. For example, if a state vector variable includes a temporal mean or
sequence, then the build method will never select an ensemble member for which the mean or sequence would extend outside
of the bounds of the dataset.

When building an ensemble, users have the option to return the ensemble directly as an array, or to save the ensemble to a
file. This tater-latter option is useful, as state vector ensembles may exceed the size of active memory, particularly when state
vectors include multiple spatial fields from high-resolution climate models. In the DASH framework, these files are saved with
a .ens extension, and the toolbox provides the ensemble class to facilitate memory-efficient interactions with saved state
vector ensembles. We highlight the ability of the ensemble class to selectively load requested state vector rows, variables,
and ensemble members into memory. These features have particular utility when running (1) proxy forward models, which
typically only require a small subset of ensemble data, and (2) data assimilation algorithms, as many reconstructions only
target a subset of variables in an ensemble. Users can also call the evolving command to implement evolving offline priors

(e.g. Osman et al., 2021) without loading data values to memory.
3.2.3 Proxy Forward Models: PSM, ensembleMetadata

After building a state vector ensemble, a common next task in paleoclimate DA is to design a forward model for each proxy
record. These forward models are either used to generate proxy estimates (for offline assimilations) or provided directly as
input to data assimilation algorithms (for online regimes). The PSM package facilitates all these tasks by providing users
with modular access to commonly used proxy system forward models. The actual implementation of proxy system models
is beyond the scope of DASH; instead, the PSM package acts as a bridge to shuttle information contained with the state
vector ensemble into established proxy model codes. DASH currently supports multivariate linear models (see Hakim et al.,
2016; Tardif et al., 2019; Zhu et al., 2020a), the Vaganov-Shashkin ‘Lite’ {V/S-tree ring model (Folwinski-Ward-et-al5 204
(VS-Lite; Tolwinski-Ward et al., 2011), the BayWATCH suite of Bayesian foraminiferal and membrane-lipid models (Tierney
and Tingley, 2014; Malevich et al., 2019; Tierney et al., 2019; Tierney and Tingley, 2018), a Palmer Drought Severity Index
(PDSI) estimator (Guttman, 1991; Van der Schrier et al., 2011), and the models within the PRY SM Python package (Dee et al.,
2015a) (Table 1). We anticipate that this list will grow with future advances in proxy system modeling.

Users can call the download method to automatically download selected forward models from their respective Github
repositories and add them to the MATLAB active path. The class then allows users to design PSM objects, which implement
forward models for different proxy record with modular model parameters. Users then indicate which state vector rows hold
the data needed to run each forward model; this search is facilitated by the ensembleMetadata class detailed in the next
paragraph. Users can then either-use the est imate command to run the forward models over the state vector ensemble and
generate proxy estimates. Users can also run the forward models over updated state vector ensembles, in order to validate proxy

records against assimilation results (e.g. Tardif et al., 2019; Tierney et al., 2020b; King et al., 2021; Osman et al., 2021).
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The process of running forward models on a state vector ensemble is facilitated by the ensembleMetadata class. This
class implements objects that organize metadata along the rows and columns of a state vector ensemble. An ensembleMetadata
object is created whenever a user builds a state vector ensemble and can also be returned for . ens files and stateVector
objects. The class can be used locate state vector rows corresponding to particular variables, spatial locations, or time se-

385 quences, and can also be used to locate specific ensemble members. A major task of ensembleMetadata is to locate state
vector rows that correspond to proxy forward model inputs. In addition to locating specific climate variables, the class can
determine which data elements are geographically closest to the location of a proxy site, which is often necessary when imple-
menting forward models. Each ensembleMetadata object also holds the metadata necessary to reshape state vectors back
into gridded datasets. Consequently, the class is also used to reshape DA outputs back into spatial grids for post-processing and

390 visualization.
3.2.4 Data Assimilation Algorithms: kalmanFilter, particleFilter, optimalSensor

This section describes the classes used to implement data assimilation algorithms. Each class implements objects that hold
parameters for a particular type of analysis. The object-oriented layout allows users to specify diverse algorithm parameters,
while promoting the readability of analysis codes. Broadly, each class shares a similar usage syntax. Users first initialize an

395 object for the desired algorithm and next provide required parameters. Here, required parameters typically include a state
vector ensemble (X,,), proxy records (Y), proxy estimates GZX) or forward models, and proxy error-variances or covariances
(R). Users can specify any additional parameters, and then implement the algorithm using the run method. To support the use
of large state vector ensembles, all three DA algorithms included in DASH are optimized for both speed and efficient use of
memory.

400 The kalmanFilter class contains options for offline regimes, and may also be adapted into online frameworks. The
class implements an ensemble square-root Kalman filter (Andrews, 1968), which processes ensemble means and deviations
separately. This separation precludes the need for perturbed observations (Whitaker and Hamill, 2002) and provides several
opportunities for enhanced computational efficiency. For example, exploratory analyses can choose to only assimilate the
ensemble mean, which is significantly faster than updating the full ensemble. Other optimizations leverage the independence

405  of deviation updates from the proxy records to minimize the number of computations of the Kalman Gain. Unlike some Kalman

filter codes, DASH does not process proxy records sequentially. Instead. all records are processed simultancously, which we
refer to as a “block update”. Block updates afford several advantages over sequential processing: they are typically faster on
modern computer architectures, their results do not depend on the order in which proxy records are assimilated, and they
permit the use of full error-covariance matrices for R. By contrast, sequential processing only permits the use of independent

410 error-variances, and the final results will vary with the order of the proxies when using non-linear forward models.
The kalmanFilter class alse-supports several methods commonly used to adjust Kalman filter covariance matrices (the

mterm in Equation 6); these include covariance inflation (Anderson and Anderson, 1999), localization
(Hamill et al., 2001), and blending ensemble covariances with a second covariance matrix (e.g. Valler et al., 2019). The class

also permits user-specified covariance matrices, which can be useful when climate-system covariances are poorly defined, such
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as for changing continental configurations in deep-time assimilations. Finally, the kalmanFilter class supports the use of
evolving offline priors (e.g. Franke et al., 2020; Osman et al., 2021), which can be used simulate changing climate system
boundary conditions while minimizing computational cost.

Naive Kalman filter algorithms return an entire state vector ensemble in each assimilated time step, which can rapidly exceed
computer memory. Consequently, the kalmanFilter class includes many options for reducing the size of the outputs.
Alternatives to saving full ensembles include only returning the ensemble mean, returning the ensemble mean and variance,
and returning several percentiles of the full ensemble. The class also provides support for reconstructing climate indices from
assimilated spatial fields while conserving computer memory. In many cases, an assimilated spatial field is primarily used to
calculate a reconstructed climate index. The full posterior of a climate index is often useful for uncertainty analysis, but spatial
fields are often too large to allow the return of full posterior ensembles. To remedy this situation, the index method allows
users to calculate and return the full posterior of a climate index (such as global mean temperature or the Nino 3.4 index),
without saving the full-field posterior ensemble. We also reiterate that users can use the ensemble class to only assimilate a
subset of the variables in a state vector. Some variables might only be necessary to run the PSMs, and excluding these variables
from the algorithm can improve both memory use and run time.

The particleFilter class provides an alternative algorithm to Kalman filtering. In DASH, this algorithm proceeds
by weighting the state vectors (i.e. particles) in an ensemble and then computing a weighted mean across the ensemble.
The primary option in the particleFilter class concerns the method used to determine the weights for the mean. By
default, the class implements a Bayesian weighting scheme that conforms to a classical particle filter (see Van Leeuwen, 2009).
However, users can instead choose to take a mean of the best IV particles, with the number of particles specified by the user.

The opt imalSensor class is based on the method described by Comboul et al. (2015), which is derived from an ensemble
Kalman filter framework. Rather than reconstructing climate variables over time, the algorithm instead tests the ability of a
proxy record to reduce the variance of a climate metric calculated over an ensemble. Essentially, this method assesses the
relative influence of individual proxy records on a reconstructed index (such as a spatial temperature mean or climate mode
index). The optimalSensor class provides three distinct, yet related, routines to support these types of analyses. The
evaluate routine allows users to assess each proxy’s individual ability to reduce variance in the posterior ensemble. The
run routine implements the greedy algorithm of Comboul et al. (2015), and allows users to rank the utility of proxy sites for
successive assimilation. Finally the update routine assesses the total variance reduced by an entire proxy network. These
commands can also be combined to examine changes in proxy influence as additional records are added to a network.

Classicallythe-The classical optimal sensor algorithm striethy-relies on sequential processing and so requires proxy error-
variances;-whi ssartty-, Thus, the classical algorithm assumes that assimilated proxy records are independent. However,
the eptimalSensorupdate %mﬁ%mwﬁw%mﬂ%wgm
network, and so also permits the use of covarying proxy errors. Ii-thi
block-update—effectively-treating-the-covaryingproxies-Essentially, the entire network is treated as a single sensor, and the
routine calculates the total variance reduced by this network. This is useful when assimitating-assessing the variance reduced
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by gridded, spatially-covarying proxy networks and climate field reconstructions (e.g. King et al., 2023), such as drought
atlases (e.g. Cook et al., 1999, 2010; Morales et al., 2020).

4 Examples

In this section, we provide two examples illustrating the use of the DASH toolbox. These examples are designed to demonstrate
the utility of DASH for a variety of analyses over different spatial scales, time periods, and proxy networks. These examples
closely mimic several existing studies in the paleoclimate DA literature (King et al., 2021; Tierney et al., 2020b; Osman et al.,
2021), although we have modified the analyses at several points for brevity or to demonstrate the extended capabilities of the

DASH toolbox. Numbers in parentheses refer to the line numbers in the code for each example.
4.1 Northern Hemisphere Summer Temperatures over the Last Millennium

Our first example illustrates a possible setup for reconstructing summer temperatures in the extratropical Northern Hemisphere
over the last millennium using annually resolved proxies. This example follows the assimilations found in King et al. (2021),
although for the sake of simplicity, we only assimilate a single climate model here. In this example, we integrate a network of
54 temperature-sensitive tree-ring records (Wilson et al., 2016; Anchukaitis et al., 2017) with output from the CESM1.1 Last
Millennium Ensemble (LME; Otto-Bliesner et al., 2016) to reconstruct both a summer (JJA) temperature spatial field and a
spatial-mean index. We generate proxy record estimates using simple linear forward models trained on the mean temperature
of each site’s optimal growing season. We run the assimilation using an ensemble Kalman Filter-filter with a stationary offline
prior. We also apply covariance localization for the spatial field, which we implement using a Gaspari-Cohn 2D polynomial
(Gaspari and Cohn, 1999) with a 20,000 km cutoff radius. Finally, we use an optimal sensor analysis to evaluate the potential
influence of each tree-ring record in the network. The results of the analysis are displayed (Figure 3) using the visualization

codes in the data repository.
4.1.1 Organize Climate Data

The first two sections of the example (lines 6-50) illustrate using gridfile to organize data used in the assimilation. Here,
these data consist of (1) climate model output from the CESM1.1 LME and (2) tree-ring chronologies. The climate model
output contains reference height temperatures from fully-forced run #2. This output is stored across two NetCDF files and
spans a 2D spatial grid over the period 850 to 2005 CE at monthly resolution. Our first step is to create a metadata object
that defines the scope of this dataset (lines 12-18). Here, we choose to define spatial metadata using the latitude and longitude
values stored in the NetCDF output files (lines 13-14). However, the time metadata in the NetCDF files is reported as “days
since January 1, 8507, which is non-intuitive for our purposes. Instead, we choose to define time metadata using MATLAB’s
built-in datetime format, which will allow us to sort time points by months and years (line 15). We also include two
optional metadata attributes (the units and climate model associated with the output) to better document the dataset (line 18).

We next create a gridfile object whose scope is defined by this metadata (line 21) and add the temperature dataset, stored
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in the TREFHT variable of the two NetCDF files, to the gridfile object’s catalogue (lines 28-29). Finally, we apply a data
transformation to the catalogue (line 32) so that loaded temperature data will be returned in units of degrees Celsius, rather
than Kelvin.

In the next section (lines 35-50), we catalogue the tree-ring chronologies. These records are stored in a binary MAT-file
(line 38), along with information about each proxy site. The proxy record dataset is a 2D array that spans 54 proxy sites over
time at annual resolution. Here, we choose to define metadata (line 43) along the proxy-site dimension using the ID, spatial
location, and optimal growing season of each site (line 42). For time metadata, we use the calendar year corresponding to each
measurement (line 43). We next create a gridfile object whose scope is defined by this metadata (line 46) and add the proxy
record dataset, stored in the crn variable of the MAT-file, to the gridfile catalogue (line 47). Finally, we indicate that -999

values in the dataset represent fill values and should be converted to NaN when loaded (line 50).
4.1.2 Build a State Vector Ensemble

In the next section (line 53-96), we use the stateVector class to design and build a state vector ensemble. We begin by
initializing and labeling a stateVector object (line 56), and then initializing variables within that state vector (lines 62-63).
Typically, a state vector will include any variables required to run the proxy system forward models, as well as reconstruction
targets. In this example, each proxy system model requires a seasonal temperature mean from the model grid point closest to
the proxy site. Thus, we first initialize variables for the temperature means of the proxy records using a different name for each
site (line 62). We also create variables for the reconstructed spatial temperature field, and the spatial-mean index (line 63), for
a total of 56 variables. All of these variables will be constructed from the monthly LME temperature output, which is indicated
by the second input in lines 62 and 63. Note that the names of state vector variables do not need to match the names of variables
stored in data source files — here, TREHF T — because multiple state vector variables may be derived from the same dataset.
We next specify how to select ensemble members in the state vector ensemble. In this example, we indicate that ensemble
members should be selected along the time dimension, with each ensemble member associated with a particular calendar year
(line 69). Using -1 as the first input applies this setting to every variable in the state vector. Here, we use January as a reference
point for each calendar year, but this does not imply that the variables will necessarily contain data from the month of January.
Instead, the January months are used to align variables so that the values within any given ensemble member correspond to
the same year. For example, consider two variables implementing seasonal means. One variable, MJJA, implements a seasonal
mean from May to August. The other variable, ON, implements a seasonal mean from October to November. Although the
two variables cover different seasonal windows, the seasonal windows for each ensemble member should be drawn from the
same year. Here, the January reference point ensures that these seasonal windows are aligned to the same year; essentially,
the variables for each ensemble member will be built using the appropriate seasonal window as indexed from the associated
January reference point. For an ensemble member that uses January 1850 as a reference point, the MJJA variable will be built
using data from May-August 1850, and the ON variable will be built using data from October-November 1850. Although the
two variables use different temporal spans, they collectively refer to the same year within the ensemble member. Additionally,

the state vector class will ensure that ensemble members are only selected from years that include complete temporal spans for
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all variables. Continuing the example: if the temperature dataset ended in October 1900, then 1900 will never be selected as
an ensemble member because the ON variable would be missing data from November of that year. We note that users are not
confined to a given calendar year, as the months used in the seasonal window are indexed from the associated reference point.
For example, a user could implement a DJF seasonal mean by providing indices [-1 O 1], thereby creating a seasonal window
from the three monthly time steps centered on each January.

Finally, we design the variables so that each uses values from the appropriate subset of the monthly temperature dataset. For
the reconstruction targets, we use grid points from the extratropical Northern Hemisphere (line 78) and summer (June-August)
seasonal temperature means (line 79). We note that the third input in line 78 is left empty because the latitude dimension
should not be used to select different ensemble members (contrast this with the time dimension in line 69). To implement
the seasonal means, we provide the indices of months relative to each January reference point. As the reference point, each
January is given a relative index of 0; hence, a June-August mean is calculated using data values 5, 6, and 7 (monthly) time
steps after each January reference point. We also specify a latitude-weighted spatial mean for the spatial-mean index (line 80).
Before designing the forward-model variables, we first note that each variable uses a different seasonal average. Including the
full spatial field for multiple different seasonal windows would result in an unnecessarily large state vector, so we first use the
closest.latlon utility to locate the model grid point closest to each proxy site (line 86). We then design each forward-
model variable to consist of the site-specific seasonal temperature mean at that single grid point (lines 87-93). At this point, we
have finished designing the state vector, and proceed to build an ensemble with +006-1156 members (line 96). In this example,
we save the built ensemble to a . ens file. Although the stateVector class can also return ensemble directly as output, we

generally recommend saving to file, because this allows the DASH toolbox to use computer memory more efficiently.
4.1.3 Proxy Forward Models

The next section (lines 99-118) uses the PSM package and ensembleMetadata class to design proxy forward models and
run the models on values stored in the state vector ensemble. The outputs of these forward models are the proxy estimates used
to compare state vector ensemble members to observed proxy records in assimilation algorithms. We begin by using the P SM
package to create simple, linear forward models for each proxy site (line 109). The coefficients for each model are calibrated
to mean temperature over the optimal growing season at each proxy site. Determining forward model coefficients is beyond
the scope of this example, but King et al. (2021) compute these values by regressing the proxy records against an instrumental
temperature dataset. After designing each model, we next indicate the state vector row that corresponds to the inputs for each
model (lines 113-114). Finally, we use the est imate command to run the forward models on the ensemble and generate the

proxy estimates (line 118).
4.1.4 Kalman Filter

In this section (lines 121-174), we use the kalmanFilter class to implement an ensemble Kalman filter and reconstruct
summer temperatures. We first initialize and label a kalmanFilter object, which will store the parameters used to run the

assimilation (line 124). The mandatory parameters for an ensemble Kalman filter are (1) a prior ensemble, (2) proxy records, (3)
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proxy estimates, and (4) proxy error covariances or variances, and we provide these parameters to the kalmanFilter object
in lines 130, +33134, 135, and 139. Determining proxy error variances is beyond the scope of this example, but King et al.
(2021) compute these values by running the proxy forward models on an instrumental temperature dataset and comparing the
550 resulting proxy estimates to the real proxy records. In this example, we also implement covariance localization. To accomplish
this, we first calculate localization weights for the ensemble and proxy sites (line 144) and then provide these weights as
parameters to the kalmanFilter object (line 145).
To illustrate the flexibility of the DASH architecture, we also demonstrate a second method for reconstructing the spatial-
mean summer temperature index (line 153). This method allows the user to calculate an index from the posterior of a spatial
555 field, without saving the (often very large) spatial field posterior. To further conserve memory, we also indicate that the filter
should only record the variance and percentiles of the posterior ensemble (lines 156-157), rather than the much larger full
posterior. Finally, we run the Kalman filter algorithm for the analysis and return the mean, variance, and posterior mean
and percentiles of the target reconstruction variables (line 160). We note that the reconstructed spatial field is organized as a
state vector, but many mapping functions operate on spatial matrices, rather than vectors. Hence, to facilitate display of the
560 reconstructed spatial field, we regrid the posterior to the spatial dimensions of the original climate model output (lines 164-
165). We also extract the assimilated spatial temperature mean, which is the final element along the state vector (line 168), and
the alternative spatial mean, which was calculated from the updated spatial field (line 170).
Figure 3a-c illustrates the results of this assimilation. The-upper-panel-Panel (a) compares the reconstructed indices obtained
using the two different methodologies: the blue line depicts the index obtained by assimilating the temperature spatial mean

565 directly in the state vector, and the red line depicts the index calculated from the updated (posterior) spatial field. The-lower

leftand-lower-eenterpanels-display-an-example-Panel (b) displays the reconstructed spatial field frem-for 1850 CEalong-with

an-uneertainty-quantification-based-on-, and (c) illustrates the uncertainty quantification derived from the variance of the field’s
posterior ensemble. Notably, panel (a) demonstrates that the spatial indices calculated using the two different methods are not

identical. In brief, this discrepancy occurs because (1) the index calculated from the posterior field (in red) is sensitive to spatial
570 heterogeneity in the Kalman filter updates, and (2) the directly assimilated index (in blue) is less sensitive to the proxy records

than are individual spatial sites. The causes and implications of this behavior are discussed in greater detail in Section 5.3.
4.1.5 Optimal Sensor

In the final section (lines 177-194), we use an optimal sensor framework to evaluate the influence of each proxy on the
reconstructed spatial-mean index. Analogous to the kalmanFilter object of the previous section, here we will use an
575 optimalSensor object to organize parameters for the analysis. The required parameters for an optimal sensor are (1) a sen-
sor metric, (2) proxy estimates, and (3) proxy error variances or covariances. After initializing and labeling the opt imalSensor
object (line 180), we set the extratropical summer temperature index as the sensor metric (lines 183-184) and also provide proxy
estimates and error-variances (lines 187-188). With these parameters set, we then use the optimal sensor to evaluate the power

of each proxy for reconstructing the spatial-mean index (lines 191).
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Figure 3dewerright)-d displays the results of this analysis. Here, the ability of a proxy to reduce variance responds to two
factors: the covariance of its estimates with the modeled spatial-mean index, and its uncertainty values (R), which represent the
accuracy of its forward model. Thus, the proxies with the greatest ability to reduce variance are characterized by more accurate

forward models and stronger covariance with the spatial-mean index.
4.2 Global Sea Level Pressures at the Last Glacial Maximum

Our second example illustrates a setup for reconstructing global sea level pressures from the Last Glacial Maximum (LGM)
to present. This example is inspired by Osman et al. (2021) with several modifications. First, we assimilate global sea level
pressures rather than sea surface temperatures (SSTs) in order to demonstrate the reconstruction of climate variables not directly
sensed by the proxy network. For the sake of simplicity, we also limit the proxy network to the alkenone U§(7/ and §'%0 of
planktic foraminifera SST proxies, neglect spatial variations in proxy seasonal sensitivities, and reconstruct spatial fields on a
3,000-year time step. In this example, we integrate a network of U§(7/ and 6'80 sediment records with output from the isotope-
enabled Community Earth System Model (iCESM1.2; Brady et al., 2019; Tierney et al., 2020b; Zhu et al., 2017; Stevenson
et al., 2019). We generate proxy record estimates using the BayFOX (Malevich et al., 2019) and BaySPLINE (Tierney and
Tingley, 2018) forward models. We conduct the assimilation using an ensemble Kalman filter with an evolving offline prior
and also implement a proxy-validation analysis. The results of this analysis are displayed in Figure 4 using the visualization

codes in the data repository.
4.2.1 Organize Climate Data

Similar to Example 1, the first two sections again use the gridfile package to organize climate data. Here, the data consists
of (1) climate model output from iCESM binned to 50-year monthly climatologies, and (2) U§(7l and §'80 proxy records.
The climate model output includes variables for the sea-level pressure (SLP) reconstruction target, as well as sea surface
temperatures (SSTs) and 6'80,,,,, which are used to run the proxy forward models. The climate variables reflect mean monthly
values averaged over 50-year intervals in order to more closely match the multi-decadal averages captured by the proxy records
(Tierney et al., 2020b; Osman et al., 2021). This output includes sixteen 50-year averages for each of the nine 3,000-year
intervals from the LGM to present, for a total of 144 possible ensemble members. The data for the variables are stored in three
separate NetCDF files. The SLP variable is provided on a rectilinear atmosphere grid, and the creation of its gridfile catalogue
(lines 13-18, 27, 32) follows the process outlined in section 4.1.1. By contrast, the SST and §'80,,, variables are sourced from
the ocean component of the model, which uses a tripolar coordinate system. Tripolar datasets typically include dimensions
for both latitude and longitude, but spatial metadata is not fixed for any given element of either dimension. For example, the
latitude value at (latitude;, longitudey) is not the same as the latitude value for (latitude;, longitudey ). Consequently, the
dataset describes values at distinct (latitude, longitude) points, rather than values on a rectilinear (latitude x longitude) grid. The
gridfile class requires fixed metadata values along each data dimension, so we define the metadata for SST and 6180,
using unique spatial sites (lines 20-24), rather than a rectilinear latitude x longitude format. Note on lines 33 and 34 that two

dataset dimensions are associated with the site spatial dimension. This syntax merges the latitude and longitude dimensions
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in the gridfile catalogue and treats them as a single spatial dimension. We next use gridfile to catalogue the proxy
records (lines 37-49). Here, the proxy records are stored in a binary MAT-file, along with metadata describing the records. This
metadata includes the ID, spatial coordinates, proxy type (U?% or 6'80), and foraminiferal species associated with each record
(line 43).

4.2.2 State Vector Ensemble and Evolving Prior

We next design and build the state vector ensemble for the LGM assimilation (lines 52-80). We begin by initializing a
stateVector object with three variables (lines 55 and 60). The first variable, SLP, is the reconstruction target; the other
two variables, SST and §'80,,, are required to run the proxy forward models. We next indicate that ensemble members should
be selected from different points in time with each ensemble member associated with a particular 50-year average and we
specify January as the reference point (line 65). In this example, we target annual SLP values. Since we are neglecting spatial
variations in proxy seasonal sensitivities, we also require annual SST and 80y, values as proxy forward model inputs. Thus,
we use an annual mean for each of the three variables (line 69).

We note that, unlike Example 1, we do not design variables for the individual proxy records; instead, we include the entire
spatial field for each climate variable used by the forward models. This syntax simplifies the code but results in a larger
state vector. We elect to use this syntax here in order to improve code clarity and also demonstrate the flexibility of the DASH
architecture. However, other applications should compare the benefits of code clarity with greater memory use when choosing a
syntax. Finally, we build a state vector ensemble using all available ensemble members (line 73). We select ensemble members
sequentially in order to facilitate the creation of an evolving prior. This orders the ensemble members so that the sixteen 50-year
averages for each 3,000-year interval are all in succession. We next use the evolving command to implement an evolving
prior for the different 3,000-year intervals (line 80). For this command, the columns of the members variable indicate which
ensemble members should be used for each evolving prior. Here, each prior is built using the sixteen 50-year averages for one

of the nine 3,000-year intervals.
4.2.3 Proxy Forward Models

We next build and run proxy forward models on the state vector ensemble in order to generate a set of proxy estimates.
Here, we use the BaySPLINE and BayFOX Bayesian forward models for Ugﬁ/ and §'%0, respectively. We begin by using
the download command to download the models from their respective Github repositories and add them to the MATLAB
active path (lines 86-87). We next design a forward model for each proxy record using the model appropriate for each proxy’s
type (lines 90-120). For the Bay SPLINE model, we locate state vector rows corresponding to the SST values from the climate
model grid point closest to each proxy record (lines 101-104). The BayFOX model is calibrated to different foraminiferal
species, so we initialize each model with the species of the associated proxy record (line 109). We then locate both SST and
01804y, values, again at the closest climate model grid point (lines 112-114). For the purposes of documentation, we also

label each forward model with the ID of the associated proxy record (line 118). Finally, we run the forward models on the
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evolving state vector ensemble using the est imate command (line 124). In addition to proxy estimates, the BaySPLINE

and BayFOX models calculate proxy error-variances, provided as the second output, which we use to define R.
4.2.4 Kalman Filter and Proxy Validation

We next implement the Kalman Filterfilter analysis (lines 127-149). We first initialize and label a kalmanFilter object (line
130) and then provide the required algorithm parameters (lines 134-137). To conserve memory, we only return the mean and
variance of the posterior ensemble (line 141). As in Example 1, we regrid the reconstructed spatial field to the dimensions of the
original climate model to support visualization and post-processing (lines 145-146; Figure 4). Unlike Example 1, we include
all of the climate variables needed for the proxy forward models in the prior. This allows us to run the proxy forward models
on the reconstruction and generate proxy posterior estimates. We can then compare these estimates to the real proxy records as
a basic assessment of reconstruction skill (Figure 4). We implement this process by applying the est imate command to the
posterior (line 155). For the sake of brevity, we only implement a simplified proxy validation in this example. In practice, DA
applications should validate the reconstruction using proxies withheld from the assimilation (e.g. Tierney et al., 2020b; Osman

et al., 2021; King et al., 2021) so that assimilated proxies do not inform the skill of their own validation values.
4.3 Additional Considerations

The examples presented above touch upon many aspects of paleoclimate DA workflows but cannot be exhaustive. For the
sake of brevity and clarity, we have neglected several considerations common in DA applications. One particular step we have
omitted is the determination of proxy uncertainties (R in equations 4, 6, and 7). In some cases, proxy uncertainties (R) may be
provided by the proxy forward models (as in Example 2) or from the calibration of the forward models (e.g. Tardif et al., 2019;
King et al., 2021). Another potential approach involves running the forward models on instrumental data and comparing the
resulting proxy estimates to the real proxy records (e.g. King et al., 2021, 2023). However, we note that these approaches are
not applicable to all analyses, so users may need to develop additional methods to estimate proxy uncertainties. For example,
methods that estimate proxy error-variances (e.g. Tardif et al., 2019; Tierney et al., 2020b; King et al., 2021) implicitly assume
the independence of proxy uncertainties. However, this assumption may not hold when proxy records are strongly correlated
or sensitive to the same local factors. When this occurs, proxy error-covariances should be used in place of error-variances (see

King et al., 2023, for an example). We also discuss additional issues common to many paleoclimate applications in the seetion

5 Warnings and Best Practices

While it is not possible to detail all the issues that can occur when using DA for paleoclimate reconstructions, here we mention
several cautions and suggestions for best practices. Along with methodological considerations, DA users should be aware of the
limitations of both the proxy data and prior modeled climate states. In other words, simply running an assimilation code does

not guarantee that a reconstruction is scientifically valid, and potential DA users should understand the tradeoffs and limitations
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of DA methods when designing a reconstruction. In this section, we present several major challenges that may be encountered
in paleoclimate DA and outline approaches to mitigate or recognize their effects. This list is by no means exhaustive, and
we strongly recommend that potential DASH users first familiarize themselves with the paleoclimate DA literature and also

evaluate their reconstructions for sensitivity to the assumptions and input data.
5.1 Temporal Variability

A major issue when using an ensemble Kalman filter with a static prior (e.g. Steiger et al., 2014; Hakim et al., 2016; Dee
et al., 2016; Tardif et al., 2019; Steiger et al., 2018; Neukom et al., 2019; Zhu et al., 2021a; King et al., 2021, 2023) is that the
proxy network’s size and composition — and changes to these properties over time — can directly alter the temporal variability
of the reconstruction. Essentially, we observe that variability is artificially reduced as the proxy network becomes smaller. It
is common for the sample size of a proxy network to change over a reconstructed time period. When this occurs, then the
variability of the reconstruction will be non-stationary and relative climate variability may not remain consistent over the span
of the reconstruction.

This effect occurs because a static prior implies zero temporal variability as an a priori assumption in the absence of proxy
information. Consider a “no-information” case, in which a static prior is assimilated with an empty proxy network. Since the
proxy network is empty, the prior ensemble will not receive any updates, and the reconstruction will be the mean of the prior in
every time step. Since the prior is identical in every time step, the reconstruction will consist of a constant value over time and
will exhibit no temporal variability. With the addition of a proxy record to the network, the prior will begin to receive updates,
and the reconstruction will begin to gain temporal variability. Each subsequent record added to the proxy network increases the
ability of the method to move the reconstruction away from the prior mean, and so reconstruction variability will increase with
the size of the proxy network. This behavior is by design: in the absence of additional information, the prior provides the best
estimate of the mean state of the climate system. However, it creates complications for paleoclimate interpretations. We note
that this effect is most severe for smaller proxy networks and at spatial points informed by a limited number of proxy records.

Because of this effect, it is essential that assimilations using static priors account for the effects of proxy network compo-
sition on temporal variability. Variance adjustment methods are common in other approaches to paleoclimate reconstruction

(e.g. Cook et al., 1999; Esper et al., 2005; Frank et al., 2007; Anchukaitis et al., 2017), and King et al. (2023) provide an
example for how this can be accomplished for DA applications. However, there is no simple fix for the variance loss issue, and
we note that variance adjustment methods will raise the uncertainties of reconstructed values. Alternatively, evolving priors

can mitigate the variance loss issue (e.g. Tierney et al., 2020b; Osman et al., 2021) by removing the a priori assumption of
zero temporal variability. However, we caution that evolving priors could still exhibit a variance dampening effect when the

variability between reconstruction time steps and the state of the evolving priors is dominated by internal climate variability.
5.2 Climate model biases

A second major concern for paleoclimate DA concerns the effects of climate model biases on assimilated reconstructions. In

this discussion, we find it useful to distinguish between (1) biases in the mean state, and (2) climate model covariance biases.
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Mean state bias refers to the systematic tendency of a simulated variable to be too high or too low compared to observations.
Covariance bias refers to errors in the linear relationship between climate variables at different spatial points, or between
different variables. Essentially, these are biases in the teleconnection patterns associated with various climate phenomena.
Since the model prior covariance determines how information propagates from a proxy network to distal-distant parts of a
climate field, differences between the real and modeled climate system covariance will cause errors in the assimilation. No
climate model can match-the-complexity-of represent the real Earth system with complete accuracy and so all climate models
necessarily include some degree of error.

An additional consequence of climate model biases concerns method testing and proof-of-concept studies for paleocli-
mate DA. Typically, these studies rely on pseudo-proxy frameworks (Smerdon, 2012), in which climate model output is
used to simulate a set of proxy records. These pseudo-proxy records are designed to mimic a real proxy network and can
be used to reconstruct the climate model output. Unlike the real past climate history, the climate model output is fully
known and so these experiments provide an opportunity to assess assimilation skill. Due to the complexity of skill as-
sessments, it can be tempting to use the same climate model to both generate the pseudo-proxies and build the assimi-
lation prior. However, we caution that this framework represents an unrealistic “perfect-model” design, in which the cli-

mate model used for assimilation perfectly describes the target climate system. Although perfect-model experiments have

their uses, climate model biases represent a major source of error in paleoclimate DA Pee-et-al; 2016 Kingetal;2021H)-
Dee et al., 2016; Amrhein et al., 2020; King et al., 2021) and DA users should account for these biases to accurately quantify

DA skill. Ultimately, “biased-model” experiments, which use different climate models to generate pseudo-proxies and build
the assimilation prior, are necessary for accurate method testing. We also note that the exact nature of climate model biases
will vary by the choice of model and the specific target climate variable(s), and so an ensemble of different biased-model tests
is often necessary to capture the full effects of climate model biases.

Deleterious effects in real assimilations also occur when the inputs to the proxy forward models exhibit mean state biases.
For example, consider using the VS-Lite tree-ring model (Tolwinski-Ward et al., 2011) to assimilate a climate model with
a persistent cold bias. VS-Lite includes a temperature threshold based on absolute Celsius units; at temperatures below this
threshold, VS-Lite assume-assumes no growth occurs and produces a proxy estimate of zero. As a result, a climate model
with a cold bias may consistently fall below this threshold, causing VS-Lite to estimate a null proxy record. In this case,
as a consequence of the mean state bias in the climate model, VS-Lite would assume that trees cannot grow at a location
where they do grow in reality, and this error would degrade the reconstruction. More generally, mean state biases propagate
through the forward models to the proxy estimates and thereby influence the comparison of the ensemble members to the
real proxy records. In some cases, these biases can cause artificial trends in a reconstruction. Essentially, the assimilation
draws reconstructed variables unilaterally in the direction of less biased mean values. Although this does indeed improve the
final estimate of a variable’s value, this behavior is mixed with the variable’s reconstructed temporal evolution and causes an
artificial trend.

Some mean state biases can be addressed by the process of bias correction used in other disciplines and applications (e.g.

Wang and Robertson (2011); Zhao et al. (2017); Cannon et al. (2015); Cannon (2018); Galmarini et al. (2019), and see Steiger
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et al. (2018) for a DA example). When appropriate, users can alternatively avoid the effects of mean state biases by providing
climate anomalies to the proxy forward models, rather than absolute values (e.g. Tardif et al., 2019; King et al., 2021, 2023).
This is often appropriate for assimilations that rely on linear proxy forward models or forward models not dependent on absolute
units. If using priors from multiple climate models, users may also need to avoid or account for time periods when climate
models strongly differ, as strongly differing climate representations can act analogously to mean state biases. For example,
the instrumental era is often not suitable for computing climate model anomalies for long preindustrial and last millennium
simulations, because the climate response to recent anthropogenic influences can vary across models during the relatively short
historical period. By contrast, anomalies assessed relative to the entire pre-industrial period are typically more stable.
Covariance biases are perhaps the more challenging issue to deal with since they bias the propagation of information from
the proxy records to the reconstruction targets and do not present simple fixes. Multivariate bias correction methods may
provide a solution to this issue (e.g. Cannon, 2018; Vrac, 2018; Galmarini et al., 2019), but these methods have thus far seen
little use in paleoclimate DA contexts. Instead, a more common solution is to assimilate a multi-model ensemble (Parsons
et al., 2021; King et al., 2021, 2023). Users may enact this using a single multi-model prior (e.g. Parsons et al., 2021; King
et al., 2023), or by performing an ensemble of assimilations using different single-model priors (e.g. King et al., 2021). When
possible, we recommend the use of multi-model priors. These priors are supported in the DASH framework, and they limit the
effects of covariance biases by down-weighting covariance patterns that disagree across different models. We also note that
this down-weighting may in part contribute to spatial heterogeneity in Kalman filter updates, which we discuss in detail in the

next section.
5.3 Physically inconsistent reconstructions

Both the particle filter and Kalman filter frameworks assume that all state vector variables and proxy estimates follow a
Gaussian distribution; however, not all climate variables meet this criterion. Thus, DA users should take care to transform non-
Gaussian variables into an approximately Gaussian space before assimilation. Failing to take this step can result in unrealistic
or nonphysical reconstructed values. This is often relevant when assimilating variables distributed near the lower bounds of
their domains. For example, precipitation variables typically have a high probability near zero, yet cannot fall below zero, and
this results in a strongly non-Gaussian distribution. Because of this, raw precipitation values are not suitable for assimilation
and using them can cause the method to return non-physical negative precipitation values. Users should therefore transform
precipitation into an approximately Gaussian shape before assimilation. The reverse transformation can then be applied to
the assimilated variables in order to obtain reconstructed precipitation. Possible transforms for variables near a lower bound
include the extended Box-Cox and log transforms (Wang et al., 2012), and the logit transform may be appropriate for variables
on a finite interval (such as any variable that represents a percentage). Ultimately though, the most appropriate transforms will
vary by application (Wang et al., 2012).

We also emphasize that the DA algorithms described in this paper do not conserve physical properties like mass or energy.
Consequently, assimilated reconstructions are not bound by the governing equations inherent to the climate models used to

generate a prior ensemble and can produce physically inconsistent values. In some cases, this may mean that assimilated fields
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are not suitable for providing boundary conditions for climate model simulations. Unrealistic values can also arise when in-
dividual proxy records are given excessive weight in the Kalman filter. When the magnitudes of proxy weights are too large,
780 small proxy innovations can result in drastically large updates to assimilated climate variables. This issue most commonly oc-
curs when proxy uncertainties (R) are severely underestimated. For example, in Example 1 our proxy uncertainties incorporate
both forward-model errors and non-climatic noise in the proxy records. However, if we neglect these effects and compute R
using only the uncertainties inherent in measuring tree-ring variables (which are vanishingly small), the resulting Kalman filter
updates alter the assimilated temperature field by thousands of degrees Kelvin, a clearly unrealistic result. This behavior un-
785 derscores the importance of correctly incorporating multiple sources of error when quantifying proxy uncertainties. Although
We also note that DA methods that conserve physical properties do exist; for example, adjoint approaches are often used in
. Winguth et al., 2000; Kurahashi-Nakamura et al., 2014; Dail and Wun:

. However, these methods have-seentittle-use-in-paleoctmate-are less common outside of paleoceanographic contexts, likely
due to the prevalence and lower computational cost of offline configurations.

aleoceanography to conserve physical properties in the ocean (e.

790 A related issue concerns the spatial heterogeneity of Kalman filter updates, which can also result in physically inconsistent
behavior. When assimilating spatial climate fields, the magnitudes of Kalman filter updates often vary unevenly across different
spatial points. The magnitude of the update at a given spatial point is proportional to that point’s covariance with the proxy
estimates, so distant spatial points that covary less strongly with the proxy network will receive smaller updates. As a result,
reconstructed values at distant sites tend to remain closer to the prior ensemble mean and exhibit lower temporal variability

795 than sites closer to the proxy network. This lower variability is not a real climate phenomenon, but rather a consequence of the
Kalman filter method, which is designed to estimate mean states rather than temporal variability. However, we also note that
the variance of the posterior ensemble is available for users to assess the uncertainty resulting from smaller updates.

This spatial heterogeneity also has consequences for reconstructing large-scale climate indices, such as those used to char-
acterize first-order climate modes and spatial averages. These indices are typically computed using values from multiple points

800 in a spatial climate field; however, the uneven application of Kalman Filterfilter updates to different spatial points can skew the
calculation of these indices. For example, consider the Southern Annular Mode (SAM): one index commonly used to measure
the SAM’s phase is defined using the gradient of zonal mean sea level pressures between 40°S and 65°S (Gong and Wang,
1999). Consider an assimilation that uses a proxy network primarily located near 65°S. Because of the location of the proxy
network, spatial points near 65°S will receive larger updates than those near 40°S; by contrast, points near 40°S will be less

805 altered and will remain close to the mean of the prior. As a consequence of this effect, a SAM index determined from the
posterior spatial field using this network might only reflect changes to values at 65°S, thereby failing to assess changes at the
northern end of the gradient. Thus, when reconstructing climate indices from posterior spatial fields, it is essential for DA

demonstrate-the- homogene ity Ragni i i ropagate the uncertainties
of the utilized grid cells into the overall uncertainty of the index. An alternative approach to reconstructing climate indices

users to

810 is to include the climate index directly in the state vector, which precludes the issue of spatial heterogeneity. A tradeoff of

this approach is that proxy records will covary less strongly with large-scale indices than with local climate variables, and so
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reconstruction uncertainty may remain higher overall. However, in the case of spatial heterogeneity, we emphasize that higher

uncertainties are preferable to a physically implausible reconstruction.

6 Past Applications and Future Development

Because of its flexibility, earlier versions of the DASH toolbox have already been used to implement several paleoclimate
reconstructions, ranging across a variety of time scales and reconstruction targets. Tierney et al. (2020b) used a DASH prototype
to reconstruct global temperatures at the Last Glacial Maximum using a large proxy network of geochemical SST proxies and
model output from iCESM1.2. King et al. (2021) used the toolbox to reconstruct summer temperatures in the extratropical
Northern Hemisphere over the last millennium by integrating a temperature-sensitive tree ring network with an ensemble of
climate model simulations. Osman et al. (2021) used DASH to produce a full-field reconstruction of surface temperatures from
the Last Glacial Maximum to present. Rather than conducting a field reconstruction, King et al. (2023) targeted a climate
mode index and reconstructed the Southern Annular Mode over the Common Era using a southern hemisphere proxy network,
drought atlases, and a multi-model ensemble. In a deep-time application, Tierney et al. (2022) used DASH to produce a
temperature field reconstruction of the Paleocene-Eocene Thermal Maximum. In all of these studies, DASH was used to
implement the assimilation workflow.

DASH is an active project and we anticipate continued developments to the toolbox. Currently, we have three major areas of
focus for future improvement. First, we note that proxy system modeling is an area of active research. We anticipate the devel-
opment of new proxy models and recognize the need to incorporate these future models into the DASH framework. Thus, we
are continuing to expand the PSM package to include a more diverse array of published forward models. Furthermore, DASH
includes templates for adding proxy forward models, thereby allowing users to incorporate new models into the toolbox as the
need arises. Second, we intend to expand DASH’s support of online assimilation algorithms. DASH has primarily been used
to implement offline assimilation regimes, and this has influenced the development of the toolbox. We note that DASH already
provides a scaffold for online assimilations, as the routines in the toolbox can be used to update climate model output before
reinitializing a climate model externally. However, future development will include adding explicit wrappers to commonly used
Earth system emulators and models of varying complexity. For example, SPEEDY-IER (Dee et al., 2015b) and linear inverse
models (Perkins and Hakim, 2020) have been used to implement assimilations, and both are targets for further development of
DASH. Third, we recognize that DASH’s reliance on MATLAB precludes a fully open-source toolbox. Although the source
code for DASH is public, the toolbox will not be accessible to users lacking a MATLAB license. Consequently, long term we

aim to port the toolbox to a native Python and/or Julia package.

7 Conclusions

In this paper, we describe the features and foundations of DASH, a MATLAB toolbox supporting paleoclimate data assimi-

lation. The toolbox is designed for scripting and command-line use and helps implement common tasks in paleoclimate data
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assimilation workflows. Broadly, these include integrating data stored in different formats, designing state vector ensembles,
running proxy system forward models, and implementing computationally-efficient data assimilation algorithms. The toolbox
provides an interface for external, proxy-system models commonly used in the paleoclimate literature. Data assimilation al-
gorithms in the toolbox include ensemble Kalman filters (both offline and online regimes), particle filters, and optimal sensor
analyses. The package is highly flexible and is designed for general paleoclimate data assimilation, rather than any particular
DA analysis. As a result of this flexibility, DASH has already been used to implement published paleoclimate reconstructions

for a variety of time scales, spatial regions, and proxy networks.

Code and data availability. Releases of the DASH toolbox are available on DASH’s Github repository (https://github.com/JonKing93/
DASH/releases), on MATLAB FileExchange (https://www.mathworks.com/matlabcentral/fileexchange/120453-dash), and in the MATLAB
Add-On Explorer. The DASH source code is also available on the Github repository (https://github.com/JonKing93/DASH). The input
data sets, DASH 4.2.0 release, and visualization codes used in the examples of this paper are available in a public Zenodo repository

(https://zenodo.org/record/7545722).
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Table 1. Proxy forward-models currently supported by DASH.

Model Description Citation or Authors Github Repository
BayFOX Bayesian model of planktic foraminiferal 680, | Malevich et al. (2019) jesstierney/bayfoxm
BayMAG Bayesian model of planktic foraminiferal Mg/Ca | Tierney et al. (2019) jesstierney/BAYMAG
BaySPAR Bayesian model for TEX’86 Tierney and Tingley (2014) jesstierney/BAY SPAR
BaySPLINE Bayesian model for UK’37 Tierney and Tingley (2018) jesstierney/BAYSPLINE
Identity The identity function DASH built-in
Multi-variate Linear | General multi-variate linear forward models DASH built-in

PDSI Palmer Drought-Severity Index estimator Dave Meko, Jonathan King JonKing93/pdsi

PRYSM Cellulose Cellulose 680 Dee et al. (2015a) sylvia-dee/PRYSM
PRYSM Coral Coral %0 Dee et al. (2015a) sylvia-dee/PRYSM

PRYSM Ice-Core

Ice-core 6120

Dee et al. (2015a)

sylvia-dee/PRYSM

VS-Lite

Vaganov-Shashkin Lite model of tree-ring width

Tolwinski-Ward et al. (2011)

suztolwinskiward/vslite
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Example 1: Northern Hemisphere Summer Temperatures over the Last Millennium

%% Example 1: NTREND Assimilation

% Reset the random number generator so all examples are reproducible

rng ('default');

%% gridfile: Organize climate model output

% List of climate model output files

outputFilel = 'b.ell.BLMTRC5CN.f19_gl6.002.cam.h0.TREFHT.085001-184912.nc";
outputFile2 = 'b.ell.BLMTRC5CN.f19_gl6.002.cam.h0.TREFHT.185001-200512.nc";

% Define metadata that spans the climate model output dataset

lat = ncread(outputFilel, 'lat');
lon = ncread(outputFilel, '"lon');

time = datetime (850,1,15) :calmonths (1) :datetime (2005,12,15);

metadata = gridMetadata('lat', lat, 'lon', lon, 'time', time');

metadata = metadata.addAttributes('Units', 'Kelvin', 'Model'

% Initialize a new, empty gridfile to catalogue the dataset

, '"CESM 1.0");

modelOutput = gridfile.new ('Temperature-CESM', metadata, 'overwrite');

% Catalogue the source files for the dataset in the gridfile

dimensionOrder = ["lon","lat","time"];
outputlMetadata = metadata.index('time', 1:12000) ;
output2Metadata = metadata.index('time', 12001:13872);

modelOutput.add('netcdf', outputFilel, "TREFHT", dimensionOrder, outputlMetadata);

modelOutput.add('netcdf', outputFile2, "TREFHT", dimensionOrder, output2Metadata);

% Convert loaded data from Kelvin to Celsius

modelOutput.transform('plus', -273.15);

%% gridfile: Organize climate proxy records

% File holding the proxy record dataset

proxyFile = 'ntrend.mat';

% Define metadata for the proxy record dataset
info = load(proxyFile, 'years', 'site_IDs', 'lons', 'lats',

site = [info.site_IDs, info.lats, info.lons, info.seasons];
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proxyMetadata = gridMetadata('site', site, 'time', info.years);
% Catalogue the proxy record dataset in a gridfile
proxies = gridfile.new('ntrend', proxyMetadata, 'overwrite');

proxies.add('mat', proxyFile, 'crn', ["time" "site"], proxyMetadata);

% Indicate that -999 is a fill value and should be converted to NaN

proxies.fillValue (-999);

%% State vector: Design and build a state vector ensemble
% Initialize a state vector and label the object

sv = stateVector ('NTREND Assimilation');

Initialize variables that are:
% 1. Used to run the proxy forward models, or
2

. Reconstruction targets.

o
S

proxyNames = proxyMetadata.site(:,1);
sv = sv.add(proxyNames, modelOutput);

sv = sv.add(["T", "T_index"], modelOutput);

o

Specify that ensemble members will be selected from each year of model output

o

(Note that we are only using January as a reference month for each year.

o

Later steps will specify the monthly means used in the assimilation).
january = month (metadata.time) == 1;

sv = sv.design (-1, 'time', 'ensemble', Jjanuary);

% Design the reconstruction targets to use data north of 35N and a seasonal
% mean over June, July, and August. Also use a latitude-weighted spatial
% mean for the reconstructed extratropical temperature index.
extratropical = metadata.lat > 35;

JJA = [5 6 7];

latWeights = cosd(metadata.lat (extratropical));

sv = sv.design (["T","T_index"], 'lat', [], extratropical);

sv = sv.mean ( ["T","T_index"], 'time', JJA);

sv = sv.weightedMean ("T_index", ["lat" "lon"], {latWeights, [1});

o

% Design the proxy variables to use the site-specific seasonal temperature
% mean from the model grid closest to the proxy site.

nProxies = numel (proxyNames) ;

proxyCoordinates = str2double( proxyMetadata.site(:,2:3) );

[~, latIndices, lonIndices] = dash.closest.latlon(proxyCoordinates, metadata.lat,
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for p = l:nProxies

sv = sv.design(p, ["lat","lon"], [], {latIndices(p), lonIndices(p)});
season = strsplit (proxyMetadata.site(p,4), ', '");
season = str2double (season) - 1;

sv = sv.mean(p, 'time', season);

end

% Build a state vector ensemble with 1156 members and save it to file

[ens, ensMeta] = sv.build (1156, 'sequential', true, 'file', 'ntrend-ensemble', 'overwrite',

%% PSM: Implement forward models for the NTREND sites and estimate proxy values

% Load coefficients of linear forward models
coeffs = load('ntrend-forward-model-coefficients');
slopes = coeffs.slopes;

intercepts = coeffs.intercepts;

% Design a univariate linear forward models for each proxy record
forwardModels = cell (nProxies, 1);
for p = l:nProxies

forwardModels{p} = PSM.linear (slopes(p), intercepts(p));

% Indicate the row in the state vector ensemble that holds the seasonal
% temperature means needed to run the forward model.

row = ensMeta.find( proxyNames (p) );

forwardModels{p} = forwardModels{p}.rows (row) ;

end

% Compute proxy estimates by running the forward models on the ensemble

Ye = PSM.estimate (forwardModels, ens);

%% Kalman Filter: Implement a Kalman Filter and generate a reconstruction

% Initialize a Kalman Filter

kf = kalmanFilter ('NTREND Assimilation');

% Select the prior. This will be the variables in the ensemble that
% correspond to reconstruction targets.

ens = ens.useVariables (["T","T_index"]);

ensMeta = ens.metadata;

kf = kf.prior(ens);
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o

Y = proxies.load;
kf = kf.observations(Y);
kf = kf.estimates (Ye);

% Also specify proxy error variances
R = load('ntrend-error-variances') .R;

kf = kf.uncertainties (R);

% Implement covariance localization with a radius of 20000 km
coordinates = ensMeta.latlon;

radius = 20000; % km

[wloc, yloc] = dash.localize.gc2d(coordinates, proxyCoordinates,

kf = kf.localize(wloc, yloc);

% Specify the proxy records and estimates used in assimilation

radius) ;

% Also calculate a latitude-weighted, spatial mean temperature index from

o\

% for the index, without needing to save the (very large) posterior

% ensemble of the full spatial temperature field.

the updated spatial field. This will return the full posterior ensemble

rows = ensMeta.find('T");
latWeights = cosd(coordinates (rows,1));
kf = kf.index ('T_index2', 'mean', 'rows', rows, 'weights', latWeights);

% Save posterior percentiles and variance, rather than the full posterior.

kf = kf.percentiles(5:95);

kf = kf.variance (true);

% Run the Kalman Filter.

output = kf.run;

% Extract the updated spatial field and its variance. Regrid to match the

o

% dimensions of the initial climate model output

[T, Tmeta] = ensMeta.regrid("T", output.Amean, 'order',6 ["lat","lon"]);

Tvar = ensMeta.regrid("T", output.Avar, 'order', ["lat","lon"]);

o

% Also extract the spatial-mean time series and percentiles
indexl = output.Amean(end, :);
indexlp = output.Aperc(end, :,:);

index2 = output.index_T_index2;

% Save for post-processing and visualization

time = info.years;

save ('ntrend-reconstruction.mat','T', 'Tvar', 'Tmeta', 'indexl', 'indexlp'
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%% Optimal sensor

% Initialize an optimal sensor for the NTREND assimilation

os = optimalSensor ('NTREND sensors');

% Use the summer-temperature spatial mean index as the sensor metric.
T = ens.useVariables ('T_index').load;

0os = os.metric(T);

% Also provide the proxy estimates and error variances for the analysis

os = os.estimates (Ye);

os = os.uncertainties (R);

% Run the sensor to evaluate the ability of each record to reduce uncertainty

proxyPower = os.evaluate;

o

% Save for analysis and visualization

save ('ntrend-optimal-sensor', 'proxyPower', 'proxyMetadata');
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Example 2: Global Sea Level Pressures from the Last Glacial Maximum to Present

%% Example 2: LGM Assimilation

S

rng ('default');

%% gridfile: Organize climate model output

[

% Climate model output

slpFile = 'PSL_cam_50yrDecMon_iCESM_LGMtoPresent.nc
sstFile = 'TEMP_pop_50yrDecMon_iCESM_LGMtoPresent.nc
dl180File = 'R180_pop_50yrDecMon_iCESM_LGMtoPresent.nc';

% Define metadata for the rectilinear, atmospheric model

lat = ncread(slpFile, 'lat');
lon = ncread(slpFile, 'lon');
time = ncread(slpFile, 'time');

run = ncread(slpFile, 'run');

% Reset the random number generator so all examples are reproducible

output

camMetadata = gridMetadata('lat',lat,'lon',lon, 'time',time, 'run', run);

% Define metadata for the tripolar, ocean model (POP)

lat = ncread(sstFile, 'TLAT'");
lon = ncread(sstFile, 'TLONG'");
site = [lat(:), lon(:)];

popMetadata = gridMetadata('site',site, 'time',time, 'run', run);

% Initialize a gridfile object for each variable

slp = gridfile.new( 'SLP', camMetadata, 'overwrite');
sst = gridfile.new( 'SST', popMetadata, 'overwrite');

dl180 = gridfile.new('dl180', popMetadata, 'overwrite');

% Catalogue the output files

slp.add('netcdf', slpFile, "PSL", [ "lon", "lat","time","run"], camMetadata);

sst.add('netcdf', sstFile, "TEMP", ["site","site","time","run"], popMetadata);

d180.add('netcdf', dl80File, "R180", ["site","site","time","run"], popMetadata);

%% gridfile: Organize climate proxy records

% File holding the proxy record dataset and metadata

proxyFile = 'proxies.mat';

% Define metadata for the proxy record dataset
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info = load(proxyFile, 'ID', 'lat', 'lon', 'species', 'type', 'time', 'timeUnits');

site = [info.ID, info.lat, info.lon, info.type, info.species];

proxyMetadata = gridMetadata('site', site, 'time', info.time);

% Catalogue the proxy record dataset in a gridfile
proxies = gridfile.new('proxies', proxyMetadata, 'overwrite');

proxies.add('mat', proxyFile, "Y", ["time","site"], proxyMetadata);

%% Design and build state vector ensemble

o

% Initialize and label a stateVector object

sv = stateVector ('LGM Assimilation');

o

Initialize variables

5 Reconstruction target: Sea level pressure (SLP)
% Forward models inputs: Sea surface temperature (SST), dl80 of sea water
sv = sv.add(["SLP","SST","d180"], [slp;sst;d180]);

% Specify that ensemble members should be selected from the different runs
% and time slices. Use January of each time slice as a reference point
january = camMetadata.time(:,1)==1;

sv = sv.design (-1, ["time","run"], 'ensemble', {january,I[]1});

[

% Use annual mean values for all variables

[

months = (0:11)"'; % Indices of months relative to the January reference point

sv = sv.mean (-1, 'time', months);

% Build the state vector sequentially using all available 50-year bins.

[

% Save to the file "lgm-ensemble.ens"

[ens, ensMeta] = sv.build('all', 'sequential', true, 'file', 'lgm-ensemble', 'overwrite',

o

There are 16 50-year bins for each of the nine 3,000 year intervals.

Yo

? Use the sets of 16 ensemble members to build an evolving ensemble for the

o

% nine intervals.

members = l:ens.nMembers;
members = reshape (members, 9, 16)';
ens = ens.evolving (members) ;

%% PSM: Implement forward models for the proxy sites and estimate proxy values

o

% Download proxy forward models from Github

PSM.download ('bayfox');
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87 PSM.download('bayspline');
88

89 % Design a forward model for each proxy record

90 nProxies = numel (info.ID);

91 forwardModels = cell (nProxies, 1);

92 for p = l:nProxies

93

94 % Get the proxy ID, location, and type

95 ID = proxyMetadata.site (p, 1);

96 coordinates = proxyMetadata.site(p, 2:3);

97 coordinates = str2double (coordinates) ;

98 type = proxyMetadata.site (p, 4);

99

100 % Use either a UK'37 forward model, which requires SSTs as input

101 if type == "uk37"

102 model = PSM.bayspline;

103 SST = ensMeta.closestLatLon ("SST", coordinates, 'site', [1 21);
104 model = model.rows (SST);

105

106 % Or a dl80_c model, which is calibrated to different foraminiferal species...
107 elseif type == "d180c"

108 species = proxyMetadata.site(p,5);

109 model = PSM.bayfox (species);

110

111 % ...and which requires SSTs and dl180_sw as input

112 SST = ensMeta.closestLatLon( "SST", coordinates, 'site', [1 21);
13 d180 = ensMeta.closestLatLon("d180", coordinates, 'site', [1 21);
114 model = model.rows ([SST;d180]);

115 end

116

17 % Label and save the model for each proxy

118 model = model.label (ID);

119 forwardModels{p} = model;

120 end

121
122 % Run the forward models on the inputs from the ensemble to compute proxy
123 % estimates and proxy error variances

124 [Ye, R] = PSM.estimate (forwardModels, ens.load);

125 R = squeeze (mean(R,2));

126

127 %% Kalman Filter

128

129 % Initialize and label a kalman filter

130 kf = kalmanFilter ('LGM Assimilation');
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% Provide the proxy records, prior, estimates, and error variances to the filter

Y = proxies.load;

kf = kf.prior (ens);

kf = kf.observations(Y);
kf = kf.estimates (Ye);

kf = kf.uncertainties(R);

o

% Run the Kalman filter. To conserve memory, return the mean and variance
% of the posterior ensemble, rather than the complete ensemble
kf = kf.variance (true);

output = kf.run;

% Regrid the SLP reconstruction target

[SLP, SLPmeta] = ensMeta.regrid("SLP", output.Amean, 'order', ["lat","lon"]);

SLPvar = ensMeta.regrid("SLP", output.Avar, 'order', ["lat","lon"]);

o

% Save for visualization

save ('lgm-reconstruction', 'SLP', 'SLPmeta', 'SLPvar');

%% Proxy validation: Run the proxy system models on the posterior ensemble

o

% Run the proxy forward models using inputs from the posterior ensemble

Ypost = PSM.estimate (forwardModels, output.Amean);

% Save for post-processing and visualization

save ('lgm-proxy-validation', '¥Ypost', 'proxyMetadata');

48



