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Abstract 19 

 20 
The widely-used open-source community Noah-MP land surface model (LSM) is designed for 21 
applications ranging from uncoupled land-surface and ecohydrological process studies to coupled 22 
numerical weather prediction and decadal global/regional climate simulations. It has been used in 23 
many coupled community weather/climate/hydrology models. In this study, we 24 
modernize/refactor the Noah-MP LSM by adopting modern Fortran code and data structures and 25 
standards, which substantially enhances the model modularity, interoperability, and applicability. 26 
The modernized Noah-MP is released as the version 5.0 (v5.0), which has five key features: (1) 27 
enhanced modularization and interoperability by re-organizing model physics into individual 28 
process-level Fortran module files, (2) enhanced data structure with new hierarchical data types 29 
and optimized variable declaration and initialization structures, (3) enhanced code structure and 30 
calling workflow by leveraging the new data structure and modularization, (4) enhanced 31 
(descriptive and self-explanatory) model variable naming standard, and (5) enhanced driver and 32 
interface structures to couple with host weather/climate/hydrology models. In addition, we create 33 
a comprehensive technical documentation of the Noah-MP v5.0 and a set of model benchmark and 34 
reference datasets. The Noah-MP v5.0 will be coupled to various weather/climate/hydrology 35 
models in the future. Overall, the modernized Noah-MP will allow a more efficient and convenient 36 
process for future model developments and applications. 37 
 38 
 39 
 40 
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1. Introduction 41 
 42 
Land surface models (LSMs) are useful modeling tools to resolve terrestrial responses to and 43 
interactions with the atmosphere, ocean, glacier, and sea ice in the earth system. Traditionally, 44 
LSMs were thought to mainly provide lower boundary conditions to the coupled atmospheric 45 
models. However, modern LSMs have been increasingly employed as an indispensable component 46 
in the climate and weather systems to offer biogeophysical and biogeochemical insight for 47 
understanding and quantifying the impact and evolution of climate, weather, and the integrated 48 
earth environment (Blyth et al., 2021). LSMs have been widely applied to tackle many important 49 
societally relevant challenges, such as drought, flood, heat wave, water availability, agriculture, 50 
food security, wildfires, deforestation, and urbanization (Bonan and Doney, 2018). 51 
 52 
Among many LSMs that have been developed in the past few decades, the open-source community 53 
Noah with Multi-parameterization Options (Noah-MP; Niu et al., 2011; Yang et al., 2011) is one 54 
of the most widely-used state-of-the-art LSMs. The article describing the Noah-MP model by Niu 55 
et al (2011) is de facto the most cited LSM paper in the last 10 years, highlighting its worldwide 56 
popular usage in the international science community. Compared to its predecessor, the Noah LSM 57 
(Chen et al., 1996, 1997; Chen and Dudhia, 2001; Ek et al., 2003), Noah-MP significantly 58 
improves known Noah limitations by employing enhanced treatments of vegetation canopy, 59 
snowpack, soil processes, groundwater, and their complex interactions as well as additional 60 
capabilities for critical land processes (e.g., crop, irrigation, tile drainage, groundwater, urban, 61 
carbon and nitrogen cycles). Another unique feature of Noah-MP is the inclusion of multiple 62 
physics options for different land processes, which allows the multi-physics model ensemble 63 
experiments for uncertainty assessment and testing competing hypotheses (Zhang et al., 2016; J. 64 
Li et al., 2020).  65 
 66 
Noah-MP can be applied to various spatial scales spanning from point scale locally to ~100-km 67 
resolution globally, and temporal scales spanning from sub-daily to decadal time scales. Since its 68 
original development, Noah-MP has been used in many important applications, including 69 
numerical weather prediction (Suzuki and Zupanski, 2018; Ju et al., 2022), high-resolution climate 70 
modeling (Gao et al., 2017; Liu et al., 2017; Rasmussen et al., 2023), land data assimilation (Xu 71 
et al., 2021; Nie et al., 2022), drought (Arsenault et al., 2020; Niu et al., 2020; Wu et al., 2021; 72 
Abolafia-Rosenzweig et al., 2023a), wildfire (Kumar et al., 2021; Abolafia-Rosenzweig et al., 73 
2022a, 2023b), snowpack evolution (Wrzesien et al., 2015; He et al., 2019; Jiang et al., 2020), 74 
hydrology and water resources (Cai et al., 2014; Liang et al., 2019; X. Zhang et al., 2022a; Hazra 75 
et al., 2023), crop and agricultural management (Liu et al., 2016; Ingwersen et al., 2018; Warrach-76 
Sagi et al., 2022; Valayamkunnath et al., 2022; Zhang et al., 2020, 2023), urbanization and heat 77 
island (Xu et al., 2018; Salamanca et al., 2018; Patel et al., 2022), biogeochemical cycle (Cai et 78 
al., 2016; Brunsell et al., 2021), wind erosion (Jiang et al., 2021), wetland (Z. Zhang et al., 2022), 79 
groundwater (Barlage et al., 2015, 2021; Li et al., 2022), and landslide hazard (Zhuo et al., 2019).  80 
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 81 
Currently, Noah-MP has been implemented into many community research and operational 82 
weather/climate/hydrology models, including the Weather Research and Forecasting model 83 
(WRF), the Model for Prediction Across Scales (MPAS), the NOAA operational National Water 84 
Model (NWM), the NOAA Unified Forecast System (UFS), the NASA Land Information System 85 
(LIS), and the NCAR High-Resolution Land Data Assimilation System (HRLDAS).  86 
 87 
Despite its popular usage in the international research and application communities, the Noah-MP 88 
core code engine was designed 12 years ago and is outdated, and does not take advantage of 89 
modern Fortran language architecture. It has a single lengthy (>12,000 lines) Fortran source file 90 
lumping together all model physics with complex code and data structures using inconsistent 91 
format and does not follow the modern Fortran code standard. This makes the Noah-MP model 92 
code difficult for users and developers to read, modify, and test as well as to implement and apply 93 
it to other community models. Furthermore, a lengthy code is error prone and challenging to debug. 94 
These issues limit the further development and application of Noah-MP.  95 
 96 
Therefore, this study is motivated to modernize (refactor) the entire Noah-MP model by adopting 97 
modern Fortran code and data structures and standards, which substantially enhances the model 98 
modularity, interoperability, and applicability. The base code used for refactoring is the Noah-MP 99 
version 4.5 (released in December 2022; https://github.com/NCAR/noahmp/tree/release-v4.5-100 
WRF), and the refactoring effort does not change model physics. We release the 101 
modernized/refactored Noah-MP as version 5.0 (v5.0; https://github.com/NCAR/noahmp), which 102 
includes five key features: (1) enhanced modularization and interoperability by re-organizing 103 
model physics into individual process-level Fortran module files, (2) enhanced data structure with 104 
new hierarchical data types and optimized variable declaration and initialization structures, (3) 105 
enhanced code structure and subroutine calling workflow by leveraging the new data structure and 106 
modularization and refining code to be more concise, (4) enhanced (descriptive and self-107 
explanatory) model variable naming standard, and (5) enhanced driver and interface code 108 
structures to couple with host weather/climate/hydrology models. In addition, we have created a 109 
comprehensive technical documentation (He et al., 2023) to describe model physics and details of 110 
the refactored Noah-MP and a set of model benchmark and reference datasets for future 111 
comparison and assessment. Overall, the modernized open-source community Noah-MP model 112 
(version 5.0) will allow a more efficient and convenient process for future model developments 113 
and applications. The framework and practice in the course of refactoring the entire Noah-MP code 114 
is also applicable to other LSMs and ESMs. 115 
 116 
This paper reports the key features of the modernized Noah-MP v5.0 and is organized as follows. 117 
Section 2 briefly summarizes the Noah-MP model physics with several updates since its original 118 
development. Sections 3–7, respectively, introduce the key features of the modernized Noah-MP 119 
in terms of enhanced model modularization, data type, code structure, variable naming, and 120 
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coupling structure with host models. Section 8 describes the model benchmarking and reference 121 
datasets. Section 9 provides the release information of model code and technical documentation. 122 
Section 10 concludes the paper with future model development plans. 123 
 124 
2. Noah-MP version 5.0 model physics  125 
 126 
2.1 Noah-MP description 127 
 128 
Noah-MP (Niu et al., 2011) was originally developed based on the Noah LSM (Chen et al., 1996, 129 
1997; Chen and Dudhia, 2001; Ek et al., 2003) to augment its modeling capabilities with enhanced 130 
physical representations and treatments of dynamic vegetation, canopy interception and radiative 131 
transfer processes, multi-layer snowpack physics, and soil and hydrological processes. The history 132 
of model development and evolution has been described in the technical documentation (He et al., 133 
2023). Noah-MP is designed to simulate land surface and subsurface energy and water processes 134 
in both uncoupled and coupled modes with atmospheric or hydrological models at sub-daily time 135 
scale and high spatial resolution (even for point scale). This further allows the use of Noah-MP in 136 
different hydrological, weather, and climate models for applications in a wide range of spatial and 137 
temporal scales with proper integration in time and space.  138 
 139 
Noah-MP divides its land grid into two sub-grid tiles, namely vegetated and non-vegetated grounds, 140 
based on vegetation cover fraction. The biogeophysical and biogeochemical processes are treated 141 
separately for the vegetated and bare grounds. Noah-MP adopts a “big-leaf” canopy treatment 142 
characterized by canopy properties dependent on vegetation types. Noah-MP accounts for a 143 
multiple-layer snowpack, where snow ice and liquid water content, density, depth, and temperature 144 
are simulated dynamically. Noah-MP also includes multi-layer soil thermal and hydrological 145 
processes with dynamically evolving soil temperature and water content. The vegetation, snow, 146 
and soil components in Noah-MP are closely coupled and interacted with each other via complex 147 
energy, water, and biochemical processes. Their detailed physical formulations and 148 
parameterizations in Noah-MP v5.0 are described in the technical documentation (He et al., 2023). 149 
Below, we briefly summarize the energy, water, and biochemical processes in Noah-MP v5.0. 150 
 151 
2.2 Noah-MP energy processes 152 
 153 
Noah-MP resolves energy budgets and processes separately for vegetated and non-vegetated 154 
ground portions of each grid (Niu et al., 2011). The vegetation cover fraction, either from 155 
observational inputs or model calculations based on leaf area index (LAI) inputs or predicted by 156 
the dynamic vegetation module, is used to separate vegetated and bare grounds. The grid-mean 157 
energy states and fluxes are calculated as an average of vegetated and bare ground values weighted 158 
by vegetation cover fraction. For surface radiative processes driven by incoming shortwave and 159 
longwave radiation (atmospheric forcing), Noah-MP simulates the radiative absorption and 160 
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scattering by the canopy and ground (soil/snow) as well as the longwave emissions by the canopy 161 
and ground (soil/snow). The net absorbed total (shortwave and longwave) radiative flux is 162 
balanced by precipitation advected heat flux, total surface sensible and latent heat fluxes, and 163 
ground heat flux. The precipitation advected heat flux represents the heat flux advected from 164 
precipitation (rain/snow) to canopy/ground due to the temperature difference between precipitation 165 
(surface air) and canopy/ground. The total surface sensible heat includes the sensible heat from 166 
canopy, snowpack, and soil surfaces. The total surface latent heat includes the latent heat from 167 
snowpack sublimation, soil evaporation, canopy snow sublimation, canopy water evaporation, and 168 
plant transpiration. The ground heat flux is the heat flux leaving the ground surface to drive 169 
subsurface snow/soil phase change and/or temperature changes.  170 
 171 
To model the aforementioned surface energy flux components, Noah-MP dynamically calculates 172 
a number of key land surface properties, include ground snow cover fraction, surface roughness, 173 
canopy and ground thermal properties, snow and soil albedo, surface emissivity, and canopy 174 
radiative transfer. Many of these property and process calculations have multiple physics options 175 
(see Sect. 2.6). Based on the canopy and ground energy balance, Noah-MP further solves the 176 
temperature and phase change for canopy, snowpack, and soil. Figure 1 summarizes the key energy 177 
processes and budget components as well as the energy balance equation in Noah-MP v5.0. Note 178 
that the energy processes at glacier grids are treated similarly to those at 100% bare (non-vegetated) 179 
ground grids except that the soil is replaced by glacier ice with ice-specific properties. 180 
 181 
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 182 
Figure 1. Schematic diagram of energy budget and processes represented in Noah-MP version 5.0. 183 
 184 
 185 
2.3 Noah-MP water processes 186 
 187 
Noah-MP accounts for five major water budget components, including precipitation, 188 
evapotranspiration (ET), total runoff, net lateral flow, and total water storage change intercepted 189 
by the canopy and in snow, soil, and aquifer. For precipitation, Noah-MP has several temperature-190 
based rainfall-snowfall partitioning parameterizations or can use the partitioning from atmospheric 191 
models directly (see Sect. 2.6). Noah-MP simulates canopy interception and throughfall of rain 192 
and snow, where the intercepted rain and snow on the canopy can go through unloading/dripping, 193 
frost, sublimation, melting, and freezing processes. Net evaporation loss from the canopy-194 
intercepted liquid water (evaporation minus dew), net sublimation from the canopy-intercepted 195 
snow (sublimation minus frost), transpiration (via plant hydraulics), net soil surface evaporation, 196 
and net snowpack sublimation together contribute to the total surface ET. Noah-MP dynamically 197 
simulates multi-layer snowpack water storage (ice and liquid water) changes driven by 198 
snowfall/rainfall, frost, sublimation, freezing, and melting. The snowmelt water out of snowpack 199 
together with rainfall at the soil surface are further partitioned into surface runoff and infiltration 200 
based on multiple runoff and infiltration physics options (see Sect. 2.6). Soil moisture and 201 
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unsaturated water flow across soil layers are simulated using the one-dimensional Richards 202 
equation. Two optional groundwater schemes, one without 2-D lateral flow (Niu et al., 2007) and 203 
one with 2-D lateral flow (Fan et al., 2007; Miguez-Macho et al. 2007), are available in Noah-MP 204 
to simulate groundwater dynamics, including groundwater recharge, water table change, baseflow, 205 
seepage, and/or lateral flow. Noah-MP also includes dynamic irrigation and tile drainage processes 206 
for agricultural management applications (Valayamkunnath et al., 2021, 2022). Figure 2 207 
summarizes the key water processes and budget components as well as the water balance equation 208 
in Noah-MP v5.0. Note that the water processes at glacier grids are treated similarly to those at 209 
100% bare ground grids except that all the soil and subsurface hydrological processes are removed 210 
and replaced by glacier ice (He et al., 2023). 211 
 212 

 213 
Figure 2. Schematic diagram of water budget and processes represented in Noah-MP version 5.0. 214 
 215 
 216 
2.4 Noah-MP biochemical processes 217 
 218 
Currently, the community version of Noah-MP only accounts for carbon processes for biochemical 219 
cycles, while nitrogen dynamics and soil carbon dynamics have been developed in non-community 220 
Noah-MP versions managed by individual research groups (e.g., Cai et al., 2016; X. Zhang et al., 221 
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2022b). We will synthesize and integrate individual Noah-MP updates into the community version 222 
in the future (see Sect. 2.5 for more discussions). Noah-MP simulates carbon processes for both 223 
natural/generic vegetation (Niu et al., 2011) and explicit agricultural crops (Liu et al., 2016). The 224 
carbon processes related to vegetation growth dynamics include (1) carbon assimilation from 225 
photosynthesis by shaded and sunlit leaves, (2) carbon allocation to different parts of vegetation 226 
(leaf, stem, wood and root) and soil carbon pools (fast and slow carbon), (3) carbon loss due to 227 
respiration of different vegetation and soil carbon pools, (4) carbon transfer between vegetation 228 
and fast soil carbon pools through vegetation (leaf, stem, wood and root) turnover and seasonal 229 
death of leaf and stem, and (5) soil carbon pool conversion through soil carbon stabilization. The 230 
total carbon flux to the atmosphere and net primary productivity are computed based on the 231 
aforementioned carbon processes. Figure 3 summarizes the key carbon processes and budget 232 
components as well as the carbon balance equation in Noah-MP v5.0. Note that the carbon 233 
processes for crop growth are treated similarly to those of natural vegetation, except that the wood 234 
component of plants is removed and the grain component of crops is added with additional carbon 235 
conversion from leaf, stem, and root to grain depending on crop growing stages. 236 
 237 

 238 
Figure 3. Schematic diagram of carbon budget and processes represented in Noah-MP version 5.0. 239 
 240 
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2.5 Noah-MP physics updates since original development 242 
 243 
Since the release of the original Noah-MP in year 2011 (Niu et al., 2011), there are several 244 
important updates in Noah-MP physics. Some of the updates have been included in the community 245 
version of Noah-MP v5.0, while some are only available in the non-community versions managed 246 
by individual research groups. We will make efforts to synthesize and integrate individual Noah-247 
MP updates into the community version in the future by working with those developer teams. Here, 248 
to the best of our knowledge, we briefly list the major Noah-MP physics updates from the 249 
community in the past decade. 250 
 251 
The new/enhanced physics included in the community Noah-MP version 5.0 since 2011 are: (1) 252 
the Miguez-Macho-Fan (MMF) groundwater scheme (Barlage et al., 2015); (2) three additional 253 
runoff schemes: the Variable infiltration capacity (VIC), dynamic VIC, and Xinanjiang schemes 254 
(McDaniel et al., 2020); (3) tile drainage schemes (Valayamkunnath et al., 2022); (4) dynamic 255 
irrigation schemes (sprinkler, micro, and flooding irrigation) (Valayamkunnath et al., 2021); (5) a 256 
dynamic crop growth model for corn and soybean (Liu et al., 2016) with enhanced C3 and C4 crop 257 
parameters (Zhang et al., 2020); (6) coupling with urban canopy models (Xu et al., 2018; 258 
Salamanca et al., 2018) with local climate zone modeling capabilities (Zonato et al., 2021); (7) 259 
enhanced snow cover, snow compaction, and wind-canopy absorption parameters (He et al., 2021); 260 
(8) a wet-bulb temperature-based snow-rain partitioning scheme (Wang et al., 2019). 261 
 262 
The new/enhanced physics currently not included in the community Noah-MP version 5.0 since 263 
2011 are: (1) nitrogen dynamics (Cai et al., 2016); (2) big-tree plant hydraulics (Li et al., 2021); 264 
(3) dynamic root optimization (Wang et al. 2018) with an explicit representation of plant water 265 
storage (Niu et al., 2020); (4) additional snow cover parameterizations (Jiang et al., 2020); (5) 266 
coupling with a wind erosion model (Jiang et al., 2021); (6) a wetland representation and dynamics 267 
(Z. Zhang et al., 2022); (7) a unified turbulence parameterization throughout the canopy and 268 
roughness sublayer (Abolafia-Rosenzweig et al., 2021); (8) enhanced snow albedo representations 269 
(Abolafia-Rosenzweig et al., 2022b); (9) coupling with a snow radiative transfer (SNICAR) model 270 
(Wang et al., 2020, 2022); (10) an organic soil layer representation at forest floors (Chen et al., 271 
2016) and a microbial‐explicit soil organic carbon decomposition model (MESDM; X. Zhang et 272 
al., 2022b); (11) coupling with atmospheric dry deposition of air pollutant (Chang et al., 2022); 273 
(12) enhanced permafrost soil representations (X. Li et al., 2020); (13) spring wheat crop dynamics 274 
(Zhang et al., 2023); (14) new treatment of thermal roughness length (Chen and Zhang 2009); (15) 275 
the Gecros crop model (Ingwersen et al., 2018; Warrach-Sagi et al., 2022); (16) a 1-D dual-276 
permeability flow model (based on the mixed-form Richards’ equation) representing preferential 277 
flow through variably-saturated soil with surface ponding being developed in the University of 278 
Arizona. 279 
 280 
2.6 Noah-MP multi-physics options 281 
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 282 
One unique feature and advantage of Noah-MP is the inclusion of multiple physics options for 283 
different land processes for testing competing hypotheses (i.e., options) and multi-model ensemble 284 
simulations. Table 1 summarizes all the available physics options in the community Noah-MP 285 
v5.0. In particular, compared to previous Noah-MP versions, we have separated the runoff options 286 
for surface and subsurface runoff processes, and added a new physics option for snow thermal 287 
conductivity calculations, which were originally hard-coded without the namelist control 288 
capability. More detailed descriptions of each physics option are provided in the technical 289 
documentation (He et al., 2023). 290 
 291 

Table 1. List of Noah-MP version 5.0 multi-physics options 292 

Noah-MP Physics Option Notes (* indicates the default option) 

OptDynamicVeg 
 

options for dynamic (prognostic) 
vegetation 

1 
off (use table LeafAreaIndex; use VegFrac = 
VegFracGreen from input) (Niu et al., 2011; Yang 
et al., 2011) 

2 on (together with OptStomataResistance = 1) 
(Dickinson et al., 1998; Niu and Yang, 2003) 

3 off (use table LeafAreaIndex; calculate VegFrac)   

4* off (use table LeafAreaIndex; use maximum 
vegetation fraction)  

5 on (use maximum vegetation fraction) 
6 on (use VegFrac = VegFracGreen from input) 

7 off (use input LeafAreaIndex; use VegFrac = 
VegFracGreen from input) 

8 off (use input LeafAreaIndex; calculate VegFrac) 

9 off (use input LeafAreaIndex; use maximum 
vegetation fraction) 

OptRainSnowPartition 
 

options for partitioning precipitation 
into rainfall & snowfall 

1* Jordan (1991) scheme 

2 BATS: when TemperatureAirRefHeight < freezing 
point+2.2  (Yang and Dickinson, 1996) 

3 TemperatureAirRefHeight < freezing point (Niu et 
al., 2011) 

4 Use WRF microphysics output (Barlage et al., 2015) 
5 Use wet-bulb temperature (Wang et al., 2019) 

OptSoilWaterTranspiration 
 

options for soil moisture factor for 
stomatal resistance & ET 

1* Noah (soil moisture) (Ek et al., 2003) 
2 CLM (matric potential) (Oleson et al., 2004) 

3 SSiB (matric potential) (Xue et al., 1991) 

OptGroundResistanceEvap 
 

options for ground resistent to 
evaporation/sublimation 

1* Sakaguchi and Zeng (2009) scheme 
2 Sellers (1992) scheme 
3 adjusted Sellers (1992) for wet soil 

4 Sakaguchi and Zeng (2009) for non-snow; rsurf = 
rsurf_snow for snow (set in NoahmpTable.TBL) 

OptSurfaceDrag 
 

options for surface layer 
drag/exchange coefficient 

1* Monin-Obukhov (M-O) Similarity Theory 
(Brutsaert, 1982) 

2 original Noah (Chen et al. 1997) 
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OptStomataResistance 
 

options for canopy stomatal resistance 

1* Ball-Berry scheme (Ball et al., 1987; Bonan, 1996) 

2 Jarvis scheme (Jarvis, 1976) 

OptSnowAlbedo 
 

options for ground snow surface 
albedo 

1* BATS snow albedo (Dickinson et al., 1993) 

2 CLASS snow albedo (Verseghy, 1991) 

OptCanopyRadiationTransfer 
 

options for canopy radiation transfer 

1 modified two-stream (gap = f (solar angle,3D 
structure, etc) < 1-VegFrac) (Niu and Yang, 2004) 

2 two-stream applied to grid-cell (gap=0) (Niu et al., 
2011) 

3* two-stream applied to vegetated fraction (gap=1-
VegFrac) (Dickinson, 1983; Sellers, 1985) 

OptSnowSoilTempTime 
 

options for snow/soil temperature 
time scheme (only layer 1) 

1* semi-implicit; flux top boundary condition (Niu et 
al., 2011) 

2 full implicit (original Noah); temperature top 
boundary condition (Ek et al., 2003) 

3 same as 1, but snow cover for skin temperature 
calculation (Niu et al., 2011) 

OptSnowThermConduct 
 

options for snow thermal conductivity 

1* Stieglitz scheme (Yen,1965) 
2 Anderson (1976) scheme 
3 Constant (Niu et al., 2011) 
4 Verseghy (1991) scheme 
5 Douvill scheme (Yen, 1981) 

OptSoilTemperatureBottom 
 

options for lower boundary condition 
of soil temperature 

1 
zero heat flux from bottom (DepthSoilTempBottom 
& TemperatureSoilBottom not used) (Niu et al., 
2011) 

2* 
TemperatureSoilBottom at DepthSoilTempBottom 
(8m) read from a file (original Noah) (Ek et al., 
2003) 

OptSoilSupercoolWater 
 

options for soil supercooled liquid 
water 

1* No iteration (Niu and Yang, 2006) 

2 Koren's iteration (Koren et al., 1999) 

OptRunoffSurface 
 

options for surface runoff 

1 TOPMODEL with groundwater (Niu et al., 2007) 

2 TOPMODEL with an equilibrium water table (Niu 
et al., 2005) 

3* Schaake scheme (original Noah) (Schaake et al., 
1996) 

4 BATS surface and subsurface runoff (Yang and 
Dickinson, 1996) 

5 Miguez-Macho & Fan (MMF) groundwater scheme 
(Fan et al., 2007; Miguez-Macho et al. 2007) 

6 Variable Infiltration Capacity Model surface runoff 
scheme (Liang et al., 1994) 

7 Xinanjiang Infiltration and surface runoff scheme 
(Jayawardena and Zhou, 2000) 

8 Dynamic VIC surface runoff scheme (Liang and 
Xie, 2003) 
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OptRunoffSubsurface 
 

options for drainage & subsurface 
runoff 

1~8 

similar to runoff option, separated from original 
Noah-MP runoff option, currently tested & 
recommended the same option# as surface runoff 
(default) 

OptSoilPermeabilityFrozen 
 

options for frozen soil permeability 

1* linear effects, more permeable (Niu and Yang, 
2006) 

2 nonlinear effects, less permeable (Koren et al., 
1999) 

OptDynVicInfiltration 
 

options for infiltration in dynamic 
VIC runoff scheme 

1* Philip scheme (Liang and Xie, 2003) 
2 Green-Ampt scheme (Liang and Xie, 2003) 

3 Smith-Parlange scheme (Liang and Xie, 2003) 

OptTileDrainage 
 

options for tile drainage 
currently only tested & calibrated to 

work with runoff option=3 

0* No tile drainage 
1 on (simple scheme) (Valayamkunnath et al., 2022) 

2 on (Hooghoudt's scheme) (Valayamkunnath et al., 
2022) 

OptIrrigation 
 

options for irrigation 

0* No irrigation 
1 Irrigation on (Valayamkunnath et al., 2021) 

2 irrigation trigger based on crop season planting and 
harvesting dates (Valayamkunnath et al., 2021) 

3 irrigation trigger based on LeafAreaIndex threshold 
(Valayamkunnath et al., 2021) 

OptIrrigationMethod 
 

options for irrigation method, only 
works when OptIrrigation > 0 

0* method based on geo_em fractions 
 

1 sprinkler method (Valayamkunnath et al., 2021) 
2 micro/drip irrigation (Valayamkunnath et al., 2021) 
3 surface flooding (Valayamkunnath et al., 2021) 

OptCropModel 
 

options for crop model 

0* No crop model 

1 Liu, et al. (2016) crop scheme 

OptSoilProperty 
 

options for defining soil properties 

1* use input dominant soil texture 
2 use input soil texture that varies with depth 

3 use soil composition (sand, clay, orgm) and 
pedotransfer function 

4 use input soil properties 
OptPedotransfer 

 
options for pedotransfer functions, 

only works when OptSoilProperty=3 

1* Saxton and Rawls (2006) scheme 

OptGlacierTreatment 
 

options for glacier treatment 

1* include phase change of glacier ice 

2 Glacier ice treatment more like original Noah 

 293 
 294 
3. Enhanced model modularization in Noah-MP version 5.0 295 
 296 
In the Noah-MP v5.0, we have modularized all model physics by separating and re-organizing 297 
each code subroutine into individual process-level Fortran module file with new descriptive, self-298 
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explanatory module and subroutine names. As such, each model physics or scheme has its own 299 
separate module. Figure 4 shows the calling tree of the modularized Noah-MP main model physics 300 
workflow. Figures 5-7 show the calling tree of the modularized energy, water, and carbon 301 
processes, respectively. Compared to the previous Noah-MP versions that have a single lengthy 302 
source file lumping together all model subroutines with non-self-explanatory names, the highly-303 
modularized model structure of the Noah-MP v5.0 provides a much more clear, neat, and 304 
organized way for users and developers to understand and follow the model logics and physics. 305 
These new modules use consistent coding format and standards, offering convenience for code 306 
reading, writing, and debugging. The highly-modularized model structure also allows external 307 
community weather/climate/hydrology models to easily adopt specific Noah-MP physical 308 
processes/schemes as independent process-level module files and implement them for testing and 309 
coupling. 310 
 311 
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 312 
Figure 4. The modularized Noah-MP main physics calling tree in version 5.0. Blue boxes indicate 313 
water processes, orange boxes indicate energy processes, and green boxes indicate biochemical 314 
processes. The direction of arrows indicates processes calling sequence and information flow. Note 315 
that the 1-D glacier column model has similar structures as the main non-glacier model, except 316 
that the vegetation-related processes are removed and soil is replaced by glacier ice.  317 
 318 
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 319 
Figure 5. The modularized Noah-MP energy processes calling tree in version 5.0. Note that the 320 
glacier model has similar structures except that the vegetation-related processes are removed and 321 
soil is replaced by glacier ice.  322 
 323 

Subroutine:  NoahmpMain
Module: NoahmpMainMod.F90

Subroutine:  PhenologyMain
Module: PhenologyMainMod.F90

Phenology
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 324 
Figure 6. The modularized Noah-MP water processes calling tree in version 5.0. Note that the 325 
glacier model has similar structures except that it only includes the snowpack processes and soil 326 
is replaced by glacier ice.  327 
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 328 

 329 
Figure 7. The modularized Noah-MP biochemical processes calling tree in version 5.0. Note that 330 
currently the Noah-MP v5.0 only includes carbon processes. Note that the CropPhotosynthesis 331 
module is not used currently to avoid inconsistency with the photosynthesis calculations from the 332 
canopy stomatal resistance module. 333 
 334 
 335 
4. Enhanced data structure in Noah-MP version 5.0 336 
 337 
In the Noah-MP v5.0, we have enhanced data structure with new hierarchical data types, which 338 
allows a more efficient and convenient control of model variables and substantially simplifies code 339 
structures and calling interface (Section 5). Figure 8 summarizes the new Noah-MP data type 340 
hierarchy and gives some examples of model variable expression based on the hierarchical data 341 
types. Specifically, we have defined an overarching “noahmp” main data type, which includes 342 
“forcing” for atmospheric forcing variable type, “config” for model configuration variable type 343 
with “domain” and “namelist” subtypes, “energy” for energy-related variable type, “water” for 344 
water-related variable type, and “biochem” for biochemistry-related variable type. The “energy”, 345 
“water”, and “biochem” types are further divided into “flux”, “state”, and “param” subtypes for 346 
flux, state, and parameter variables. This hierarchical data structure provides a better organization 347 
and management of model variables and their physical attributes. We have also optimized the 348 
variable declaration and initialization structures based on those new data types and consistent 349 
coding format and standard. In addition, we have re-defined many key local model state, flux, and 350 
parameter variables in the base code to be global variables in the refactored code, which allows a 351 
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better track and management of these variables for diagnosis, transfer between Noah-MP and host 352 
models, and coupling with data assimilation systems. 353 
 354 
 355 

 356 
Figure 8. (a) The new hierarchical “noahmp” data types in the Noah-MP version 5.0. (b) Examples 357 
of model variable expression using the hierarchical data types. 358 
 359 
 360 
5. Enhanced code structure in Noah-MP version 5.0 361 
 362 
Leveraging the model modularization (Section 3) and new data types (Section 4) in the Noah-MP 363 
v5.0, we have further refined the code structure and subroutine interface. A graphical 364 
representation of the refactored Noah-MP subroutine interface is depicted in Figure 9. Specifically, 365 
the refined subroutine interface only requires passing the “noahmp” data type instead of each 366 
individual variable names, because all relevant variables are defined and included in the “noahmp” 367 
data type. This significantly simplifies the code structure with much more concise and neat 368 
subroutine calls. The refined subroutine interface also makes future model development and code 369 
changes simpler, more efficient, and less error-prone. For instance, if users want to add/remove a 370 
variable for a specific physical scheme, they only need to edit as few as 3 module files: variable 371 
type definition module, variable initialization module, the target physical scheme module, and if 372 
needed, the variable input/output module. There is no need to go through and change all the 373 
subroutine calls and interfaces that use the target variable. 374 
 375 

(a) (b)
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 376 
Figure 9. Demonstration of refactored subroutine interface and code structure in the Noah-MP 377 
version 5.0. 378 
 379 
 380 
6. Enhanced variable naming in Noah-MP version 5.0 381 
 382 
In the Noah-MP v5.0, we have also renamed all the model variables using a more descriptive and 383 
self-explanatory naming standard, which clarifies the physical meaning of variables directly by 384 
their names and hence substantially lowers the hurdles of reading and understanding the code and 385 
model physics. The original variable names in the previous Noah-MP versions are hard to 386 
understand, in which case users have to check back and forth the variable definition to know their 387 
physical meaning. For instance, the original variable name for canopy intercepted total water is 388 
“CMC”, while the new name is “CanopyTotalWater”. Table 2 gives more examples of the 389 
enhanced variable naming in Noah-MP v5.0. A detailed Noah-MP variable glossary listing 390 
variables’ original and new names, physical meaning, data type, and unit is provided in the 391 
technical documentation (He et al., 2023) and the community Noah-MP GitHub repository. 392 
 393 
 394 
 395 

module NoahmpMainMod

contains

subroutine NoahmpMain(noahmp)

type(noahmp_type), intent(inout) :: noahmp

call ProcessAtmosForcing(noahmp)

call PhenologyMain(noahmp)
………. ………. …………
………. ………. …………

end subroutineNoahmpMain(noahmp)

end module NoahmpMainMod

Original Noah-MP source code Refactored Noah-MP source code

module AtmosForcingMod

contains

subroutine ProcessAtmosForcing(noahmp)
type(noahmp_type), intent(inout) :: noahmp

………. ………. …………
………. ………. …………

end subroutine ProcessAtmosForcing

end module AtmosForcingMod

Individual process-level modules

END MODULEMODULE_SF_NOAHMPLSM

Single Fortran file of >12,000 lines of code

………. ………. …………
………. ………. …………

CALL SUBROUTINE PHENOLOGY (parameters,VEGTYP,          &              
SNOWH, TV, LAT, YEARLEN, JULIAN,  & 
LAI, SAI, TROOT, ELAI, ESAI, IGS, PGS)

MODULE MODULE_SF_NOAHMPLSM

CONTAINS

SUBROUTINE NOAHMP_SFLX (parameters, ILOC, JLOC, LAT,  &
YEARLEN , JULIAN, COSZ, DT, DX, DZ8W, &
NSOIL, ZSOIL, NSNOW, SHDFAC, SHDMAX,   &
VEGTYP, ICE, IST, CROPTYPE, SMCEQ,         & 
….,  …., …., …., &
PAHG, PAHB, PAH, LAISUN, LAISHA, RB)

CALL SUBROUTINE ATM (parameters, SFCPRS, SFCTMP, Q2, &
PRCPCONV, PRCPNONC, PRCPSHCV,   & 
PRCPSNOW, PRCPGRPL, PRCPHAIL, &
….,  …., …., …., &
RAIN, SNOW, FP, FPICE, PRCP)

………. ………. …………
………. ………. …………

END SUBROUTINE NOAHMP_SFLX 

SUBROUTINE ATM (parameters, SFCPRS, SFCTMP, Q2, &
PRCPCONV, PRCPNONC, PRCPSHCV,   & 
PRCPSNOW, PRCPGRPL, PRCPHAIL, &
….,  …., …., …., &
RAIN, SNOW, FP, FPICE, PRCP)

END SUBROUTINE ATM

………. ………. …………
………. ………. …………
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Table 2. Examples of new variable names based on a more descriptive and self-explanatory 396 
naming standard in the Noah-MP version 5.0, compared with the original names. 397 

Variable physical meaning/definition New name Original name Variable 
Type Unit 

wetted or snowed fraction of canopy CanopyWetFrac FWET Real - 
canopy intercepted liquid water CanopyLiqWater CANLIQ Real mm 
canopy intercepted ice CanopyIce CANICE Real mm 
canopy intercepted total water CanopyTotalWater CMC Real mm 
canopy capacity for snow interception CanopyIceMax MAXSNO Real mm 
canopy capacity for liquid water 
interception CanopyLiqWaterMax MAXLIQ Real mm 

ice fraction in snow layers SnowIceFrac FICE_SNOW Real - 
bulk density of snowfall SnowfallDensity BDFALL Real kg/m3 
snow cover fraction SnowCoverFrac FSNO Real - 
snow layer ice SnowIce SNICE Real mm 
snow layer liquid water SnowLiqWater SNLIQ Real mm 

 398 
 399 
7. Enhanced coupling structure with host models in Noah-MP version 5.0 400 
 401 
We have further updated the Noah-MP driver and interface coupled with potential host 402 
weather/climate/hydrology models. Figure 10 summarizes the interface and coupling structures in 403 
the Noah-MP v5.0. Specifically, the coupling interface includes: (1) defining a 2-D (for structured 404 
grid mesh) or vectorized (for unstructured grid mesh) Noah-MP input/output data type 405 
“NoahmpIO” to facilitate the input/output communication between host models and the core 406 
Noah-MP 1-D column model (“noahmp” data type); (2) the initialization of the “NoahmpIO” 407 
variables with values from host models; (3) the main Noah-MP driver that calls the core 1-D 408 
column model and transfers between the “NoahmpIO” and “noahmp” variables as part of 409 
input/output processes. Currently, the coupling of the Noah-MP v5.0 with the NCAR/HRLDAS 410 
system has been successfully completed. The coupling of Noah-MP v5.0 with the NASA/LIS 411 
system and the WRF-Hydro/NWM system is on-going. We also plan to couple the Noah-MP v5.0 412 
with other host models in the future (Section 9), such as WRF, MPAS, and NOAA/UFS. Because 413 
of the enhanced coupling interface and structure in Noah-MP v5.0, we will only need to slightly 414 
adapt the coupling interface and driver to allow it to work with different host models. We will 415 
manage and maintain the interface and driver code for each host model in the community Noah-416 
MP GitHub repository to ensure the compatibility between host models and updated core Noah-417 
MP source code in the future, which will allow smooth transition and seamless synthesizing of 418 
Noah-MP updates in host models. 419 
 420 
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 421 
Figure 10. Workflow of the Noah-MP v5.0 driver and interface structures to couple with various 422 
host weather/climate/hydrology models. 423 
 424 
 425 
8. Benchmarking for Noah-MP version 5.0 426 
 427 
To benchmark the functionality, reproducibility, and computational efficiency of the modernized 428 
Noah-MP code, we have conducted a series of hierarchical test simulations during the course of 429 
Noah-MP refactoring. Specifically, after refactoring each major Noah-MP model 430 
component/physics (e.g., water, energy, carbon, etc.) listed in Figure 4, we built simple driver 431 
modules to conduct benchmark simulations using each of these model component/physics to test 432 
and ensure the bit-for-bit consistency between the refactored code and base code for all Noah-MP 433 
physics options. Here is an example for the refactored Noah-MP water component model we built 434 
for benchmarking during the course of refactoring: 435 
https://github.com/cenlinhe/NoahMP_refactor/tree/water_refactor, which was used to test the bit-436 
for-bit consistency between the refactored and base Noah-MP water component codes. 437 
 438 
After we completed the entire model refactoring, we have conducted another set of test simulations 439 
using the completed Noah-MP v5.0 to ensure its bit-for-bit consistency with the base model code 440 
for all different combinations of physics options as well as to benchmark its computational 441 
efficiency. These tests were conducted via 1-year point-scale SNOTEL 804-site simulations, 1-442 
year 12-km gridded continental US simulations, and 1-year 1-km gridded simulations over central 443 
US agricultural regions (particularly to test individual and combination of physics options related 444 
to crop, irrigation, tile drainage, and groundwater). The tests all showed exactly the same results 445 
between the refactored and base simulations, with similar computational efficiency. 446 
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 447 
In addition, in order to provide the community with reference Noah-MP v5.0 model datasets for 448 
future comparison and assessment, we have conducted 3 sets of benchmark simulations, including 449 
21-year (2000-2020) 12-km continental US simulations driven by the NLDAS-2 atmospheric 450 
forcings (Xia et al., 2012), 10-year (2009-2018) point-scale SNOTEL 804-site simulations over 451 
the western US driven by observed precipitation and temperature as well as other NLDAS-2 452 
atmospheric forcings downscaled to 90-m spatial resolution (He et al., 2021), and 1-year (2000) 453 
4-km dynamic crop simulations over the U.S. Corn Belt region driven by the convection-454 
permitting WRF modeling (Zhang et al., 2020). We have archived all the atmospheric forcing 455 
datasets, model setup input datasets, and model output datasets for these benchmark simulations. 456 
Figure 11 shows an example of the model output. Note that a comprehensive evaluation of the 457 
simulation results is outside the scope of this model description paper and will be done in the next 458 
step. 459 
 460 

 461 
Figure 11. Demonstration of 20-year (2001-2020) annual mean (a) 2-m temperature, (b) snow 462 
cover fraction, (c) snow water equivalent, and (d) top 10-cm soil moisture from the Noah-MP 463 
version 5.0 12-km continental US benchmark simulations driven by the NLDAS-2 atmospheric 464 
forcings. 465 
 466 
9. Model code and technical documentation for Noah-MP version 5.0 467 
 468 
We archive, manage, and maintain the Noah-MP v5.0 (together with previous code versions) at 469 
the NCAR community Noah-MP GitHub repository (https://github.com/NCAR/noahmp) for 470 
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public access. We have also created a comprehensive technical documentation (He et al., 2023) 471 
for the Noah-MP v5.0, available at http://dx.doi.org/10.5065/ew8g-yr95, which provides detailed 472 
descriptions of model physics and formulations.  473 
 474 
10. Conclusions and future plans 475 
 476 
In this study, we modernized the widely-used state-of-the-art Noah-MP LSM by adopting modern 477 
Fortran code and data structures and standards, which substantially enhances the model modularity, 478 
interoperability, and applicability. The modernized Noah-MP has been released as the model 479 
version 5.0, which includes the following key features: (1) enhanced modularization and 480 
interoperability by re-organizing model physics into individual process-level Fortran module files, 481 
(2) enhanced data structure with new hierarchical data types and optimized variable declaration 482 
and initialization structures, (3) enhanced code structure and calling workflow by leveraging the 483 
new data structure and modularization, (4) enhanced (descriptive and self-explanatory) model 484 
variable naming standard, and (5) enhanced driver and interface structure to couple with host 485 
weather/climate/hydrology models. The base code used for modernization is the Noah-MP version 486 
4.5 (released in December 2022), and the modernization effort does not change model physics. In 487 
addition, we have created a comprehensive technical documentation (He et al., 2023) of the Noah-488 
MP v5.0, and a set of benchmark simulation datasets. The Noah-MP v5.0 has been coupled to the 489 
NCAR/HRLDAS system. Currently, the work of coupling the Noah-MP v5.0 with the latest 490 
NASA/LIS system and the WRF-Hydro/NWM system is on-going. In the future, we also plan to 491 
couple the Noah-MP v5.0 to other weather and climate models, including WRF, MPAS, and 492 
NOAA/UFS. Overall, the modernized open-source community Noah-MP model will allow a more 493 
efficient and convenient process for future model developments and applications. 494 
 495 
 496 
Code and data availability 497 
1. The Noah-MP model code (https://doi.org/10.5281/zenodo.7901855) is available at 498 
https://github.com/NCAR/noahmp 499 
2. The coupled HRLDAS/Noah-MP model code (https://doi.org/10.5281/zenodo.7901867) is 500 
available at https://github.com/NCAR/hrldas 501 
3. The Noah-MP technical documentation is available at http://dx.doi.org/10.5065/ew8g-yr95 502 
4. The benchmark datasets are stored in the NCAR high-performance supercomputer (HPC) 503 
campaign storage file system (data path: /glade/campaign/ral/hap/cenlinhe/NoahMP_benchmark/, 504 
see details about the storage system at https://arc.ucar.edu/knowledge_base/70549621) and can be 505 
provided by the corresponding author upon request, due to the extremely large data size (8.8 TB). 506 
 507 
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