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Abstract.

A Pre–deployment calibration and a field validation of two low–cost (LC) stations equipped with O3 and NO2 metal oxide

sensors were addressed. Pre–deployment calibration was performed after developing and implementing a comprehensive cal-

ibration framework including several supervised learning models, such as univariate linear and non–linear algorithms, as well

as multiple linear and non–linear algorithms. Univariate linear models included linear and robust regression, while univari-5

ate non–linear models included support vector machine, random forest, and gradient boosting. Multiple models consisted of

both parametric and non–parametric algorithms. Internal temperature, relative humidity and gaseous interference compounds

proved to be the most suitable predictors for multiple models, as they helped effectively mitigate the impact of environmental

conditions and pollutant cross–sensitivity on sensor accuracy. A feature analysis, implementing Dominance analysis, feature

permutations and, SHapley Additive exPlanations method, was also performed to provide further insight into the role played10

by each individual predictor and its impact on sensor performances. This study demonstrated that while multiple random forest

(MRF) returned higher accuracy than multiple linear regression (MLR), it did not accurately represent physical models beyond

the Pre–deployment calibration dataset, so that a linear approach may overall be a more suitable solution. Furthermore, as well

as being less computationally demanding and generally more suitable for non–experts, parametric models such as MLR have a

defined equation that also includes a few parameters, which allows easy adjustments for possible changes over time. Thus, drift15

correction or periodic automatable recalibration operations can be easily scheduled, which is particularly relevant for NO2

and O3 metal oxide sensors: as demonstrated in this study, they performed well with the same linear model form, but required

unique parameter values due to inter–sensor variability.

1 Introduction

Low–cost (LC) air quality sensors are gaining more and more interest as they can provide near real–time observations with20

high spatial and temporal resolution. Their observations can be integrated into the current official regulatory networks, usually
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monitoring air quality at lower space and time resolution, thus providing useful information to support policymakers and

stakeholders in understanding air pollution dynamics (Brilli et al., 2021; Morawska et al., 2018). Dramatic advances in LC

sensor technology have been made since their very first applications for monitoring CO, NO2 and NOx (De Vito et al., 2009),

O3 (Williams et al., 2013), and particulate matter (Holstius et al., 2014). Among gaseous species, NO2 and O3 are the most25

commonly investigated since both short– and long–term exposure to these pollutants are associated with higher risk to human

health (Lin et al., 2018; Nuvolone et al., 2018; Meng et al., 2021; World Health Organization, 2021).

Typically, LC NO2 and O3 monitors use electrochemical (EC) or metal oxide sensors (MOS) (Narayana et al., 2022; Concas

et al., 2021; Idrees and Zheng, 2020), which produce an analog signal proportional to pollutant concentration.

In their simplest configuration, EC sensors are based on a redox reaction within an electrochemical cell in which the target30

analyte oxidizes the anode or the cathode (Gäbel et al., 2022). As for MOS sensors, they have an exposed metal oxide surface

film that changes its electrical properties when exposed to the target gas (Masson et al., 2015; Fine et al., 2010).

MOS sensors have a longer lifetime, can operate at higher temperatures and have a shorter response time and a wider

operating range than EC sensors. By contrast, EC sensors have a lower power consumption as they do not require powering an

electric heater, and are less impacted by high humidity levels (Narayana et al., 2022; Concas et al., 2021).35

Overall, to choose between MOS and EC sensors depends on the goals of the deployment. EC sensors should be preferred in

areas with steady temperatures and weather conditions (Concas et al., 2021), while MOS sensors are more suited for long–term

monitoring (Concas et al., 2021; Narayana et al., 2022; Burgués and Marco, 2018). LC sensors are affected by environmental

factors such as air temperature and relative humidity (Barcelo-Ordinas et al., 2019; Mueller et al., 2017; Mead et al., 2013) and

suffer from cross–sensitivity with other air pollutants (Rai et al., 2017; Bart et al., 2014), thus complicating robust measurement40

recovery. These issues depend on sensor characteristics such as the type of electrolyte, electrode, or semiconductor material

used (Spinelle et al., 2015). Unfortunately, the lack of information or inconsistency in data sheets from sensor manufacturers

makes it challenging to accurately interpret the readings (Narayana et al., 2022). As a result, these issues must be addressed in

the calibration process to ensure accuracy and reliability of LC field measurements.

Two main approaches to calibrating LC sensors exist (Spinelle et al., 2013): Pre–deployment and field calibration.45

Pre–deployment calibration is typically performed in a controlled environment where LC sensors are exposed to a gas of

known concentration in order to properly tune a calibration model (e.g., Claveau et al., 2022; Wei et al., 2018). Field calibration,

on the other hand, consists in co–locating LC sensors near reference (official) stations that provide measured concentrations

so as to develop a calibration model in real–world conditions (e.g., Spinelle et al., 2015). However, this approach may lead to

potential inaccuracies when the calibrated LC sensors are deployed on locations with varying air compositions and weather50

conditions (e.g., Spinelle et al., 2017; Aleixandre et al., 2013).

Both Pre–deployment and field calibration models are developed using a variety of mathematical methods, ranging from

simple univariate regression models to more advanced machine learning techniques (Aula et al., 2022). The latter include

various supervised learning techniques such as artificial neural networks (ANNs), random forest (RF), and support vector

regression (SVR) (e.g. Karagulian, 2023; Karagulian et al., 2019; Cordero et al., 2018). In addition, the use of covariates55

such as temperature and relative humidity, as well as interfering gasses as NO2, NO, and O3, can increase accuracy in the
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calibration process Concas et al. (2021); Peterson et al. (2017); Piedrahita et al. (2014) . To date, while accuracy of LC

calibration algorithms has been widely investigated, there is a lack of studies addressing crucial issues associated to these

techniques, such as: (i) transferability of field calibration beyond the training range (as highlighted Nowack et al., 2021; Zauli-

Sajani et al., 2021; De Vito et al., 2020; Esposito et al., 2018); (ii) Pre–deployment calibration complemented by a later field60

validation for EC and MOS sensors (as mentioned in Maag et al., 2018); (iii) the weight or importance of each feature included

in multiple calibration models, particularly for black box techniques that cannot rely on statistical inference techniques (as

mentioned in Sahu et al., 2021).

This study aims at addressing these issues by: (i) implementing a Pre–deployment calibration procedure for two LC stations

measuring NO2 and O3 concentrations; (ii) identifying the optimal calibration that results in the highest accuracy; (iii) per-65

forming a long–term (more than 1–year) field validation against a regulatory station located in a different site; (iv) critically

discussing transferability and scalability of the selected calibration model for multiple devices. These goals have been pursued

by using ten among parametric, non–parametric univariate and multiple algorithms. Additionally, the investigation focused on

delving deeper into the influence of internal temperature on LC sensors. To ensure comprehensive analysis, the covariate set for

the multiple models was expanded to incorporate other essential factors such as humidity and gaseous interference compounds.70

Furthermore, the study utilized model–agnostic techniques, including SHapley Additive exPlanations (SHAP, Lundberg and

Lee (2017)), to assess the model’s generalization ability in a field environment. While SHAP has been employed in previous

pollution–related studies (e.g., Wang et al., 2023; Chakraborty et al., 2022; Vega García and Aznarte, 2020), this research

provides an original contribution by applying SHAP specifically to MOS sensors. This application aims to provide both local

and global interpretations, resulting in a deeper understanding of the sensor’s behaviour on individual data points and gaining75

insights into its overall performance.

2 Materials and Methods

2.1 AIRQino low–cost stations

The study focuses on two AIRQino LC air quality monitoring stations (hereinafter AQ) developed by the Institute for BioE-

conomy of the National Research Council of Italy (IBE–CNR) in Florence (Italy), namely AQ1 and AQ2, equipped with MOS80

sensors to measure O3 and NO2 concentrations (Zaldei et al., 2017; Di Lonardo et al., 2014). AQ consists of an Arduino Shield

Compatible electronic board that integrates LC and high temporal resolution sensors (2–3 min data acquisition frequency) to

monitor environmental parameters and atmospheric pollutants such as relative humidity, internal and external temperature, CO,

CO2, O3, NO2, VOC, PM2.5, PM10. As for the atmospheric pollutants examined in this study (NO2 and O3), their concentra-

tions are collected by SGX Sensortec MOS sensors: MiCS–2714 for NO2 (Sensortech, a) and MiCS–2614 for O3(Sensortech,85

b). These sensors consist of a micro metal oxide semiconductor diaphragm, with an integrated heating resistor (temperature

ranges from 350 °C to 550 °C). The resistor–produced heat catalyses the reaction, which in turn affects the electrical resistance

of the oxide layer itself. After the initial pre–heating period, the sensor detects gas changes in time intervals below 2 seconds.

The output signal from the sensor is passed through an analog–to–digital converter (ADC) circuit with a 10 bit output. The
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ADC converts the analog signal to a digital value between 0 and 1023 counts. This signal in counts is the primary output90

provided by the sensors (raw data). External air temperature (extT) and relative humidity (RH) are measured by an AM2305

(Asair) sensor protruding from the device enclosure. Internal temperature (intT) of the enclosure is monitored by a DS18B20

sensor (Maxim Integrated) that is mounted directly on the electronic board . Sensors’ readings are collected by the onboard

microprocessor and sent to a PostgreSQL database via a general packet radio service (GPRS) connection.

2.2 Reference instruments95

During Pre–deployment calibration, reference pollutant concentrations were measured using two HORIBA instruments (HORIBA

Ltd, Ambient Air Pollution AP SERIES analyzers). HORIBA model APNA–370 is an ambient nitrogen oxide monitor based

on the chemiluminescence principle, allowing a continuous measurement of NO and NO2 concentrations. HORIBA model

APOA–370 was used to collect O3 concentrations based on a cross flow modulated ultraviolet absorption method (Figure 1).

Figure 1. Map highlighting the calibration and validation locations for AQ1 and AQ2 LC air quality monitoring stations in Tuscany, Italy. At

the calibration site (Florence), the HORIBA instruments used for calibrating the LC stations are shown, while at the validation site (Montale),

the LC stations are pictured as installed on the roof of the reference ARPAT station (Air Quality Station EoI Code : IT1553A).

2.3 Sensor calibration100

As detailed in Table S1 of the Supplementary material, Pre–deployment calibration of AQ1 and AQ2 stations against HORIBA

analyzers was performed at CNR–IBE headquarters in Florence, Italy (43°47’52” N, 11°11’ E, Figure 1). The AQ stations were

mounted on a dedicated outdoor rack, while the HORIBA instruments were placed indoors in a laboratory setting. For outdoor

air pollution sampling, approximately two–meter–long sampling probes were employed to collect outside air and channel it
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directly to each of the reference instruments. HORIBA returned measurements at 3 min resolution collected across a 73 day105

period (19 July 2017–30 September 2017). To ensure data validity, measurements associated with RH>99 % following Wang

et al. (2010) or classified as outliers by an interquartile range (IQR) method (Dekking et al., 2005) were removed from the

dataset, eventually resulting in 58949 valid records for NO2, and 59261 valid records for O3 concentrations. The workflow of

the Pre–deployment calibration process is shown in Figure 2.

Prior to implementing the calibration techniques, an exploratory data analysis (EDA) was conducted using the correlation110

matrix to identify important insights. The study further explored the potential generalizability of the relationship between MOS

O3 sensors and temperature, as highlighted in Spinelle et al. (2016), leveraging observations from the correlation matrix. The

core of the calibration framework consisted of a set of supervised learning algorithms previously evaluated in the literature,

falling in two categories: univariate and multiple models. The former are based on a single predictor (pollutant raw data), while

the latter include additional predictors. Both categories included linear and non–linear algorithms. During the training phase,115

the datasets containing both LC and reference measurements were divided into a training subset consisting of 67 % of the data

and a testing subset consisting of the remaining 33 %.

The suite of algorithms for univariate calibration linear methods included linear regression (Mijling et al., 2018; Maag et al.,

2016) and robust regressions (Cavaliere et al., 2018) while the non–linear approaches comprised support vector machine (Bigi

et al., 2018; Gu et al., 2018), random forest (Han et al., 2021; Zimmerman et al., 2018) and gradient boosting (Lin et al.,120

2018; Johnson et al., 2018). Multiple models, which considered temperature, humidity, and cross–sensitivity parameters for

prediction, consisted of both parametric models and non–parametric models (Gäbel et al., 2022; Sayahi et al., 2020; Spinelle

et al., 2017).

2.3.1 Univariate models

The suite of univariate algorithms included a total of ten models, falling in three main categories: (i) linear regression (SLR),125

(ii) non–linear regression (SNLR), and (iii) support vector machine (SVM). Five regression models are included in SLR:

simple linear regression (LR); polynomial regression of second (PLR2) and third (PLR3) degree; Huber regression (HBLR), a

robust regression technique to outliers that uses a different loss function rather than the traditional least–squares; and Cook’s

distance regression (CDLR, Cook (1977)) which summarizes how much all values in the regression model change when the i–th

observation is removed. Non–linear regression (SNLR) included parametric and non–parametric models. The former included130

power non–linear regression (PNLR) and logarithm regression (LNLR), which considers the estimation of coefficients through

the Levenberg–Marquardt algorithm. The latter included Random Forest (RF) and Gradient Boosting (GB). Random Forest

conducts optimal splitting of data samples into smaller sample sets, which then are fitted respectively along the tree paths, while

Gradient Boosting built an additive model based on gradient boosting decision trees and in each stage a regression tree was fit.

In the present calibration, the RF model used the mean square error as a fitting function in order to evaluate each decision split.135

Finally SVM included support vector regression using linear kernel (SVR) and radial basis function (RBF). In SVM, the kernel

allows to identify a hyperplane with maximum margin such that the maximum number of data points are within that margin.
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Figure 2. Workflow of the Pre–deployment calibration process performed in the work. The model abbreviations are also listed in the Ap-

pendix as Table A1.

For each non–parametric models the grid search method was used to optimize the default hyper parameter values (Pedregosa

et al., 2011; Smets et al., 2007).

2.3.2 Multiple models140

Multiple models included both linear (MLR) and non–linear models, the latter consisting of multiple random forest (MRF)

and multiple gradient boosting (MGB). While implementing an MLR model, a linear stepwise multi–regression analysis was

carried out by automatically generating all possible models starting from a list of explanatory variables. In the case of NO2 and

O3 sensors, the latter included internal temperature (intT), external temperature (extT) and relative humidity (RH). In order to

solely include statistically significant variables, thus excluding possible collinearity between them, the variance inflation factors145

(VIFs) were examined for each generated model. To refine the choice between internal and external temperature, a multiple

linear model was used that alternatively incorporated both temperatures, followed by a cross–validation. Once a subset of

significant explanatory variables was identified during multiple linear regresison (MLR) implementation, the multiple Random

Forest (MRF) and multiple Gradient Boosting (MGB) models were also applied: MGB was selected as Gradient Boosting is

the univariate model that improves the results obtained by the supervised machine learning model, while MRF was selected as150

being a model widely used in the literature (e.g., Bisignano et al., 2022; Bigi et al., 2018; Zimmerman et al., 2018). To compare
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the performance between models, specified metrics were evaluated such as the adjusted R–squared (AdjR2, Draper and Smith

(1998)). In Table S2, a concise summary of the initialization hyperparameters applied to the models is provided.

2.3.3 Multiple models interpretation

To gain a better understanding of the impact due to different predictors and an insightful interpretation of the multiple model re-155

sults, several analysis techniques have been applied, such as permutation feature importance (PFI, Breiman (2001)), dominance

analysis (DA, Azen and Budescu (2003)), and SHapley Additive exPlanations (SHAP, Lundberg and Lee (2017)) analysis.

PFI is a model inspection technique that measures the global variable importance by observing the effect of randomly

shuffling each explanatory variable. DA is a common procedure for identifying the relative importance of predictors in a linear

model. In this work, five different DA statistics were evaluated: (i) interactional dominance (IntD); (ii) individual dominance160

(ID); (iii) average partial dominance (APD); (iv) total dominance (TD); (v) percentage relative importance (PRI).

SHAP analysis is a model–agnostic approach based on the game theory that can be applied to any machine learning model

as a post hoc interpretation technique. According to the SHAP analysis, each machine learning model’s prediction, f(x), can

be represented as the sum of its computed SHAP values, plus a fixed base value, as shown in Eq. (1):

f(x) = Φ0 +

p∑
i=1

Φi (1)165

where Φ0 is the base value of the model, which represents the average prediction across all inputs, and Φi is the SHAP value

for feature i for the input x. Each Φi is computed as Eq. (2):

Φi =
∑

S⊆1,2,...,p\i

(p− |S| − 1)! · |S|!
p!

· [f(xS∪i)− f(xS)] (2)

where p is the total number of features, S is a subset of all features except for feature i, |S| is the number of features in

subset S, f(xS) is the model’s prediction for input x with features in subset S, and f(xS∪i) is the model’s prediction for input170

x with features in subset S and feature i included.

SHAP values are calculated for each feature and value present in the dataset, and they approximate the contribution to-

wards the output given by that data point. To compute SHAP values for different types of machine learning models, various

SHAP implementations are available. In this study, the SHAP Linear Explainer function was used for MLR predictors, while

the FastTreeSHAP explainer (Yang, 2021) was used for other models. Compared to the widely used TreeSHAP algorithm,175

FastTreeSHAP provides faster computation of feature importance values for tree–based models.

2.4 Field validation

To test Pre–deployment calibration models, the AQ stations were subject to a field validation based on hourly measurements

collected during 429 consecutive days (19 June 2018–22 August 2019) by a reference air quality station operated by the
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Tuscany Region Environmental Protection Agency (ARPAT). High resolution NO2 and O3 concentrations measured by the180

AQ stations over the same period were hourly averaged in order to be aligned to the reference data . Overall, datasets of valid

hourly records ranging 7383–9340 for NO2, and 7344–9303 for O3 concentrations, were used (Table S1). The reference air

quality station (EoI Code : IT1553A) was located at Montale, a small town in Tuscany located between the cities of Prato

and Pistoia (43°54’57” N, 11°00’26” E), and classified as a suburban background station (Figure 1). The ARPAT reference

station and the HORIBA APNA–370 analyzer used the same method for measuring NO2, while a different method (ultraviolet185

photometry) was used by ARPAT to measure O3.

2.5 Statistics and libraries

The performances of each AQ station during both Pre–deployment calibration and field validation were computed using var-

ious statistical measures, including Pearson correlation coefficient (r), coefficient of determination (R2), adjusted R–squared

(AdjR2), root mean squared error (RMSE), normalized RMSE (nRMSE), which takes into account the range of values by190

dividing the RMSE by the difference between the maximum and minimum values, mean absolute error (MAE), and mean

bias error (MBE). Variance impact factor (VIF) and Akaike information criterion (AIC) were also applied to discriminate

between MLR models. All calculations related to calibration procedure and analysis of performance of calibrated units are im-

plemented using Python Sklearn library (Pedregosa et al., 2011) and Python statsmodels module (Seabold and Perktold, 2010).

Finally, feature evaluation of MLR and MRF models was performed using python Dominance–Analysis library (Shekhar et al.,195

2019), SHAP library (Lundberg and Lee, 2022), FastTreeSHAP library (Yang, 2022), and ELI5 Permutation Importance library

(TeamHG-Memex, 2022).

3 Results

3.1 Exploratory data analysis

After applying the humidity threshold and IQR procedure, 2 % and 12 % of records were withdrawn from the initial datasets200

of AQ1 and AQ2 stations, respectively. The comparison between the resulting O3 and NO2 data and the HORIBA reference

concentrations is shown in Figure 3. Based on the analysis of Pearson’s correlation (Fig. S3), three patterns for both AQ

stations emerged as conforming to the existing literature. HORIBA NO2 and O3 had a negative Pearson’s r (rAQ1=-0.77,

rAQ2=-0.75), compatible with the chemical coupling of O3 and NOx=NO+NO2 (Han et al., 2011). AQ intT had a high

positive correlation with HORIBA O3 (rAQ1=0.79, rAQ2=0.80) compatible with the fact that high temperatures can increase205

the rate of O3 formation through photochemical reactions (Han et al., 2011). AQ RH had a high negative correlation with

HORIBA O3 (rAQ1=-0.75,rAQ2=-0.74), compatible with the fact that high relative humidity is generally associated with lower

O3 levels (Camalier et al., 2007). Moreover, as a result of the convective heat transfer equation, a strong positive correlation was

observed between intT and extT for each AQ (rAQ1,AQ2=1). On average, the temperature difference between intT and extT

remains relatively constant at around 8 °C. A visual representation of the difference between the two temperatures, plotted210
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against their mean, can be found in the Bland–Altman plots on Figure S4. No significant correlation was observed between

NO2 raw and either temperature or RH. Moderate positive associations were instead found between O3 raw and both intT

(rAQ1=0.55; rAQ2=0.55) and extT (rAQ1=0.52; rAQ2=0.53).

Figure 3. Scatter Plots of 3 min sampled AQ1 and AQ2 signals vs. HORIBA reference concentrations observed during Pre–deployment

calibration: O3(a); NO2(b).
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3.2 Univariate models

The results of the supervised linear (SLR), supervised non–linear (SNLR) and support vector machine (SVM) models applied215

for both AQ stations and pollutants are reported in Table 1. For both AQ stations, the best performances were found using the

GB model, with O3 concentrations generally better fitted than NO2 concentrations.

Table 1. Table 1. Statistics of the univariate regression models applied to the AQ1 and AQ2 stations. Note that for non–linear models (LNLR

and PNLR) R2 is not a useful metric, while it is for linear models that use polynomials to model curvature in the data (Spiess and Neumeyer,

2010)

.

SLR SNLR SVM

Pollutant AQ id Stat. LR PLR2 PLR3 CDLR HBLR LNLR PNLR RF GB SVR RBF

O3

AQ1

R2 0.81 0.81 0.82 0.81 0.81 0.00 – 0.82 0.82 0.81 0.70

RMSE 16.92 16.92 16.75 16.99 17.00 17.15 18.85 16.78 16.58 17.18 21.31

MAE 13.42 13.41 13.40 13.19 13.18 13.47 14.94 13.42 13.27 13.12 16.06

MBE -0.28 -0.28 -0.30 1.56 1.69 -0.33 -0.96 -0.18 -0.20 2.89 3.53

AQ2

R2 0.77 0.77 0.77 0.76 0.77 – – 0.77 0.78 0.76 0.60

RMSE 17.58 17.55 17.41 17.86 17.75 17.97 18.46 17.58 17.36 18.11 23.06

MAE 14.11 14.10 14.10 13.81 13.85 14.30 14.79 14.18 14.05 13.79 17.38

MBE 0.14 0.14 0.15 3.03 2.39 0.19 -0.48 0.24 0.14 4.17 3.55

NO2

AQ1

R2 0.34 0.34 0.34 0.32 0.33 – – 0.33 0.35 0.33 0.31

RMSE 14.22 14.18 14.16 14.40 14.28 14.51 14.46 14.35 14.14 14.35 14.50

MAE 10.91 10.84 10.82 10.77 10.79 11.20 11.22 10.84 10.75 10.76 10.81

MBE 0.09 0.11 0.11 2.26 1.21 0.16 -0.11 0.06 0.09 1.73 2.08

AQ2

R2 0.38 0.38 0.38 0.35 0.37 – – 0.36 0.38 0.36 0.32

RMSE 12.86 12.85 12.85 13.12 12.95 13.45 13.06 13.04 12.85 13.02 13.39

MAE 9.83 9.83 9.84 9.69 9.69 10.37 10.06 9.94 9.81 9.67 9.83

MBE -0.09 -0.09 -0.09 2.56 1.53 -0.05 -0.24 -0.05 -0.10 2.05 2.60

3.3 Multiple regression

EDA suggested that the inclusion in multiple regression models of both intT and extT may result in unstable results due to their

strong collinearity (rAQ1,AQ2=1). This was confirmed by the variance inflation factor (VIF) for the MLR model, which was220

higher than 5 when both variables were used (Table S5). To ensure consistent selection of the optimal temperature variable in

the model, cross–validation procedure was conducted on the calibration dataset for the MLR model, alternately including intT
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and extT in the covariate set. The results of 5–split cross–validation (Table 2) showed no significant differences using intT or

extT, whilst the use of intT provided a slightly higher mean accuracy and a lower mean RMSE.

Table 2. R2 and RMSE (µgm−3) values by covariate set including intT or extT variables of the cross–validation procedure applied to the

MLR model.

Covariate set (mean±SD)

AQ id Pollutant Stat. O3,NO2,intT,RH O3,NO2,extT,RH

AQ1 O3
R2 0.93±0.03 0.93±0.02

RMSE 9.52±2.51 9.55±2.10

AQ2 O3
R2 0.91±0.04 0.91±0.05

RMSE 9.52±2.86 9.72±2.85

AQ1 NO2
R2 0.57±0.21 0.56±0.24

RMSE 10.75±1.31 10.83±1.43

AQ2 NO2
R2 0.61±0.07 0.61±0.07

RMSE 9.87±2.07 9.89±2.02

Following the previous result, the final subset of predictors used for all models consisted of intT, RH, and raw signal from225

both sensors (Tables S6 and S7). Accordingly, for both stations, Eq.3 and Eq.4 were the best model formulas for O3 and NO2

sensors, respectively:

O3 = β0 +β1 ·NO2raw+β2 ·O3raw+β3 ·RH +β4 · intT (3)

NO2 = β0 +β1 ·NO2raw+β2 ·O3raw+β3 ·RH +β4 · intT (4)

The calibration coefficients achieved for the MLR model are reported in Table 3, while the scores of MLR, MGB and MRF230

model application are reported in Table 4.

Table 3. Statistics of the MLR model applied to the AQ1 and AQ2 stations. β0 are the intercepts and βi the calibration coefficients.

Coefficient Stat.

Pollutant AQ id β0 β1 β2 β3 β4 AdjR2

O3
AQ1 -180.76 -0.11 0.23 0.15 3.79 0.95

AQ2 -133.43 -0.16 0.14 0.03 3.58 0.95

NO2
AQ1 144.78 0.05 -0.14 -0.32 -0.93 0.69

AQ2 126.78 0.08 -0.10 -0.23 -0.87 0.69
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Overall, O3 concentrations were better fitted than NO2 concentrations, while MRF proved to be the finest model, generally

outperforming MGB and particularly MLR model.

Table 4. Statistics of the multiple regression models applied to the AQ1 and AQ2 stations.

Multiple models

Pollutant AQ id Stat. MLR MGB MRF

O3

AQ1

AdjR2 0.95 0.97 0.98

RMSE 8.62 7.30 6.04

MAE 6.30 5.40 4.31

MBE -0.10 -0.01 -0.01

AQ2

AdjR2 0.95 0.96 0.98

RMSE 8.58 6.86 5.51

MAE 6.50 5.17 4.05

MBE -0.03 -0.03 0.09

NO2

AQ1

AdjR2 0.69 0.80 0.86

RMSE 9.68 7.84 6.63

MAE 7.36 5.76 4.72

MBE -0.03 0.06 0.06

AQ2

AdjR2 0.69 0.80 0.85

RMSE 9.07 7.28 6.30

MAE 6.83 5.35 4.46

MBE -0.08 0.03 0.05
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3.4 Multiple models interpretation

In terms of traditional statistical inference techniques such as DA and PFI during MLR and MRF O3 calibration, the results235

primarily confirmed O3 raw and secondly intT as the most significant predictors (Table 5), which were consistent with those

reported by Masson et al. (2015). Overall, the DA analysis showed that O3 raw and intT were the most important features

for both stations and pollutants. In particular, for O3 concentrations O3 raw data resulted in the highest PRI value, explaining

38.96 % and 34.95 % of the R2 of the MLR model for AQ1 and AQ2, respectively, followed by intT (28.64 % and 31.51 %,

respectively). Also for NO2 concentrations, O3 raw data had the highest PRI value, explaining 55.18–51.13 % of the R2 of240

the MLR model, followed by NO2 raw data (23.78–26.79 %). In O3 MRF regression, O3 raw was the most important feature

for AQ1, while it was intT for AQ2. Conversely, in NO2 MRF regression, O3 raw was the most important feature for both AQ

stations followed by RH for AQ1 and by NO2 for AQ2. Notably, for both MLR and MRF models, O3 raw proved to be a more

important feature in NO2 calibration than in O3 calibration.

Table 5. DA statistics and PFI weights achieved for MLR and MRF models applied to the AQ1 and AQ2 stations.

DA PFI

Pollutant AQ id Variable IntD ID APD TD PRI Weight

O3

AQ1

O3 0.09 0.82 0.29 0.37 38.96 0.66 ± 0.01

intT 0.07 0.62 0.20 0.27 28.64 0.48 ± 0.01

RH 0.00 0.57 0.10 0.19 19.92 0.01 ± 0.00

NO2 0.02 0.26 0.10 0.12 12.47 0.16 ± 0.01

AQ2

O3 0.06 0.77 0.25 0.33 34.95 0.47 ± 0.01

intT 0.11 0.64 0.22 0.30 31.51 0.55 ± 0.01

RH 0.00 0.55 0.09 0.18 19.10 0.01 ± 0.00

NO2 0.03 0.31 0.10 0.14 14.44 0.20 ± 0.01

NO2

AQ1

O3 0.16 0.66 0.36 0.39 55.18 1.12 ± 0.02

NO2 0.02 0.34 0.15 0.17 23.78 0.21 ± 0.01

intT 0.02 0.20 0.06 0.08 11.93 0.18 ± 0.01

RH 0.03 0.18 0.02 0.06 9.11 0.22 ± 0.01

AQ2

O3 0.12 0.64 0.33 0.35 51.13 1.01 ± 0.04

NO2 0.04 0.38 0.16 0.19 26.79 0.19 ± 0.01

intT 0.03 0.21 0.06 0.09 13.34 0.18 ± 0.01

RH 0.03 0.18 0.02 0.06 8.74 0.16 ± 0.01

The challenge with traditional feature selection methods like DA and PFI is that they may produce misleading results when245

features are highly correlated or the data is noisy. These methods in fact do not consider interactions or correlations between
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predictors, and DA is only applicable to linear models. To overcome these limitations, the study utilized SHAP analysis. The

SHAP analysis was performed in order to gain insight into both global and local contribution of each feature at both individual

instance level and across the population, resulting in the SHAP bee swarm plots for MLR and MRF shown in Figures ?? and

4, respectively. The bee swarm plot ranks the input features from the highest to the lowest mean absolute SHAP values for the250

entire dataset. For each variable, every instance of the dataset appears as its own point. The points are distributed horizontally

along the x–axis according to their SHAP value. In places where there is a high density of SHAP values, the points are stacked

vertically. The color bar corresponds to the raw values of each feature for each instance, providing a visual representation of

the feature’s contribution to the outcome prediction.

Figure 4. Bee swarm plot showing the SHAP values calculated for each feature and instance using the linear explainer the MLR model for

O3 (a) and NO2 (b).
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Figure 5. Bee swarm plot showing the SHAP values calculated for each feature and instance using the fast tree explainer of the MRF model

for O3 (a) and NO2 (b).
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As for the MLR model for both AQ stations, high levels of both O3 raw and intT data had a strong and positive impact on O3255

output, as indicated by high and positive SHAP values (Fig. 4a), while high levels of NO2 raw data had a strong and positive

impact on NO2 output (Figure 4b). Herein, however, high levels of O3 raw and intT data had a greater impact on decreasing

the predicted values of NO2 than the raw data of NO2.

Also for the MRF model O3 raw data had a high influence on O3 predicted values (Fig. 6a): higher values of O3 raw data

increased O3 prediction, while lower values had a negative effect. This also applies to the NO2 output values (Fig. 6b), as260

higher values of O3 raw data decreased NO2 prediction and lower values had a positive effect. Herein, however, high or low

levels of NO2 raw had no significant influence on the prediction.The mean absolute SHAP values for all features of both MLR

and MRF models are reported in Figure S8.

In order to provide a local interpretability, a heatmap for the SHAP values of the NO2 MLR model was also elaborated

(Figure 6). The heatmap showed that lower model predictions f(x), computed using Eq.(1), were linked to a dark colour for265

O3 and a light colour for NO2 for both AQs. This suggested that O3 raw data had a more significant impact mostly on the lower

NO2 concentrations than NO2 raw itself had while the impact of NO2 raw data became significant at higher concentrations.

Figure 6. Heatmap of SHAP values of the NO2 MLR model for AQ1 (a) and AQ2 (b). The heatmap displays the contribution of each feature

to the model’s predictions, with positive contributions represented by dark–colored cells cells and negative contributions by light–colored

cells. Colour intensity denotes the magnitude of the contribution. The output of the model, f(x), is shown above the heatmap matrix, centred

around the explanation’s base value (φ0), and the global importance of each model input is shown in the bar plot on the right–hand side of

the plot. Observations have been ordered by the sum of the SHAP values over all features.
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3.5 Field validation

The scores of field validation involving the MLR and MRF calibrated models are summarized in Table 6. Model accuracy in

predicting O3 concentrations is confirmed to be higher than in predicting NO2 concentrations. In terms of Pearson’s r values,270

the MLR model outperforms the MRF model, as exhibiting r values (0.92–0.93 for O3 and 0.75–0.78 for NO2) higher than

MRF (0.81–0.76 for O3 and 0.76–0.65 for NO2), while the opposite applies in terms of standard deviation, as MRF returns

lower values than MLR. Notably, a significant difference by AQ station may be observed in MRF scores, while it is not the

case for MLR.

Taylor diagrams of the pre–deployment MLR and MRF calibrated models assessed against the ARPAT reference station for275

O3 (a) and NO2 (b) concentrations may be found in Figure S10, while weekly concentrations predicted by the models against

the reference station are given in Figure 7.

Table 6. Statistics of the MLR and MRF calibrated models assessed during the field validation procedure.

Pollutant AQ id Stat. MLR MRF

O3

AQ1

r 0.92 0.81

CRMSD 15.98 24.13

RMSE 16.52 29.08

MAE 12.96 22.22

MBE 4.20 16.23

AQ2

r 0.93 0.76

CRMSD 15.35 25.44

RMSE 17.88 42.98

MAE 13.99 36.24

MBE 9.17 34.64

NO2

AQ1

r 0.75 0.65

CRMSD 11.25 11.83

RMSE 12.64 13.48

MAE 9.40 9.97

MBE 5.75 6.46

AQ2

r 0.78 0.58

CRMSD 10.63 11.77

RMSE 10.65 11.94

MAE 7.72 9.12

MBE –0.69 2.03
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Figure 7. Trend analysis of 7–day average O3 and NO2 concentrations measured at the validation site by the calibrated AQ1 and AQ2

stations compared to the ARPAT reference station (17 June 2019–22 August 2019)

A seasonal analysis was also performed for MLR field validation (Table 7). O3 concentrations were well predicted across

all seasons: for both stations, the lowest nRMSE values were registered in the summers 2018 and 2019, and the highest in

winter 2018–2019. Notably, all statistical scores during the summer 2019 proved to be worse compared to the summer 2018,280

suggesting a likely drift in sensor accuracy after one year of deployment. As for NO2, the highest (and thus more meaningful)

concentrations were measured in winter 2018–2019. The NO2 scores during this period, however, confirm to be worse than

those affecting O3 during the period of highest O3 concentrations (i.e. summers 2018 and 2019). Furthermore, the scores of

seasonal analysis addressed for MRF field validation may be found in Table S12.
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Table 7. Seasonal analysis of MLR validation. Min–Max (µgm−3) represent the minimum and maximum concentrations measured by the

reference station, while intT (°C) the average internal temperature measured by the AQ stations.

Stat.

Year Season Pollutant AQ id min–max intT r nRMSE MAE MBE

2018

Summer

O3
AQ1 6–166 34.65 0.94 9.17 11.69 -5.17

AQ2 6–166 34.20 0.94 8.80 11.07 7.57

NO2
AQ1 1–47 34.62 0.69 35.74 14.04 13.83

AQ2 1–47 34.16 0.69 16.97 5.94 2.90

Autumn

O3
AQ1 2–146 28.06 0.93 13.24 15.08 11.35

AQ2 2–146 25.53 0.94 15.87 19.32 18.37

NO2
AQ1 1–62 28.07 0.73 19.66 8.62 5.57

AQ2 1–62 25.54 0.71 16.57 7.60 -2.40

Winter

O3
AQ1 2–65 16.60 0.93 17.94 8.07 0.11

AQ2 2–72 14.53 0.93 18.97 8.97 2.50

NO2
AQ1 3–88 16.59 0.71 21.01 13.97 10.44

AQ2 2–88 14.53 0.70 18.34 12.16 4.62

2019

Spring

O3
AQ1 2–132 22.41 0.86 13.32 13.98 3.36

AQ2 2–132 21.14 0.84 13.91 14.40 4.63

NO2
AQ1 2–63 22.32 0.74 13.18 6.10 -2.09

AQ2 2–63 21.09 0.67 16.19 7.31 -5.36

Summer

O3
AQ1 7–185 34.98 0.92 10.09 14.62 10.21

AQ2 7–185 32.29 0.92 10.68 15.98 12.71

NO2
AQ1 0–47 34.94 0.63 17.82 6.36 3.58

AQ2 0–47 32.25 0.68 13.68 5.01 -3.05

19



4 Discussion285

Current outcomes achieved for MOS O3 and NO2 pre–deployment calibration were generally consistent with those found in

the literature. MOS NO2 calibration exhibited low accuracy in linear univariate models, as demonstrated by Nowack et al.

(2021), and the MiCS–2710 NO2 sensor achieves a poor R2 (0.21) compared to the O3_3E1F EC sensor’s value (0.845), as

reported by Spinelle et al. (2015). In contrast, O3 sensor calibration returns high R2 values, suggesting limited potential for

improvement using more complex univariate techniques like SVR, RF, or GB, as noted in Sales-Lérida et al. (2021). For NO2290

calibration, incorporating multiple covariates like temperature, humidity, and gaseous interference compounds was instead

essential for better performance, as emphasized in studies cited in Karagulian et al. (2019).

This study confirmed that both linear and non–linear multiple models resulted in a slight improvement in O3 calibration

and a significant one in NO2 prediction compared to univariate models (Table 4). In particular, the MLR model improved

the accuracy of the simple LR by more than 14–18 % for O3 and 31–35 % for NO2. Notably, both MOS sensors performed295

well using the same model form, but due to inter–sensor variability, each sensor necessitated a distinct set of coefficients to

achieve optimal performance. Moreover, taking into account the observed multicollinearity issue between temperatures and the

slightly higher mean accuracy, as well as the lower mean RMSE observed when using the internal one (Table 2), the study drew

upon insights from existing literature to identify the most suitable set of covariates (e.g., Miech et al., 2021; Schmitz et al.,

2021). As a result, the inclusion of internal temperature as a significant factor was given priority, as it offers a more accurate300

representation of the operating conditions of the MOSs within the system. This approach was also adopted to tackle potential

challenges in the board’s analog–to–digital converter circuit.

However among the multiple models, MRF proved to be the most effective in the pre–deployment calibration (e.g., Bisignano

et al., 2022; Johnson et al., 2018). The SHAP methodology proved to be particularly insightful in gaining a comprehensive

understanding of the behaviour of both MLR and MRF models in the pre–deployment calibration dataset. It enabled the305

identification of the relationships between input features (O3, NO2, internal temperature, relative humidity) and the predicted

outcomes. Additionally, the use of SHAP allowed for the diagnosis of potential issues, such as the non–parametric models’

ability to extrapolate and predict pollution levels beyond the scope of the training calibration dataset (e.g., Nowack et al., 2021;

Malings et al., 2019). These issues were confirmed through the validation process against ARPAT official reference.

As evident from Table 7, the MLR calibration model outperformed the MRF approach, showcasing a better transferability310

across diverse spatial and temporal settings. Besides, even though the pre–deployment dataset mainly represented a summer

period, the physical patterns identified in the MLR model remained valid across seasons. Additionally, the SHAP heatmap

(Fig. 6) provided insightful evidence of the O3 sensor’s ability to handle the lower reading limit of the NO2 sensor for both

AQs. This observation is important, especially in conditions with low NO2 concentrations, where the NO2 sensor’s accuracy

in providing readings might be compromised.315

On the contrary, MRF did not align perfectly with the expected underlying physical model. Instead, it appeared to be

"true to the data" due to its ability to memorize specific patterns from the pre–deployment dataset, as emerged by the SHAP

analysis (Figure 6b). However, this characteristic posed challenges when trying to apply the model to unseen data, leading to

20



unsatisfactory performance in the field. This lack of generalization capability hindered the MRF model’s effectiveness when

faced with differing concentration regimes.320

The seasonal analyses presented in Table 7 provided an overview of these seasonal changes in the stability and biases of

AQ1 and AQ2 O3 and NO2 sensors for the application of the MLR calibration model after deployment. O3 pre–deployment

calibration showed good performance in all seasons and for both stations the lowest nRMSE value was registered in summer

2018 and in summer 2019 and the highest value of nRMSE was recorded in winter 2018–2019. The decline in performance

during the winter period was minimal, despite the fact that the pre–deployment calibration was mainly performed in the325

summer. Furthermore, the comparison of the summer period of 2018 and 2019 showed a decrease of 2% in nRMSE for both

AQs and pollutants (O3 and NO2). The decrease in nRMSE for O3 was accompanied by an increase in the magnitude of MAE

and MBE, pointing towards a possible linear drift in O3 sensor readings after a year of use. Conversely, for pre–deployment

calibration of NO2, a decrease in MBE was observed. The decrease in MBE for NO2 and the prominent role of O3 raw

readings and its negative impact on prediction, as identified through feature importance analysis of the pre–deployment MLR330

model, further reinforced the idea of a linear drift in O3 sensor readings. Similarly, the pattern of lowest and highest nRMSE

values for O3 validation remained consistent also for the MRF model, being the lowest in the summer of 2018 and 2019 and

the highest in the winter of 2018–2019 (Table S12). Notably, AQ1 outperforms AQ2 in both models; however, as mentioned

earlier, the differences in nRMSE values between the MLR and MRF models were quite significant.

5 Conclusions and Perspective335

In this study, the pre–deployment calibration and field validation of two low–cost (LC) stations named ’AIRQino,’ developed

by IBE–CNR in Florence (Italy), were addressed. The stations were equipped with O3 and NO2 MOS sensors, as well as

meteorological sensors. Pre–deployment calibration was performed after developing and implementing a comprehensive cal-

ibration framework, consisting of several among parametric, non–parametric univariate and multiple algorithms, that allowed

to identify the optimal calibration pathway. Ultimately, this resulted in robust LC performances outside the training conditions340

and the ability for easy adjustments to cope with changes in sensor performance over time. While selecting the most suitable

LC calibration models, necessarily going beyond mere accuracy, this study primarily recommends to: (i) include multiple co-

variates, such as internal (rather than external) temperature, relative humidity, and gaseous interference compounds, into the

multiple regression models; (ii) analyze the importance of the features used in the multiple models to disclose their role when

the calibrated LC stations are operated under field conditions rather than in a controlled environment.345

As a novelty applied to LC MOS sensor calibration, the SHapley Additive exPlanations (SHAP) method was used to provide

further insight into the role played by model individual predictors and their global and local impact on the overall LC sensor

performances. This method was also used to hypothesize the model’s capability to accurately describe conditions beyond the

pre–deployment calibration period.

This study confirmed that machine learning models, such as MRF, can effectively calibrate LC sensors and mitigate the impact350

of environmental conditions and pollutant cross–sensitivity. However, while the MRF model demonstrated higher accuracy
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than MLR during pre–deployment calibration, it faced challenges in accurately representing physical models and struggled to

generalize on the field validation dataset. Furthermore, as well as being less computationally demanding and generally more

suitable for non–experts, parametric models such as MLR have a defined equation that also includes a few parameters, which

allows – when needed – easy adjustments for possible changes over time. Thus, drift correction or periodic automatable re-355

calibration operations can be readily scheduled, making parametric models advantageous. This aspect is particularly relevant

for NO2 and O3 MOS sensors, as demonstrated in this study. Both sensors performed well with the same linear model form,

requiring unique parameter values due to inter–sensor variability.

A limitation of the present work is that the LC stations have been calibrated during a period not particularly long (73 days)

and a typically summer one, thus when pollution levels are generally meaningful for O3, but they are not for NO2 concentra-360

tions. Indeed, conducting a pre–deployment calibration during a winter period, when NO2 concentrations are typically higher,

would be a valuable addition to the study. This step would provide a more comprehensive understanding of the AQs validation

performance under varying pollution conditions and help address the limitation of the current calibration period biased towards

summer data. Moreover, conducting a similar validation outside of Italy, in regions with differing pollution and meteorological

conditions would be of great interest. For this purpose, in the ongoing activity, the AIRQino LC stations are planned to be365

deployed outside Italy, such as in Nice and Aix–en–Provence (France), Barcelona (Spain), Budapest (Hungary), Tirana (Alba-

nia), and Niamey (Niger).

Furthermore, in the future, a new sensor for monitoring NO could hopefully be integrated into the LC stations and validated.

As such, the combined monitoring of NO, NO2 and O3 concentrations and their daily and seasonal variability would allow a

comprehensive pattern of the oxidant capacity of atmosphere, particularly effective in southern Mediterranean countries such370

as Italy (Pancholi et al., 2018). In addition, once the AQ VOC sensor will be validated, it will enable the monitoring of all

O3 precursors (VOC and NOx). This comprehensive monitoring, combined with the application of SHapley Additive exPla-

nations (SHAP) method, will lead to a full characterization of photochemical pollution in various areas of interest, including

urban, sub–urban, or rural regions. Moreover, portability of LC sensors makes them ideal devices for filling knowledge gaps in

regions that are difficult to access such as the open sea. Mounted on buoys or ships, for example, LC sensors could collect the375

high O3 levels that typically occur over these areas in summer due to high solar activity and rather low mixing height combined

with a lack of O3–consuming NO emissions.
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Appendix A

Table A1. Nomenclature

APD Average partial dominance LC Low–cost RBF Radial basis function

AQ AIRQino LNLR Logarithm regression RF Random Forest

CDLR Cook’s distance regression LR Linear regression RH Relative humidity

DA Dominance Analysis MGB Multiple gradient boosting SHAP SHapley Additive exPlanations

EC Electrochemical MLR Multiple linear regression SLR Supervised linear regression

EDA Exploratory data analysis MOS Metal oxide sensors SNLR Supervised nonlinear regression

extT External Temperature MRF Multiple random forest SVM Support vector machine

GB Gradient Boosting PFI Permutation feature importance SVR Support vector regression

HBLR Huber regression PLR2 Polynomial regression of second degree TD Total dominance

ID Individual dominance PLR3 Polynomial regression of third degree VIF Variance impact factor

IntD Interactional dominance PNLR Power nonlinear regression

intT Internal temperature PRI Percentage relative importance

Code and data availability. All data (HORIBA reference data, AIRQinos raw signal data , ARPAT validation data), and codes (Jupyter

notebook) to recreate the results discussed here are provided online at https://doi.org/10.5281/zenodo.7826791 (Cavaliere, 2023)380
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