
We would like to thank the reviewers for the constructive comments. We have tried to
address these comments in the attached response document, in the manuscript and in the
code. Reviewer comments are reproduced in black, our responses are in blue.

Reviewer 1

Overall, this effectively communicates the full pipeline of data collection, calibration, and
validation of NO2 and O3 low-cost sensors. The authors have shown a clear commitment to
transparent science and carefully applied data science principles while staying relevant to
the domain of atmospheric science. Importantly, rather than just fitting a plethora of models,
the overall interpretability of features is investigated – including how the relevance of
features varies across different meteorological and pollutant loading regimes over the course
of a relatively long timeline. However, this paper suffers from several structural weaknesses.
It overstates the novelty of applying SHAP and generally should cite more recent literature
throughout. Furthermore, the novelty of exploring feature relevance is somewhat lost in the
acronym dense model performance metrics – most of which are already well characterized
in literature. After restructuring the paper to more precisely state and describe its novel
findings, it will be a useful reference for the community.

Introduction:

Overall, the introduction should be better organized. It would be helpful to first motivate
applications of low-cost sensors with a short (1-2 sentences) summary of the relevance of
fine-scale spatial-temporal NO2 and O3 patterns before diving into their design. Consider
citing work like: doi.org/10.1016/j.envint.2018.04.002, doi.org/10.1136/bmj.n534. Don’t use
phrases like “in the last few years” or “nowadays” (line 23) – Be specific on when low-cost
sensors emerged and when deployments scaled.

Low-cost sensors for air quality monitoring emerged in the early 2010s, with deployment
scaling up in the mid to late 2010s. These sensors offer a cost-effective solution for
monitoring air pollutants like NO2 and O3, enabling widespread deployment and data
collection. Their ability to reveal fine-scale spatial-temporal patterns of NO2 and O3 is
valuable for identifying pollution hotspots, evaluating air quality control measures, and
supporting targeted interventions to mitigate health risks from air pollution. As pointed out by
the reviewer, this information, including the mentioned works, was explicitly stated at the
beginning of the introduction.

This information has been explicitly mentioned in the text, specifically on LL20-26:

Low-cost (LC) air quality sensors are gaining more and more interest as they can provide
near real-time observations with high spatial and temporal resolution. Their observations can
be integrated into the current official regulatory networks, usually monitoring air quality at
lower space and time resolution, thus providing useful information to support policymakers
and stakeholders in understanding air pollution dynamics (Brilli et al., 2021; Morawska et al.,
2018). Dramatic advances in LC sensor technology have been made since their very first
applications for monitoring CO, NO2 and NOx (De Vito et al., 2009), O3 (Williams et al.,



2013), and particulate matter (Holstius et al., 2014). Among gaseous species, NO2 and O3
are the most commonly investigated since both short- and long-term exposure to these
pollutants are associated with higher risk to human health (Linares et al., 2018; Nuvolone et
al., 2018; Meng et al., 2021; World Health Organization, 2021).

References

● De Vito, S., Piga, M., Martinotto, L., & Di Francia, G. (2009). CO, NO2 and NOx
urban pollution monitoring with on-field calibrated electronic nose by automatic
bayesian regularization. Sensors and Actuators B: Chemical, 143(1), 182-191.
https://doi.org/10.1016/j.snb.2009.08.041

● Holstius, D.M., Pillarisetti, A., Smith, K.R., & Seto, E.J.A.M.T. (2014). Field
calibrations of a low-cost aerosol sensor at a regulatory monitoring site in California.
Atmospheric Measurement Techniques, 7(4), 1121-1131.
http://doi.org/10.5194/amt-7-1121-2014

● Linares, C., Falcón, I., Ortiz, C., & Díaz, J. (2018). An approach estimating the
short-term effect of NO2 on daily mortality in Spanish cities. Environment
International, 116, 18-28. https://doi.org/10.1016/j.envint.2018.04.002

● Meng, X., Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Milojevic, A., et al.
(2021). Short term associations of ambient nitrogen dioxide with daily total,
cardiovascular, and respiratory mortality: multi location analysis in 398 cities. bmj,
372. https://doi.org/10.1136/bmj.n534

● Nuvolone, D., Petri, D., & Voller, F. (2018). The effects of ozone on human health.
Environmental Science and Pollution Research, 25, 8074-8088.
https://doi.org/10.1007/s11356-017-9239-3

● Williams, D.E., Henshaw, G.S., Bart, M., Laing, G., Wagner, J., Naisbitt, S., &
Salmond, J.A. (2013). Validation of low-cost ozone measurement instruments
suitable for use in an air-quality monitoring network. Measurement Science and
Technology, 24(6), 065803. https://doi.org/10.1088/0957-0233/24/6/065803

The phrasing in Line 45 is confusing. I suggest removing the claim that there are “no
established protocols” and instead merely stating there are two common strategies. There
are some existing guidelines from relevant government agencies
(cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=517654, as well as
publications.jrc.ec.europa.eu/repository/handle/JRC83791)

As the reviewer suggests, instead of mentioning "no established protocols," we have
provided clarification by stating that there are two common strategies for deploying low-cost
sensors. Moreover, it is important to acknowledge the existing guidelines from relevant
government agencies and scientific publications, which offer valuable insights into sensor
deployment and data interpretation.

Line 45 it has been corrected as in LL44-45:
Two main approaches to calibrating LC sensors exist (Spinelle et al., 2013): Pre–deployment
and field calibration.
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Please restructure the last two paragraphs of the introduction as to not exaggerate claims of
novelty. This would not be the first study to use SHAP for environmental low-cost sensor
evaluation as the authors claim at the end of the introduction section:
doi.org/10.1016/j.atmosenv.2023.119692, doi.org/10.3390/s20195497, &
doi.org/10.1109/SENSORS52175.2022.9967180. Furthermore, although the 3 gaps
identified by the authors in the literature are still relevant areas of investigation, please better
contextualize them – for example (iii) has been an active area of investigation with many
recent publications as referenced earlier regarding SHAP and low-cost sensors.

As mentioned by the reviewer, this study is not the first to work with SHAP, at least three
other works have utilized SHAP and reported its application.

The first work cited (doi.org/10.1016/j.atmosenv.2023.119692) is particularly interesting;
however, it is worth noting that it was published after the publication of this preprint. While
the work presents the summary plot of SHAP values for electrochemical NO2 and PMs, it
exclusively focuses on random forest models, omitting the exploration of the intriguing
lightGBM algorithm. Additionally, the paper does not mention the type of explainer used (we
can hypothesize a kernel one), which is crucial given its potential impact on computation
time. The second work mentioned (doi.org/10.3390/s20195497) involves low-cost and
low-resolution heat thermal sensors, making it indirectly related to pollution monitoring.
Nevertheless, the paper's classification perspective, contrasting our regression approach, is
fascinating. It applies SHAP to a features vector extracted from heat sensor images,
employing the CatBoost classifier.
The third paper (doi.org/10.1109/SENSORS52175.2022.9967180) tackles this challenge by
adopting diverse methodologies of explainable artificial intelligence (XAI) for gas sensors. Its
exploration of global interpretability perspectives for SHAP Analysis in both Pulse and
Sinusoidal Mode is particularly intriguing. Moreover, the paper refers to other XAI methods,
including Local Interpretable Model-agnostic Explanation (LIME), but it does not address the
issue of cross-sensitivity with environmental parameters.

By elaborating on these mentioned works, we have contextualized our study while
highlighting the specific areas where our research contributed novel insights.

The last paragraphs are then restructure on LL67-75:

These goals have been pursued by using ten among parametric, non-parametric univariate
and multiple algorithms. Additionally, the investigation focused on delving deeper into the
influence of internal temperature on LC sensors. To ensure comprehensive analysis, the
covariate set for the multiple models was expanded to incorporate other essential factors
such as humidity and gaseous interference compounds. Furthermore, the study utilized
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model-agnostic techniques, including SHapley Additive exPlanations (SHAP) introduced by
Lundberg and Lee (2017), to assess the model's generalization ability in a field environment.
While SHAP has been employed in previous pollution-related studies (e.g., Wang, An et al.,
2023; Chakraborty, Sanghamitra et al., 2022; Vega García and Aznarte, 2020), this research
provides an original contribution by applying SHAP specifically to MOS sensors. This
application aims to provide both local and global interpretations, resulting in a deeper
understanding of the sensor's behavior on individual data points and gaining insights into its
overall performance.
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Materials and Methods:

Clustering analysis does not obviously follow from a correlation analysis – especially if it is
expected that many environmental variables will be collinear. Additionally, this paper
emphasizes the importance of trying many supervised methods but offers no justification for
the unsupervised method – this is especially tricky since K-means is probably not the best
method for identifying robust clusters given the expected collinearity.

As the reviewer pointed out, clustering analysis may not be an obvious consequence of a
correlation analysis. Moreover, interpreting the K-means findings necessitates domain
knowledge and careful consideration of collinearity between variables, especially when
employing multidimensional clustering algorithms. In our work, we utilize a 1D k-means
clustering as a standalone tool, enabling us to gain valuable insights into the distribution of
data in particular O3 concentrations.

The exploration of the potential generalizability of the relationship between sensor data and
temperature, which is also evident in the correlation matrix, was initiated by conducting a
preliminary qualitative analysis. Within this analysis, we employed clustering to group the
Horiba O3 concentrations and utilized these clusters to create a color mapping within a
scatter plot, effectively visualizing the relationship between sensor raw data and internal
temperature. Subsequently, we applied linear regression to determine the direction of the
relationship between sensor raw data and temperature variables within each group. Notably,
the inclination of the regression lines remained relatively constant across the clusters,
indicating the possibility of developing a generalized model by leveraging this consistent
relationship.

It is worth noting that k-means clustering on 1D data can be solved in polynomial time,
making it computationally efficient. However, this method shows limitations as any other one,
and the reviewer exposed some of them in a later section where we tried to respond.
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The use of the unsupervised method is then justify better on LL106 (ex 104)-116:

Prior to implementing the calibration techniques, an exploratory data analysis (EDA) was
conducted using the correlation matrix to identify important insights. The study further
explored the potential generalizability of the relationship between MOS O3 sensors and
temperature, as highlighted in Spinelle et al. (2016), leveraging observations from the
correlation matrix. To gain deeper insights, a preliminary qualitative analysis involved
employing one-dimensional K-means clustering (MacQueen,J, 1965) to group the HORIBA
concentrations. These clusters were visually represented using color mapping within a
scatter plot, effectively illustrating the connection between sensor raw data and internal
temperature. Drawing on the visual insights from the clustering analysis, linear regression
was implemented to investigate the direction of the relationship between sensor raw data
and temperature variables within each cluster. To determine the optimal number of clusters
(k) for the analysis, the elbow method of the distortion metrics was employed (Bengfort et al.,
2018). This step yielded preliminary insights into the relation of sensor data and temperature
variables within distinct clusters, further confirming the decision to pursue a more
comprehensive examination using multivariate models for pre-deployment calibration.

This section is very acronym and initialism heavy please consider writing out at least some
of the less utilized terms. It may also enhance readability to move many of the details
describing the exact model instantiations and hyperparameters (2.3.1 & 2.3.2) employed to a
table in the appendix or SI – especially since many of the models are “off-the-shelf” from
scikit-learn and not developed by the authors.

Thanks for the suggestions. We have addressed them by spelling out less used acronyms
and initialisms, including those for environmental parameters and some of the
multiparametric algorithms. Furthermore, to enhance the comprehensiveness of the
document, we have now incorporated Table S2, which contains detailed information about
model instantiations and hyperparameters.

SI Table 1 would benefit from also including some historical data about pollution
concentrations from NO2 and O3.

In Table S1 we have now included environmental parameters, namely temperature and
relative humidity. Additionally, for each process, we have specified the reference intervals,
Horiba for the pre-deployment calibration and ARPAT for the field validation.

Results:

I recommend changing the joint plots in Figure 3 from hex-binned heatmaps to the much
more intuitive scatterplots.

Figure 3 was updated from a hex-binned heatmap to a more intuitive scatterplot.

The purpose of the k-means analysis is still unclear here. These 6 clusters maybe the most
robust set k-means could identify, but that does not mean they are a meaningful or
interpretable clustering. From Figure 4, there does not seem to be an obvious regime
change or large Euclidean distance between clusters. I would recommend removing these
results or considering a density-based clustering approach.



The optimal number of clusters (6) was determined using k-means, with the Elbow method
serving as the guiding metric based on the distortion score. The resulting clusters exhibited a
distance of approximately 30 μg/m3 between centroids. However, due to the time sampling
of data collection in a relatively stable summer condition, we did not anticipate significant
Euclidean distances between the k-means clusters. Furthermore, the data's distribution,
along with the one-dimensional approach, made density-based clustering methods
unsuitable for our specific purpose, resulting in a single point cloud.

We are hopeful that our explanations satisfactorily address the doubts raised by the
reviewer. However, if the reviewer finds it appropriate, the alternative to completely removing
figure 4 could be to adopt a classification rather than a clustering approach.

One potential replacement for the k-means analysis could be the Jenks optimization method,
also known as the Fisher-Jenks algorithm. This method can be used to identify "natural
breaks" within the data, allowing to calculate Horiba class boundaries more effectively. The
Jenks optimization method is also known as the goodness of variance fit (GVF) and It is
used to minimize the squared deviations of the class means (Jenks, G. F. 1967). Geographic
Information Systems (GIS) and related geospatial software products often employ the
"natural breaks" classification for interpreting pollution and emission variability (e.g., De
Smith, Michael John, et al., 2007; Carabetta, João Luiz Martins 2019; Xia, Qi, et al., 2022).
By incorporating the Jenks optimization method and binning the Horiba data concentrations,
we aim to visualize the results using a categorical palette, as suggested by the reviewer.
This approach will lead to an improved Figure 4 (displayed below), presenting the outcomes
in a comprehensive and informative manner. The considerations made for the part on the
regressions remain valid. In this case, the code to obtain the class boundaries using the
Jenks optimization method will be added to the GitHub repository. Additionally, we will
replace the k-means section in the Material and Methods section to reflect the use of the
Jenks optimization method.

Ultimately, if the reviewer deems this alternative solution unsuitable as well, we can exclude
Fig. 4 and investigate its potential application for future studies.

Fig. 4: Relationship between O3 raw data and intT in HORIBA O3 natural breaks classes for
AQ1 (a) and AQ2 (b) stations. Regression lines were fitted to each cluster. The coefficients
for each regression line and the upper bound of each class are reported in the legend.
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Similarly, the regression lines in Figure 4 are not obviously interpretable, they seem noisy
and less robust than simply relying on correlation matrix. I would suggest promoting the
bottom triangles of the two Pearon’s r matrices in SI Fig S2 and removing Figure 4. If Figure
4 stays in the manuscript, it should also use a different colormap, the yellow does not appear
clear on my computer screen. I would recommend a categorical colormap such as Hawaii
from https://www.fabiocrameri.ch/colourmaps/.

As mentioned in the reviewed version of materials and methods, we conducted regression
analyses for each class of Horiba concentration to represent the relationship between count
and temperature within each group. As pointed out by the reviewer, the regression lines are
not obviously interpretable. However, the qualitative analysis showed that the inclination of
the regression lines remained nearly constant across the clusters, indicating a consistent
trend in the relationship between count and temperature within each class of Horiba
concentration. This suggests that the relationship between count and temperature within
each group is relatively stable.

The presence of a noticeable deviation in AQ2, particularly in correspondence with the 0-39
μg/m³ interval of O3 concentration, suggests that there is a distinct relationship between
count and temperature in this specific range of concentrations. At this concentration it's
possible that the sensor may be operating at its lower limit, which can lead to nonlinear
responses.

Figures 5 & 6 are very useful for telling the story of your paper. Consider enhancing them by
increasing the height of the y-axis or adding jitter to the points to avoid the overlap as it adds
to visual clutter. Furthermore, please change the colormap as suggested for Figure 4.

To address points overlap, we have increased the y-axis range in Figure 5 and 6.
Additionally, in response to the reviewer's suggestion, we have migrated the figures (Fig. 4,
Fig. 5, Fig. 6 and Fig. 7) to two main palettes, guided by the provided resource:
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1. Cubehelix: This sequential palette was selected due to its smooth transition from
dark to light, making it suitable for representing continuous or ordered data.

2. Seaborn's Colorblind: We chose this categorical palette as it is designed specifically
for representing discrete or categorical data.

Both are designed to be easily distinguishable for readers with colour vision deficiencies.

While Taylor plots like those in Figure 8 can be useful, it seems a table would more
succinctly get the point across. I’d recommend moving it to the supplement.

The Taylor diagrams were replaced with a summary table, now presented as Table 6, while
the original Taylor diagrams were moved to the supplementary materials as Figure S10.

Discussion & Conclusions

The first two paragraphs of the Discussions section can be combined and made more
concise. They do not communicate the novelty of the study and reflect an overall structural
problem with this manuscript – too much emphasis is placed on the individual “off-the-shelf”
models rather than the much more interesting implications of feature relevance at differing
concentration regimes or the role of model complexity in spatial-temporal transferability.

Thanks for the suggestion. In response, we made efforts to condense the initial two
paragraphs while incorporating a concise comparison of the literature findings. This allowed
us to focus on exploring the implications of feature relevance across various concentration
regimes and the role of model complexity in spatial-temporal transferability.

The discussions are then restructure starting from ex L279 as follow:

Current outcomes achieved for MOS O3 and NO2 pre-deployment calibrations were
generally consistent with those found in the literature. MOS NO2 calibration exhibited low
accuracy in linear univariate models, as demonstrated by Nowack et al. (2021), and the
MiCS–2710 NO2 sensor achieves a poor R2 (0.21) compared to the O3_3E1F EC sensor's
value (0.845), as reported by Spinelle et al. (2015). In contrast, O3 sensor calibration returns
high R2 values, suggesting limited potential for improvement using more complex univariate
techniques like SVR, RF, or GB, as noted in Sales-Lérida et al. (2021). For NO2 calibration,
incorporating multiple covariates like temperature, humidity, and gaseous interference
compounds was instead essential for better performance, as emphasized in studies cited in
e.g. Karagulian et al. (2019), Mijling et al. (2018).

This study confirmed that both linear and non–linear multiple models resulted in a slight
improvement in O3 calibration and a significant one in NO2 prediction compared to
univariate models (Table 4). In particular, the MLR model improved the accuracy of the
simple LR by more than 14–18 % for O3 and 31-35 % for NO2. Notably, both MOS sensors
performed well using the same model form, but due to inter-sensor variability, each sensor
necessitated a distinct set of coefficients to achieve optimal performance. Moreover, taking
into account the observed multicollinearity issue between temperatures and the slightly
higher mean accuracy, as well as the lower mean RMSE observed when using the internal
one, the study drew upon insights from existing literature to identify the most suitable set of
covariates (e.g., Schmitz, Seán et al., 2021; Miech, Jason A. et al., 2021). As a result, the



inclusion of internal temperature as a significant factor was given priority, as it offers a more
accurate representation of the operating conditions of the MOSs within the system. This
approach was also adopted to tackle potential challenges in the board's analog-to-digital
converter circuit.

However among the multiple models, MRF proved to be the most effective in the
pre-deployment calibration (as in Bisignano et al., 2022; Johnson et al., 2018). The SHAP
methodology proved to be particularly insightful in gaining a comprehensive understanding
of the behavior of both MLR and MRF models in the pre-deployment calibration dataset. It
enabled the identification of the relationships between input features (O3, NO2, internal
temperature, relative humidity) and the predicted outcomes. Additionally, the use of SHAP
allowed for the diagnosis of potential issues, such as the non-parametric models' ability to
extrapolate and predict pollution levels beyond the scope of the training calibration dataset
(e.g. Nowack et al,.2021; Malings et al., 2019). These issues were confirmed through the
validation process against ARPAT's official reference.

As evident from Table 7, the MLR calibration model outperformed the MRF approach,
showcasing a better transferability across diverse spatial and temporal settings. Besides,
even though the pre-deployment dataset mainly represented a summer period, the physical
patterns identified in the MLR model remained valid across seasons. Additionally, the SHAP
heatmap (Fig. 7) provided insightful evidence of the O3 sensor's ability to handle the lower
reading limit of the NO2 sensor for both AQs. This observation is important, especially in
conditions with low NO2 concentrations, where the NO2 sensor's accuracy in providing
readings might be compromised.

On the contrary, MRF did not align perfectly with the expected underlying physical model.
Instead, it appeared to be "true to the data'' due to its ability to memorize specific patterns
from the pre-deployment dataset, as emerged by the SHAP analysis (Figure 6b). However,
this characteristic posed challenges when trying to apply the model to unseen data, leading
to unsatisfactory performance in the field. This lack of generalization capability hindered the
MRF model's effectiveness when faced with differing concentration regimes.

The discussion point on seasonal transferability is quite interesting and I recommend
expanding on it. The comparison of DA, PFI, and SHAP is out of place and would be much
better in the methods section with references to literature.

Thanks for incorporating the suggestion. We have now moved the comparison of DA, PFI,
and SHAP to section 3.4, allowing readers to grasp the differences in these approaches right
away. Furthermore, in response, we have expanded the discussion on seasonal
transferability in the last paragraphs.

The final paragraphs of the discussion section now encompass a detailed expansion on the
topic of seasonal transferability, as follows:

The seasonal analyses presented in Table 7 provided an overview of these seasonal
changes in the stability and biases of AQ1 and AQ2 O3 and NO2 sensors for the application
of the MLR calibration model after deployment. O3 pre-deployment calibration showed good
performance in all seasons and for both stations the lowest nRMSE value was registered in
summer 2018 and in summer 2019 and the highest value of nRMSE was recorded in winter



2018-2019. The decline in performance during the winter period was minimal, despite the
fact that the pre-deployment calibration was mainly performed in the summer.
Furthermore, the comparison of the summer period of 2018 and 2019 showed a decrease of
2% in nRMSE for both AQs and pollutants (O3 and NO2). The decrease in nRMSE for O3
was accompanied by an increase in the magnitude of MAE and MBE, pointing towards a
possible linear drift in O3 sensor readings after a year of use. Conversely, for
pre-deployment calibration of NO2, a decrease in MBE was observed. The decrease in MBE
for NO2 and the prominent role of O3 raw readings and its negative impact on prediction, as
identified through feature importance analysis of the pre-deployment MLR model, further
reinforced the idea of a linear drift in O3 sensor readings. Similarly, the pattern of lowest and
highest nRMSE values for O3 validation remained consistent also for the MRF model, being
the lowest in the summer of 2018 and 2019 and the highest in the winter of 2018-2019
(Table S12). Notably, AQ1 outperforms AQ2 in both models; however, as mentioned earlier,
the differences in nRMSE values between the MLR and MRF models were quite significant.

The conclusions should include some detail about implications for work outside of Italy, in
differing pollution and meteorological regimes.

Thanks for this valuable suggestion. AIRQino LC stations are installed outside for ongoing
projects. Furthermore the deployment of AIRQino LC stations has expanded not only beyond
Italy but also to extreme environments, such as the Arctic region, as demonstrated by
Carotenuto et al., (2020). This extension has opened new avenues for ongoing research,
enabling the comprehensive study of diverse pollution and meteorological patterns across
various regions. In continuation of these efforts, three AQs have recently been installed in
Niamey, Niger. This new deployment holds significant importance, as Niamey's climate
conditions can be extreme, characterized by high temperatures and unique challenges.
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The conclusions now include some details of ongoing project and perspective, as follows (LL
ex 349-end):

A limitation of the present work is that the LC stations have been calibrated during a period
not particularly long (70 days) and a typically summer one, thus when pollution levels are
generally meaningful for O3, but they are not for NO2 concentrations. Indeed, conducting a
pre–deployment calibration during a winter period, when NO2 concentrations are typically
higher, would be a valuable addition to the study. This step would provide a more
comprehensive understanding of the AQs validation performance under varying pollution
conditions and help address the limitation of the current calibration period biased towards
summer data. Moreover, conducting a similar validation outside of Italy, in regions with
differing pollution and meteorological conditions would be of great interest. For this purpose,
in the ongoing activity, the AIRQino LC stations are planned to be deployed outside Italy,
such as in Nice and Aix–en–Provence (France), Barcelona (Spain), Budapest (Hungary),
Tirana (Albania), and Niamey (Niger).

https://doi.org/10.1088/1755-1315/489/1/012022


Furthermore, in the future, a new sensor for monitoring NO could hopefully be integrated into
the LC stations and validated. As such, the combined monitoring of NO, NO2 and O3
concentrations and their daily and seasonal variability would allow a comprehensive pattern
of the oxidant capacity of the atmosphere, particularly effective in southern Mediterranean
countries such as Italy (Pancholi et al., 2018). In addition, once the AQ VOC sensor is
validated, it will enable the monitoring of all O3 precursors (VOC and NOx). This
comprehensive monitoring, combined with the application of SHapley Additive exPlanations
(SHAP) method, will lead to a full characterization of photochemical pollution in various
areas of interest, including urban, sub-urban, or rural regions. Moreover, portability of LC
sensors makes them ideal devices for filling knowledge gaps in regions that are difficult to
access such as the open sea. Mounted on buoys or ships, for example, LC sensors could
collect the high O3 levels that typically occur over these areas in summer due to high solar
activity and rather low mixing height combined with a lack of O3–consuming NO emissions.
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Consider promoting SI Figure S10 to the main text, it is useful for understanding the
discussion points as well as contextualizing the range of pollutant concentrations of this
study.

As suggested by the reviewer, we have now incorporated Figure S10 into the main text and
renumbered it as Figure 8.

Reviewer 2

General Comments:

This manuscript details the calibration process of low-cost metal oxide NO2 and O3 sensors.
The authors evaluated the performances of several univariate, multivariate, linear, and
non-linear calibration models. For these models the authors also analyzed the impact of
individual predictors on model performance. The authors reccommended using multiple
covariates in multiple regression models and to analyze the importance of the features used.
Additionally, that machine learning models can greatly improve accuracy but have a harder
time on data outside the calibration dataset.

Specific Comments:
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At times the novelty of the approach seems to be overstated. Line 67 and 298 talk about the
use of internal temperature as a calibration factor. Off the shelf sensors such as the Clarity
Node S (measures NO2 with an electrochemical cell) use RH and internal temperature to
adjust their NO2 readings). Additionally, in Line 221 you state that there is no statisical
difference between using internal or external temperature. On line 298 you reference Figure
4 to explain why internal temperature was chosen but you do not show the same analysis for
external temperature or for NO2.

Thanks for drawing attention to this aspect. As referenced in the study by Miech, Jason A.,
et al., (2021), the Clarity Node S adopts an electrochemical cell to measure NO2 levels.
Notably, the NO2 measurement process is particularly intriguing, as the Alphasense
NO2-A43F electrochemical cell comes equipped with a crucial ozone filter at its front end.
To further enhance precision, the device accounts for internal relative humidity and internal
temperature while adjusting the NO2 measurements. Despite the comprehensive approach
to NO2 measurement, the study does not explicitly specify the specific sensor used to
measure environmental variables.

In our study, the correlation matrix and Bland-Altman plots revealed a robust positive
correlation between the external and internal temperatures, with a relatively constant delta of
8°C (due to the significant heat radiation from the MOSs, causing the internal temperatures
to be significantly higher than ambient conditions). The strong multicollinearity suggests that
using both temperatures together would not be useful. Therefore, it would be appropriate to
interchangeably use either of the temperatures.

As pointed out by the reviewer, upon examining Table 2 we observed a small yet minimal
difference in using the internal temperature. However, we proceeded with the analysis using
the internal temperature based on insights from the literature, such as the study by Schmitz,
Seán, et al. (2021). This research emphasizes the importance of use internal temperature
and relative humidity as essential factors because they more accurately represent normal
MOS operating conditions.

In conclusion, we recognized the multicollinearity issue and opted to use only one of the
temperatures in our analysis. Additionally, the use of external temperature as depicted in the
figure below (fig. 1), does not lead to any definitive conclusions beyond what has already
been discussed. Consequently, the highlighted paragraphs, as pointed out by the reviewer,
have been revised to enhance clarity and improve its contribution to the overall analysis.



Fig. 1: Relationship between O3 raw data and extT in K-means cluster for AQ1 (a) and
AQ2(b) stations. Regression lines were fitted to each cluster.
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● Miech, J. A., Stanton, L., Gao, M., Micalizzi, P., Uebelherr, J., Herckes, P., & Fraser,
M. P. (2021). Calibration of low-cost no2 sensors through environmental factor
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open-source methodology for the field calibration of small air quality sensors.
Atmospheric Measurement Techniques, 14(11), 7221-7241.
https://doi.org/10.5194/amt-14-7221-2021

The last paragraphs of introduction are then restructure on LL67-73 as:

These goals have been pursued by using ten among parametric, non-parametric univariate
and multiple algorithms. Additionally, the investigation focused on delving deeper into the
influence of internal temperature on LC sensors. To ensure comprehensive analysis, the
covariate set for the multiple models was expanded to incorporate other essential factors
such as humidity and gaseous interference compounds.

The paragraph of Discussion are then restructure on ex LL298-3000 as:

Moreover, taking into account the observed multicollinearity issue between temperatures and
the slightly higher mean accuracy, as well as the lower mean RMSE observed when using
the internal one, the study drew upon insights from existing literature to identify the most
suitable set of covariates (e.g., Schmitz, Seán et al., 2021; Miech, Jason A. et al., 2021). As
a result, the inclusion of internal temperature as a significant factor was given priority, as it
offers a more accurate representation of the operating conditions of the MOSs within the
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system. This approach was also adopted to tackle potential challenges in the board's
analog-to-digital converter circuit.

Section 2.3: Please include more information on the sensor pre-deployment calibration with
the HORIBA instruments. It is unclear whether this calibration was conducted indoors or
outdoors or the spatial relationship between the AQ stations and the HORIBA instruments. If
indoors please explain the lab environment where testing occurred.

As mentioned by the reviewer, it is unclear whether the calibration was conducted indoors or
outdoors or the spatial relationship between the AQ stations and the HORIBA instruments.
To address this, setup details are explained below.
The AQs are installed outdoors at the same height, securely mounted on a dedicated rack
as shown in Figure 2a. Meanwhile, the HORIBA instruments are positioned indoors within
the laboratory setting. To ensure an accurate representation of outdoor air conditions, two
sampling probes, each approximately two meters in length and equipped with rain covers,
are employed. These probes collect the outside air and channel it directly to the reference
instruments (as depicted in Figure 2b). This setup enables us to sample and compare the air
quality data collected by the AQs with the measurements obtained by the HORIBA
instruments. For completeness we included Figure 2 below.

Fig. 2: AQs on the left (a); Horiba setup on the right (b).

The paragraph of Section 2.3 are then restructure on ex LL97-99-230 as:

As detailed in Table S1 of the Supplementary material, Pre–deployment calibration of AQ1
and AQ2 stations against HORIBA analyzers was performed at CNR-IBE headquarters in
Florence, Italy (43°47’52” N, 11°11’ E, Figure 1). The AQ stations were mounted on a
dedicated outdoor rack, while the HORIBA instruments were placed indoors in a laboratory
setting. For outdoor air pollution sampling, approximately two–meter–long sampling probes
were employed to collect outside air and channel it directly to each of the reference
instruments.
Line 196: Do you have any explanation for why more data was withdrawn from AQ2
compared to AQ1?

We appreciate the reviewer for bringing attention to this difference between the AQs. We
identified that AQ1 had a 2% withdrawal due to the MOS NO2 sensor, while AQ2 had a 12%
withdrawal, primarily from RH (7%) than from MOS NO2. It's worth mentioning that the RH



sensor in AQ2 reached saturation (data > 99%) more frequently than in AQ1, impacting the
overall data.

Figure 8a: Should this legend read "AQ1 O3 MLR" rather than NO2?

We thank the reviewer for pointing out this typo, we have fixed it in the manuscript.

While Figure S10 summarizes the NO2 and O3 concentrations across the validation period
and Table 6 for the field validation it would also be useful to include a table detailing the
historical environmental conditions of both the field validation and calibration period, such as
RH and temperature. This could help support the points made in line 340, as when the
environmental conditions differ between pre-deployment calibration and the
deployment/validation period the MRF model may suffer.

Table S1 now includes environmental parameters, namely temperature and relative humidity.
Additionally, for each process, we have specified the reference intervals, Horiba for the
pre-deployment calibration and ARPAT for the field validation. We also corrected an error in
the date interval of pre-deployment.

Line 331: Please re-word this sentence as the point is unclear

Thanks for the suggestion.

Line 331 it has been corrected as in LL331-333:

Ultimately, this resulted in robust LC performances outside the training conditions and the
ability for easy adjustments to cope with changes in sensor performance over time.

Line 339: You mention global impacts of this analysis but provide no other information of how
this work extends to beyond Italy.

Thanks for the suggestion. In the ongoing activity, the AIRQino LC stations are planned to be
deployed outside Italy and also in extreme environmental conditions (Carotenuto et al.,
2020). This will allow NO2 and O3 sensors to be tested under different meteorological and
air pollution conditions. The conclusions now include some details of ongoing projects and
perspective.

Reference

● Carotenuto, Federico et al., 2020 IOP Conf. Ser.: Earth Environ. Sci. 489 012022.
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The conclusions now include some details of ongoing project and perspective, as follows
(LLex349-end):

A limitation of the present work is that the LC stations have been calibrated during a period
not particularly long (70 days) and a typically summer one, thus when pollution levels are
generally meaningful for O3, but they are not for NO2 concentrations. Indeed, conducting a
pre–deployment calibration during a winter period, when NO2 concentrations are typically
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higher, would be a valuable addition to the study. This step would provide a more
comprehensive understanding of the AQs validation performance under varying pollution
conditions and help address the limitation of the current calibration period biased towards
summer data. Moreover, conducting a similar validation outside of Italy, in regions with
differing pollution and meteorological conditions would be of great interest. For this purpose,
in the ongoing activity, the AIRQino LC stations are planned to be deployed outside Italy,
such as in Nice and Aix–en–Provence (France), Barcelona (Spain), Budapest (Hungary),
Tirana (Albania), and Niamey (Niger).

Furthermore, in the future, a new sensor for monitoring NO could hopefully be integrated into
the LC stations and validated. As such, the combined monitoring of NO, NO2 and O3
concentrations and their daily and seasonal variability would allow a comprehensive pattern
of the oxidant capacity of the atmosphere, particularly effective in southern Mediterranean
countries such as Italy (Pancholi et al., 2018). In addition, once the AQ VOC sensor is
validated, it will enable the monitoring of all O3 precursors (VOC and NOx). This
comprehensive monitoring, combined with the application of SHapley Additive exPlanations
(SHAP) method, will lead to a full characterization of photochemical pollution in various
areas of interest, including urban, sub-urban, or rural regions. Moreover, portability of LC
sensors makes them ideal devices for filling knowledge gaps in regions that are difficult to
access such as the open sea. Mounted on buoys or ships, for example, LC sensors could
collect the high O3 levels that typically occur over these areas in summer due to high solar
activity and rather low mixing height combined with a lack of O3–consuming NO emissions.
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