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Abstract.

How air masses transform during meridional transport into and out of the Arctic is not well represented by numerical

models. The airborne field campaign HALO-(AC)3 applied the High Altitude and Long-range Research Aircraft (HALO)

within the framework of the collaborative research project on Arctic amplification (AC)3 to address this question by providing

a comprehensive observational basis. The campaign took place from 07 March to 12 April 2022 in the North Atlantic sector5

of the Arctic, a main gateway of atmospheric transport into and out of the the Arctic. Here, we investigate to which degree

the meteorological and sea ice conditions during the campaign align with the long-term climatology (1979–2022). For this

purpose, we use the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis v5 (ERA5), satellite data,

and measurements at Ny-Ålesund, including atmospheric soundings. The observations and reanalysis data revealed two distinct

periods with different weather conditions during HALO-(AC)3: The campaign started with a warm period (11–20 March10

2022) where strong southerly winds prevailed that caused poleward transport of warm and moist air masses, so-called moist

and warm air intrusions (WAIs). Two WAIs events were identified as Atmospheric Rivers (ARs), which are narrow bands

of strong moisture transport. These warm and moist air masses caused the highest measured 2m temperatures (5.5◦C) and

daily precipitation rates (42mmday−1) at Ny-Ålesund for March since the beginning of the record (1993). Over the sea ice
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northwest of Svalbard, ERA5 indicated record-breaking rainfall. After the passage of a strong cyclone on 21 March 2022,15

a cold period followed. Northerly winds advected cold air into the Fram Strait causing marine cold air outbreaks (MCAOs)

until the end of the campaign. This second phase included one of the longest MCAO events found in the ERA5 record (19

days). On average, the entire campaign period was warmer than the climatological mean due to the strong influence of the

ARs. In the Fram Strait, the sea ice concentration was well within the climatological variability over the entire campaign

duration. However, during the warm period, a large polynya opened northeast of Svalbard untypical for this season. Compared20

to previous airborne field campaigns focusing on the evolution of (mixed-phase) clouds, a larger variety of MCAO conditions

were observed during HALO-(AC)3. In summary, air mass transport into and out of the Arctic were both more pronounced

than usual, providing exciting prospects to study air mass transformation using HALO-(AC)3.
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1 Introduction

Currently, the Arctic experiences a drastic temperature increase, which is up to 4 times stronger compared to the rest of the25

globe (Rantanen et al., 2022). This enhanced Arctic warming is one of the most obvious signs of Arctic amplification, which is

caused by numerous feedback mechanisms (Serreze et al., 2009; Screen and Simmonds, 2010; Serreze and Barry, 2011). While

the contributions of some feedback mechanisms to Arctic amplification can be regarded as scientific consensus (e.g., sea ice–

albedo feedback, Serreze et al., 2009), others are not yet sufficiently explored (e.g., influence of clouds, lapse-rate feedback,

Wendisch et al., 2023). Especially the role of linkages between Arctic and mid-latitudes is still under debate. Moist and warm30

air intrusions (WAIs) transport large amounts of heat and moisture into the Arctic through the Atlantic sector (Woods and

Caballero, 2016). Over the past decades, the frequency of meridional transports through the North Atlantic has increased due

to more frequent atmospheric blocking over the Barents Sea (Mewes and Jacobi, 2019; You et al., 2022). Woods et al. (2013)

and Woods and Caballero (2016) found that intense WAIs may have a large effect on the downward thermal-infrared radiation

at the surface, contributing to the enhanced warming of the Arctic. Furthermore, WAIs precondition the sea ice for the melting35

season, resulting in lower sea ice extent at the end of the summer (Kapsch et al., 2013, 2019). Numerical models struggle to

accurately represent mixed-phase clouds and the transformation processes of the meridionally transported air masses (Pithan

et al., 2014; Cohen et al., 2020).

WAIs are often linked with filaments of strong moisture transport, known as Atmospheric Rivers (ARs, Newell et al., 1992).

ARs are responsible for over 90% of the poleward moisture transport across the mid-latitudes and are frequently accompanied40

by strong winds and precipitation (Nash et al., 2018). While the precipitation related to ARs can cause snow accumulation in

the Arctic, the enhanced emission of downward thermal-infrared radiation by the clouds can lead to melting of snow and sea

ice (Neff et al., 2014; Komatsu et al., 2018; Mattingly et al., 2018, 2020; Bresson et al., 2022; Viceto et al., 2022). In a warming

climate, ARs are expected to shift polewards and to intensify due to the increased moisture load (Ma et al., 2020).

Cold air outbreaks (CAOs) are often responsible for severe weather events in the high- and mid-latitudes and mainly occur45

in winter and spring (Fletcher et al., 2016; Pithan et al., 2018). During marine CAOs (MCAOs), cold and dry air is advected

southwards from the sea ice to the ice-free (open) ocean. Over the open ocean, the strong temperature contrast between the

surface and the lower tropospheric air leads to intense fluxes of sensible and latent heat, responsible for 60–80% of the oceanic

heat losses in that region (Papritz and Spengler, 2017). This heat and moisture transfer into the atmosphere destabilizes the

atmospheric boundary layer and leads to the formation of cloud streets, which later develop into open cloud structures. This50

cloud evolution is difficult to capture by atmospheric models (Pithan et al., 2018) motivating dedicated measurement campaigns

(Geerts et al., 2022; Lloyd et al., 2018).

So far, observations of air mass transformations in the Arctic have mostly been conducted from a fixed local position

(Eulerian view). Only a few aircraft based samplings of air mass properties over a limited regional area have been reported (e.g.,

Wendisch et al., 2019; Mech et al., 2022). To observe air mass transformations along their meridional pathway in a Eulerian55

view, multiple stations that are aligned with the wind direction would be needed. Therefore, Pithan et al. (2018) proposed

a quasi-Lagrangian approach following air masses to and from the Arctic. This motivated the field campaign HALO-(AC)3
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within the Transregional Collaborative Research Center TRR 172 "Arctic amplification: Climate Relevant Atmospheric and

Surface Processes and Feedback Mechanisms (AC)3". The campaign was designed to obtain quasi-Lagrangian observational

data of air mass transformations during WAIs and MCAOs to gain process understanding and evaluate the performance of60

weather and climate models (Wendisch et al., 2021, 2024).

During HALO-(AC)3, extensive remote sensing and in situ measurements of surface, cloud, and thermodynamic properties

have been performed between the Norwegian Sea and the North Pole from 11 March to 12 April 2022 using three research

aircraft (HALO, Polar 5, and Polar 6). The High Altitude and Long-range Research Aircraft (HALO) operated by the German

Aerospace Center (Ziereis and Gläßer, 2006; Stevens et al., 2019) is a modified Gulfstream G550. It has an operating range65

of 9000km in altitudes up to 15km, which is beneficial for quasi-Lagrangian air mass observations, and was based in Kiruna

during HALO-(AC)3. It was equipped with a similar instrumental payload as during the EUREC4A campaign (Stevens et al.,

2019, 2021; Konow et al., 2021). Polar 5 and Polar 6 (P5 and P6) were based in Longyearbyen and operated by the Alfred

Wegener Institute, Helmholtz Center for Polar and Marine Research (Wesche et al., 2016).

This study aims to investigate whether the atmospheric and sea ice conditions encountered during HALO-(AC)3 were suit-70

able for studying air mass transformation. Herein we analyze which types of air mass transport occurred and how representative

the conditions were. Therefore, the conditions are analysed in the climatological context. In this way, our study serves as com-

prehensive reference for future studies analyzing the HALO-(AC)3 campaign. After introducing the data and methods in Sect.

2, we provide a general overview of the weather conditions during HALO-(AC)3 (Sect. 3), which leads to the identification of

a warm (Sect. 4) and a cold period (Sect. 5). Both periods are assessed in the climatological context. For the unusually strong75

warm phase, we further investigate how the associated precipitation might have influenced sea ice conditions (Sect. 6). Finally,

we conclude our study in Sect. 7.

2 Data and Methods

Our study concentrates on the North Atlantic sector of the Arctic, the major pathway of WAIs (Johansson et al., 2017; You

et al., 2022). Around the Fram Strait, we define a central region including the marginal sea ice zone (Fig. 1) where the air mass80

transfer from the ocean to the sea ice during WAIs and vice versa during MCAOs is most pronounced. Within this region, most

airborne measurements were performed. To better illustrate how the meridional air mass transition progresses, we also include

a southerly domain over ocean including the Greenland and Norwegian Seas between Svalbard and Norway and a northerly one

in the central Arctic over sea ice. Note that circulation weather type analysis has shown that the flow in this area is generally

meridional, while zonal flow hardly occurs (Schirmacher et al., 2023; von Lerber et al., 2022).85

2.1 Atmospheric measurements

Only very few permanent radiosonde stations exist in the Arctic. Therefore, the French–German AWIPEV research base in Ny-

Ålesund (Svalbard), which is the only station within our central domain, plays a key role in observing atmospheric conditions

in the region. We use the 6-hourly soundings at Ny-Ålesund (Vaisala RS41, Maturilli, 2020b) performed during HALO-(AC)3
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Figure 1. Study area with corresponding domains (southern region, central region, and northern region) and mean sea ice concentration (07

March to 12 April 2022) based on MODIS–AMSR2 satellite data (Ludwig et al., 2020). The locations of the dropsondes launched by HALO

(P5) are marked as purple (green) circles. Operational radiosondes stations are indicated by yellow triangles.

to assess vertical profiles of temperature, relative humidity, pressure and wind. Similar in situ profiling data is available from90

dropsondes (Hock and Franklin, 1999; George et al., 2021) launched by HALO and the Polar aircrafts. In total 330 dropsondes

from HALO and 141 from Polar 5 and 6, distributed over 18 and 13 research flights, respectively, provide profiles in otherwise

not sampled areas (Fig. 1).

From the radiosonde profiles, we identified the thermal tropopause according to the WMO definition as the lowest level at

which the temperature lapse-rate falls below 2Kkm−1 and does not exceed this value for the next 2km. The integrated water95

vapor (IWV) was calculated from profiles of air pressure and specific humidity. Ground-based meteorological measurements

at AWIPEV are available since 1993 and provide an additional view on the environmental conditions during HALO-(AC)3

(Maturilli et al., 2013; Maturilli, 2020a). Here, the CL–51 ceilometer is used to assess the cloud conditions at Ny-Ålesund

(Maturilli and Ebell, 2018; Maturilli, 2022). The detection of a cloud base is used to derive the frequency of cloud occurrence

on a daily base. Long-term precipitation observations are performed manually by the Norwegian Meteorological Institute100

(MET Norway). For Ny-Ålesund (station number SN99910), daily precipitation totals (06 to 06 UTC) are available since 01

January 1974 and have been analyzed in this study for March and April of the years 1974 to 2022.
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2.2 Satellite observations of sea ice

Sea ice concentration (SIC), i.e., the percentage of a satellite pixel covered by sea ice, is obtained from the Ocean and Sea Ice

(OSI) Satellite Application Facility (SAF) Global Sea Ice Concentration Climate Data Record (SIC CDR v2.0), namely the105

product OSI–450 from 1979 to 2015, and the complementary Interim Climate Data Record OSI–430–b from 2016 onwards

(OSI SAF, 2017; Copernicus Climate Change Service (C3S), 2020). The product is based on low-frequency passive microwave

satellite data and is described in Lavergne et al. (2019). The datasets are available on a daily basis with a grid spacing of

25km×25km. For a higher spatial resolution (1km), i.e., for the analysis of how SIC changed during HALO-(AC)3, the

merged MODIS–AMSR2 SIC product (Ludwig et al., 2020) is used.110

2.3 Reanalysis data and diagnostics

The European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis ERA5 (Hersbach et al., 2018a, b, 2020)

offers hourly data output since 1950 with a horizontal resolution of 31km and 137 vertical model levels. For our region,

ERA5 has been found superior compared to other global reanalysis (Graham et al., 2019a, b; Avila-Diaz et al., 2021). With

very few ground-based stations in our study area, the assimilation of satellite data plays a major role for the quality of ERA5.115

Therefore, our climatological analysis uses the years 1979–2022 starting with the onset of the satellite era. Note that during

HALO-(AC)3, 216 dropsondes were used in the Global Telecommunication System data assimilation, likely resulting in an

improved reanalysis quality.

Domain averages of the regularly gridded ERA5 data were calculated as area averages weighted by the cosine of the latitude

to respect the increasing data point density with increasing latitudes. Grid points with a land fraction > 0 have been excluded120

from our analysis. ERA5 data serve to detect WAI, ARs, and MCAOs:

– WAIs are identified by positive daily means of the vertically integrated meridional moisture flux (IVTnorth) averaged

over the central region. Guided by the study of Woods and Caballero (2016) an WAI is considered weak (strong) when

IVTnorth is below (equal or above) 100kgm−1 s−1.

– ARs are detected by the global algorithm from Guan and Waliser (2015) in its revised version (Guan et al., 2018), adapted125

to the lower moisture content of the Arctic by reducing moisture transport thresholds. Data set in one-hour resolution is

available at Lauer et al. (2023).

– MCAOs are characterized by their strong temperature decrease with increasing height over the open ocean. The MCAO

index M is calculated following Papritz and Spengler (2017) and Dahlke et al. (2022):

M = θSKT − θ850 (1)130

with θSKT (θ850) as the potential skin temperature (potential temperature at 850hPa). Grid points with skin temperatures

below 271.5K (i.e., over sea ice) were excluded from further processing as in Dahlke et al. (2022). Following Papritz

and Spengler (2017), MCAO conditions are present when M > 0K and its strength can be classified as weak (0K<

M ≤ 4K), moderate (4K<M ≤ 8K), strong (8K<M ≤ 12K) or very strong (M > 12K).
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For climatological assessment, we average over each region and compute the temporal mean, 25–75th and 10–90th percentiles135

of IVTnorth and M over the climatology period.

3 Overview of the campaign period

3.1 Ny-Ålesund

Radiosoundings from Ny-Ålesund provide the only continuous source of information on the vertical structure of the atmosphere

in our study region and are therefore frequently used to characterize the climate of the whole North Atlantic sector of the140

Arctic (Maturilli et al., 2013). The temperature and moisture profiles measured by radiosondes at Ny-Ålesund during the

HALO-(AC)3 are shown in Fig. 2 and indicate a high temporal variability at all altitudes. Temperatures near the surface (5km)

vary between −20◦C and +5◦C (−45◦C and −20◦C), indicating the presence of different air masses. This is confirmed by

wind measurements, which reveal episodes of strong southerly winds associated with warm temperatures in the first half of

the campaign, while in the second half of the campaign weaker, mainly northerly winds associated with lower temperatures145

prevail. The strongest episode of warm air advection on 12–13 March led to an increase of 2m temperature from about −14◦C

to +2◦C within 19 hours (meteorological tower measurements, not shown). This air mass lifted the tropopause up to 13km

(Fig. 2a), and the 2m temperature remained above freezing for five days. The 2m temperature even reached a new maximum

for March on 15 March (5.5◦C) since the beginning of the data record in 1993.

To investigate whether the observed warm air advection was related to ARs we analyze humidity profiles. The first half of150

the campaign featured a number of short-term events of high integrated water vapor (IWV) as shown in Fig. 2b. On 15 March,

a radiosonde measured an IWV of 14.6kgm−2, which is the highest value recorded between 07 March and 12 April from 1993

to 2022. The rapid doubling of IWV within a day already gives an indication of the presence of ARs. Applying the detection

algorithm to reanalysis (Sect. 2) confirms that two ARs passed over Ny-Ålesund. AR I arrived at Ny-Ålesund on 12 March

at 13 UTC and lasted until 14 March, 13 UTC. However, in the AR detection algorithm this AR consisted of two parts with155

enhanced moisture transport and IWV, which can also be seen in the IWV dip on 13 March between two peaks (12 and 14

March) in Fig. 2b. AR II reached Ny-Ålesund on 15 March at 03 UTC and was only detected until 22 UTC of the same day

although IWV and the moisture transport stayed on high levels until 16 March, 15 UTC (not shown).

The second half of the campaign was drier, featuring the lowest IWV of less than 1.2kgm−2 on 24 March at 06 UTC. This

IWV is below the 3rd percentile of all radiosondes between 07 March and 12 April from 1993 to 2022 (Maturilli and Kayser,160

2016, 2017; Maturilli, 2020b). Afterwards, IWV varied less and stayed below 4kgm−2 throughout the second half of the

campaign. Only on 10 April, enhanced moisture values indicate a weak moist air advection that was relevant for the formation

of cirrus clouds over sea ice observed by HALO (not shown).

The ceilometer at Ny-Ålesund reveals high cloud occurrence until 23 March (Fig. 2c). The high cloudiness is accompanied

by precipitation and related to the WAIs and ARs passing over Ny-Ålesund. From 15 March, 06 UTC to 16 March, 06 UTC,165

42mm of precipitation was recorded, which is the highest daily accumulated precipitation for March since the beginning of

the measurements. The situation changed during the course of 17 March, when the cloud deck started to dissolve, and the
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Figure 2. Time series of Ny-Ålesund radiosondes of (a) temperature profiles (shading), height of thermal tropopause (black line), and wind

barbs in selected levels, (b) specific humidity profiles (shading) and resulting IWV (black line, right axis). (c) shows daily accumulated

precipitation (06 to 06 UTC) from gauge measurements and daily mean cloud occurrence from ceilometer measurements.

2m temperature dropped below 0◦C. No further precipitation was observed after 23 March, and cloud occurrence generally

remained low at Ny-Ålesund until the end of the campaign. However, note that Ny-Ålesund is located within a fjord on the

west coast of Svalbard and measurements, especially within the atmospheric boundary layer, may be influenced by the local170

orography (Gierens et al., 2020). For example, the relatively cloud-free second part of the campaign was associated with lee

effects.

3.2 Reanalysis

Given the scarcity of measurements, e.g., no permanent radiosonde stations north of 82.5◦ N (Rinke et al., 2019), reanalysis

data (ERA5) are used to characterize the conditions over the whole study domain. However, ERA5 assimilated dropsonde175

measurements from HALO (details will be given in a dedicated study presenting all HALO-(AC)3 measurements), influencing
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its performance: In Fig. 3, we show the agreement between ERA5 and HALO dropsondes in terms of root mean square

deviation (RMSD) and bias profiles. Over ocean, the ERA5 temperature agrees with the dropsonde measurements within 0.5–

0.9K (Fig. Fig. 3a, b). Over sea ice, we see the expected warm bias of ERA5 in the lower troposphere, which was also found

by Yu et al. (2021), leading to higher biases and RMSD of up to 1.5K. The RMSD of relative humidity is between 10 and180

20%, while wind and pressure deviations are 1.5–2ms−1 and less than 1hPa, respectively. Deviations can be higher for single

dropsondes because of the spatio-temporal variability of humidity and temperature close to the sea ice edge and ARs, and due

to measurement errors of the dropsondes (especially humidity in dry conditions and at low temperatures). The temperature,

relative humidity and wind speed deviations found here agree well with those in Graham et al. (2019b). Note that the deviations

would probably be higher if dropsonde measurements were not assimilated. Given the good performance of ERA5, we analyze185

the environmental conditions in the following.

Time series of area-averaged mean sea level pressure (MSLP), 10m wind, 2m temperature, 850hPa temperature, and IWV

(Fig. 4) illustrate that the major features of warm and moist conditions in mid-March and cooler and drier conditions later on

observed at Ny-Ålesund also apply to the central domain. We also look at the spatial distribution of mean sea level pressure,

500hPa geopotential height and 850hPa equivalent-potential temperature in the North Atlantic sector of the Arctic (Fig. 5) to190

investigate the driving conditions for synoptic events, such as ARs and MCAOs.

The strong warming events observed at Ny-Ålesund between 12 and 16 March are related to a low-pressure system over

Greenland, which drives southerly winds through the North Atlantic (Fig. 5a). From 13 to 15 March, the zonal pressure

gradient across the North Atlantic intensifies, leading to stronger southerly winds in all three domains (Fig. 5b, Fig. 4b). In this

period, the IWV is very high in the central and northern domains with daily area averages of 12–14kgm−2 and 6–8kgm−2,195

respectively (Fig. 4e). At the same time, ERA5 indicates 2m temperatures above freezing in the central domain, which agrees

with the time series observed at Ny-Ålesund (Fig. 4c). Around 20 March, the MSLP gradient between the three domains

reverses due to changes in the large-scale pressure constellation (Fig. 5c). The central Arctic now shows typical conditions with

the highest MSLP of all regions and the strongest static stability as can be judged from the difference between temperatures at

850hPa and at 2m (Fig. 4a, c, d). The high MSLP of the central Arctic agrees well with the climatological pressure shown for200

April in Fig. 4.8 of Serreze and Barry (2014). In this second part of the campaign, northerly winds typical for MCAO activity

led to extremely dry conditions with IWV down to 1.4kgm−2 in the northern domain (Fig. 4e), clearly indicating a polar air

mass.

Motivated by the clear differences between the first and second half of the campaign, we separate the campaign into two

major periods based on the northward component of the integrated water vapor transport (IVTnorth) and the MCAO index (M )205

in the central region (see Fig. 6). From 11 to 20 March, from here on called the warm period, IVTnorth is positive, indicating

warm air advection into the Arctic. In the subsequent period (21 March to 12 April, hereafter referred to as cold period),

IVTnorth turns slightly negative, indicating a moisture flux out of the Arctic. This is connected to MCAO activity as quantified

by the positive MCAO index in the cold period. In the following, we assess the weather conditions of warm and cold periods

in the climatological context separately.210
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Figure 3. ERA5 errors (bias and root mean square deviation (RMSD)) of (a,b) temperature (T), (c,d) relative humidity (rh), (e,f) wind speed,

and (g,h) pressure (p) using dropsonde observations as reference. The errors are separated into open ocean and sea ice using the ERA5 sea

ice concentration. Additionally, we added the number of available dropsonde observations in each height level. Note, that the number of

dropsondes in the wind speed comparison is lower than for other variables due to gaps in the GPS communication necessary for determining

the sonde position.
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Figure 4. Regional averages (colored lines) and standard deviation (shading) of ERA5-based daily means of (a) mean sea level pressure,

(b) 10m wind speed (wind barbs), (c) 2m temperature, (d) 850hPa temperature and (e) integrated water vapor (IWV). Regional averages

are performed for the southern (S, red), central (C, green), and northern (N, blue) regions shown in Fig. 1. Vertical black lines indicate days

shown in Fig. 5.

4 Warm air intrusions

To answer what caused the occurrence of the strong WAIs we analyze the general circulation pattern. A high surface pressure

system over Scandinavia was connected to a ridge in the 500hPa geopotential height, resulting in a blocking situation (Fig.

5a, b). The blocking is evident in Fig. 7b (and also Fig. B1a in Appendix B), showing the strong anomalies of more than

10hPa in the MSLP field over the whole warm period with lower pressure over Greenland and the central Arctic, and higher215

pressure over Scandinavia. The strength of the pressure anomalies over Scandinavia suggests the presence of an unusual

blocking situation. Intense WAIs are often connected to blocking situations over the eastern border of a large basin (here, North

Atlantic), redirecting cyclones northward as the typical eastward propagation is blocked (Woods et al., 2013). Consequently,
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Figure 5. Maps of mean sea level pressure (white contour lines with black outlines), 500hPa geopotential height (black contour lines),

and 850hPa equivalent-potential temperature (shading and grey contours) from ERA5 data for representative days of the main weather

conditions at 12 UTC. The 15% sea ice concentration from AMSR2 is displayed as blue contour line. "H" and "L" illustrate the centres of

high and low pressure systems, respectively.

warm and moist air masses originating from the North Atlantic were transported towards the Fram Strait, driven by several

low-pressure systems that formed between Iceland and eastern Greenland. All days of the warm period passed the criteria for220
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Figure 6. Daily mean time series of (a) northward component of integrated water vapor transport (IVTnorth), (b) Marine cold air outbreak

(MCAO) index (M ) based on ERA5 and averaged over the central region for HALO-(AC)3 (black line). The mean, as well as the 10–90th

and 25–75th percentiles of the climatology (1979–2022), are illustrated as grey lines, and light and dark grey shadings. The red (blue) box

indicates the warm (cold) period dominated by moist and warm air intrusions (marine cold air outbreaks). Vertical dashed black lines mark

the days shown in Fig. 5.

WAI occurrence (Sect. 2), and from 12 to 17 March, IVTnorth exceeded the 90th percentile of the ERA5 climatology on each

day (Fig. 6a).

Not surprisingly, temperatures at 2m and 850hPa show positive anomalies over all domains during the warm period (Fig.

7e, h). However, with far above 8K, the strongest 2m temperature anomalies occur over sea ice surfaces. Together with the

weaker positive anomaly at 850hPa (up to 7K in the three domains), this demonstrates the decreased stability of the lower225

atmosphere during this period over sea ice. The warm period was also moister than average as indicated by the positive

IWV anomalies over all domains (Fig. 7k). Note that although the highest IWV anomalies occurred in the southern region,

the relative effect increases with higher latitudes as IWV mean values generally decline towards the North along with the

decreasing temperatures. The highest relative IWV anomalies (up to 90%) occurred over sea ice northwest and northeast of

Svalbard (not shown). Note that this latitudinal effect also makes it difficult to diagnose ARs based on IWV only.230

The two AR events detected at Ny-Ålesund also affected the entire measurement area of HALO-(AC)3. However, the timing

might be different, depending on the exact location. AR I passed through the measurement regions on 12–14 March (Fig. 2b
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Figure 7. From top to bottom: Anomaly maps of mean sea level pressure (MSLP), 2m temperature (∆T2m), 850hPa temperature

(∆T850hPa), and integrated water vapor (∆IWV) based on ERA5 for the entire campaign (left), the warm (middle), and the cold (right)

period. The long-–term mean (1979–2022) is subtracted from the mean of the respective time period. Dashed black isolines describe the

long—term climatology for the respective period in each panel. The three measurement regions (shown in Fig. 1) are illustrated as black

boxes.
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and Fig. 5a). In the northern domain, IWV reached its campaign maximum (8kgm−2) on 13 March and declined afterwards

while the 850hPa and 2m temperature in the northern domain continued to increase until the following day (Fig. 4c–e). AR

II, which arrived on 15 March (Fig. 5b), had slightly less IWV over the central domain (Fig. 4e). This shows that Ny-Ålesund235

is not representative of the whole region because here, AR II had the highest IWV. The strong northward moisture transport

related to these ARs can be seen in area averages of IVTnorth, which reached 225kgm−1 s−1 due to AR II in the central domain

(Fig. 6a).

We compare the strength of the ARs during HALO-(AC)3 to the long-term climatology in Fig. 8. For this purpose, the

mean IVT over the detected AR area and the AR’s central latitude are shown in relation for all six-hourly ERA5 time steps240

since 1979. Note that a slightly different region over the North Atlantic and the Arctic Ocean was selected to extend the view

southwards to cover the major pathways of ARs (Guan and Waliser, 2017; Nash et al., 2018). The number of strong AR events

decreases meridionally (Fig. 8) because of two effects: Firstly, along their northward propagation, ARs generally decline in

intensity. Secondly, within the Arctic circle, the likelihood of new AR formation strongly decays, as the moisture uptake from

the ocean is substatially reduced (Papritz et al., 2022).245

AR I and AR II both represent strong cases in terms of mean IVT as they partly lie outside the 25th percentile in latitude–

IVT space (Fig. 8). At its northernmost position with a central latitude of 80◦ N, AR I had a stronger mean IVT than 90%

of all ARs in the climatology. However, AR II was characterized by even stronger moisture transport but did not reach as

far north as AR I. When AR II was at its northernmost position (centered at 76◦ N), its area-averaged IVT was just below

200kgm−1 s−1 and therefore also higher than 90% of all ARs in the climatology (Fig. 8). The maximum IVT of AR II250

(meridional and zonal) slightly exceeded 400kgm−1 s−1 on 15 March in the central region (Fig. A1 in Appendix A). HALO’s

dropsonde measurements showed a maximum IVT of 490kgm−1 s−1 on 15 March, suggesting that ERA5 underestimates the

moisture flux at the local scale. As all AR events had meridionally elongated structures, the outflow region reached far up to the

central Arctic while their centers were located at 68–80◦ N (Fig. 8). During their poleward propagation, the moisture transport

decreased so that they no longer fulfilled the detection requirements.255

The northward transport of warm and moist air was associated with anomalous amounts of precipitation (Fig. 9). Particularly

when the ARs made landfall in Scandinavia, Svalbard, and eastern Greenland, strong anomalies of up to 8mmday−1 compared

to the climatology were observed. The strongest anomalies found on the east coast of Greenland relate to 6 times higher

precipitation compared to the climatology. For Svalbard, the ERA5 data are in line with the record-precipitation measured at

Ny-Ålesund (Fig. 2) coming from AR II. The area of increased precipitation reaches up to the North Pole, where precipitation260

is enhanced by more than a factor of 2.

The phase of the precipitation is highly important for its climate effect, and the transition of Arctic precipitation from snow-

fall to rain is heavily discussed (Serreze et al., 2021). While we note the difficulties of correctly differentiating precipitation

phase, it is important to note that northwest of Svalbard, ERA5 showed record-breaking rainfall connected with near surface

temperatures above zero. Liquid precipitation at high latitudes over sea ice was also observed by the cloud radar onboard265

HALO as we detected a distinct bright band in the linear depolarization ratio at about 0.5–1km height on 13 March (Fig. 10).
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Figure 8. Six-hourly climatological (1979–2022) distribution of central latitudes of Atmospheric Rivers (ARs) as a function of mean AR

integrated water vapor transport (IVT) using an ERA5-based AR catalog based on Guan and Waliser (2015). The analyzed area covers 60–

90◦ N and 60◦ W–40◦ E. Blue dots mark ARs whose center was within the latitudes and longitudes of the central domain. Cases categorized

as ARs during HALO-(AC)3 are illustrated by colored squares. Black (dashed) lines indicate the 25th and 75th (10th and 90th) percentiles of

a kernel density estimation to visualize the shape of the histogram. The green rectangle marks the latitudes of the central domain.

Thus, the observations confirm the presence of liquid precipitation at least in some regions over sea ice. This motivated us to

examine the impact of this AR on the sea ice later on (Sect. 6).

In summary, the warm period observed during HALO-(AC)3 featured ARs with averaged IVT values higher than 90% of

all ARs in the climatology. This transport was related to a blocking event affecting the Arctic up to the North Pole with heat270

and anomalously high precipitation, including record-breaking rainfall rates over the sea ice northwest of Svalbard.

5 Cold air outbreaks

The warm period was followed by a cold and dry period from 21 March until the end of the campaign, where IVTnorth (M )

was almost exclusively negative (positive) (Fig. 6). The transition from the warm to the cold period was initiated on 21 March,

when an intense cyclone centered east of Svalbard began to draw cold air from the central Arctic into the Fram Strait (Fig.275
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Figure 9. Hourly averaged total precipitation (sum of snowfall and rain rate) (mmh−1) (top row) and absolute deviations from the climatol-

ogy (bottom row) derived from ERA5 for (a, c) the warm period, and (b, d) the cold period.

Figure 10. (a) Linear depolarization ratio measured by HALO’s radar during research flight 3 on 13 March 2022 and the collocated sea ice

concentration (SIC) from AMSR2, which is included in the published radar data. (b) Map showing the flight track (white line with black

outline) and the sea ice concentration from the MODIS–AMSR2 product. The segment of the flight track shown in (a) is highlighted in blue.

5c), which caused snowfall on the west coast of Svalbard. In its aftermath, the MSLP anomaly reversed compared to the warm

period, with positive values in the northwest and negative values in the southeast (Fig. 7c). Consequently, the southward flow

of cold Arctic air led to cold and dry anomalies at 850 hPa over the open ocean (Fig. 7i, l).
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Within the cold period, two periods of strong MCAO conditions (21–26 March and 01–02 April) were identified whose

strength exceeded the 90th (25 March) and 75th (2 April) percentile of the climatology (Fig. 6b). During these strong MCAO280

conditions, we found the maximum values of turbulent surface sensible and latent heat fluxes, which coincided with the highest

wind speeds and lowest temperatures of the cold period (not shown). Low-level cloud cover remained high in the central domain

until 07 April, reflecting the presence of the convective boundary layer clouds typically associated with MCAOs. Interestingly,

while most parameters have reversed anomalies compared to the warm period, precipitation in the central domain also shows a

positive anomaly. ERA5 produces an extensive region of enhanced precipitation over open water extending far east and being285

highest at the Scandinavian coast (Fig. 9).

To compare the MCAOs encountered in the cold period to the climatology we apply a metric established by Knudsen et al.

(2018) and characterize each event by its strength and duration in Fig. 11. Herein the duration is defined as the time the MCAO

index stays above zero, and the strength is given by its maximum MCAO index M as indicated in the time series of M in Fig.

11b. Note that we used the central domain for the computation of M while Knudsen et al. (2018) considered a smaller area290

that lies within our central domain.

The statistics over the long-term ERA5 climatology (Fig. 11a) generally show that longer MCAO events are also more

intense (higher peak M ). During the HALO-(AC)3 period, distinct MCAO events could be identified, separated by short

phases with M < 0K visible in high temporal resolution only. The first and third event, starting on 18 March and 11 April,

respectively, were relatively short-lived (2–3 days) and had a moderate strength (M of about 5K). Most notably, the second295

event, which started on 21 March after the passage of the strong cyclone, was unusually long (19 days) and had a maximum M

of about 11K. The longevity of the MCAO conditions can be explained by the persistence of low pressure over Scandinavia, the

Barents Sea and Russia, and high pressure over Greenland and the central Arctic during the cold period (Fig. B1b in Appendix

B). Analyzing the time series with hourly resolution (Fig. 11b), the 21 March MCAO event consists of multiple waves of strong

MCAO conditions, which were associated with the presence of cyclones near Svalbard influencing the atmosphere over the300

Fram Strait (e.g., Fig. 5c, e, f). Lower tropospheric winds were stronger and more northerly during the stronger MCAOs. When

the cyclones dissipated or propagated away from the area, winds were weaker, and the MCAO strength decreased (e.g., Fig.

5d).

Since 1979, only 9 of the 179 events over the HALO-(AC)3 period had a longer duration.

6 Effect of WAI on sea ice conditions305

The different atmospheric conditions likely affected the sea ice conditions in the measurement area. To understand the impact

on sea ice, we examine the spatial distribution of SIC before (09–11 March) and during (14–16 March) the WAIs and ARs, as

well as after the MCAO period (10–12 April) as shown in Fig. 12a–c. SIC was > 90% in almost the entire northern region in

the first period (Fig. 12a). In the central region, the sea ice covered 30–40% of the area with a southwest–northeast oriented

edge. The southern region was almost completely ice-free over the entire campaign duration (Fig. 12a–c).310
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Figure 11. a) Two-dimensional histogram showing the ERA5-based duration and strength of MCAOs in the central domain for the period

1979–2022. Cases categorized during HALO-(AC)3 are illustrated by colored squares and the legend entries of these cases indicate the start

date. Black (dashed) lines indicate the 25th and 75th (10th and 90th) percentiles of a kernel density estimation to visualize the shape of the

histogram. b) MCAO index time series with higher temporal resolution and indicating the MCAO periods marked in a).

The WAIs and ARs caused a reduction of SIC in the northwestern part of the central region, resulting in the lowest SIC

values of the entire campaign period (Fig. 12b, d). While the main sea ice boundary stayed at the same location, the SIC in

the marginal ice zone declined. SIC was below the climatological mean but remained within the 10–90th percentiles. Further-

more, an unusually large polynya opened from north of Svalbard to Franz Josef Land, which resulted in the below-average

static stability and stronger turbulent surface heat fluxes during the cold period in this region (Fig. 12b). We assume that ice315

dynamics related to strong winds caused the SIC decrease in the central region, but ice melt cannot be excluded as well be-

cause temperatures were above freezing, and liquid precipitation was observed over sea ice (Sect. 4). Rapid ice melt has been

attributed to warm air advections and induced increases of heat flux in summer (Tjernström et al., 2015; Woods and Caballero,
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2016). Liquid precipitation on snow alters the signal of the microwave radiometry and increases the uncertainty of SIC prod-

ucts (Stroeve et al., 2022; Rückert et al., 2023). However, SIC reduction was obvious in visual satellite images as well (e.g.,320

NASA Worldview, not shown). After the WAIs, the sea ice conditions recovered as temperatures fell below the freezing point

and northerly winds were established during the MCAOs (Fig. 12c, d). The polynya was also closed again, mostly due to sea

ice transport from the central Arctic.

With respect to the long-term climatology, SIC during HALO-(AC)3 was mostly above the climatological mean in our

central domain (Fig. 12d). The positive SIC anomaly was related to a further east expansion of the sea ice off Greenland, which325

overlaps well with the negative 2m temperature anomalies shown in Fig. 7d, f. In contrast, the west coast of Svalbard used

to be covered by ice in the climatology but was completely ice-free during HALO-(AC)3. Similarly, southwest of 75◦ N and

0◦ E, as well as northeast and southeast of Svalbard, SIC anomalies were negative (Fig. 12e) in line with the strongest warm

anomalies of the campaign.

Note that uncertainties of derived SIC in the marginal ice zone are especially large as a result of temporal and spatial330

interpolation (smearing uncertainty), and due to so-called weather filters. Weather filters remove the atmospheric contribution

from the satellite signal to remove false sea ice in open-water regions but run the risk of removing true sea ice as well,

especially in the MIZ. This mainly affects the central region where the estimated uncertainties of the OSI–SAF SIC product

(total standard uncertainty) can reach up to 40% at the ice edge, mostly due to smearing uncertainty, and different satellite

footprints at different frequency channels.335

7 Summary

In this study, we analyzed the atmospheric and sea ice conditions during the HALO-(AC)3 campaign, whose focus lies on

studying transformation processes of air masses on their way into and out of the Arctic. The campaign took place in the North

Atlantic sector of the Arctic from 07 March to 12 April 2022. Within this area, we defined three domains over which we

investigate whether the conditions were well suited for the campaign’s research objectives. The central domain, which lies340

in the marginal sea ice zone west of Svalbard, represents the area with the highest research flight activity of the campaign.

For our analysis, we relate the conditions during HALO-(AC)3 to the long-term record of Ny-Ålesund measurements, ERA5

reanalysis, and satellite-derived sea ice conditions.

The radiosonde and surface observations at Ny-Ålesund showed two main periods with different atmospheric conditions.

The beginning of the campaign was dominated by extremely warm and moist air masses, resulting in new maximum 2m tem-345

peratures, record-breaking precipitation and integrated water vapor (IWV) for March since the beginning of the measurements.

The second half of the campaign was much colder and drier, with mostly clear sky conditions at Ny-Ålesund because of oro-

graphic effects. Reanalyses data, which was shown to agree well with dropsonde measurements from HALO-(AC)3, confirmed

these general conditions with northward transport of warm and moist air in the first part and a southward flow of cold Arctic air

in the second part of the campaign. Based on this clear temporal change of conditions, we divided the campaign into a warm350

period (11–20 March) and a cold period (21 March–12 April) and analyzed both in detail.
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Figure 12. Average sea ice concentration (SIC) from the MODIS–AMSR2 product at 1km grid resolution and 10m wind speed (in knots)

from ERA5 for (a) 09–11 March (prior to the first AR event), (b) 14–16 March (during the second AR event), (c) 10–12 April (at the end

of the campaign). Short (long) wind barbs represent wind speeds of 5 (10) knots. (d): SIC time series averaged over the central region for

the campaign period, as well as the mean, and 10–90th percentiles of the 1979–2022 climatology. (e): SIC anomalies from the climatological

mean averaged over the entire campaign period. Note that only differences larger 5% are considered due to the uncertainties of the satellite

product in the marginal ice zone. Data for (d) and (e) is from the OSI–SAF sea ice concentration climate data record.

During the warm period, an atmospheric blocking situation diverted cyclones northwards into the Arctic, resulting in strong

northward heat and moisture transports (moist and warm air intrusions, WAIs). Two WAIs were identified as Atmospheric

Rivers (ARs). At their northernmost positions, both ARs were stronger than 90% of all ARs in the latitudes of the central

domain in the climatology. The ARs led to unusually high precipitation amounts at the coasts of Greenland and Svalbard. Over355

the sea ice northwest of Svalbard, the rainfall indicated by ERA5 was a record-breaking event for mid-March.

The cold period was initialized after the passage of a strong cyclone on 21 March. Northerly winds pulled cold and dry air

from the central Arctic into the North Atlantic, resulting in marine cold air outbreaks (MCAOs). We identified three MCAO

events, separated by negative values of the MCAO index M . The second MCAO event, which started at the beginning of
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the cold period, lasted for 19 days, making it the tenth longest MCAO event in the climatology. The strength of the MCAO360

conditions in the central domain was related to the cyclone activity in the vicinity of this region.

Despite the longer cold period, the entire campaign was on average warmer than the climatological mean. Thus, the short-

lived ARs and WAIs dominated the anomaly signal, highlighting the importance of these events for the warming of the Arctic

(Johansson et al., 2017). However, it must be noted that the ERA5 climatology may have systematic differences in 2022

compared to previous years as measurements from HALO-(AC)3 dropsondes were assimilated. Furthermore, the quality and365

quantity of satellite measurements to be included in the assimilation improved over the years. Nevertheless, due to the low

density of observations in the Arctic, using reanalyses is currently a well suited option for climatological comparisons.

Interestingly, precipitation was higher than the climatology for both periods as MCAOs also led to enhanced precipitation in

the Fram Strait. Precipitation associated with MCAOs has been discussed as being responsible for differences between climate

models and observations (von Lerber et al., 2022). However, precipitation is also difficult to measure accurately as MCAOs370

are mostly within the blind zone of satellite measurements (Schirmacher et al., 2023). Therefore, the quality of precipitation in

reanalyses is of high interest. The detailed HALO-(AC)3 remote sensing and in situ measurements can help to further constrain

the representation of precipitation, including its phase, in the reanalysis.

Finally, we looked at the sea ice conditions and how they changed due to the different circulation patterns during the cam-

paign. Overall, the marginal ice zone in the Fram Strait had higher sea ice concentrations (SIC) compared to the climatological375

mean, while the regions around Svalbard had lower SIC. WAIs and ARs resulted in a reduction of SIC in the marginal ice zone

below the climatological mean. The reduction was probably dominated by ice dynamics associated with the strong southerly

winds, but melt was also possible because of temperatures above freezing. During the long period of MCAO conditions, the

northerly winds and low temperatures led to a recovery of the SIC.

Compared to previous aircraft campaigns in the Arctic within (AC)3 that focused on the evolution of (mixed-phase) clouds380

(ACLOUD; AFLUX and MOSAiC-ACA, Wendisch et al., 2019; Mech et al., 2022), we observed a larger variety of MCAO

conditions during HALO-(AC)3. The long phase of MCAOs with varying strength and different wind regimes provides oppor-

tunities for detailed MCAO studies making use of airborne measurements. Also, the sea ice edge was closer to Svalbard than

during AFLUX (March–April 2019) so that ocean–ice transects could be performed more easily. HALO-(AC)3 captured sev-

eral WAIs / ARs with unusual or even record-breaking strength. With regard to the changing climate when exchanges between385

the mid–latitudes and the Arctic become more frequent, the campaign provides a unique opportunity to study stronger than

average WAIs / ARs. Thus, the weather conditions were well suited to achieve the objectives of the HALO-(AC)3 campaign.

Code and data availability. All codes used for the analyses presented in this study have been published on Zenodo for public access (Mayer

et al., 2024). Sea ice concentration climatology data is found on OSI SAF (2017) and Copernicus Climate Change Service (C3S) (2020). The

high resolution sea ice concentration dataset used for 07 March–12 April 2022 is based on the product from the Institute of Environmental390

Physics, University of Bremen. The data is available at https://seaice.uni-bremen.de/data/modis_amsr2. ERA5 data on single and pressure

levels can be accessed through Hersbach et al. (2018b) and Hersbach et al. (2018a). Ny-Ålesund radiosondes and ceilometer data have been
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published on PANGAEA (Maturilli and Kayser, 2016, 2017; Maturilli, 2020b, 2022). The Ny-Ålesund precipitation data is provided by MET

Norway and has been downloaded from https://seklima.met.no (last access 2023-11-30). Near-surface meteorology data from Ny-Ålesund

is available on PANGAEA as well (Maturilli, 2020a). Radar measurements from HALO during HALO-(AC)3 is available on PANGAEA395

(Dorff et al., 2023). Dropsonde measurements during HALO-(AC)3 are currently processed and will be published on PANGAEA, searchable

via the tag "HALO-(AC)3". A full description of the data set is in preparation.
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Appendix A: Integrated water vapor transport for moist and warm air intrusions

We show the total IVT from ERA5 for two snapshots of the ARs on 12–15 March, and for the weak WAI on 10 April in

Fig. A1. While the ARs on 12–15 March were meridionally aligned, the WAI on 10 April had a rather zonal orientation. The400

strongest total IVT is found on 15 March, exceeding 400kgm−1 s−1.
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Figure A1. Total integrated water vapor transport (IVT, zonal and meridional component) from ERA5 (colours) and dropsondes (circular

marker) for moist and warm air intrusions / Atmospheric Rivers: (a) 13 March 2022 16 UTC, (b) 15 March 2022 16 UTC, (c) 10 April

2022 14 UTC. Quivers indicate the flow direction and strength, while black line with white outline shows the HALO flight track. The orange

(brown) line indicate the 15% (85%) sea ice concentration isoline. Grey dash-dotted contours show the mean sea level pressure. Data is

based on ERA5.

Appendix B: Pressure constellation during the warm and the cold period

To illustrate the contrast of the two periods, we show an Arctic-wide average pressure constellation for the warm and cold period

in Fig. B1. The warm period featured this extended 500hPa geopotential height trough and several low pressure systems over

Greenland and the geopotential height ridge and high pressure over Scandinavia. During the cold period, strong highs over405

Greenland and the central Arctic persisted while low pressure systems were located over Scandinavia, Northern Russia or the

Barents Sea.
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Figure B1. Maps of mean sea level pressure (white contour lines with black outlines) and 500hPa geopotential height (shading and black

contour lines) from ERA5 data averaged over (a) the warm period and (11–20 March 2022) and (b) the cold period (21 March–12 April

2022). The 15% sea ice concentration from ERA5 is displayed as blue contour line. "H" and "L" illustrate the centres of high and low

pressure systems, respectively. The measurement domains are displayed as purple boxes
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