
Comment on “Towards Interpretable
LSTM-based Modelling of Hydrological
Systems”

Summary of Paper:
The objective of this paper is to allow for interpretability of the weights of an LSTM model for
streamflow prediction. The authors approach this objective by making two changes to their
baseline model (from Line 200 in the manuscript):

1) They use sequence-to-sequence prediction
2) They give each cell of the LSTM a sequence of lagged input data.

Comment #1:
I believe that there is a problem with one of the fundamental arguments that appears throughout
the paper, related to the relationship between the model and the physical system.

● Line 10: “Our architecture, called HydroLSTM, simulates behaviors inherent in a dynamic
system, such as sequential updating of the Markovian storage”

● Line 538: “We have proposed and tested a more interpretable LSTM architecture that
better aligns with how we conceptualize the physical functioning of hydrologic systems.”

What the authors did is actually break the Markovian nature of the LSTM. The regular LSTM is
Markovian, in that the prediction at time t is dependent only on the state of the system, and the
inputs at time t. By adding lagged inputs to each LSTM cell, the authors have made the model
non-Markovian. This explicitly breaks the isomorphism between the LSTM and the physical
system. The physical system is Markovian, since the watershed cannot “see” yesterday’s
rainfall, except through the effect on the various storage states within the system. The addition
of lagged inputs actually aligns significantly *worse* with how we conceptualize physical
hydrological systems.

Moreover, the authors claim (Line 45) that 45: “It is possible, therefore, that either the
corresponding LSTM-based models are not efficient (parsimonious) representations of the
input-state-output dynamics, or that our conceptual hydrological models are overly simplified
representations of reality (over-compression). In this paper, we make an argument for the former
explanation.” I do not believe that this is a correct interpretation of the experiments in this paper.
What the authors have done is to show that if you remove the Markovian assumption from the
model, then you can replace information that in the physical system would be stored as a state



variable with (non-markovian) lagged input data, which the real system does not have access to
(soil can’t “see” rainfall from yesterday except through the current state of the watershed). I think
you’ve just shown that non-Markovian models require less memory than Markovian models,
which, in my opinion, is obvious.

It is the case that we do know that the LSTMs do not necessarily optimize to reduce the number
of states. You can see this by doing an experiment where you emulate (exactly reproduce) a
conceptual model - the LSTM typically requires more states than the “true” system (as defined
by the conceptual model). This is a byproduct of inefficient (local) optimization, which is all that
can be achieved using backpropagation. However, I don’t think that the experiments in this
paper demonstrate the claim, since you’ve allowed the number of states to be reduced due to
breaking the memory requirement of the model - of course if you show the model yesterday’s
precipitation in today’s state/output calculation, then the model doesn’t need to remember as
much information.

Comment #2:
I believe there is a misunderstanding about sequence-to-sequence (seq2seq) vs
sequence-to-one (seq2one) prediction.

The authors state in line 150 “In these areas, two primary assumptions are typically applied that
may not hold in the dynamic environmental system: a) a finite relevant sequence length (finite
memory time-scale), and the consequent possibility of 150 b) a non-informative system state
initialization.”

They also state in line 200 “the cell states are continually updated from the beginning to the end
of the available dataset while maintaining the sequential ordering of the input drivers. This
ensures that the cell states represent Markovian memories that are effectively of indeterminate
length (as in traditional hydrological modeling, initialization is done only once at the beginning of
the simulation period)”

What the authors are describing is the difference between seq2seq vs. seq2one. The Kratzert
papers use seq2one for *training*, but seq2seq for *prediction*. The reason that seq2seq is
used for training is to help randomize the minibatch. Seq2seq allows for dividing the total
training sample up so that any single minibatch contains samples from multiple different
watersheds. This helps prevent spurious weight updates, which can significantly harm training.
However, once the models are trained, they are applied as these authors describe — simulating
the entire sequence without restarting (i.e., seq2seq prediction). The authors might notice that
this is why the Krazert models require O(10) epochs for training while their seq2seq approach
requires O(100) epochs for training.

It’s also important to point out that this is not actually a difference in the model itself, but instead
a difference in how the model is applied (seq2seq models are identical to seq2one models, just
applied to different types of data). This is just a distinction in terms of how this is framed in the



discussion (the authors refer to this in line 199 as a difference in model structure, which it is
not).

The authors should be aware that this seq2seq vs. seq2one distinction does not actually make a
difference (other than the minibatch diversity thing during training, which is important). The
reason why it does not matter is because of the forget gate. The forget gate can be thought of
as a repeated multiplication operation. If the forget gates are not exactly one, then the memory
of the model is limited by this repeated operation. Imagine repeatedly applying the forget gate
operation on information in cell states from 300 time steps ago. If the forget gate has values
close to one (i.e., fully open, meaning that they try to forget as little information as possible),
then you are applying a repeated operation of multiplying by a number close to one several
hundred times. As an example, 0.99 ^ 300 = 0.05, meaning that even in a very optimistic case
where the forget gate is almost completely open at all timesteps, only 5% of the information is
left after 300 timesteps *purely because of numerical artifacts in the asymptotes of the forget
gate activation functions.* It does not make very much sense to extend the input time sequence
very much beyond this, simply because there will be no mathematical effect. This is why we are
comfortable using seq2one for training, and the reason we use seq2seq for inference is
because it’s simply not necessary to do the extra computations necessary for seq2one when
there is no minibatch.

I’d encourage the authors to test this – how much memory can the model have before it loses all
sensitivity to inputs in the distant past? This can be answered using integrated gradients (we
have done this experiment). Notice that if the authors wanted to avoid this numerical artifact,
they could input a very long sequence directly into each cell state of the LSTM, however the
number of weights in the model would explode. At some point, you might as well just use a time
convolution (or similar), and not worry about the cell states at all.

Comment #3:
The authors cited my 2021 paper in the first paragraph of the introduction, however that paper
does not say anything similar to what is claimed in the sentence where it is cited (and I strongly
disagree with the opinion expressed in that sentence). I would kindly ask the authors to please
either remove this incorrect citation or else modify it to more accurately reflect what is written in
the paper they are citing.

Comment #4:
It would be very helpful if the authors would benchmark against an existing published paper.
The authors have changed the set of basins that they train and test on (Line , as well as the
train and test periods. This means that there is no way to know whether the authors have set up
their LSTM in a way that matches the current state of the art. Their results are not directly
comparable to anything that has previously been published. This should be easy, since the
authors are using the same CAMELS dataset that numerous previous authors have used to



develop and test the baseline ML model used in this study. It is OK to make changes to the train
and test settings, but it would be very helpful if the authors provided a community benchmark to
help us know whether to trust their results. The authors might see [1] for and example where we
felt that it was necessary to change the train/test periods for a specific experiment, but also
published benchmarks against previous publications in the same paper, to ensure readers that
our models were performing near state of the art.

Comment #5:
It is important to note that the integrated gradients method that the authors discuss in the
introduction actually provides effectively the same information that this new method provides.
Both methods give us relative importances on different model input channels. The authors could
see [2] for an example of using integrated gradients to understand sensitivity of an LSTM to
lagged input data. So what is this new method supposed to help us with? What can be learned
from this that cannot be learned by using a method that does break the isomorphism between
the model and the physical system (by making the model non-Markovian), and that does not
harm the performance of the model?

After reading this paper, my main question for the authors is this: What problem are you trying to
solve? What do you want to be able to do that can’t already be done (and hasn’t already been
done)? Is there some limitation to what we can learn using explainability methods, and if so,
what are those limitations?

References:
[1] Frame, J. M., Kratzert, F., Klotz, D., Gauch, M., Shalev, G., Gilon, O., Qualls, L. M.,
Gupta, H. V., and Nearing, G. S.: Deep learning rainfall–runoff predictions of extreme
events, Hydrol. Earth Syst. Sci., 26, 3377–3392,
https://doi.org/10.5194/hess-26-3377-2022, 2022.

[2] Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in
multiple meteorological data sets with deep learning for rainfall–runoff modeling, Hydrol.
Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, 2021.


