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This article is really well written and constructed, making it an easy manuscript to read. 
I find little to critique about the presentation, but will talk in generalities from a 
hydrological modellers perspective. 

Response: Thanks for your compliment. We appreciate your contribution and 
comment. 

Temporal weighting of lagged events is highly reminiscent of unit hydrograph theory and 
is potentially another interpretation of the weights obtained (e.g., Sherman 1932; 
Lienhard 1964; Rodriguez-Iturbe and Valdes 1979). Similarly, the number of cell states 
may be broadly associated with the number of linear reservoirs in series that produce 
these unit hydrographs (e.g., Ocak and Bayazit 2003). Clearly a unit hydrograph that 
partitions daily total runoff into an hourly signal (for estimating peak flow for example) 
is not the same, but the concepts are equivalent when representing inputs as a temporal 
output distributed with the memory of prior inputs. 

Response: We agree. The unit hydrograph and its convolution effect evoke many 
aspects of what we found in the weight distribution. This similarity helps 
differentiate the short-term effect of the forcing (unit hydrograph behavior) 
without a state variable, from the long-term effect produced by the water stored 
in the catchment (baseflow). As a result of both effects, a non-linear behavior 
emerges in the input-output response of the streamflow. This explanation will 
help us to understand why these patterns emerged in the gates. We will add this 
additional explanation about the interpretability of the weights. 

The titles of Sections 5 and 6 should be more descriptive than “Experiment 1” and 
“Experiment 2”, maybe “Comparison of LSTM and HydroLSTM across hydrological 
regime” and “HydroLSTM performance with a single cell state”.  

Response: We will make the titles of sections 5 and 6 more specific to their 
respective topics. 

These suggestions are very rough, but the opening paragraph of each section should 
follow logically from the section title and expand upon it. It is unclear how the 10 
catchments in Section 5 were selected, but it interesting to observe that in each of the 
five hydro-climate regimes that LSTM had one low cell state result, and one much higher. 
Was this deliberate or simply to support the later message regarding spatial variability 



of lag, that definitive patterns of number of cell states or lag are difficult to establish 
based on hydro-climate for multiple cell state representations? 

Response: We will enhance the introduction of this section. Regarding the 
selection of the catchments, they were chosen randomly from each of the regions 
defined in the reference study (Jiang et al.,2022). This random selection illustrates 
the difficulty of determining the optimal lag solely based on performance metrics. 
It further emphasizes the necessity of additional regularization to draw more 
robust conclusions about hydrological features. 

Please be careful in your equations that the hyperbolic tangent function “tanh” stays a 
single word and not split to “tan^h” with a space, as I notice the language of tangent 
hyperbolic in the text. 

Response: We will check the correct writing of the tangent hyperbolic. 

Figure 6a has four clearly inferior lag times (4, 8, 16 and 32 days) with the other three 
(64, 128 and 256 days) being the same for all practical purposes for KGE>0.4. It is hard 
to reconcile in the text (S6.2) that the graph has “saturated” at lag=256 if very similar 
results are obtained with lag=64 and 128, and there are no lag values >256 to confirm it.  

Response: We agree. The saturation region is between 64 and 256 days for 
catchments with KGE > 0.4. For KGE < 0.4, the curve of 256 days is the best option, 
which is why this one is used in the text. However, the main point of this figure is 
to demonstrate that a fixed memory might not be the optimal choice when 
dealing with a large number of catchments, considering the local dependency of 
that hyperparameter.   

With Figure 6b it is not surprising that modelling with a single cell state is more difficult 
with increased aridity, as this is well known in the standard hydrologic modelling 
literature (e.g., Pilgrim et al. 1988).  

Response: We agree; however, this behavior is present in lumped and ML models, 
as explored previously (De la Fuente et al., 2023), suggesting that the issues are 
not in the architecture used. For that reason, presenting this figure should 
reinforce that idea. We will add some comments about that.    

It also seems that the general success of HydroLSTM with a single cell state alludes to 
the usefulness (success?) of simple lumped hydrologic models such as GR4J or SIMHYD 
with few parameters that may be physically interpretable. 



Response: This is the inspiration for the paper: a parsimonious representation 
should be preferred if additional complexity cannot improve performance. 

The Discussion is very interesting and points to useful future endeavours, with multiple 
output criteria to make the possible solution space smaller and get the right answer 
(outputs) for the right reason (see Kirchner 2006). As far as groundwater characterisation 
for rainfall-runoff modelling, the lag times may be very different for a “land” cell state 
and a “groundwater” cell state and potentially exceed one calendar year. Statistical 
correlation methods for groundwater variation with lag measured in months to years 
such as HARTT (e.g., Ferdowsian et al. 2001; Goodarzi 2020) are abstract methods that 
rely on variability of the assumed controlling mechanism, and have also been compared 
with neural network implementations. Whether these might provide some information 
or inspiration for additional work is unknown. 

Response: Splitting the regularization into short and long-term behavior is part 
of our inspiration for the next steps because it allows us to gain insight into the 
groundwater system using streamflow data, which has more abundant and 
consistent data.  

 

Reviewer references 

Ferdowsian R, Pannell DJ, McCarron C, Ryder A and Crossing L (2001) Explaining 
groundwater hydrographs: separating atypical rainfall events from time trends. 
Australian Journal of Soil Research, 39(4), 861–875, doi: 10.1071/SR00037 

Goodarzi M (2020) Application and performance evaluation of time series, neural 
networks and HARTT models in predicting groundwater level changes, Najafabad Plain, 
Iran. Sustainable Water Resources Management, 6, 67, doi: 10.1007/s40899-020-00427-
2 

Kirchner, J. W. (2006) Getting the right answers for the right reasons: Linking 
measurements, analyses, and models to advance the science of hydrology. Water 
Resources Research, 42, W03S04, doi:10.1029/2005WR004362 

Lienhard JH (1964) A statistical mechanical prediction of the dimensionless unit 
hydrograph. Journal of Geophysical Research, 69(24), 5231-5238, doi: 
10.1029/JZ069i024p05231 



Ocak A and Bayazit M (2003) Linear Reservoirs in Series Model for Unit Hydrograph of 
Finite Duration. Turkish Journal of Engineering and Environmental Science, 27(2), 107-
113, https://search.trdizin.gov.tr/en/yayin/detay/31619/ 

Pilgrim DH, Chapman TG and Doran DG (1988) Problems of rainfall-runoff modelling in 
arid and semiarid regions. Hydrological Sciences Journal, 33(4), 379-400, doi: 
10.1080/02626668809491261 

Rodriguez-Iturbe I and Valdes JB (1979) The geomorphic structure of hydrologic 
response. Water Resources Research, 15(6), 1409-1420, doi: 10.1029/WR015i006p01409 

Sherman LK (1932) Streamflow from rainfall by the unit-graph method. Engineering 
News Record, 108, 501–505. 

 

Response references 

De la Fuente, L. A., Gupta, H. V., and Condon, L. E.: Toward a Multi-Representational 
Approach to Prediction and Understanding, in Support of Discovery in Hydrology, Water 
Resources Research, 59, https://doi.org/10.1029/2021WR031548, 2023. 

Jiang, S., Zheng, Y., Wang, C., and Babovic, V.: Uncovering Flooding Mechanisms Across 
the Contiguous United States Through Interpretive Deep Learning on Representative 
Catchments, Water Resources Research, 58, https://doi.org/10.1029/2021WR030185, 
2022. 

 


