
Response to Grey Nearing’s comments. 
 
Firstly, we would like to thank you for reviewing and commen8ng on our paper. We find this discussion very 
interes8ng and feel that it will enrich the final version of the paper. 
 
Reviewer Comment #1: 
I believe that there is a problem with one of the fundamental arguments that appears throughout the paper, 
related to the rela8onship between the model and the physical system. 

● Line 10: “Our architecture, called HydroLSTM, simulates behaviors inherent in a dynamic system, 
such as sequen8al upda8ng of the Markovian storage” 
● Line 538: “We have proposed and tested a more interpretable LSTM architecture that beOer aligns 
with how we conceptualize the physical func8oning of hydrologic systems.” 

What the authors did is actually break the Markovian nature of the LSTM. The regular LSTM is Markovian, in 
that the predic8on at 8me t is dependent only on the state of the system, and the inputs at 8me t. By adding 
lagged inputs to each LSTM cell, the authors have made the model non-Markovian. This explicitly breaks the 
isomorphism between the LSTM and the physical system. The physical system is Markovian, since the 
watershed cannot “see” yesterday’s rainfall, except through the effect on the various storage states within the 
system. The addi8on of lagged inputs actually aligns significantly *worse* with how we conceptualize physical 
hydrological systems. 

Moreover, the authors claim (Line 45) that 45: “It is possible, therefore, that either the corresponding LSTM-
based models are not efficient (parsimonious) representa>ons of the input-state-output dynamics, or that our 
conceptual hydrological models are overly simplified representa>ons of reality (over-compression). In this paper, 
we make an argument for the former explana>on.” I do not believe that this is a correct interpreta8on of the 
experiments in this paper. What the authors have done is to show that if you remove the Markovian assump8on 
from the model, then you can replace informa8on that in the physical system would be stored as a state variable 
with (non-markovian) lagged input data, which the real system does not have access to (soil can’t “see” rainfall 
from yesterday except through the current state of the watershed). I think you’ve just shown that non-
Markovian models require less memory than Markovian models, which, in my opinion, is obvious. 

It is the case that we do know that the LSTMs do not necessarily op8mize to reduce the number of states. You 
can see this by doing an experiment where you emulate (exactly reproduce) a conceptual model - the LSTM 
typically requires more states than the “true” system (as defined by the conceptual model). This is a byproduct 
of inefficient (local) op8miza8on, which is all that can be achieved using backpropaga8on. However, I don’t 
think that the experiments in this paper demonstrate the claim, since you’ve allowed the number of states to 
be reduced due to breaking the memory requirement of the model - of course if you show the model 
yesterday’s precipita8on in today’s state/output calcula8on, then the model doesn’t need to remember as 
much informa8on. 

 Author Response: 
Our interpreta8on of a Markovian process is that, for each 8me step, all of the informa8on provided 
by the past data that is useful for making the next-8me-steps predic8on is contained in the system 
“states” (however those are determined). Based on this, one might argue that neither the LSTM nor 
the HydroLSTM is fully “Markovian”.  

The conven8onal LSTM implementa8on assumes some arbitrary ini8al value for the cell-states at some 
assumed/fixed lagged 8me in the past and then processes some past data sequen8ally (in a Markovian 
manner) to develop an es8mate of important proper8es of the system state at 8me t (when a 
predic8on for the next 8me step is desired). The assump8on, therefore, is that there is no useful 
informa8on (relevant to making that predic8on) in the data represen8ng 8mes before that assumed 



sequence length. Arguably, this goes against hydrological knowledge (whether correct or erroneous), 
which suggests that process memory can exceed 365 days, which is a very common sequence length 
used in LSTM-based hydrological modeling). Under such condi8ons, the conven8onal LSTM-based 
representa8on is not able to exploit all of the informa8on that should otherwise be summarized in the 
representa8on of the system state for use in predic8on, which arguably also breaks the Markovian 
assump8on. 

Similarly, the proposed HydroLSTM architecture also uses sequen8al upda8ng “akin” to a Markovian 
process to es8mate important proper8es of the system state at 8me t, for use in making the predic8on 
for the next 8me step. And as with the LSTM, the ga8ng func8ons define how the “cell-state” upda8ng 
is done. However, because the ga8ng func8ons use past lagged data to establish context for such 
ga8ng, the gates have access to more informa8on than is provided by the current forcing and cell-
states. As you have pointed out, this also breaks the tradi8onal Markovian nature of the cell-state 
representa8on and upda8ng process, because it allows for important informa8on regarding the overall 
“state of the system” to be explicitly provided via sequence lagged data fed to the ga8ng func8ons to 
be used in determining how open or closed they are.  In other words, the “cell-states” now do not 
represent the en8re “state” of the system because they no longer contain all of the informa8on 
provided by the past data that is useful for making the next-8me-steps predic8on.  Arguably the true 
“system state” is now represented by a combina8on of the “cell-states” and the sequence informa8on 
provided to the gates, since both are used to inform the next 8me-steps predic8on. 

Which way of breaking the classical “Markovian” behavior is beOer or worse is arguably dependent on 
our goal. And it is not clear that cell-state summaries determined primarily from “Markovian-like” 
processing of the mass and energy-related 8me-series provided as inputs to the model are necessarily 
sufficient to characterize the true “state” of the system at any point in 8me. Therefore, our view is that 
whether or not a classical “Markovian” or "non-Markovian" (or even "par8ally Markovian") 
representa8on is useful for gaining insight into the internal rela8onships learned by a Machine Learning 
model is not the most important thing. 

Regarding the comment that the LSTM representa8on does not necessarily op8mize to reduce the 
number of states, this is an interes8ng issue that would be useful to develop a beOer understanding of. 
It could also, perhaps, be a consequence of the limita8ons imposed by the specific architectural choices 
available to the LSTM (including, for example, the forms of the ac8va8on func8ons used). And, as you 
men8on in the next comments, it could also be associated with the non-conserva8ve behavior of the 
forget gate. We are of the opinion that more inves8ga8on should be done to explore improvements or 
modifica8ons to the current LSTM representa8on, at least when applied in a hydrological context.  

In summary, we thank you for raising the discussion about the Markovian nature of the process, as it 
is a topic that will enrich the paper – as a consequence we plan to add a small discussion to the revision. 
Moreover, to avoid misunderstandings with the concept of Markovian we will use “quotes” when using 
this concept in reference to the proposed HydroLSTM architecture.     

 
 
Reviewer Comment #2: 
I believe there is a misunderstanding about sequence-to-sequence (seq2seq) vs sequence-to-one (seq2one) 
predic8on. 
The authors state in line 150 “In these areas, two primary assump>ons are typically applied that may not hold 
in the dynamic environmental system: a) a finite relevant sequence length (finite memory >me-scale), and the 
consequent possibility of 150 b) a non-informa>ve system state ini>aliza>on.” 
They also state in line 200 “the cell states are con>nually updated from the beginning to the end of the available 
dataset while maintaining the sequen>al ordering of the input drivers. This ensures that the cell states represent 



Markovian memories that are effec>vely of indeterminate length (as in tradi>onal hydrological modeling, 
ini>aliza>on is done only once at the beginning of the simula>on period)” 
What the authors are describing is the difference between seq2seq vs. seq2one. The Kratzert papers use 
seq2one for *training*, but seq2seq for *predic8on*. The reason that seq2seq is used for training is to help 
randomize the minibatch. Seq2seq allows for dividing the total training sample up so that any single minibatch 
contains samples from mul8ple different watersheds. This helps prevent spurious weight updates, which can 
significantly harm training. However, once the models are trained, they are applied as these authors describe 
— simula8ng the en8re sequence without restar8ng (i.e., seq2seq predic8on). The authors might no8ce that 
this is why the Krazert models require O(10) epochs for training while their seq2seq approach requires O(100) 
epochs for training. 

It’s also important to point out that this is not actually a difference in the model itself, but instead a difference 
in how the model is applied (seq2seq models are iden8cal to seq2one models, just applied to different types 
of data). This is just a dis8nc8on in terms of how this is framed in the discussion (the authors refer to this in 
line 199 as a difference in model structure, which it is not). 

The authors should be aware that this seq2seq vs. seq2one dis8nc8on does not actually make a difference 
(other than the minibatch diversity thing during training, which is important). The reason why it does not maOer 
is because of the forget gate. The forget gate can be thought of as a repeated mul8plica8on opera8on. If the 
forget gates are not exactly one, then the memory of the model is limited by this repeated opera8on. Imagine 
repeatedly applying the forget gate opera8on on informa8on in cell states from 300 8me steps ago. If the forget 
gate has values close to one (i.e., fully open, meaning that they try to forget as liOle informa8on as possible), 
then you are applying a repeated opera8on of mul8plying by a number close to one several hundred 8mes. As 
an example, 0.99 ^ 300 = 0.05, meaning that even in a very op8mis8c case where the forget gate is almost 
completely open at all 8mesteps, only 5% of the informa8on is lek aker 300 8mesteps *purely because of 
numerical ar8facts in the asymptotes of the forget gate ac8va8on func8ons.* It does not make very much sense 
to extend the input 8me sequence very much beyond this, simply because there will be no mathema8cal effect. 
This is why we are comfortable using seq2one for training, and the reason we use seq2seq for inference is 
because it’s simply not necessary to do the extra computa8ons necessary for seq2one when there is no 
minibatch. 

I’d encourage the authors to test this – how much memory can the model have before it loses all sensi8vity to 
inputs in the distant past? This can be answered using integrated gradients (we have done this experiment). 
No8ce that if the authors wanted to avoid this numerical ar8fact, they could input a very long sequence directly 
into each cell state of the LSTM, however the number of weights in the model would explode. At some point, 
you might as well just use a 8me convolu8on (or similar), and not worry about the cell states at all. 

 
 Author Response: 

We agreed that your descrip8on of seq2seq and seq2one sounds like what we described. However, we 
are trying to describe something slightly different. In hydrological models, a warm-up period is 
commonly used to establish the ini8al value of the state variable. Aker this period, the state variable 
is updated with each new piece of informa8on (in our case, daily precipita8on, and temperature). The 
warm-up period can be thought of as a seq2one process, while the posterior upda8ng of the state 
resembles a seq2seq process. However, during the training of a seq2one model, this warming-up 
process is repeated for each 8me value in the 8me series, which can result in the model learning an 
average sequence length that does not consider anomalies with respect to the mean. To address this 
issue, the state value could be fed at the beginning of each training period, but this approach would 
not allow for the randomiza8on of samples described in the comment. The process of beginning from 
zero constantly to define the state variable is what we describe as a process that is not like what we do 
when we solve a dynamic system.   



The men8on of seq2seq in the paper was to try and express that more ideas can be built up over LSTM 
than to men8on it as another architecture. We will clarify this in the next version of the paper.  
As you men8oned very well, the forget gate is non-conserva8ve (asympto8c to 1) which truncates the 
past informa8on un8l it is insensi8ve. Therefore, new mechanisms should be explored to deal with 
that. The idea of using 8me convolu8on is well-taken because HydroLSTM is basically using a 8me 
convolu8on inside of the gates. What we have found is that such filters can be informa8ve, in an 
interes8ng way, about the hydrological rela8onships built inside the representa8on, which is the final 
goal of the paper. 

 
Reviewer Comment #3: 
The authors cited my 2021 paper in the first paragraph of the introduc8on, however that paper does not say 
anything similar to what is claimed in the sentence where it is cited (and I strongly disagree with the opinion 
expressed in that sentence). I would kindly ask the authors to please either remove this incorrect cita8on or 
else modify it to more accurately reflect what is wriOen in the paper they are ci8ng. 

 Author Response: 
We apologize for this inaccuracy. The reference will be deleted in the revised version.  

 
Reviewer Comment #4: 
It would be very helpful if the authors would benchmark against an exis8ng published paper. The authors have 
changed the set of basins that they train and test on (Line , as well as the train and test periods. This means 
that there is no way to know whether the authors have set up their LSTM in a way that matches the current 
state of the art. Their results are not directly comparable to anything that has previously been published. This 
should be easy, since the authors are using the same CAMELS dataset that numerous previous authors have 
used to develop and test the baseline ML model used in this study. It is OK to make changes to the train and 
test seqngs, but it would be very helpful if the authors provided a community benchmark to help us know 
whether to trust their results. The authors might see [1] for and example where we felt that it was necessary 
to change the train/test periods for a specific experiment, but also published benchmarks against previous 
publica8ons in the same paper, to ensure readers that our models were performing near state of the art. 
 
 Author Response: 

We are not sure what you mean by changing the basin of training and tes8ng, which probably means 
we should improve the descrip8on of our experiments in the next version. 

We conducted two experiments. In the first experiment, we compared both representa8ons using only 
10 catchments, training one model per catchment. Each catchment was calibrated using data from 
January 1, 1980 to September 30, 2000. We then used the next four years to select the best epoch and 
the final period to present the results. 

From the results of this experiment, we found that a single HydroLSTM cell had reasonably “good” 
performance compared to the best possible configura8on of lag data and the number of cells. 
Therefore, in the second experiment, we explored what we could learn from this simplified 
representa8on. We independently trained one HydroLSTM cell for each of the 588 selected catchments 
(including the previous 10), keeping the same procedure as in the first experiment (i.e., spliqng the 
data).  

Please note, as was men8oned in the paper, that our goal is not to demonstrate that HydroLSTM has a 
beOer performance than the LSTM. It is highly probable that state of the art in LSTM representa8ons 
and those that use of more cells than we used, could beat HydroLSTM in terms of performance. 
Instead, our aim was to explore the possibility of parsimonious representa8ons (in terms of numbers 
of cell-states) with the goal of gaining insights into the interpretability of parameters and state 



variables. Given this purpose, we thought it was most important to select a subset of basins that 
represent the range of hydrologic behaviors we want to capture, rather than selec8ng basins where 
we could compare to previous studies.  

 
Reviewer Comment #5: 
It is important to note that the integrated gradients method that the authors discuss in the introduc8on actually 
provides effec8vely the same informa8on that this new method provides. Both methods give us rela8ve 
importances on different model input channels. The authors could see [2] for an example of using integrated 
gradients to understand sensi8vity of an LSTM to lagged input data. So what is this new method supposed to 
help us with? What can be learned from this that cannot be learned by using a method that does break the 
isomorphism between the model and the physical system (by making the model non-Markovian), and that does 
not harm the performance of the model? 

Aker reading this paper, my main ques8on for the authors is this: What problem are you trying to solve? What 
do you want to be able to do that can’t already be done (and hasn’t already been done)? Is there some 
limita8on to what we can learn using explainability methods, and if so, what are those limita8ons? 
 
 Response: 

We agree that the gradient method effec8vely provides the same informa8on. However, the 
HydroLSTM uses that informa8on explicitly in the gates. This allows the user to more easily understand 
and visually interpret the "feature importance" encoded in the model. For that reason, the 8tle of our 
paper is focused on interpretability, rather than on presen8ng HydroLSTM as any kind of new state of 
the art. Given that some people are s8ll reluctant to use machine learning methods, because they are 
seeking more than just predic8ve performance, we feel that finding ways to make machine learning 
methods as interpretable as possible is a valuable goal. 


