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Response to Reviewers 
 
We thank the Editor and the two Reviewers for providing valuable comments and suggestions. We have 
incorporated their comments in the revised version of the manuscript and answered each point below. 
The Reviewers' comments are in black font while our replies are in blue font. Text in the original version 
is reported in red, with revisions in dark-blue italics. Lo refers to the line number of the original version 
of the manuscript, whereas Lr refers to the revised version. 
 
 
 
Editor: 
 
Two expert reviewers have provided generous and substantial comments on this version of the 
manuscript, and the authors have provided responses that clearly indicate positive engagement in the 
review procedure. Both reviewers find the manuscript to be interesting but also, in places, lacking in clarity. 
My decision is therefore that a major revision is required paying particular attention to details highlighted 
in the discussion. 
 
Thank you for the concise review summary. We have addressed all the comments provided by individual 
reviewers and enhanced clarity in the specific areas that were highlighted during the discussion, as 
outlined below. 
 
 
 
Reviewer #1: 
 

In this work, the authors investigate a new heavy-tail (i.e., extreme power-law tail) index a originating 
from the PHEV riverflow hydrograph model, which is compared to common practices in the literature of 
extreme-tail fitting, and it is applied to daily streamflow records in Germany. In my opinion, the 
manuscript needs multiple major and minor revisions before it can be evaluated for publication, and then, 
I believe it can serve as a review paper that compares several methods in the literature for extreme-tail 
oriented probability distribution fitting. 
 
Thank you for the summarized review. In this study, we have identified a primary factor influencing heavy-
tailed flood behavior (i.e., discharge dynamics embodied by the hydrograph recession exponent a) 
through theoretical analysis and substantiated our findings with empirical data. We have also discussed 
literature encompassing various methodologies for detecting heavy-tailed flood behavior. This discussion 
serves as a valuable point of reference to benchmark our novel results against standard practices and 
highlight the significance of our work, as it is typically done in any original research paper. We therefore 
kindly disagree with the Reviewer, who suggests our study as a review paper. In response to specific 
comments from the reviewer, we have provided our replies below each comment. 

 

1) The a index seems to be based on some assumptions related to precipitation probability distribution 
and to rainfall-runoff model. Although the Poisson distribution has been used in the literature to fit 



precipitation records (e.g., see Cox and Isham, 1988), rainfall extremes are shown to exhibit heavy-tail 
behaviour. Please see one of the first studies in the literature that suggest to use the EV2 distribution for 
rainfall extremes, through theoretical (i.e., physically-based) and empirical (I think is the first global-scale 
analyses on rainfall extremes) reasoning. This selection of distribution has been adopted by many 
researchers, and has been verified by many studies in the literature. Please see a recent extensive review 
on the rainfall-extremes in Koutsoyiannis (2022), where methods are also described how to adjust this to 
perform well in even short records. 

Cox, D.R. and V. Isham, A simple spatial-temporal model of rainfall, Proceedings of the Royal Society 
London A415, 317–28, 1988. 

Koutsoyiannis,D., Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation, 
Hydrological Sciences Journal, 49 (4), 575-590, doi:10.1623/hysj.49.4.575.54430, 2004a. 

Koutsoyiannis, D., Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of 
long rainfall records, Hydrological Sciences Journal, 49 (4), 591-610, 
doi:10.1623/hysj.49.4.591.54424, 2004b. 

Koutsoyiannis, D., Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Εκδοση 2, ISBN: 978-618-
85370-0-2, 346 pages, doi:10.57713/kallipos-1, Kallipos Open Academic Editions, Athens, 2022. 

 

We sincerely appreciate the reviewer for bringing attention to the significant contributions made by 
previous studies in advancing the simulation of observed rainfall extremes through the application of 
specific probability distributions. In contrast to simulating rainfall extremes, we aim to capture the 
characteristics of daily rainfall, and the reasons for this choice are as follows: 

The object of this study is the ensemble of runoff events and floods in river basins, which determines their 
probability distributions. It is crucial to note that rainfall extremes do not necessarily translate into 
streamflow extremes, as demonstrated in numerous studies (e.g., McCuen and Smith, 2008; Pall et al., 
2011; Hall et al., 2014; Archfield et al., 2016; Rossi et al., 2016; Zhang et al., 2016; Hodgkins et al., 2017; 
Sharma et al., 2018). For instance, McCuen and Smith (2008) identified this fact and proposed the 
influence of catchment responses and storages. Sharma et al. (2018) supported this notion, providing 
additional evidence and discussion that highlighted the limited correspondence between increased 
rainfall extremes and flooding. They found that factors such as decreased antecedent soil moisture and 
declining snowmelt work in conjunction with rainfall to modulate flood events. In summary, while rainfall 
is the primary contributor to runoff, the emergence of extreme floods is largely determined by catchment 
responses and water balance, as recently stressed by a thorough review of the state of knowledge (Merz 
et al., 2022). Given these premises, an appropriate approach for describing runoff and its extremes should 
be rooted in the dynamics of soil moisture within catchments. This necessitates the use of distributions 
which describe typical (e.g., daily) rainfall features (i.e., its frequency and magnitude) contributing to soil 
moisture dynamics , as employed in this study, rather than solely focusing on extreme rainfall events.  

Particularly, the framework used in this work is accomplished by stochastically representing the effective 
contribution of rainfall, which refers to the fraction of rainfall that infiltrates into the hillslopes, eventually 
reaching the outlet through the channel network. The representation incorporates classical hydrological 
processes, i.e., soil moisture dynamics in the top layer storage primarily involve rainfall-related processes, 
including infiltration as a positive contribution and loss through evapotranspiration, direct surface flow, 
and/or deep percolation, which reduce rainfall's contribution to the storage. The Poisson distribution has 
been commonly employed to model precipitation records, as noted by the reviewer. Consistent with this, 



we characterize daily precipitation (not rainfall extremes) as a Poisson process. Specifically, we utilize a 
Poisson process to simulate the temporal occurrence of rainfall events, while modeling rainfall depths as 
exponentially distributed, following the approach proposed by Botter et al. (2007). The effective 
contribution from rainfall to runoff is determined by applying an exceedance threshold for the soil 
moisture.  

This method offers a physically-based description of the role played by nonlinear hydrological responses 
and catchment water balance, which are highly relevant to the occurrence of heavy-tailed floods (Merz 
et al., 2022). As a result, it facilitates the investigation of the objectives outlined in this study. 

Inspired by the Reviewer's comment, we have enhanced the introductory section by introducing the 
following paragraph after L049, ahead of delving into the presentation of the physically-based method 
employed in this study: 

Lr50-60: “Floods are conventionally thought to be triggered by rainfall, and numerous studies have 
contributed to an improved understanding of rainfall extremes (e.g., Koutsoyiannis, 2004a,b; Martinez-
Villalobos and Neelin, 2021; Koutsoyiannis, 2022). However, several studies have clarified that rainfall 
extremes do not necessarily translate into flood extremes (e.g., McCuen and Smith, 2008; Pall et al., 2011; 
Hall et al., 2014; Archfield et al., 2016; Rossi et al., 2016; Zhang et al., 2016; Hodgkins et al., 2017; Sharma 
et al., 2018). For instance, McCuen and Smith (2008) showed that skewed rainfall distributions do not 
always produce skewed flood distributions. They proposed that catchment responses and storage 
dynamics contribute to the generation of flood extremes. This view was supported by Sharma et al. (2018), 
who argued that despite a significant increase in rainfall extremes, a corresponding increase in flood 
extremes was not observed. The thorough review of Merz et al. (2022) concluded that while rainfall plays 
a primary role in generating runoff, the emergence of flood extremes is largely determined by catchment 
responses and water balance. Given these premises, an appropriate approach for describing runoff and its 
extremes should be rooted in the dynamics of soil moisture and rainfall-runoff processes within 
catchments.” 

 

2) Additionally, the proposed distribution by the authors for the streamflow process (that combines 
exponential and power-type expressions) resembles the Pearson-III distribution, which has been used to 
fit streamflow records (e.g., Buckett and Oliver, 1977), but again it is not always recommended for the 
streamflow extreme-tail (e.g., Anghel and Ilinca, 2023), whereas, it has been shown that, for the parent 
distribution of streamflow (and by accounting for the impact of correlation among streamflow records 
through higher-order moments), a pareto-distribution type (i.e., the so-called Pareto-Burr-Feller 
probability distribution, which is a generalized form of the Pareto IV or Burr XII distribution) seems to 
adequately fit streamflow records even in a global-scale (please see such analysis with thousand of 
streamflow gauges in Dimitriadis et al., 2021). 

Anghel, C.G., and C. Ilinca, Evaluation of Various Generalized Pareto Probability Distributions for Flood 
Frequency Analysis, Water, 15, 1557, 2023. 

Buckett, J., and F.R. Oliver, F.R., Fitting the Pearson type 3 distribution in practice, Water Resources 
Research, 13(5), 851–852, 1977. 

Dimitriadis, P., D. Koutsoyiannis, T. Iliopoulou, and P. Papanicolaou, A global-scale investigation of 
stochastic similarities in marginal distribution and dependence structure of key hydrological-cycle 
processes, Hydrology, 8 (2), 59, doi:10.3390/hydrology8020059, 2021. 

 



Thank you for the comment. We would like to emphasize that the adopted distribution of streamflow 
(Equation (1)) is distinct from the Pearson-III distribution. While the Pearson-III distribution comprises a 
power law and an exponential distribution, Equation (1) includes a power law and two stretched 
exponential distributions. It is important to note that the stretched exponential distribution offers greater 
flexibility in terms of tail behavior compared to the exponential distribution. Depending on its parameters, 
the stretched exponential distribution can exhibit either a light-tailed or heavy-tailed behavior, whereas 
the exponential distribution always exhibits a light-tailed behavior. This constitutes a significant difference 
between the distribution of streamflow used in our study (PHEV equation) and the Pearson-III distribution, 
particularly regarding tail behavior, which is a focal point of this analysis. 

Regardless of these differences, it is essential to clarify that this study does not rely on assuming a 
standard probability distribution to represent streamflow (as the Pearson-III, Pareto IV or Burr XII may be). 
Instead, starting from a stochastic description of daily rainfall as a Poisson process and a mathematical 
representation of key hydrological processes, we derive the resulting probability distributions of daily 
flows, ordinary peak flows and flow maxima, which assume the forms described in equations (1), (2), (3) 
and summarized in the PHEV framework. In this regard, the PHEV approach is similar to the results of large 
simulation ensembles of deterministic hydrological models forced by diverse realizations of hydro-
meteorological scenarios and boundary/antecedent catchment conditions. 

We acknowledge that the description of precipitation and runoff generation mechanisms incorporated in 
PHEV does not encompass the entirety of potential rainfall-runoff processes. However, the chosen 
representation is firmly rooted in established scientific frameworks that have undergone extensive testing 
through numerous case studies over the past decades (see references at Lr83-Lr85). Its application to high 
flows has also been validated and documented in previous studies, e.g., Basso et al., Geophysical Research 
Letters (2016); Environmental Research Letters (2021); and Nature Geoscience (2023). 

To clarify this matter and highlight its representation of high flows, we have added the following 
paragraph in the revision: 

Lr96-102: “Notably, the mathematical expression of flow distributions provided by the PHEV framework 
are composed of a power law and two stretched exponential distributions, although it's important to note 
that PHEV doesn't assume a specific probability distribution for streamflow representation. The use of 
stretched exponential distributions introduces greater flexibility in capturing tail behavior compared to the 
exponential distribution. Depending on its parameter values, the stretched exponential distribution can 
display either light-tailed or heavy-tailed behavior, whereas the exponential distribution consistently 
exhibits a light-tailed behavior. In fact, recent studies (Basso et al., 2016; 2021; 2023) have substantiated 
and documented PHEV’s efficacy in representing high flow behaviors.” 

Meanwhile, we have recognized that some of the terms used in the original manuscript might be 
misleading. Therefore, we have made the necessary corrections to accurately reflect the intended 
descriptions as follows: 

L088-L090: “The tail behavior is in this case determined by both a power law and an exponential function, 
indicating that the probability decreases faster than an exponential but slower than a power law. When 
𝑎 > 2, both the exponential terms converge to a constant value of one as q increases…” 

Lr110-Lr112: “The tail behavior is in this case determined by both a power law and a stretched exponential 
function, indicating that the probability decreases faster than a stretched exponential but slower than a 
power law. When 𝑎 > 2, both the stretched exponential terms converge to a constant value of one as q 
increases…” 



 

3) By observing the results from the fitting illustrated in the Figure 3, it can be observed that there is a 
smaller variability on the ξ-index than in the a-index for longer lengths; please consider discussing this 
observation and in what cases the a-index can offer a higher statistically significant extreme-tail fitting 
(perhaps only in the small-length records?). 

 

Thank you for your comment. We appreciate the feedback and acknowledge that our work, in line with 
previous studies (Papalexiou and Koutsoyiannis, 2013), provides support for the stability of the ξ-index 
when the data length is adequately long.  However, it is important to note that reduced variability of the 
ξ-index in analyses performed with longer data lengths does not necessarily denote better identification 
of heavy-tailed behavior by the ξ-index than the a-index. The width (whiskers) of the boxplots for different 
indices (i.e., the variability mentioned by the reviewer) are not on the same scale (because each index has 
its own scale), making them incomparable. The estimated values of each index can thus be only compared 
within the same index.  

In light of this, Figure 3 shows that the a-index exhibits consistent categorization into heavy/nonheavy-
tailed flood behavior across all data lengths. The variability of the ξ-index notably diminishes with longer 
data series, as stressed by the reviewer. However, the categorization provided by the ξ-index becomes 
more inconsistent with diminishing length of the available data To elucidate this matter further, we 
introduce an additional subfigure (Figure 3d) illustrating the consistency of identified tail behavior against 
identification based on the entire data record. This clarifies that the differences in consistency between 
the two indices (ξ-index and a-index) are primarily observed in analyses with data length shorter than 10 
years in this study. For data series longer than 10 years, both indices exhibit similar and increasing 
consistency, with the ξ-index slightly outperforming the a-index.  

We apologize for any ambiguity stemming from the previous figure presentation. We improved the 
revised manuscript by:  

1. Introducing Figure 3d and the accompanying caption: 



Figure 3. Stability of the categorization of case studies into heavy/nonheavy-tailed flood behavior for decreasing data lengths. 
Estimates of three different indices of tail behavior as a function of data length. (a) Hydrograph recession exponent 𝑎 (i.e., the 
proposed index of this study). Two frequently used metrics of heavy tails in hydrological studies: (b) the upper tail ratio 𝑈𝑇𝑅, and 
(c) the shape parameter 𝜉 of the GEV distribution. Dots display the median values of the estimates for 386 case studies; vertical 
shaded bars and lines show the 0.25-0.75 and 0.05-0.95 quantile ranges of the estimates, respectively. The entire data record 
was used for computing the reference values of the hydrograph recession exponent 𝑎∗ and the GEV shape parameter 𝜉∗ and 
categorizing each case study as either having (red) or not (green) heavy-tailed behavior. (d) Consistency of identified tail behavior 
(either heavy or nonheavy) as a function of available data length for the indices recession exponent and shape parameter of GEV. 

2. Enhancing our prior explanation in the Results Section by revising L0251-L0256 to Lr289-Lr303:

L0251-L0256: “Fig. 3c depicts the categorization of tail behavior using GEV shape parameter estimates. The 
results show that to achieve stable and consistent categorization of heavy-tailed behavior, a minimum 
test data length of 5 years is recommended. Underestimation of heavy-tailed behavior occurs with shorter 
data lengths. Although the median values of 𝜉 range from 0.39 to 0.52 for the heavy-tailed cases and is 
equal to 0 for the nonheavy-tailed cases, the coefficient of variation shows some variation across the test 
data length, ranging from 0.37 to 1.03 for heavy-tailed cases. The coefficient of variation is not applicable 
for nonheavy-tailed cases due to their zero mean values.” 

Lr289-Lr303: “Fig. 3c illustrates the categorization of tail behavior using GEV shape parameter estimates. 
The results indicate that 𝜉 estimates are stable with longer data series, yet their variability increases — 
leading to both underestimation and overestimation of tail heaviness — when data length is short. To 
ensure a stable categorization of flood tail behavior using this method data series spanning more than 10 
years (for seasonal analyses and monthly maxima, i.e., sample sizes of around 30 values) are needed, in 



line with the findings of previous studies (Cai and Hames, 2010; Németh et al., 2019). The median values 
of 𝜉 range from 0.39 to 0.52 for heavy-tailed cases and remain at 0 for nonheavy-tailed cases. Furthermore, 
the coefficient of variation demonstrates relatively higher variation across different test data lengths, 
ranging from 0.37 to 1.03 for heavy-tailed cases. 

Figure 3d presents a summary of the consistency in identifying tail behavior (either heavy or nonheavy) 
compared to the identification based on the complete data record (i.e., fraction of cases for which 
categorization based on shorter data series provides the same result obtained with the complete data 
record). This assessment is conducted for both the methods of recession exponents and GEV shape 
parameters (unfortunately, this approach is inapplicable to the UTR due to the absence of a specific 
threshold for distinguishing heavy/nonheavy tails). The comparison underscores that discrepancies in 
consistency between the two indices (𝜉 and a) are predominantly noticeable when analyzing data series 
shorter than 10 years in this study. Conversely, for data series longer than 10 years, both indices exhibit 
comparable consistency and display an ascending trend, with the performance of the GEV shape 
parameters slightly higher than the one of the recession exponents.” 

3. Adding a comparison between the a-index and 𝜉-index in the Discussion Section: 

Lr382-Lr389: “In summary, both the recession exponent and the GEV shape parameter exhibit greater 
stability across data lengths than the UTR, which is highly dependent on the available amount of data. 
When comparing the first two indices (recession exponent and GEV shape parameter) (Fig. 3d), the 
recession exponent demonstrates a high level of stability across all data lengths, even those shorter than 
10 years based on this study's analyses. On the other hand, the GEV shape parameter displays lower 
stability when the available data are shorter than 10 years, but this stability significantly improves as the 
data length exceeds 10 years. Beyond the 10-year threshold, both indices show comparable consistency 
and an upward trend, with GEV shape parameters slightly outperforming recession exponents.” 

 

4) It is my understanding that the whole (not peaks-over-threshold and maxima) streamflow timeseries 
are fitted to equation (1) from where the a-index is estimated. If this is true, please discuss the method 
used to fit this distribution to data. For example, is it through the method of moments, where an n-number 
of moments is estimated from data to estimate the n-number of parameters of the distribution or through 
the method of curve-fitting, where one estimates the parameters of the distribution that result in the 
smaller small-square-error between the theoretical and empirical distribution? 

 

We regret the misunderstanding made clear by this comment. At the same time, we are also glad that it 
gives us the chance to clarify our approach. We would like to stress that we do not fit Equation (1) to the 
empirical distribution of observed streamflow. Consequently, no method is used for fitting the distribution 
to the data and determine its parameters. Equation (1) serves as a physically-based framework that helps 
us understand the role of a in determining the tail behavior. The value of a is not determined through a 
fitting process. Rather, it is estimated from the analysis of hydrograph recessions, following a widely 
applied approach (see, e.g., Biswal and Marani, 2010; Jachens et al. 2020) as stated in the original 
manuscript at L0115-L0116. In particular, a power law is used to represent hydrograph recessions of a 
single event i, 

𝑑𝑞

𝑑𝑡
= −𝐾𝑖 ⋅ 𝑞𝑎𝑖  

Where q denotes the streamflow, t denotes the unit time, Ki and ai denote the estimated coefficient and 
exponent of hydrograph recessions for event i, respectively. The median value of all the ai is the estimated 



value of a considered in this study and here used to represent the average nonlinearity of catchment 
response. 

We apologize for any confusion caused by our previous statement and have enhanced our description of 
a estimation in the Section of data and parameter estimation: 

 

L0115-L0116: “We estimated the hydrograph recession exponent 𝑎 for each case study as the median value 
of the exponents of power law functions fitted to 𝑑𝑞/𝑑𝑡−𝑞 pairs of individual hydrograph recession 
(Jachens et al., 2020; Biswal, 2021).” 

 

Lr142-Lr151: “The proposed index is derived from hydrograph recession analysis. The hydrograph recession 
is typically described by a power law relationship between the rate of change of streamflow in time, 𝑑𝑞/𝑑𝑡, 
and the magnitude of streamflow 𝑞  (Brutsaert and Nieber, 1977). Recent studies have suggested 
estimating this power law relationship for individual recession events rather than aggregating them, 
enhancing the representation of observed recession behavior (Biswal and Marani, 2010; Basso et al., 2015; 
Karlsen et al., 2019; Jachens et al., 2020; Tashie et al., 2020a; Biswal, 2021). In line with these studies, we 
calculate the recession exponent for each individual event and then take the median exponent across all 
events as the representative value for a given case study. In particular, a power law is used to represent 
hydrograph recessions of a single event i, 𝑑𝑞 𝑑𝑡⁄ = −𝐾𝑖 ⋅ 𝑞𝑎𝑖, where t denotes the unit time, Ki and ai 
denote the estimated coefficient and exponent of hydrograph recessions for event i, respectively. The 
median value of all the ai is the estimated value of a considered in this study and here used to represent 
the average nonlinearity of catchment response.” 

 

 

Reviewer #2: 

 

In this article, the author investigated a new method for representing the probability distribution function 
of flood with a heavy tail. A new method is to fit a power raw function to recession parts of hydrographs 
and then the derived power parameter a is utilized for the probability distribution function of flood as the 
reviewer’s understanding. The result showed a high capability of power parameter a derived from 
recession parts of hydrographs to represent the power parameter of the probability distribution function 
for streamflow data including flood data. The advantage of this bland new approach is to utilize recession 
parts of hydrographs, which means usage of restricted data but numerous numbers of data. Instead of 
using all the data, this approach enables us to handle a huge amount of data to reduce uncertainty of 
flood estimation. However, another uncertainty, which is the representativeness of the power parameter 
from the recession hydrograph to the probability distribution function of the flood, rises. Moreover, it 
must be well discussed whether a power parameter from a recession hydrograph could be considered as 
a power parameter of a probability distribution function. 

 

We thank the Reviewer for the positive feedback and suggestions, which we have addressed point by 
point below. 

 

1) Please discuss how the power parameter which is fitted to hydrograph recession can be applied to the 
power parameter of the distribution function of flood. 



 

Thank you for your comment. In this paper, we present mathematical reasons of why the hydrograph 
recession exponent may serve as an indicator of heavy-tailed flood behavior, and support them by means 
of empirical data. The mathematical derivations are based on the description of key hydrological 
processes leading to runoff generation embedded in the physically-based extreme value distribution 
(PHEV) framework. In this context, the tail behaviors of daily flow, ordinary peak flow and flow maxima 
distributions are solely determined by a power law function (i.e., heavy-tailed behavior) when the 
hydrograph recession exponent is above two. We discussed the case of daily flow distributions in the main 
text  (L060-L093) and emphasized that the same critical value of the recession exponent can also be applied 
to identify heavy-tailed behavior for ordinary peak flows and flood distributions, with detailed 
explanations originally provided in Appendix A (originally noted in L094-L098). Additionally, we highlighted 
that the observations support the theoretical findings for all three cases proposed in this work, i.e., 
streamflow distributions, ordinary peak distributions, and flood distributions, which are discussed in 
figures 1 and 2 in the main text. 

To address the reviewer's comment, we have integrated the mathematical explanations regarding 
ordinary peak flows and flood distributions into the main text to enhance their visibility: 

Lr91-Lr95: “The probability distribution of ordinary peak flows and flow maxima can be expressed as 
𝑝𝑗(𝑞) and 𝑝𝑀(𝑞), respectively (Basso et al., 2016): 

𝑝𝑗(𝑞) = 𝐶2 ⋅ 𝑞1−𝑎 ⋅ 𝑒
−

𝑞2−𝑎

𝛼𝐾(2−𝑎) ⋅ 𝑒
𝑞1−𝑎

𝐾(1−𝑎),          (2) 

𝑝𝑀(𝑞) = 𝑝𝑗(𝑞) ⋅ 𝜆𝜏 ⋅ 𝑒−𝜆𝜏⋅𝐷𝑗(𝑞),          (3) 

where 𝐷𝑗(𝑞) = ∫ 𝑝𝑗(𝑞)
∞

𝑞
𝑑𝑞 , 𝜏[𝑑𝑎𝑦]  is the duration of the considered time frame, and 𝐶2  is a 

normalization constant.” 

 

Lr117-Lr127: “We apply the same analyses to infer the tail behavior of the probability distributions of 
ordinary peak flows and floods by taking the limit of 𝑞 ⟶ +∞  for both Eq. (2) and (3). Because 

𝑙𝑖𝑚
𝑞→∞

𝐷𝑗(𝑞) = ∫ 𝑝𝑗(𝑞)
∞

∞
𝑑𝑞 = 0, the Eq. (2) and (3) can be transformed into: (set 𝐶3 = 𝜆𝜏𝐶2) 



 

𝑙𝑖𝑚
𝑞→+∞

𝑝𝑗(𝑞) = 𝑙𝑖𝑚
𝑞→+∞

{𝐶2 ⋅ 𝑞1−𝑎 (𝑒
−1

𝛼𝐾(2−𝑎)
⋅𝑞2−𝑎

)},        (5) 

 

𝑙𝑖𝑚
𝑞→+∞

𝑝𝑀(𝑞) = 𝑙𝑖𝑚
𝑞→+∞

{𝐶3 ⋅ 𝑞1−𝑎 (𝑒
−1

𝛼𝐾(2−𝑎)
⋅𝑞2−𝑎

)},        (6) 

Notably, we observe that the same critical value of the recession exponent equal to 2 separate the absence 
and presence of heavy-tailed behavior also in these cases. Therefore, we propose the hydrograph recession 
exponent a as a suitable indicator of heavy-tailed flood behavior, based on the description of hydrological 
processes embedded in the physically-based extreme value model. We test its capability to correctly 
predict such behavior in Sec. 4, and discuss the results in Sec. 5.” 

This theoretical justification of why the recession exponent is an index of heavy-tailed flood behavior is 
now presented in Section 2 (Lr71-Lr127) . Furthermore, Figures 1 and 2 in the Results Section offer data 
validation supporting this representation (Lr176-Lr253). 

We have also better discussed the justification of the hydrograph recession exponent representing heavy-
tailed flood behavior by emphasizing the nonlinearity of catchment response as a plausible control of 
heavy-tailed behavior. The discussion in L0302-L0305 is now enhanced as Lr350-Lr354: 

L0302-L0305: “Based on a mechanistic description of hydrological dynamics and validation with 
observations from a large dataset, our findings directly demonstrate that heavy-tailed flood behaviors 
emerge as a result of the nonlinearity of the catchment hydrologic response, which can thus be used as a 
metric to assess tail behaviour of flood distributions from common streamflow dynamics.” 

Lr350-Lr354: “Merz et al. (2022) established, based on a comprehensive review, that the nonlinearity of 
the catchment response is a plausible contributor to the emergence of heavy-tailed flood behavior. 
Additionally, Basso et al. (2023) demonstrated that the hydrograph recession exponent aids in predicting 
the propensity of rivers for generating extreme floods. In line with these studies, our research further 
highlights that the hydrograph recession exponent, which provides a description of catchment 
nonlinearity obtained from common streamflow dynamics, is capable of robustly identifying heavy-tailed 
flood behavior.”  

 

2) In the text, a parameter is mentioned as “a physically-based index”. However, this index was derived 
by fitting the raw power function to the recession part of the hydrograph. In this sense, using the word 
“physically” may lead to confusion. Rather, “recession-derived” is suited, the reviewer thinks (for example, 
“a recession-based exponent”). 

 

⟼ 0            ⟼ 0                                for  1 < 𝑎 < 2 

 

 

⟼ 0            ⟼ 𝑒0 = 1                        for  𝑎 > 2 

⟼ 0            ⟼ 0                                for  1 < 𝑎 < 2 

 

 

⟼ 0            ⟼ 𝑒0 = 1                        for  𝑎 > 2 



Thank you for the suggestion. In response to the Reviewer's comment, we have improved the clarity of 
the writing by avoiding phrases like "physically-based index."  

1. In response to the reviewer's comment, we have emphasized that the proposed index is derived from 
recession analysis and is expressed as an empirical exponent: 

Lr142-Lr151: “The proposed index is derived from hydrograph recession analysis. The hydrograph recession 
is typically described by a power law relationship between the rate of change of streamflow in time, 𝑑𝑞/𝑑𝑡, 
and the magnitude of streamflow 𝑞  (Brutsaert and Nieber, 1977). Recent studies have suggested 
estimating this power law relationship for individual recession events rather than aggregating them, 
enhancing the representation of observed recession behavior (Biswal and Marani, 2010; Basso et al., 2015; 
Karlsen et al., 2019; Jachens et al., 2020; Tashie et al., 2020a; Biswal, 2021). In line with these studies, we 
calculate the recession exponent for each individual event and then take the median exponent across all 
events as the representative value for a given case study. In particular, a power law is used to represent 
hydrograph recessions of a single event i, 𝑑𝑞 𝑑𝑡⁄ = −𝐾𝑖 ⋅ 𝑞𝑎𝑖, where t denotes the unit time, Ki and ai 
denote the estimated coefficient and exponent of hydrograph recessions for event i, respectively. The 
median value of all the ai is the estimated value of a considered in this study and here used to represent 
the average nonlinearity of catchment response.” 

2. We have also implemented the following modifications: 

L098-L099: “we propose the hydrograph recession exponent a as a physically-based index for identifying 
heavy-tailed flood behavior” 

Lr125-Lr127: “we propose the hydrograph recession exponent a as a suitable indicator of heavy-tailed flood 
behavior, based on the description of hydrological processes embedded in the physically-based extreme 
value model.” 

 

L0102: “To test the proposed physically-based index of heavy-tailed flood behavior” 

Lr129: “To test the proposed index of heavy-tailed flood behavior” 

 

L0239: “The physically-based index provides consistent categorization” 

Lr277: “The proposed index provides consistent categorization” 

 

L0311-L0312: “The physically-based index proposed in this study offers a solution to these limitations. Our 
proposed index…” 

Lr360- Lr361: “The proposed index finds a solution to these limitations through a mathematical description 
of hydrological processes. Such an index…” 

 

L0318: “Overall, our physically-based index offers a promising solution” 

Lr367: “Overall, our proposed index offers a promising solution” 

 

3) In L147, the skewness of the histogram of KS statistics was mentioned. What does it mean in this study? 
More explanation is effective for the readers. 



 

Thank you for the suggestions. In this study, we used the KS statistic to assess how well the power law 
describes the empirical data, indicating whether the data exhibits heavy-tailed behavior or not. A KS 
statistics skewed towards lower values, therefore, suggests a stronger presence of heavy-tailed behavior 
in the observations. 

We found that this was indeed the case for instances with recession exponents above two. This finding 
aligns with the indications provided by the recession exponent, demonstrating a consistency between the 
suggested index and the observed heavy-tailed behavior in the data. 

Furthermore, we observed significant differences in the skewness of the KS statistics between cases with 
recession exponents above two and those with recession exponents below two. Data from the former 
group are more likely to display heavy-tailed behavior. Conversely, data from the latter group (i.e., with 
recession exponents below two) are less likely to show heavy-tailed behavior. 

These results further support the effectiveness of our proposed index in identifying heavy-tailed behavior 
in the data. In response to the Reviewer's comment, we have made improvements in our description to 
enhance clarity for readers: 

L0145-L0146: “Then, we use the KS statistic 𝜅 to evaluate the reliability of the fitted power law distribution 

in describing the data (κ∈[0,∞], κ=0 denotes the highest reliability).” 

Lr179-Lr182: “Then, we utilize the KS statistic 𝜅 to measure the distance between the frequency 
distributions of observations and a power law distribution (specifically, on the tail of the distribution). This 
assessment gauges the effectiveness of the fitted power law distribution in characterizing the dataset 

(with κ∈[0,∞], where κ=0 represents the utmost reliability). The KS test is a common nonparametric method 

suitable for non-normal distributions.” 

 

4) For figs. 1d-1f, why does the accuracy index become one when the threshold of KS statistics becomes 
larger? The large threshold of KS statistics means considering almost all cases. However, the index shown 
on the vertical axis is the probability of a>2, which is never all the cases. 

 

We believe there is a misunderstanding regarding the accuracy calculation when considering the 
threshold of KS statistics. The accuracy does not become one when the threshold of KS statistics becomes 
larger, rather the opposite. This is indicated by the inverse x-axis in Figure 1. In fact, the accuracy tends to 
approach one when the threshold of KS statistics becomes smaller. 

By lowering the threshold of KS statistics, we impose a stricter criterion for including cases in the 
calculation of the conditional probability of accuracy (described in L157-L159). As depicted in Figures 1d-
1f, the accuracy approaches one when the threshold of KS statistics is set to a very small value. This 
indicates that only cases with very high reliability (i.e., cases with KS statistics below this very small value) 
are taken into account for the accuracy calculation. Among these cases, almost every one exhibits a 
recession exponent above two, as evident from the accuracy being close to one. 

Upon recognizing the potential for misleading interpretations, we have enhanced the clarity of the 
previous description: 



L0160-L0161: “Notice that the smaller the 𝜅𝑟 threshold, the more reliable is the description of the data 
through power law distributions.” 

Lr196-Lr200: “To achieve this, we systematically reduce the threshold of KS statistic 𝜅𝑟 (imposing a more 
stringent criterion for incorporating cases in the computation of conditional probability of accuracy) along 
the x-axis in Fig. 1, progressing from left to right. It's important to note that as the 𝜅𝑟 threshold becomes 
smaller, the reliability of describing the data using power law distributions increases (as denoted by the 
second axis legend of Fig.1).” 

 

We greatly appreciate these valuable comments and have incorporated all the suggested modifications 
into a revised version of the manuscript. Additionally, we have provided a marked version that 
highlights these changes. The newly referenced literature has been included in the revised version 
accordingly. 
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