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Abstract 6 

Traditional discharge monitoring usually relies on measuring flow velocity and cross-7 

section area with various velocimeters or remote-sensing approaches. However, the 8 

topography of mountain streams in remote sites largely hinders the applicability of 9 

velocity-area methods. We here present a method to continuously monitor mountain 10 

stream discharge using a low-cost commercial camera and deep learning algorithm. A 11 

procedure of automated image categorization and discharge classification was 12 

developed to extract information on flow patterns and volumes from high-frequency 13 

red–green–blue (RGB) images with deep convolutional neural networks (CNNs). The 14 

method was tested at a small, steep, natural stream reach in southern China. Reference 15 

discharge data was acquired from a V-shaped weir and ultrasonic flowmeter installed a 16 

few meters downstream of the camera system. Results show that the discharge-relevant 17 

stream features implicitly embedded in RGB information can be effectively recognized 18 

and retrieved by CNN to achieve satisfactory accuracy in discharge measurement. 19 

Coupling CNN and traditional machine learning models (e.g., support vector machine 20 

and random forest) can potentially synthesize individual models’ diverse merits and 21 

improve generalization performance. Besides, proper image pre-processing and 22 

categorization are critical for enhancing the robustness and applicability of the method 23 

under environmental disturbances (e.g., weather and vegetation on river banks). Our 24 

study highlights the usefulness of deep learning in analyzing complex flow images and 25 

tracking flow changes over time, which provides a reliable and flexible alternative 26 

https://doi.org/10.5194/egusphere-2023-659
Preprint. Discussion started: 5 May 2023
c© Author(s) 2023. CC BY 4.0 License.



3 

 

apparatus for continuous discharge monitoring of rocky mountain streams.  27 

Keywords:  28 

Discharge monitoring; Mountain streams; Deep learning; Machine learning; Image 29 

categorization 30 

1 Introduction 31 

Continuous discharge data is critical for hydrological model development and flood 32 

forecast (Mcmillan et al., 2010; Clarke, 1999), water resources management (Council, 33 

2004), and aquatic ecosystem health assessment (Carlisle et al., 2017). Traditional 34 

discharge monitoring relies on stream gauges that convert water level to discharge with 35 

an established stage-discharge curve, or information on stable cross-sections and flow 36 

velocity obtained from flow velocimeters such as acoustic doppler current profiler 37 

(ADCP) and ultrasonic defectoscope (Kasuga et al., 2003). However, these approaches 38 

require significant investment on the implementation of equipments, training of 39 

personnel with expertise, and constant maintenance (Fujita et al., 2007; Czuba et al., 40 

2017; Yorke and Oberg, 2002). Besides, the performance of transducers and 41 

velocimeters is usually susceptible to sediments and floating debris, particularly in 42 

flooding seasons (Hannah et al., 2011). Consequently, large temporal gaps remain in 43 

many discharge records across the world despite of the growing demand on data 44 

(Davids et al., 2019; Royem et al., 2012). Spatially, flow monitoring of downstream 45 

river sections has been assigned to a higher priority due to the concerns on water supply 46 

and flood control, leading to an acute shortage of discharge data in mountain streams 47 
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and headwater catchments (Deweber et al., 2014).  48 

To overcome the limitations of traditional methods, a few image-based approaches 49 

have been introduced into water stage, flow velocity, and discharge measurement in 50 

rivers (Noto et al., 2022; Leduc et al., 2018). Image-based (Leduc et al., 2018; Noto et 51 

al., 2022) approaches rely only on the acquisition of digital images of streams from 52 

inexpensive commercial cameras and thus have been a promising alternative for 53 

continuous, noninvasive, and low-cost streamflow monitoring. The two most 54 

commonly used approaches include large-scale particle image velocimetry (LSPIV) 55 

and particle tracking velocimetry (PTV). LSPIV (Fujita et al., 1998) is based on a high-56 

speed cross-correlation scheme between an interrogation area (IA) in a first image and 57 

IAs within a search region (SR) in a second image. The technique has been proved 58 

effective in monitoring low-velocity and shallow-depth flow fields (Tauro et al., 2018). 59 

However, it performs poorly in mapping velocity fields in high resolution when there 60 

is a lacking of seeds on the water surface because the algorithm obtains the average 61 

speed of each SR (Tauro et al., 2017). Compared to LSPIV, PTV was designed for low 62 

seeding density flows, focusing on particle tracking instead of recognition. The PTV 63 

approach does not require assumptions on flow steadiness nor the relative position of 64 

neighbor particles (Tauro et al., 2018). Several algorithms have been developed for PTV 65 

analysis, such as space-time image velocimetry (STIV) and optical tracking 66 

velocimetry (OTV), overcoming the over-dependence on natural particles’ shape and 67 

size (Tauro et al., 2018; Tsubaki, 2017). STIV evaluates surface flow velocity by 68 

analyzing a texture angle within a variation of brightness or color on the water surface, 69 
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while OTV combines automatic feature detection, Lucas-Kanade tracking algorithm 70 

and track-based filtering methods to estimate subpixel displacements (Karvonen, 2016; 71 

Fujita et al., 2007). Existing image-based discharge measurement methods all use the 72 

velocity-area method to indirectly deduce discharge after identifying stage and average 73 

(Davids et al., 2019; Herzog et al., 2022; Leduc et al., 2018; Tsubaki, 2017) velocity. 74 

The average velocity in a cross-section is estimated with surface velocity derived from 75 

natural or artificial seeds on water surface and pre-defined empirical relationships 76 

between the surface velocity and average velocity. The velocity-area method relies on 77 

a stable relationship between stage and cross-sectional area, and needs to take velocity 78 

extrapolations to the edges and vertical distributions throughout the cross-section into 79 

account (Le Coz et al., 2012). However, it is difficult to identify the water stage and 80 

vertical characteristics of mountain streams due to the steep, narrow, and highly 81 

heterogeneous cross-sections. The applicability of PIV and PTV approaches is largely 82 

hindered by such topography.  83 

In this study, we propose a novel mountain stream discharge monitoring method 84 

using a low-cost commercial camera and deep learning models. Automated image 85 

categorization and pre-processing procedures were developed for processing high-86 

frequency red–green–blue (RGB) images, and then the convolutional neural network 87 

was used to extract information on flow patterns from RGB matrixes and establish 88 

empirical relationships with the classification probabilities of discharge volumes. We 89 

hypothesize that (1) the features of mountain streams (e.g., coverage of water surface, 90 

flow direction, flow velocity) embedded in RGB images can be recognized by suitable 91 
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deep learning approaches to achieve effective discharge monitoring, and (2) proper 92 

image pre-processing and categorization can improve accuracy of image-based 93 

discharge monitoring of mountain streams. A rocky mountain stream of a headwater 94 

catchment in tropical southern China was used as a study site to test our hypotheses.  95 

 96 

2 Methods 97 

2.1 Site and field setting 98 

The study site is located on a small, steep, rocky reach of a stream in the Zhuhai Campus 99 

of Sun Yat-sen University, China (22°20′58″ N, 113°34′29″ E). The site elevation is 13 100 

m above sea level and about 2 km away from the Lingding Yang of South China Sea. 101 

The stream flow is mainly controlled by rainfall in the upstream drainage area. Water 102 

stage and flow velocity increase rapidly during East Asian summer monsoon rainfalls 103 

and fluctuate with synoptic weather conditions on dry days.  104 

The main objective of the study was to test the applicability of deep-learning based 105 

image processing approaches in capturing the flow characteristics and discharge 106 

volumes in the daily flow cycle in this mountain stream. We selected a straight, single-107 

thread reach for the gauging location, and set up a Hikvision camera on the left bank of 108 

the stream to collect flow images (Fig. 1). Discharge data monitored by a weir about 8 109 

m downstream of the camera was used for model training and validation. The camera 110 

was installed 3 m above the ground, facing the surface of the stream almost vertically. 111 

The entire stream width is visible in the images. The camera was equipped with a 150W 112 
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solar panel and 80AH lithium battery, enabling the camera to work continuously for 80 113 

hours without external power on rainy days. The camera supports the wireless 114 

transmission of video data to the server. 115 

 116 

 117 

Figure 1. Camera setup. The camera is set on the left bank of the stream, about 3 m 118 

above the water surface, and 8 m upstream of a gauging weir. 119 

 120 

2.2 Data 121 

The flat V-shaped weir downstream of the camera monitors discharge with an open 122 

channel flowmeter and an overflow flowmeter. The flowmeters measure water levels in 123 

the channel and in front of the weir with ultrasonic sensors and calculate real-time 124 

discharge at the time step of two minutes by a semi-empirical equation suggested by 125 
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the State Bureau of Technical Supervision of China (www.chinesestandard.net), as 126 

 𝑄 = ଵ଼ହ 𝐶௘ tan ఏଶ ඥ2𝑔ℎ௘ఱమ  (1) 127 

where 𝑄 is the discharge of stream, 𝜃 is the angle of triangular weir, 𝑔 is acceleration 128 

of gravity, ℎ௘ is the height of the triangle barrier from the bottom, 𝐶௘ is an empirical 129 

coefficient. 130 

We collected the discharge data of the weir and its corresponding stream videos 131 

during daylight (07:00-19:00 UTC+8) from July 20th to September 27th, 2022. The raw 132 

video resolution was 2560×1440 pixels with a refresh rate of 50 Hz. Images were 133 

extracted from the videos at the 5- minute interval to avoid excessive similarity between 134 

adjacent images. A total of 7,757 image samples labeled with 37 discharge values 135 

between 0.014 and 0.050 m³/s were collected for model testing. 136 

2.3 Image processing 137 

2.3.1 Image categorization 138 

Environmental disturbances such as illumination and shadow can seriously interfere 139 

with the extraction of effective image features of mountain streams, such as boundaries 140 

of water surface and textures of flow lines (Gershon et al., 1986; Herzog et al., 2022). 141 

Although researchers have proposed methods to eliminate shadows (Finlayson et al., 142 

2002), the treatment effect in some complex environments, such as plant shadows and 143 

boulders distributed on mountain streams, is not always satisfactory. 144 

Frequently observed disturbances on images include: (1) shadows in the target stream 145 

region due to plants blocking direct sunlight; (2) image noise due to raindrops attached 146 
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to the camera lens on rainy days; (3) the lack of light leading to low brightness and 147 

contrast of the image; (4) overexposure of image due to light reflection of the water 148 

surface (around 16:00 UTC+8 in this case). Taking these factors into consideration, we 149 

divided all image samples into six categories, including "Good quality", "Raindrops", 150 

"Middle shadow", "Below shadow", "Water reflection", and "Dark" (Fig. 2). "Good 151 

quality" contains image samples without obvious noise or shadow. All the other images 152 

lose some feature information due to noise, shadows, reflections, or dim lighting. To 153 

ensure the model performance under different environmental conditions, we designed 154 

an automated categorization procedure to screen the raw images and exclude the 155 

"Raindrops" and "Dark" samples from model training. The procedure categorizes 156 

images by comparing the feature values of brightness or saturation in particular test 157 

areas to predefine thresholds under different conditions (see Section 3.2). 158 
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 159 

Figure 2. Flowchart of image processing and discharge monitoring. 160 

 161 
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2.3.2 Color enhancement 162 

In order to highlight the stream features embedded in the images and avoid image 163 

information redundancy, we compared three commonly used color enhancement 164 

approaches to process the image samples. 165 

    (1) Color Enhanced. A dynamic histogram equalization technique (Abdullah-Al-166 

Wadud et al., 2007; Cheng and Shi, 2004) was used to enhance contrast and emphasize 167 

stream features. First, vegetation areas on both sides of the stream were cropped and 168 

filled with black. Then, histogram equalization was used to enhance the contrast 169 

between light and dark, i.e., brighten the bubbles, swirls, ripples, splashes, water 170 

coverage, etc., and darken the bottom stones and reflections in the water. 171 

    (2) Binarization. Binarization of image information can decrease the computational 172 

load and enable the utilization of simplified methods compared to 256 levels of grey-173 

scale or RGB color information (Sauvola and Pietikäinen, 2000; Finlayson et al., 2002). 174 

In this case, the RGB and HSB (Hue, Saturation, Brightness) information extracted 175 

from images suggests that the brightness of the stream water under daylight ranges from 176 

0.2 to 0.7, and the values of three color components follow:  177 

 𝑅ሺ𝑥,𝑦ሻ + 𝐺ሺ𝑥,𝑦ሻ + 𝐵ሺ𝑥, 𝑦ሻ > 350 (2) 178 

Where 𝑅(𝑥,𝑦) , 𝐺(𝑥,𝑦)  and 𝐵(𝑥, 𝑦)  respectively represent the red, green, and blue 179 

color values of the pixel (x, y). The original image was transformed into a binary image 180 

by assigning the values of "1" and "0" to the pixels within and out of the water body, 181 

respectively.   182 

    (3) Water-color Enhanced. Considering that water-color features may carry some 183 
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useful information on discharge (Kim et al., 2019), we tested a new pre-processing 184 

method combining the two approaches above. The RGB information of the original 185 

image within the water body areas was kept unchanged, while the non-water body areas 186 

were filled with black color. Then, the water body areas were further enhanced with the 187 

histogram equalization method to highlight the edge transition between the water body 188 

and the background (Abdullah-Al-Wadud et al., 2007). 189 

2.3.3 Image denoising 190 

Images pre-processed by all of three approaches still contain large amounts of noise 191 

due to environmental disturbances and edge oversharpening caused by image contrast 192 

enhancement (Herzog et al., 2022). Therefore, the wavelet transform (Zhang, 2019) was 193 

adopted to denoise the image samples. We chose a compromise threshold between hard 194 

and soft thresholds as the threshold function (Chang et al.). When the wavelet 195 

coefficient is greater than or equal to the threshold, a compromise coefficient α ranging 196 

from 0 to 1 is added before the threshold to achieve a smooth transition from hard to 197 

soft thresholds,as 198 

 𝜆 = ௠௘ௗ௜௔௡(ௗೕ(௞))଴.଺଻ସହ × ඥ2log (𝑀 × 𝑁) (3) 199 

 𝜔ఒ = ൜ሾ𝑠𝑖𝑔𝑛(𝜔)ሿ(|𝜔| − 𝛼𝜆), |𝜔| ≥ 𝜆0, |𝜔| ≥ 𝜆  (4) 200 

where 𝑗  is the scale of wavelet decomposition, 𝑑௝(𝑘)  is the coefficient of wavelet 201 

decomposition, M and N are the length and width of images, 𝜔 is the wavelet coefficient, 202 𝜆 is the set threshold, and 𝑠𝑖𝑔𝑛 is the sign function. In this case, M×N=2560×1440, 203 

α=0.5. 204 
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2.4 Algorithms of discharge estimation 205 

We used three algorithms to establish discharge classification models (Fig. 2), including 206 

convolutional neural network (CNN), support vector machine (SVM), and random 207 

forest (RF). The data of the RGB color matrix derived from pre-processed images was 208 

used as model inputs. SVM and RF were coupled with CNN to explore the potential 209 

merits of traditional machine learning algorithms in improving the accuracy and 210 

efficiency of CNN-based discharge classifiers.  211 

2.4.1 Convolutional Neural Network (CNN) 212 

Deep convolutional neural network allows computational models composed of multiple 213 

processing layers to learn representations of data with multiple levels of abstraction, 214 

which have brought breakthroughs in processing images, video, speech, and audio 215 

(Lecun et al., 2015). The AlexNet architecture (Krizhevsky et al., 2017) was used to 216 

construct our model. Parameters of the semantic layer of the model were calibrated to 217 

achieve feature extraction and classification of stream images. The image size was first 218 

rescaled from 2560×1440 to 227×227 to facilitate the migration of trained AlexNet. A 219 

227×227×3 (length×width×color) matrix was retrieved from each image as the model 220 

input. There were five built-in convolutional layers, using a 3×3 convolution kernel and 221 

a 3×3 pooled kernel. We replaced the last three layers of AlexNet with a full-connection 222 

layer, a softmax layer, and a classification layer, leaving all other layers intact. The 223 

parameters of the full-connection layer were set according to the number of selected 224 

discharge values. The ReLU function was used as the convolutional layer activation 225 
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function to extract and pass on the water coverage features. The SoftMax function was 226 

the activation function of the output layer, and the extracted feature vectors were 227 

compressed under each discharge label. The probability that a stream image falls into a 228 

discharge label was calculated as 229 

 𝑃(𝑦|𝑥) = ௘೓(ೣ,೤೔)∑ ௘೓(ೣ,೤೔)೙೔సభ  (5) 230 

where x is the feature vector extracted by CNN, y is the discharge label, n is the number 231 

of labels, ℎ(𝑥,𝑦௜) is the linear connectivity function. The training method for CNN was 232 

stochastic gradient descent with momentum, with 15 samples in small batches, a 233 

maximum number of rounds of 10, and an initial learning rate of 0.00005. The samples 234 

were shuffled in every epoch. 235 

2.4.2 Convolutional Neural Network coupled with Support Vector Machine 236 

(CNN+SVM) 237 

SVM is a machine learning method based on structural risk minimization and Vapnik–238 

Chervonenkis (VC) dimension theory (Cortes and Vapnik, 1995). It has been widely 239 

used in image processing, pattern recognition, fault diagnosis, prediction and 240 

classification (Burges, 1998), which can help to capture key samples and eliminate 241 

redundant samples by finding the optimal hyperplane. Compared with neural networks, 242 

which rely on large training samples and tend to fall into local optima, SVM can achieve 243 

global optima with a simpler model structure (Hanczar et al., 2010; Matykiewicz and 244 

Pestian, 2012). However, the SVM-based classifier requires manual input of image 245 

features. Therefore, we coupled CNN and SVM to achieve automatic discharge 246 
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classification. Image features extracted by CNN (i.e., the output of the 5th CNN pooling 247 

layer) were fed into SVM classifiers to calculate discharge.  248 

2.4.3 Convolutional Neural Network coupled with Random Forest (CNN+RF) 249 

RF (Ho, 1995) is a flexible machine-learning algorithm that combines the output of 250 

multiple decision trees to reach a single result. Each decision tree depends on the values 251 

of a random vector sampled independently and with the same distribution for all trees 252 

in the forest (Breiman, 2001; Panda et al., 2009). It is an integrated algorithm of the 253 

Bagging type (Aslam et al., 2007) that combines multiple weaker classifiers, and the 254 

final result is obtained by voting or averaging to improve accuracy and generalization 255 

performance. We here used an RF with 350 decision trees and five decision leaves. The 256 

coupling method of CNN+RF is similar to CNN+SVM, using the same pooling outputs 257 

of CNN as the inputs of RF discharge classifiers. 258 

 259 

3 Results 260 

3.1 Correlation between color information and discharge 261 

The unstructured image data of mountain streams implicitly contain many stream 262 

features relevant to discharge, such as the width and depth of streams, the coverage of 263 

water surface, and spatial distributions of flow direction and flow velocity. CNN has 264 

been widely used in various classification and regression problems for its capability in  265 

recognizing the features of interest from images (Krizhevsky et al., 2017). In this study, 266 

we attempted to achieve discharge monitoring by establishing empirical relationships 267 
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between the RGB color information of the water body and the discharge volumes. We 268 

first explored the correlation between the combination of R/G/B values in the region of 269 

interest (ROI, see Fig. 2) and discharge conditions. Traversing the common algebraic 270 

combinations of the three colors, we found that −𝑅ത + 7.5𝐺̅ − 6.5𝐵ത   (𝑅ത , 𝐺̅ , 𝐵ത   are the 271 

mean values of red, green and blue channels of an image, respectively) had a spearman 272 

correlation coefficient of 0.67 with discharge (p-value < 0.01), indicating that the 273 

discharge is significantly correlated with the color combination value at the 99% 274 

confidence level (Fig. 3). Such result suggests that discharge conditions are embedded 275 

in RGB information of mountain streams to some extent, which could be further 276 

retrieved and refined by CNN models.  277 
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 278 
Figure 3. Correlation between RGB color values and corresponding discharges. 279 

 280 

3.2 Automated image categorization 281 

We selected four areas in the image as the detection areas for the categorization 282 

procedure (Fig. 4a). It was found that the upper and lower shadows in the target stream 283 
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section mainly appeared in Area 3 and Area 1&2, respectively. Disturbance of water 284 

surface reflection was mostly found in Area 4. The thresholds of saturation or brightness 285 

in the four detection areas for image categorization were determined manually by 286 

comparing image samples under different conditions. The procedure of automated 287 

image categorization includes four steps (Fig. 5). First, "Dark" images (Fig. 4f-2) were 288 

identified when the standard deviation of the brightness or saturation of the full image 289 

was less than 0.2. "Raindrops" images (Fig. 4f-3) were identified when the mean 290 

difference of the saturation or brightness of the image was greater than 35% compared 291 

to the "Good quality" images (Fig. 4f-1). These two types of images were excluded 292 

from the training samples. Then, "Below shadow" (Fig. 4b-2; Fig. 4c-2) and "Middle 293 

shadow" images (Fig. 4d-2) were identified when the brightness value with the largest 294 

number of pixels in Area 1&2 and Area 3 was less than 0.3 and 0.4, respectively. Last, 295 

"Water reflection" images were identified when the number of pixels at the brightness 296 

value of 0.98 in Area 4  exceeded 1300 (Fig. 4e-2). The other charts in Fig. 4 show the 297 

saturation and brightness distributions in each detection area derived from a typical 298 

“Good quality” image. 299 

 300 
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 301 

Figure 4. Comparison of saturation and brightness distributions in the four detection 302 

areas under different environmental conditions. The horizontal axis is the interval range 303 

(0-1) of saturation and brightness in HSB space. The vertical axis indicates the number 304 

of pixels under a certain saturation or brightness value. 305 

 306 
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 307 

Figure 5. Procedure of automated image categorization.  308 

 309 

3.3 Model training and validation 310 

We selected 100 stream images corresponding to each discharge volume for model 311 

training and validation. The databases of "Good quality", "Middle shadow", "Below 312 

shadow", and "Water reflection" were sampled in the ratio of 7:1:1:1 to ensure the 313 

representation of different environmental conditions. The samples were distributed 314 

evenly in each discharge interval to enhance model performance on high and low flows.  315 

3.3.1 Effectiveness of image categorization 316 

Most of the previous image-based studies only selected unblemished images for 317 

discharge or velocity monitoring, which resulted in poor model performance under 318 

environmental disturbances. (Chapman et al., 2020; Herzog et al., 2022; Leduc et al., 319 

https://doi.org/10.5194/egusphere-2023-659
Preprint. Discussion started: 5 May 2023
c© Author(s) 2023. CC BY 4.0 License.



20 

 

2018) In this study, we also included samples under the influence of vegetation shadows 320 

and water reflection for model training. Fig. 6 demonstrates the difference in accuracy 321 

of monitoring discharge by the defective images, using two sets of models trained with 322 

only "Good quality" images and samples filtered by automated image categorization, 323 

respectively. Results derived from the three discharge classification models and three 324 

color-enhancing methods consistently suggest that the procedure of automated image 325 

categorization can significantly improve model performance in apprehending defective 326 

images. Classification accuracy of the models trained with only “Good quality” samples 327 

staggered between 11.8%-18.7%, while the accuracy of the models trained after 328 

automated image categorization was higher than 79.0% (79.0%-97.4%) regardless of 329 

the choices of color processing method and deep learning model. The average 330 

difference in accuracy between the two sets of training samples reached 73.9%. The 331 

proportionate inclusion of defective images with vegetation shadow and water surface 332 

reflection enhances the anti-interference ability of the models in complex environments. 333 

 334 

 335 

 336 
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 337 

Figure 6. Accuracy of discharge classification of images under environmental 338 

disturbances. Bars with and without patterns show the results using the models trained 339 

with only “Good quality” samples and samples after automated image categorization, 340 

respectively. Color enhancement methods include Color Enhanced (CE), Binarization 341 

(BZ), and Water-color Enhanced (WE). 342 

 343 

3.3.2 Comparison of models and color-enhancing methods 344 

The stream image samples after the treatments of color-enhancing, image denoising, 345 

and automated image categorization were randomly divided into training and validation 346 

sets by the ratio of 7:3. The scatter plots of measured and simulated discharge based on 347 

the validation samples (Fig. 7) show that all three models (i.e., CNN, CNN+SVM, 348 

CNN+RF) can achieve satisfactory accuracy. The simulated discharges were all 349 

significantly correlated to the flowmeters’ measurement with R values higher than 0.95. 350 

The observed and simulated discharge under most flow conditions were distributed 351 

around the 1:1 line with RMSE of 1.39, 1.02, and 0.69 dm3/s, respectively. However, a 352 

comparison of the three models suggests that CNN is more likely to over- or under-353 
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estimate discharge than both CNN+SVM and CNN+RF. CNN+RF achieved the best fit 354 

with the lowest RMSE. On the other hand, CNN+SVM shows the best performance on 355 

discharge classification (Fig. 8) with an accuracy higher than 91.3% using all three 356 

color-enhancing methods, which was 13.2%-14.4% higher than CNN and 2.2%-4.2% 357 

higher than CNN+RF. Such results could be related to the size of our samples and the 358 

characteristic of the features extracted by deep layers of CNN. SVM has been widely 359 

used for its capability to solve classification problems in the cases of small samples 360 

with linear features. It uses slack variables to allow the distances to the classification 361 

plane not to meet the original requirements for some points, thus avoiding overfitting 362 

in the training period.  363 

Among the three tested color-enhancing methods, the Color Enhanced approach 364 

generally shows the best adaptability with the discharge classification models, with an 365 

accuracy 2.5%-5.2% higher than the Binarization and Water-color Enhanced images of 366 

the validation set. This may be caused by the different treatments in the edges of the 367 

water body. Binarization and Water-color Enhanced relatively cause larger deviation 368 

from the real edges, while Color Enhanced retains the image information to the 369 

maximum extent so that CNN can automatically and accurately identify the color 370 

differences between the target water body and the background. Overall, CNN+SVM 371 

using samples processed by the automated image categorization and Color Enhanced 372 

procedures performs best with a classification accuracy of 94.7%. 373 

 374 
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Figure 7. Comparison of discharge simulated from the validation set’s images and the 376 

flowmeters’ measurement. The used deep learning models include CNN (a), 377 

CNN+SVM (b), and CNN+RF (c). Color enhancement methods include Color 378 

Enhanced (CE), Binarization (BZ), and Water-color Enhanced (WE). 379 
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Figure 8. Accuracy of discharge classification on the training (bars without patterns) 382 

and validation set (bars with patterns). Color enhancement methods include Color 383 

Enhanced (CE), Binarization (BZ), and Water-color Enhanced (WE). 384 

 385 

4 Discussion 386 

The existing image-based methods usually rely on either the estimations of flow 387 

velocity and cross-section area or assumptions on stage-discharge correlation (Davids 388 
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et al., 2019; Leduc et al., 2018; Li et al., 2019; Tauro et al., 2017). The first type of 389 

method uses image-derived surface velocity to estimate sub-sectional mean streamflow 390 

velocity and spatial integration of discharge (Le Coz et al., 2012). The difficulties in 391 

capturing cross-sectional characteristics and the relationship between flow velocity and 392 

water depth limit their application in small mountain streams. The second type of 393 

method retrieves river geometry directly through remote sensing, yet the accuracy is 394 

primarily determined by the empirical assumptions on the relationships among water 395 

depth, velocity, and discharge (Gleason and Smith, 2014; Young et al., 2015). In this 396 

study, we proposed a new camera-based method to directly establish the relationship 397 

between the RGB matrixes of stream images and the classification probabilities of 398 

discharge. The unique merit of the CNN-based model is its capability in automatically 399 

extracting and refining discharge-related features from image samples, which improves 400 

the accuracy and applicability of the model. Previous attempts suggest that the selection 401 

of image features can significantly affect the performance on classification of stream 402 

images (Tauro et al., 2014). For example, Chapman et al. (2020) manually extracted 403 

features from pre- and post-weir images and used them as the inputs of machine 404 

learning models. However, the dominant image features relating to stream discharge 405 

could vary across different environments (e.g., topography, vegetation on river banks, 406 

water quality), limiting the transferability of such manually identified features.  407 

Weather conditions (e.g., sun position, fog, rain) are the most common difficulties 408 

that reduce picture quality (Leduc et al., 2018). Therefore, we designed an automated 409 

procedure for categorizing samples by their brightness and saturation: (a) select four 410 
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areas in the image as detection areas, (b) eliminate images with insufficient light or 411 

raindrops on the lens, (c) identify thresholds and classify the remaining images into four 412 

categories for further model training, including the images under the influence of 413 

vegetation shadow and overexposure caused by water reflection in certain angles. Such 414 

inclusion and categorization of defective samples have significantly enhanced the anti-415 

interference ability of the model, facilitating uninterrupted discharge monitoring 416 

through the daytime. These factors and the thresholds of brightness and saturation are 417 

site-specific and require manual trials to identify them. However, after adequate initial 418 

calibration, an established model can be used for the same site for extended periods and 419 

repeated installations of camera systems.   420 

The training and validation of deep learning models require a large number of 421 

representative samples (He et al., 2016). We collected a total of 7757 image samples 422 

from July 20th to September 27th, 2022, and 3464 images were used for model training 423 

and validation after image screening and categorization. Although we executed an 424 

effective automatic categorization procedure on the acquired image samples, it is 425 

undeniable that the training and validation sets didn’t cover all environmental 426 

disturbances. For example, the time of sunrise and sunset, the appearance of water 427 

surface reflections, and the coverage of vegetation shadows are affected by the angles 428 

of sunlight and vary with seasons. With sufficient artificial lighting or installation of a 429 

night-vision infrared camera (Royem et al., 2012), the images during nighttime can also 430 

be used for discharge monitoring after training. More image samples are needed to 431 

enrich the representativeness of the model in further studies. Another limitation is that 432 
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we have focused on low and average flow conditions in the model training due to the 433 

lack of high-quality flood samples. In tropical and subtropical mountain streams of 434 

southern China, floods usually occur during rainstorms and only last for a short time. 435 

Heavy rainfalls constantly block the camera lens with raindrops, and the rapid 436 

streamflow movement during heavy rainfall tends to cause blurred images, which can 437 

only be partly improved by increasing the shutter speed and adjusting the camera 438 

position.  439 

 440 

5 Conclusions 441 

The results demonstrate the effectiveness of a novel method for discharge monitoring 442 

of mountain streams using deep learning and a low-cost solar-powered commercial 443 

camera (approximately $200). The discharge-relevant stream features embedded in a 444 

large number of RGB images can be implicitly recognized and retrieved by CNN to 445 

achieve continuous discharge monitoring. Coupling CNN and traditional machine 446 

learning methods can potentially improve model performance in discharge 447 

classification to various extents. In this case, the accuracy of CNN+SVM and CNN+RF 448 

were 9.1%-14.4% higher than CNN. Proper image pre-processing and categorization 449 

can largely enhance the applicability of image-based discharge monitoring. In an 450 

environment under complex disturbances such as mountain streams, image quality is 451 

constantly interfered with by shadows of vegetation on the river banks. The automated 452 

image categorization procedure can effectively recognize discharge from defective 453 
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images by filtering samples under different conditions and improve model robustness. 454 

The comparison of the three color-enhancing approaches also confirms the importance 455 

of including the non-water parts (e.g., large rocks) and retaining the background 456 

information to the maximum extent in the image analysis.   457 

The proposed method provides an inexpensive and flexible alternative apparatus for 458 

continuous discharge monitoring at rocky upstream mountain streams, where it is 459 

challenging to identify the cross-section shape or establish a stable stage-discharge 460 

relationship. Site-specific field data is needed to identify the criteria for image 461 

categorization and model validation. However, it circumvents the potential errors in 462 

assuming cross-section characteristics, such as the relationship between water depth 463 

and flow velocity, and represents a new direction for applying deep learning techniques 464 

in acquiring high-frequency discharge data through image analysis.  465 
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